Lidé
Katedra matematické analýzy

doc. RNDr. Miroslav Zelený, Ph.D.
Zástupce vedoucího katedry
Telefon 951 55 3403
Místnost K 208 (4005)
doc. RNDr. Tomáš Bárta, Ph.D.
Evoluční a integrodiferenciální rovnice, obyčejné diferenciální rovnice, asymptotické chování
Mgr. Barbora Benešová, Ph.D.
Variační počet a slabá zdola polospojitost; Parciální diferenciální rovnice - existence slabého řešeni; Aplikace v mechanice kontinua - modely pevných látek a jejicj matematická analýza
doc. Mgr. Marek Cúth, Ph.D.
Funkcionální analýza: neseparabilní Banachovy prostory (a související témata z topologie a teorie množin)
studium nelineární struktury Banachových prostorů (především pak studium tzv. ,,Lipschitzovsky-volných`` Banachových prostorů)
prof. RNDr. Stanislav Hencl, Ph.D.
Geometricka teorie funkcí, zobrazení s konečnou distorzí, vlastnosti Jakobiánu, reálné funkce více proměnných, slabá diferencovatelnost, aproximace, Variační počet , prostory funkcí
doc. RNDr. Petr Holický, CSc.
Deskriptivní teorie množin - borelovské, analytické, suslinovské, ... množiny, zobrazení, prostory, deskriptivní vlastnosti konkrétních množin v analýze.
Topologické vlastnosti Banachových prostorů. některé partie z teorie reálných funkcí, teorie míry, funkcionální analýzy, topologie, ...
doc. Mgr. Petr Honzík, Ph.D.
doc. RNDr. Michal Johanis, Ph.D.
Funkcionální analýza, Banachovy prostory, geometrie a struktura, izomorfní teorie, renormace - hladkost a konvexita, analýza v Banachových prostorech.
prof. RNDr. Ondřej Kalenda, Ph.D., DSc.
Banachovy prostory - geometrická a topologická struktura,
kvantitativní verze jejich vlastností, míry slabé nekompaktnosti.
Operátorové algebry a Jordanovy struktury, zejména z pohledu
teorie Banachových prostorů.
Třídy neseparabilních Banachových prostorů a související třídy
kompaktních prostorů.
Deskriptivní topologie a kompaktní konvexní množiny.
doc. Mgr. Petr Kaplický, Ph.D.
Parciální diferenciální rovnice. Systémy popisující jevy daleko od > rovnovážných stavů.
RNDr. Kristýna Kuncová, Ph.D.
Teorie integrálu, Kurzweilův integrál a jeho zobecnění
Dr. rer. nat. Malte Laurens Kampschulte,
Variační počet, geometrická teorie míry, mechanika kontinua, parciální diferenciální rovnice, nelineární analýza
Oleksandr Minakov, Ph.D.
Integrovatelné parciální diferenciální rovnice: dlouhodobá asymptotická analýza problémů počáteční hodnoty s krokovými počátečními daty (Kortewegova - de Vriesova rovnice, Camassa - Holmova rovnice, nelineární Schrödingerova rovnice atd.). Přímé a inverzní rozptylové transformace pro neklesající a zvyšující se potenciály. Riemann-Hilbertovy problémy a asymptotické metody pro oscilační Riemann-Hilbertovy problémy. Další zájmy: ortogonální polynomy, Painlevé rovnice, náhodné matice.
prof. RNDr. Luboš Pick, CSc., DSc.
Prostory funkcí, symetrisace, prostory s normou invariantní vůči
nerostoucímu přerovnání, Orliczovy prostory, Lorentzovy prostory,
vnoření, kompaktní vnoření, optimalita, logaritmické Sobolevovy
nerovnosti na prostorech s pravděpodobnostní mírou, analýza nekonečně
mnoha proměnných v pravděpodobnostním prostoru, věty o stopách,
regularita řešení diferenciálních rovnic, optimální partnerské páry
prostorů funkcí, teorie interpolací, teorie aproximací, omezenost a
kompaktnost operátorů, míra nekompaktnosti, supremální oparátory,
integrální operátory, diskretisace, váhové nerovnosti, elementární
témata z analýzy, základní nerovnosti a odhady, rekreační matematika,
historie matematiky, popularisace matematiky, překlady knih.
doc. RNDr. Dalibor Pražák, Ph.D.
Parciální diferenciální rovnice (existence a regularita řešení, chování pro velké časy, odhady dimenze atraktorů).
Další zájmy: dynamické systémy, teorie her, nestandardní analýza.
doc. RNDr. Pavel Pyrih, CSc.
Teorie kontinuí, konstrukce prostorů s danými vlastnostmi, lokální vlastnosti kontinuí, homogenita kontinuí.
doc. RNDr. Mirko Rokyta, CSc.
PDR, zejména hyperbolické systémy zákonů zachování; numerická analýza, zejména metoda konečných objemů, popularizace matematiky
doc. Sebastian Schwarzacher, Dr.
Nelineární parciální diferenciální rovnice (existence, jednoznačnost, regularita, numerická analýza).
Dynamika tekutin (struktura, interakce, ne-Newtonovaká tekutina).
Variační počet (nestandardní růst, elastická tělesa).
Numerické výpočty pro PDR (časová schémata, řád konvergence, Galerkinovy metody).
Analýza evolučních nelineárních PDR (proměnné oblasti, vnitřní geometrie, systémy s proměnlivým kontaktem).
RNDr. Lenka Slavíková, Ph.D.
Banachovy prostory funkcí, prostory Sobolevova typu, lineární a multilineární multiplikátory, singulární integrální operátory, maximální funkce, váhové nerovnosti
prof. RNDr. Jiří Spurný, Ph.D., DSc.
Integrální reprezentace konvexních množin; Choquetova teorie; Banachovy
prostory a algebry; operátorové prostory a jejich geometrické a
topologické vlastnosti
Pei Su, Ph.D.
Teorie řízení, nekonečně-dimenzionální systémy, asymptotická analýza,
problémy s volnou hranicí, problémy interakce tekutin a pevných těles.
doc. Mgr. Benjamin Vejnar, Ph.D.
Obecná topologie, teorie kontinuí, polské prostory, borelovské redukce, topologické dynamické systémy
RNDr. Václav Vlasák, Ph.D.
Klasická deskriptivní teorie množin.
Reálná a harmonická analýza
doc. RNDr. Miloš Zahradník, CSc.
Matematická statistická fyzika. Kombinace analytických, pravděpodobnostních ale i kombinatorických metod při studiu rovnovážných stavů (matematicky: "Gibbsovských měr") velkých systémů o mnoha interagujících komponentách.
Možná témata bakalářských prací s dalšími partiemi matematiky ležícími na pomezí analýzy, algebry, diskrétní matematiky a s aplikacemi, zvláště ve fyzice.
Na úrovni koníčka: meteorologie a matematické aspekty jejích dat.
prof. RNDr. Luděk Zajíček, DrSc.
Teorie reálných funkcí a výjimečných množin v eukleidovských a Banachových
prostorech (teorie derivací, konvexní funkce, semikonvexní funkce, DC
funkce, sigma-pórovité množiny).
doc. RNDr. Miroslav Zelený, Ph.D.
Deskriptivní teorie množin. Reálná a harmonická analýza.