77 KAM Mathematical Colloquium

# 77 KAM Mathematical Colloquium

## TRANSCENDENCE OF PERIODS

ctvrtek 10. listopadu 2011 v 15:40, poslucharna S5, druhe patro
KAM MFF UK
Malostranske nam. 25
118 00 Praha 1

## Abstract

The set of real numbers and the set of complex numbers have the power of continuum. Among these numbers, those which are "interesting", which appear "naturally", which deserve our attention, form a countable set. In a seminal paper with the title "Periods" published in 2000, M. Kontsevich and D. Zagier suggest a  suitable definition for that set, by introducing the definition of "periods". They propose one conjecture, two principles and five problems. The goal of this talk is to address the question: what is known on the transcendence of periods?

## O přednášejícím

Prof. Michel Waldschmidt studoval na stredni skole a rovnez na universite nesouci jmeno Henriho Poincareho v Nancy. Dnes je profesorem na Universite Pierra a Marie Curieovych v Parizi a prednasi rovnez na jinych universitach ve Francii, vcetne Ecole Normale Superieure. Prof. Waldschmidt patri k nejznamejsim matematikum pracujicim v teorii cisel, kde publikoval pres 160 praci, prevazne z analyticke teorie cisel. Je editorem 4 mezinarodnich casopisu. V letech 2001-2004 byl presidentem Francouzske matematicke spolecnosti a v letech 2005-2009 vicepresidentem CIMPA. Waldschmidt ma hluboky zajem o  vyuku matematiky ve Francii (byl mj. reditelem Lycee Jules Verne v Limours) a  vlastne i ve svete, zvlaste v rozvojovych zemich. V mnoha zemich prednasel a je clenem vedeckych a poradnich sboru (napr. Bhutan, Brazilie, Japonsko, Kambodza, Indie, Irak, Mali, Nepal, Pakistan, Taiwan, Thajsko, Vietnam). I z tohoto neuplneho vyctu je videt, ze je prednasejicim s  mimoradnou zkusenosti. Jeho prazska prednaska se bude tykat hlavni oblasti jeho zajmu.