Pallas kráterovaná jako „golfový míček“

21. února 2020

Co planetka, to jiný tvar a velikost. Některé jsou kulaté, jiné naopak protáhlé či jinak nepravidelné. V rámci mezinárodní spolupráce jsme se podíleli na pozorování jedné z největších - planetky Pallas. S překvapením jsme zjistili, že vypadá jako obří „golfový míček“. Je sice kulatá, ale povrch má pokrytý množstvím kráterů.

Planetka (2) Pallas, pojmenovaná po řecké bohyni moudrosti, byla objevena v roce 1802. Díky své velikosti, která je asi sedminová ve srovnání s Měsícem, se řadí na třetí místo v oblasti hlavního pásu planetek mezi Marsem a Jupiterem. Rovina její dráhy je neobvykle skloněná vůči dráhám ostatním planetek. Důvod tohoto sklonu je ovšem nejasný.

V článku Marsset a kol. (2020), publikovaném v prestižním časopise Nature Astronomy, ukazujeme detailní snímky povrchu planetky Pallas. Poprvé máme rozlišení dostatečné pro identifikaci jednotlivých povrchových útvarů – kráterů. Náš tým, vedený Pierrem Vernazzou z Laboratoire d'Astrophyisque de Marseille ve Francii, získal snímky planetky Pallas pomocí adaptivní optiky na přístroji SPHERE, umístěném na dalekohledu VLT. Jedná se o jeden ze čtveřice největších dalekohledů Evropské jižní observatoře, s průměrem zrcadla 8 metrů. Pallas jsme pozorovali ve dvou různých obdobích, vždy v době, kdy byla na své dráze co nejblíže Zemi. Tak jsme dosáhli největšího možného rozlišení a rozpoznali nejvíce detailů na povrchu.

Během dvou pozorovacích sezón (2017 a 2019) jsme získali 11 sérií snímků. Díky otáčení Pallas kolem své rotační osy zachycují povrch z různých úhlů. Snímky byly podrobeny matematickému zpracování (dekonvoluci). Ze snímků pak byl inverzními metodami odvozen tvar ve 3D. Vytvořili jsme také mapu kráterů a změřili jejich četnost poblíž rozhraní světla a stínu, kde bývají nerovnosti dobře pozorovatelné.

Domníváme se, že zjizvený povrch planetky Pallas je důsledkem velmi skloněné oběžné dráhy. Zatímco většina planetek hlavního pásu se pohybuje po dráhách mírně výstředných a mírně skloněných, podobně jako auta na závodním okruhu, Pallas se pod vysokým úhlem „probíjí“ hlavním pásem. Jakékoliv srážky, které Pallas zažije, jsou daleko ničivější než srážky mezi planetkami na podobných drahách, neboť vzájemná rychlost je více než dvojnásobná. Pallas je zřejmě nejkráterovanějším tělesem, který jsme doposud v hlavním pásu zaznamenali.

Celkem jsme identifikovali 36 kráterů o průměru větším než 30 kilometrů. Pro srovnání, 30 km odpovídá přibližně pětině průměru kráteru Chicxulub, jehož vznik souvisí s vyhynutím dinosaurů před 65 miliony lety. Odhadujeme, že tyto krátery pokrývají přinejmenším 10 procent povrchu Pallas, což potvrzuje správnost domněnky, že její historie zaznamenaná krátery byla extrémní ve srovnání s ostatními tělesy sluneční soustavy.

Abychom pochopili, jak tato historie pravděpodobně vypadala, provedli jsme řadu simulací Pallas a jejich interakcí s ostatními planetkami hlavního pásu během posledních 4 miliard let, což přibližně odpovídá stáří sluneční soustavy. Totéž jsme učinili pro Ceres a Vestu, uvažujíc přitom velikost, hmotnost a danou dráhu, stejně jako rozdělení velikostí a rychlostí objektů v hlavním pásu. Zaznamenali jsme každou událost, kdy došlo k simulované srážce s Pallas, Ceresem či Vestou, která vytvořila kráter o průměru alespoň 40 km (což je velikost většiny kráterů pozorovaných na Pallas).

Zjistili jsme, že 40kilometrový kráter na Pallas může vzniknout srážkou s podstatně menším objektem než tentýž kráter na Ceresu nebo Vestě. Protože menší planetky v hlavním pásu jsou výrazně početnější než ty větší, znamená to, že Pallas má větší pravděpodobnost srážky a kráterování než ostatní dvě tělesa.

„Pallas zažívá dva až třikrát více srážek než Ceres a Vesta a její skloněná dráha zřejmě vysvětluje její zvláštní povrch, odlišný od ostatních dvou těles,“ říká Marsset.

Na základě získaných snímků se podařilo učinit další dva objevy: na jižní polokouli se nachází jasná skvrna a na rovníku výjimečně velký kráter (pánev). Co se týká kráteru, jehož průměr se odhaduje na 400 km, zjišťovali jsme, čím mohl být vytvořen. Simulovali jsme dopady různých těles do oblasti rovníku a sledovali fragmenty, které přitom byly vymrštěné z povrchu Pallas.

Podle našich simulací se zdá, že velká impaktní pánev je důsledkem srážky před asi 1,7 miliardami let s tělesem o průměru mezi 20 a 40 kilometry. Úlomky tehdy vyhozené do prostoru se dodnes nacházejí na dráhách podobných jako má Pallas dnes.

„Vznik pánve lze velmi dobře vysvětlit. Souvisí se současnou rodinou planetek Pallas,“ říká spoluautor Miroslav Brož z Astronomického ústavu Univerzity Karlovy.

Původ jasné skvrny objevené na jižní polokouli Pallas je však nejasný. Zatím nejlepší hypotéza je, že se jedná o usazeniny solí. Na základě získaného modelu tvaru byl spočten objem Pallas, což v kombinaci se známou hmotností dává průměrnou hustotu. Ta je opět odlišná od Ceresu a Vesty a odpovídá směsi vodního ledu a silikátů. Postupně se led v nitru planetky roztavil a silikáty se tak hydratovaly, čímž mohly vzniknout soli, které později odhalil nějaký impakt.

Chybějící díl skládačky bychom mohli najít poněkud blíž, těsně u Země. Každý prosinec mohou vizuální pozorovatelé sledovat úžasný úkaz známý jako Geminidy. Jedná se o meteorický roj pocházející z úlomků planetky (3200) Phaeton, která sama je pravděpodobně jedním z úlomků Pallas, jenž se náhodou dostal na dráhu křížící dráhu Země. Zvýšený obsah sodíku v Geminidách, který je znám dlouho, Marsset a kol. vysvětlují jako důsledek pozorovaných solných skvrn na původním mateřském tělese, tedy Pallas.

„Lidé navrhovali vyslat k Pallas miniaturní, levné satelity,“ říká Marsset. „Nevím, jestli se projekt uskuteční, ale určitě by nám o povrchu Pallas a původu jasné skvrny prozradil mnoho.“


Z Astronomického ústavu UK se na tomto výzkumu podíleli Josef Hanuš, Miroslav Brož, Pavel ŠevečekJosef Ďurech. Josef Hanuš, Josef Ďurech a Pavel Ševeček byli podpořeni grantem GAČR 18-09470S. Miroslav Brož byl podpořen grantem GAČR 18-04514J.

AÚUK