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Abstract. Although spectral methods proved to be numerical methods that can
significantly speed up the computation of solutions of systems of reaction–diffusion
equations, finite difference and finite element methods still prevail as the most
widespread methods. This contribution offers comparison of the performance of the
Fourier spectral method with finite element method for reaction–diffusion system
modeling the generation of pigment patterns on the coat of the leopard.

Introduction

Over the last few decades, systems of reaction–diffusion equations have been used in effort
to explain and model various phenomena in the field of biology and chemistry. Two species
spatial ecological models (e.g. predator–prey models), chemical reaction models and tumor
growth can be mentioned as examples. Furthermore, after 1952 when Turing published his now
famous and widely cited paper [Turing, 1952], it has been put a lot of endeavor into explaining
the generation of patters in mammals, fish, gasteropod and many more. Classical book [Murray,
2003] offers description and analysis of many models based on reaction–diffusion systems.

General reaction–diffusion system is a system of parabolic partial differential equations and
it can be expressed in the following form:

∂u

∂t
=D1∆u+Nu(u, v) in (0,∞) × Ω,

∂v

∂t
=D2∆v +Nv(u, v) in (0,∞)× Ω,

where u = u(t, x), v = v(t, x), Ω ⊂ R2 is a domain, D1,D2 are diffusion coefficients and
Nu(u, v), Nv(u, v) are nonlinear reaction terms. Such system is often coupled with zero flux
boundary condition,

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω,

where n stands for the unit outward normal vector to the boundary ∂Ω, as it has in many cases
good biological or chemical meaning and random noise as initial condition.

In already mentioned paper [Turing, 1952] it was pointed out that if u and v tend to a
linearly stable uniform steady state in case D1 = D2 = 0, then this state can, under certain
conditions, become unstable forD1 6= 0,D2 6= 0, and spatial inhomogeneous patterns can evolve.
So called diffusion driven instability can emerge. Since diffusion term is generally considered to
have stabilizing rather then destabilizing effect, Turing’s idea may be considered surprising.

Model for generating pigment patterns of leopard and jaguar

Liu, Liaw and Maini present in Liu et al. [2006] a simple reaction–diffusion model based
on Barrio et al. [1999]:

∂u

∂t
= Dδ∆u+ αu+ v − r2uv − αr3uv

2, (1)

∂v

∂t
= δ∆v − αu+ βv + r2uv + αr3uv

2. (2)
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It represents interaction between two morphogens u and v on the square with zero flux boundary
condition. With all the coefficients properly set for the particular development stage, this system
of equations can model generation of pigment patterns on the coat of leopards and jaguars.
Figure 1 shows compiled results presented in Liu et al. [2006] in the case of the leopard.

It should be noted that this kind of models is not fully accepted among biologists. There
is not clear proof that these patterns emerge as a result of reaction diffusion process of Turing
type, i.e. whether at all they exist and if so, what the morphogens u and v are. Moreover, the
diffusion coefficient D in (1) needs to be smaller than one to allow the diffusion driven instability
to occur. This raises an objection why two chemicals of presumably similar kind should have
different physical properties (i.e. the rate of diffusion).

Figure 1. Model and photographs of a coat at various stages of development of a leopard.

Spectral methods

As a suitable first step in our survey of spectral methods we chose the Fourier spectral
method for the spatial discretization. This method is considered as one of the fastest [see Fu et

al., 2012] among spectral methods and still easy to implement.
To be able to use this method to solve system (1)–(2) we need to replace the zero-flux

boundary condition by the periodic one. This replacement is admissible in our experiments,
because the steady state solution of the system with zero flux boundary condition is for our
purposes qualitatively the same as the system with periodic boundary condition. Both boundary
problems in our particular set-up result in the same kind of pattern (spots) that Liu et al. [2006]
consider as a model of early stage of pattern development of a leopard.

To incorporate zero flux boundary condition, Fourier basis functions need to be replaced
by the Chebyshev ones. That is expected to slow down the computations. This problem is
addressed in several papers [e.g., Fu et al., 2012], where the authors offer a way how to preserve
most of the advantages of the Fourier spectral method while solving system with Neumann
boundary condition.
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To introduce the Fourier spectral method, we will follow Trefethen [2000]. Let us consider
a function v sampled on the spatial discretization grid {x1, . . . , xN} with vj = v(xj). Let v be
periodic, i.e. v1 = vN . The discrete Fourier transform (DFT),v̂k = v̂(k), is defined by

v̂k =
N∑

j=1

e−ikxjvj, k = −
N

2
+ 1, . . . ,

N

2
, (3)

where i is the complex unit. The inverse discrete Fourier transform (IDFT) is given by

vj =
1

2π

N/2∑

k=−N/2+1

eikxj v̂k, j = 1, . . . , N. (4)

Using these definitions, we can compute the derivative wj = dv
dx
(xj), j = 1, . . . , N at the

nodes of the discretization grid by the following procedure:

1. given vj, j = 1, . . . , N compute its DFT v̂k, k = −N/2 + 1, . . . , N/2 using (3),

2. define ŵk = ikv̂k, k = −N/2 + 1, . . . , N/2,

3. compute wj , j = 1, . . . , N from ŵk, k = −N/2 + 1, . . . , N/2 by (4).

Applying this procedure two times yields second derivatives. Thus the diffusion term in

∂u

∂t
= D

∂2u

∂x2
+N(u) (5)

can be transformed into −Dk2ûk and partial differential equation (5) transforms to a system of
ordinary differential equations (ODE)

dûk
dt

= −Dk2ûk + N̂(u), k = −N/2 + 1, . . . , N/2 (6)

where u = (u1, . . . , uN ) is computed by (4) from ûk, k = −N/2 + 1, . . . , N/2.
Furthermore, by this transformation system (6) becomes non-stiff. Thus, fast explicit ODE

solver can be used. That is a significant advantage compared to the stiff system (5) where one
can not usually avoid implicit solver.

Kassam [2003] suggests that Cox and Mathew’s fourth order exponential time differencing
Runge-Kutta method (ETDRK4) might by particularly suitable for such problems.

Since the nonlinear term N(u) is evaluated in the space domain and then transformed into
the Fourier one, steps to deal with aliasing need to be taken [see Trefethen, 2000].

The procedure of computation of the derivatives by DFT can be extended to two dimensions
by taking advantage of the fact that the two dimensional DFT is separable into sequence of one
dimensional transforms. Details can be found in Kopriva [2000].

Numerical experiments

Fine-tuning of parameters in systems similar to (1)–(2) is needed to get desired patterns.
Consequently,a large number of numerical experiments is required. Kassam [2003] shows that
Fourier spectral method coupled with ETDRK4 solver can be significantly faster than finite
differences with implicit ODE solver.

We used model (1)–(2) from Liu et al. [2006] forming spots in the first stage of the pattern
development on the coat of leopard as our test case for comparing the performance of finite
element and Fourier spectral method. In the first stage, the coefficient in (1)–(2) were set as
follows: D = 0.45, δ = 6, α = 0.899, β = −0.91, r2 = 2, and r3 = 3.5.
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The finite element code we used was a Matlab implementation of P1-conforming finite
element on a triangular grid. The built-in Matlab variable time-stepping ODE solver ode15s

was used for the integration and the code is written in order to exploit fast vector manipulations
in Matlab to assembly mass and stiffness matrices.

As demonstrated in Figure 2, the steady-state solution strongly depends on the initial
condition, therefore we do not require accurate solutions and we are interested mainly in the
speed of calculations. This approach is motivated by the nature of biological systems where
minor disruptions and oscillations are omnipresent, e.g. no two jaguar coats are alike.

The following experiments were performed in domain Ω = (0, 100)2 and the computation
was terminated at Tfinal = 1000 as the system was close to its steady state at this point.
Random noise in (−0.05, 0.05) served as an initial condition. The computational times for the
finite element and spectral methods and for various numbers of degrees of freedom are presented
in Table 1.

To assess the resolution of the finite element and Fourier spectral method we present
Figure 3 that corresponds to 6.6 · 103 degrees of freedom.

Conclusion

The above results proved that the Fourier spectral method is significantly faster compared
to finite element method in solving system (1)–(2). For the sake of simplicity we present results
only for the first phase of the coat development which is depicted in the left part of Figure 1.
The alternation in coefficients for the following phases does not bring any other qualitative

(a) Initial condition 1 (b) Initial condition 2

(c) Solution 1 (d) Solution 2

Figure 2. Dependency of the steady-state solution on the initial condition.

Table 1. The computational times for the finite element and spectral method.
# DOF Finite element Spectral method

1.6 · 103 45 s 15 s
6.6 · 103 295 s 70 s
2.6 · 105 1421 s 195 s
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(a) FEM (b) Spectral Method

Figure 3. Comparison of finite element solution of reaction–diffusion system (1)–(2) with zero
flux b.c. and Fourier spectral method solution with periodic b.c.

difference to the system (1)–(2) than different shape of the resulting pattern [Liu et al., 2006].
Thus we believe that the Fourier spectral method will still remain substantially faster than the
finite element method for other phases as well.

The spectral code relies on FFTW, the state of the art package providing Fast Fourier
Transform to compute DFT and IDFT [see Frigo, 1999, for reference]. That allows us to have
the the most computationally expensive operations implemented effectively. Using advanced
techniques addressing the bottlenecks of the finite element implementations, e.g. assembly of
mass and stiffness matrices as presented by Rahman et al. [2013], would likely improve the
results of finite element code.

Although the Fourier spectral method is easier to implement, it lacks the universality of
finite element methods. Especially the periodic boundary condition may be too limiting for
some systems. Other members of the spectral method family, although less easy to implement
and more time consuming, can deal with these limitations [e.g., Fu et al., 2012], and seems to
have a potential in solving reaction–diffusion systems of mathematical biology.
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