Program Overview

Applications for PhD projects in Atmospheric Physics, Meteorology and Climatology .

The Department of Atmospheric Physics at Charles University in Prague offers PhD studies in a wide range of subjects related to meteorology, numerical prediction, numerical flow simulation, atmospheric chemistry and air quality, climatology, climate modelling and climate change studies, middle atmospheric studies, nonlinear systems, data analysis and statistical modelling. For more information about the research fields, please see the list below.

The graduate acquires comprehensive scientific knowledge necessary to study atmospheric processes within a broader context of other processes occurring in the climate system and the adjacent interplanetary space. The scope of knowledge gained by the graduate includes, in particular, the following areas: atmospheric physics, dynamic and synoptic meteorology, modelling of atmospheric processes, climatology and climate changes, processes in the boundary layer of the atmosphere, turbulences and flow modelling, atmospheric chemistry and air quality, or characteristics of the higher atmosphere. The graduate is prepared for creative research work in academia and various positions within the public or commercial sectors.

The applicants are expected to possess knowledge in mathematics and physics at the Master’s degree level and relevant to atmospheric research, as well as knowledge of modelling, data processing and good programming skills. A background in meteorology and/or climatology is also expected. Nevertheless, in case an applicant specialized in other research fields related to atmospheric/climate studies, some of the basic knowledge might also be acquired during the Ph.D. study. Applications collected through this website will be used to match candidates with PhD advisors and to determine project funding. All selected candidates will have to pass through the regular admission procedure of the Faculty of Mathematics and Physics. All candidates admitted for PhD will be students of Faculty of Mathematics and Physics at Charles University.

PhD projects can be carried out in collaboration with the following institutions:

Listing of PhD projects and information on funding can be found at PhD Projects & Funding.

Information on deadlines, how to apply and what is required can be found at Application.

During their doctoral study, the students are required to attend selected lectures, present their results at scientific conferences, be involved in related research and publish at least three peer-reviewed papers over the course of their study. It is expected that the PhD student will be the main author of at least two papers and at least two papers will be published in peer-reviewed journals with IF. By the time of the dissertation defense, the papers should be published or accepted for publication. PhD students have to also pass the English language exam (equivalent to FCE, courses provided by the university are free) and to prove their theoretical knowledge in the field through the doctoral state exam. These requirements can be fulfilled anytime within the PhD studies but preferably during the first two years.

Please consult Frequently Asked Questions for important information and more details.

Research fields at KFA MFF UK

  • Meteorology and weather prediction

    Weather prediction and synoptic-dynamic meteorology belong to the core of research at the Department of Atmospheric Physics. Numerical weather prediction using the WRF model is complemented by close cooperation with the Czech Hydrometeorological Institute, particularly with the NWP group behind development of a local version of the ALADIN model. Weather types and other weather classification methods are studied too. Last, but not least, this topic involves analysis of atmospheric fronts (objective as well as subjective) and of changes in atmospheric circulation patterns.

  • Climatology

    Climatology research includes broad areas covering regional climate analysis (focused on, but not restricted to, the Czech Republic), special features of urban climate, as well as various fields of applied climatology (related to, e.g., technological implications of local climate, as well as links to agriculture or energy production) and biometeorology. Data from various sources are used (“classical” surface measurements, as well as data from remote sensing techniques, with particular focus on satellite data). Our researchers cooperate with colleagues from Czech Hydrometeorological Institute (that is responsible for climatological measurements in the Czech Republic).

  • Climate change studies

    In the frame of our research activities, climate changes and their impacts are studied through both dynamical and statistical models, at global as well as local scales. Aside from analysis of past and future evolution of basic atmospheric characteristics, various aspects of climate interactions with other Earth systems are also targeted, particularly climate change impacts in hydrology or agriculture.

  • Climate modelling

    Apart from the analysis of climate model results, our department has for many years been active in the downscaling community producing regional climate scenarios using the dynamical downscaling technique based on regional climate models (RCM). With our simulations produced with the RegCM model, we actively collaborated in many related multi-national projects (e.g. PRUDENCE, ENSEMBLES, CECILIA). Most recently we have been participating in the CORDEX activity, namely EURO-CORDEX. Topical studies include two flagship pilot studies: LUCAS (Land Use and Climate Across Scales) and Convective phenomena at high resolution over Europe and the Mediterranean (CPC).

    Furthermore, our research involves the urban climate modelling using regional climate models (RegCM, WRF) coupled to urban canopy models. We use these modelling tools to assess the present-day climate conditions of urban areas, the urban-rural contrast in weather parameters and their impact on air quality as well as the evolution of the urban atmospheric environment within the changing climate.

  • Numerical flow simulation

    The computational fluid dynamics is represented in the research of the department mainly by large eddy simulations of atmospheric boundary layer flows, especially within the urban canopy. The common application is the dispersion of air pollution in the city environment. We develop our own LES model ELMM and use also other codes for our simulations. The research covers applications of CFD to understand the flow and dispersion processes in complex geometry or in temperature stratification, subgrid modelling and the numerical methods used for such simulations.

  • Atmospheric chemistry modelling

    Atmospheric chemistry research at our department focuses primarily on the short term modifications of tropospheric composition related to different environmental changes, both of anthropogenic and natural origin. The main research topics involve the investigation of urban canopy air chemistry and its links to emission sources and meteorological variables. We have been using advanced chemistry transport models (e.g. CAMx, WRFchem) to study the related processes in detail and a strong emphasis is put on the emission modelling too. A special attention is dedicated to the investigation of biogenic emissions, their dependence on meteorological conditions and their role in modulating air quality. We collaborate with research groups from University of Graz, BOKU in Vienna, IPSL at Pierre and Marie Curie University in Paris.

  • Middle atmospheric research

    The middle atmospheric research at the Department of Atmospheric Physics involves studies of the middle atmospheric dynamics, wave phenomena with focus on gravity waves, trends of the vertical extent, transport and its wave driving, ozone trends and influence of solar forcing. We collaborate with international research groups (ISSI team on orographic gravity wave drag constraints) and with colleagues from other universities and institutes (e.g., University Leipzig, BOKU Wien, University of Graz, University of Vigo, German Aerospace Center). We utilize state-of-the-art theoretical methods for research of atmospheric dynamics with focus on wave-mean flow and wave-wave interactions, satellite observations like GPS RO and, in cooperation with our partners, sensitivity simulations with comprehensive (EMAC-MESSY) as well as mechanistic models (MUAM).

  • Time series analysis and statistical modelling

    A range of advanced statistical methods is developed and implemented at our department. The relevant research topics involve analysis of spatiotemporal variability in various atmospheric and climate data (including the issues of climate change detection), attribution of the variability patterns (especially regarding the long-range teleconnections), or development of models for statistical downscaling. Manifestations of nonlinear and chaotic behavior in the climate time series are also intensely studied.