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Abstract. While numerical relativity has largely resolved the most important
problem of a binary black hole collision and merger with the help of the moving
puncture gauge, there are still interesting regimes that elude successful numeric
treatment. One such is the evolution of axisymmetric gravitational waves, followed
for sufficiently strong field by their collapse into a black hole. A specific family of
initial data, the Brill waves, has proven difficult to evolve with common hyperbolic
gauge conditions. We present a comparison of the effects of different gauge choice
on the numerical evolution of this data.

Introduction

The evolution of pure gravitational waves has been the object of some attention in numerical relativ-
ity. One motivation for this is that it allows us to study gravitational collapse and black hole formation
using just a vacuum code, without having to deal with matter dynamics.

Pioneering simulations of this kind [Abrahams and Evans 1993, 1994] used a family of axisymmetric
initial data, known as the Teukolsky waves [Teukolsky 1982], with one parameter a controlling the strength
of the waves. The results showed that there exists a critical amplitude a∗ such that for a < a∗ the waves
disperse to infinity and leave flat space behind, while for a > a∗ the waves collapse and form a black
hole. For values of a close to a∗, critical behaviour could be observed with some properties markedly
similar to those reported by [Choptuik 1993] for the spherically symmetrical collapse of a scalar field.

Several other published attempts used a different family of axisymmetric initial data, the Brill waves
[Brill 1959], again with a single amplitude parameter. The Brill data is defined by the following spatial
line element in cylindrical coordinates {ρ, z, ϕ}

dl2 = ψ4
[
e2q
(
dρ2 + dz2

)
+ ρ2dϕ2

]
(1)

with a chosen “seed function” q(ρ, z) and the assumption of time symmetry of the initial slice, which
implies vanishing extrinsic curvature Kij = 0. The momentum constraints are then satisfied trivially
and the Hamiltonian constraint reduces to

Δψ +
1

4
(∂ρq + ∂zq)ψ = 0 (2)

with Δ the flat space Laplacian. A common choice of the seed function — e.g. [Alcubierre et al. 2000]
and others — and the one we also use in this paper, has the form

q = Aρ2e−ρ2−z2

(3)

where A is the amplitude parameter.
Several published results about Brill wave simulations used maximal slicing and were able to observe

the formation of an apparent horizon for sufficiently strong initial data [Alcubierre et al. 2000, Garfinkle
et al. 2001, Rinne 2008]. Maximal slicing, however, is not very practical for 3D simulations so there
has been interest in hyperbolic gauge conditions for evolving this data. Of note is therefore the result
from [Hilditch et al. 2013] showing that the moving puncture gauge, commonly used for 3D black hole
simulations, fails for the Brill data close to the critical amplitude.

In our ongoing work, we are trying to advance further in this direction. We have written a pseu-
dospectral elliptic solver to construct the Brill data in the Einstein Toolkit framework. Building on it,
we have also implemented the maximal slicing condition. In this paper, we present a comparison of the
Brill wave evolution with the 1+log and maximal slicings.

The evolution system

We follow the standard 3+1 splitting procedure [Misner et al. 2008; see also Baumgarte et al.
2010, Alcubierre 2008] for the introduction in the context of numerical relativity) to decompose the
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4-dimensional metric into the spatial part γij , lapse α and shift βi

ds2 = (−α2 + βiβ
i)dt2 + 2βidtdx

i + γijdx
idxj . (4)

The specific form of the evolution equations we use is BSSN [Shibata et al. 1995, Baumgarte et al. 1998],
where the spatial metric γij and the extrinsic curvature Kij are replaced with new variables

ϕ = det (γij)
− 1

6 Āij = ϕ2

(
Kij − 1

3
K

)

K = γijK
ij Γ̄i = γ̄jkΓ̄i

jk (5)

γ̄ij = ϕ2γij

where Γ̄i
jk are the Christoffel symbols associated with γ̄ij . The evolution equations for those quantities

then are

(∂t − Lβ)ϕ =
1

3
ϕαK,

(∂t − Lβ) γ̄ij = −2αĀij ,

(∂t − Lβ)K = −D2α+ α

(
AijA

ij +
1

3
K2

)
, (6)

(∂t − Lβ) Āij = ϕ2 [−DiDjα+ αRij ]
TF + α

(
KĀij − 2ĀikĀ

k
j

)
,

(∂t − Lβ) Γ̄i = γ̄jk∂j∂kβ
i +

1

3
γ̄ij∂j∂kβ

k − 2Āij∂jα

+ 2α

(
Γ̄i
jkĀ

jk + 6Āij∂jϕ− 2

3
γ̄ij∂jK

)
,

where L is the Lie derivative, Di and Rij are respectively the covariant derivative and the Ricci tensor
associated with γij and [. . . ]TF designates the trace-free part of the expression in brackets.

The shift is always set to zero in the simulations described here, while the lapse is one of:

(∂t − Lβ)α = −2αK “1+log” slicing (7)

D2α−KijK
ijα = 0 maximal slicing (8)

Numerical method

Initial data

As the problem is axisymmetric, we solve the Brill wave equation (2) on any ϕ = const. half-plane
with a pseudospectral method, writing the conformal factor as

ψ = 1 +

Nx−1∑
i=0

Nz−1∑
j=0

cijSB2i(ρ)SB2j(z) (9)

where N{i,j} is the number of basis functions chosen in each direction and SBi(x) are the basis functions
complementary to the “rational Chebyshev functions” [Boyd 1987]:

SBi(x) = sin
(

(n+ 1) arccot
( x
L

))
. (10)

Here L is the scale parameter of the mapping, which needs to be tuned for the problem being solved; we
have determined empirically that a value of 3 works well. The even basis functions SB2i are symmetric
with respect to the origin and decay to zero as x−1 when x → ∞. Those are exactly the boundary
conditions imposed on ψ, so we need not enforce them explicitly.

By demanding that the equation (2) be satisfied exactly at the NxNz collocation points, we obtain
a set of NxNz linear equations for the coefficients cij , which we solve by LU decomposition with LAPACK.
Through the equation (9) we then evaluate ψ everywhere on the numerical grid.
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Evolution

We use the Einstein Toolkit [Löffler et al. 2012] as the basis for our simulations. The numerical
grids with a fixed mesh refinement scheme are provided by the Carpet software [Schnetter et al. 2004].
The implementation of the evolution equations (6)–(7) comes from the McLachlan project.

The evolved metric quantities (except for the lapse when maximal slicing is used) are discretized on
equidistant numerical grids. The grids form a nested hierarchy, with each finer one using a twice smaller
distance between the grid points. The grids are all centered around the coordinate origin.

We use 8th order centered finite differences to approximate spatial derivatives. The method of lines
is then used to integrate the evolution equations in time, with the standard RK4 method as the time
integrator. Kreiss–Oliger dissipation is applied to damp high-frequency noise.

Since the data is symmetric with respect to the plane z = 0, we apply reflection boundary conditions
there and evolve only the z ≥ 0 region. To exploit the axial symmetry, we use the Cartoon [Alcubierre
et al. 2001] method. That is — in the y direction we only keep a thin slice around y = 0, just enough
for the finite difference operators at y = 0. Those extra points are repopulated at each time step by
interpolating the y = 0 values. The interpolation operator used is fourth order accurate. On the x = 0
plane we also apply the reflection symmetry condition. On the outer boundaries, we apply the outgoing
wave boundary conditions to all the evolved variables (see part 5.4.2 in [Löffler et al. 2012] for details).

Maximal slicing

In the runs using maximal slicing, we enforce the constraint K = 0 at all times. Motivated mainly
by reducing code development effort, we use the same pseudospectral method as for the initial data
(reusing some of that code) to solve the equation (8) for the lapse. The main difference from the initial
data is that here we have to interpolate the data from the Carpet grids onto the pseudospectral grid.
Because of the mesh refinement being used, this interpolation is both spatial and temporal. For this
to work, the pseudospectral grid needs to be contained within the coarsest Carpet one, which can be
achieved by suitably picking the scaling parameter L.

For performance reasons, we now use a combination of the LU decomposition and the BiCGSTAB
iterative method for solving the linear system. From the LU decomposition of the pseudospectral matrix,
we calculate its inverse and use it as the preconditioner for subsequent iterative solutions. As the initial
guess we simply take the last obtained solution. Once the convergence rate of the iteration drops
sufficiently, we do a LU decomposition again.

In practice it turns out that the method used just as described above produces a large amount of
high-frequency noise, presumably due to aliasing instabilities. The problem can be mitigated by using a
filter that damps the highest coefficients. We use the same form of the filter as in [Szilágyi et al. 2009],
that is

F(cij) = e−α( i
Nx−1 )p

e−α( j
Nz−1 )p

cij (11)

with the same value of α = 36, but a much smaller value of p seems to be required in our simulations.
We assume this is caused by the specifics of our case, but more investigation is needed. We use p = 5 in
the runs described here.

Results

We run two sets of simulations, using maximal and 1+log slicing respectively. All the simulations
use five levels of mesh refinement, with the coarsest grid covering {x, z} = {0− 64, 0− 64}. The highest-
resolution runs, from which most of the plots are drawn, use 256 grid points in the x and z directions at
each level. For testing convergence, we also run simulations with 192 and 128 grid points. For maximal
slicing, we typically use 60 basis functions in each direction, with 40 and 80 for convergence testing.

In Fig. 1 we show the results of the convergence tests. For 1+log slicing, we plot the convergence
factor, defined for two simulations a and b as log (||Ha||∞/||Hb||∞) / log(k), where k is the ratio of the
grid resolutions. The solid line is for the 128/192-point runs, while the dashed one is for 192/256 points.
Both lines seem to be very roughly consistent with fourth order convergence, which is the order of the
Cartoon interpolation. The convergence factor also falls off rapidly shortly before the crash at t ≈ 5.5.

With maximal slicing we have a mix of pseudospectral and finite difference algorithms on different
grids, so we cannot as easily define an order of convergence. For a pure spectral code, with all the
functions analytic, one hopes for exponential convergence with the number of basis functions. That,
however, is clearly not the case here. Therefore, on the left subplot we simply show the infinity norm
of the Hamiltonian constraint for simulations with 128 grid points and 40, 60 and 80 basis functions in
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Figure 1. Convergence of the Hamiltonian constraint with time, A = 5. Right — 1+log, plotted is the
convergence factor, 128/192 and 192/256 points; left — maximal, plotted is the norm of the constraint,
since the convergence factor cannot be easily defined, 40/60/80 basis functions. See main text for details.

(a) As a function of the coordinate time t, maximal
slicing. Cf. figure 2 in [Garfinkle et al. 2001].

(b) As a function of the proper time τ at the origin,
maximal slicing (solid) and 1+log slicing (dashed).

Figure 2. Evolution of the value of log(α) at origin for amplitudes A = {4, 5, 6} (top to bottom).
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(b) 1+log slicing

Figure 3. Grid coordinates (x, t) as functions of the null coordinates (U, V ), amplitude A = 4.

each direction (top to bottom). Clearly, the pseudospectral code is now the main source of error, which
converges away as more basis functions are added. We assume this is primarily because of very strong
filtering applied to the coefficients, so the filter process will require more attention.

Our maximal slicing code supports parallelism through shared-memory multithreading, provided by
OpenMP and an optimized BLAS implementation [OpenBLAS]. However, it does not yet support MPI,
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(b) 1+log slicing

Figure 4. Grid coordinates (x, t) as functions of the null coordinates (U, V ), amplitude A = 5. Note
that the 1+log simulation runs only until t ≈ 5.5, where it crashes. The maximal run finishes at t = 10.

so our simulations are essentially limited by the amount of working memory available to one CPU. The
machine we use has an Intel i7 processor with 6 physical (12 logical) cores and 64GB of RAM. Because
of those performance constraints, we run each simulation until coordinate time t = 10 or, in the case of
the supercritical 1+log runs, until it crashes.

Using the Γ-driver shift [Alcubierre et al. 2003] together with maximal slicing has proved to be
unstable. For the time being, we work around this by simply setting the shift to zero in all the simulations
(both maximal and 1+log ones). However, it is clear that a non-zero shift vector is necessary for successful
long-term runs containing black holes, so this issue will need to be investigated in detail.

We mainly concentrate on the simulations with amplitudes A = {4, 5, 6}. The literature indicates
that A = 4 is subcritical and the other two are supercritical, with A = 5 being quite close to critical. In
Fig. 2 we plot the behaviour of the lapse at coordinate origin. On the left we show the dependence on
the coordinate time for maximally sliced runs only — the results are consistent with [Alcubierre et al.
2000, Garfinkle et al. 2001]. On the right we use the proper time τ , which allows us to compare different
slicings.

One other way to compare differently sliced runs is used in Fig. 3 and 4. We restrict ourselves to the
x-t plane and introduce double null coordinates (U, V ), which are constant along null geodesics emitted
in the positive and negative x directions respectively. For ease of presentation we use linear combinations
U + V and V − U in the plots. The specific values are defined by requiring that U + V is equal to the
proper distance from the origin at t = 0, so U(t = 0, x) = V (t = 0, x) = 1

2

∫ x

0

√
γxx(t = 0, x)dx. We

then integrate the null geodesics forward in time and from the resulting data we obtain the functions
tx=xi(U + V, V − U), xt=tj (U + V, V − U) by interpolation.

While for A = 4, both slicings are usable, for A = 5, [Hilditch et al. 2013] reports that the 1+log-
sliced simulation appears to develop a coordinate singularity and subsequently crashes at coordinate time
t ≈ 5.5. We are able to reproduce the same result with the Einstein Toolkit (the original article used the
BAM code). In Fig. 4 we see how the lapse collapses and coordinate time stops advancing long before
it would be really necessary. In contrast, the maximally sliced run has a much smoother behaviour and
is able to continue beyond that point.

Conclusion

We have implemented the Brill wave initial data solver and maximal slicing within the Einstein
Toolkit framework and verified that they work correctly. Using that code, we have run 1+log- and
maximally-sliced evolutions of the Brill data with results matching existing literature. We have visualised
the comparisons of the two slicings using coordinate-independent quantities to better understand the
pathologies in the supercritical 1+log-sliced simulations.

In the continuation of this work, we plan to:

• adapt the maximal slicing code, so that it can be used efficiently on clusters with a large number
of CPUs,

• investigate the shift conditions,

• use the insight gained from comparing the maximal and 1+log slicings to attempt to construct a
better behaved hyperbolic slicing.
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