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Abstract. Two different methods which allow to calculate electric current through

molecular junctions are compared. The first method is based on the scattering

theory and Landauer formula, and the second on the master equation technique.

Two models of the junction with different molecular bridges (with and without an

internal vibrational degree of freedom) were used to compare and discuss features

of both methods. The way to improve the scattering approach in the inelastic

transport regime using realistic vibrational states populations instead of Boltzmann

factors in the Landauer formula is proposed.

Introduction

Charge transport through individual molecules is promising subject of research nowadays.

Work in this field is stimulated by the idea to create a new type of electronics (which is called

“molecular electronics” or “moletronics”) in the future, where individual molecules will be

used as building blocks for electronic circuits [Ratner and Ratner, 2002]. A whole class of

experimental methods was established where a molecule (or a chain of molecules which is called a

molecular bridge) can be connected between two solid electrodes [Selzer and Allara, 2006]. Such

molecular junctions allow to measure electric current through the bridging molecule. Molecular

bridges are complicated quantum systems with many internal degrees of freedom which may

actively participate in the energy exchange during the charge transport process. There are few

theoretical approaches available to treat such junctions [Galperin et al., 2007]. In this paper,

we compare two of them. In the approach based on the Landauer formula [Datta, 1997] the

current can be expressed through the transmission function of the bridge. Calculation scheme

includes consecutive computation of self-energies of the leads and Green’s function of the bridge.

Scattering theory formulas should be used afterwards to transform the Green’s function to the

T-matrix and, finally, to the tunneling probability [Troisi et al., 2003]. Another possible way

to calculate the current is to use the master equation (ME) theory. By solving the Wangsness-

Bloch-Redfield ME [Timm, 2008] the reduced density matrix (RDM) of the molecular bridge

can be determined. RDM contains detailed information about the bridge while the leads are

treated “half rigorously” as large particle reservoirs in equilibrium in this method. The RDM

can be used to calculate any observable of interest, including the current [Hartle et al., 2009].

Both methods will be discussed in the next two sections.

Theory

To compare methods we formulate two models of molecular junctions. In model 1 molecular

bridge has only one vacant electronic level with energy ε0 available for tunneling. Interactions

with internal degrees of freedom are neglected in this model and the tunneling process is elastic.

In model 2 we add one active vibrational degree of freedom on the bridge which can exchange

energy with electrons (Fig. 1). Such a situation is theoretically described in terms of the so-

called independent boson model (see Mahan [1993] for details), where harmonic oscillator is

coupled to the electronic state. This model reflects the fact that the bridge, when occupied by

an electron, has a potential energy which is different from the energy of the unoccupied bridge

(see Fig. 1). This is schematically depicted in Fig. 1 as two different harmonic potentials with

different sets of vibrational states. In this paper we denote the energy spectra of unoccupied
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Figure 1. Schematic representation of the molecular junction in model 2. Electrons travel

from the left lead to the right through the molecular bridge with one electronic state available

for tunneling. Passing through the bridge they exchange energy with the internal vibrational

mode of the bridge. Vibrational potentials are different for occupied and unoccupied bridge

configurations.

and occupied bridges by Em and Ev, respectively. Vibrational states which correspond to these

energies are denoted as |m〉 and |v〉. Leads for both elastic and inelastic junctions are simulated

using one dimensional half infinite nearest neighbor tight binding chain [Ashcroft and Mermin,

1976]. This is an easy way to simulate the metallic lead with one conduction band. Each

lead is characterized by two parameters: width of the conduction band and chemical potential.

Difference between chemical potentials of left and right leads provides the voltage applied to

the bridge. Electronic states available in each lead are populated according to the Fermi-Dirac

distribution. More information about the models and their parametrization can be found in

Cizek et al. [2004].

The model 1 is useful for comparison of the two approaches because formulas for the current

through the elastic bridge in both theories can be derived analytically (atomic units are assumed

here)

I
scat
1 =

1

2π

∫

dE

ΓL(E)ΓR(E)

[E − ε0 − ∆L(E) − ∆R(E)]2 +
1
4 [ΓL(E) + ΓR(E)]2

[fL(E) − fR(E)], (1)

I
me
1 =

ΓL(ε0)ΓR(ε0)[fL(ε0) − fR(ε0)]

ΓL(ε0) + ΓR(ε0)
. (2)

Real and imaginary parts of the self-energy function Σ = ∆ − i

2Γ are used in the formulas

throughout the paper. This function of energy possesses information about the leads and the

leads-bridge coupling and may be calculated analytically. Both leads have their own self-energy

and indices L/R are used to distinguish them. Additional information about the self-energy

function can be found, for example, in Cizek et al. [2004]. Functions fL and fR in Eqs. (1) and

(2) are Fermi-Dirac distributions in the left and right lead respectively.

Expressions for the current for the model 2 are more complicated. In the case of innelastic

bridge both methods require certain quantities to be calculated numerically. Scattering theory

approach gives the formula

I
scat
2 =

∑

m

Pm

∑

m′

W
R←L

mm′ −
∑

m

Pm

∑

m′

W
L←R

mm′ , (3)

where transition rates for electron scattering from left to the right lead and vice versa read

W
R←L

mm′ =
1
2π

∫

dE[1 − fR(E − Em′)]ΓR(E − Em′)|〈m′|GM |m〉|2ΓL(E − Em)fL(E − Em),

W
L←R

mm′ =
1
2π

∫

dE[1 − fL(E − Em′)]ΓL(E − Em′)|〈m′|GM |m〉|2ΓR(E − Em)fR(E − Em).

(4)
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Figure 2. Results for model 1. On the left graph the transmission function of the bridge, ob-

tained from scattering approach, is shown. Right graph shows the current voltage characteristics

of the bridge calculated using both methods.

Green’s function of the bridge GM in the Eq. (4) should be calculated numerically. Pm factors

give populations of the vibrational states |m〉 on the bridge. In the Landauer formula which is

used to derive Eq. (3), states are populated according to the Boltzmann distribution P (Em) .

The formula for the current obtained in the ME approach was simplified to make the

comparison more visual. In addition to standard approximations which were made in the ME

theory itself, we got rid of the real parts of the self-energies. They introduce small energy shifts

in the equations and have negligible influence upon the final results. In the final formula we

also excluded coherences (non diagonal elements) of RDM which, according to our observations,

doesn’t influence the current. Formula which was obtained in the end reads

I
me
2 =

∑

m

ρm

∑

v

W
M←L

mv
−

∑

v

ρv

∑

m

W
L←M

vm
, (5)

where

W
M←L

mv
= fL(Ev − Em)ΓL(Ev − Em)|〈m|v〉|2,

W
L←M

vm
= [1 − fL(Ev − Em)]ΓL(Ev − Em)|〈m|v〉|2.

(6)

To get populations ρm ≡ 〈m|ρ|m〉 and ρv ≡ 〈v|ρ|v〉 one should solve the ME numerically.

Frank-Condon factors 〈m|v〉 in Eq. (6) give overlaps between vibrational states of unoccupied

and occupied bridge.

Results and Discussion

Current-voltage dependence and transmission function for the model 1 are shown in Fig. 2

(right). At the first glance curves obtained using different approaches may look different but

they have many similarities. Both curves go down after reaching the maximum. It is connected

with the fact that left and right leads have finite conduction band widths. While we increase

the voltage left lead band goes higher in energy and right lead goes lower, decreasing the overlap

between bands. As a result the current goes lower and, at certain voltage (which is not on the
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Figure 3. Transmission function and current-voltage characteristics of the bridge in model

2. Dash-dotted line on the right graph shows the result of using of the realistic vibrational

populations distribution instead of Boltzmann factors in the Landauer formula.

graph) disappears at all. Both current-voltage dependences in Fig. 2 have the step at the same

voltage which correspond to the situation when the Fermi sea level in the lead reaches the energy

of the bridge state ε0. The obvious difference between the two curves is that the step in the

scattering approach result is much wider. It happens because the information about the width of

the bridge’s transmission function (which gives the probability for electron to pass through the

bridge at certain energy) peak is lost in the ME approach as a result of approximations which

are made in the theory. In ME approach the width of the step is defined by the width of the

Fermi-Dirac distribution which is approximately 4kT (in the linear approximation). Complete

information about the transmission function which is plotted in Fig. 2 (left), can be obtained

from the scattering approach. Thus, additional information about the transmission peaks width

may be listed among the advantages of this approach. One of the conditions which make the ME

applicable requires that the coupling between the molecular bridge and leads should be small.

It may be proved that in the case of small coupling the width of the transmission function peak

also becomes small and the results, obtained using different methods, become closer to each

other. Eqs. (1) and (2) coincide when coupling goes to zero.

Current and transmission function for the model 2 are shown in Fig. 3. Since the bridge

in this model has internal degrees of freedom and the tunneling probability depends on the

state of the bridge the concept of the transmission function should be clarified. Left graph

in Fig. 3 illustrate the probability that the electron at a certain energy will pass through the

bridge and change its vibrational state from the ground to any other state. As we can see from

the picture, existence of vibrational degrees of freedom on the bridge leads to the situation

when the transmission function has multiple peaks which correspond to different vibrational

transitions. It leads also to additional step-like structures in the current-voltage characteristics.

In the case of model 2 scattering approach and ME approach results which are plotted with

solid and dashed lines in Fig. 3, have significant differences. While the first step at both graphs

can be understood in the framework of what we already know from the previous example (the

same peak with different widths), there are obviously no similarities at higher voltages.
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Figure 4. Stationary vibrational states populations distributions of the bridge (model 2)

calculated using the ME technique for two different voltages. Pictures show populations for

both unoccupied and occupied bridge configurations.

Analyzing the structure of Eqs. (3) and (5) we may notice that the Boltzmann factors Pm

and populations ρm of vibrational states of unoccupied bridge play similar role and, in principle,

should be the same. In practice they are very different at nonzero voltages. Stationary popu-

lation distributions, obtained from the ME calculations, are shown in Fig. 4 for two different

voltages. When we use the scattering approach to calculate the current at the same voltages,

Boltzmann factors provide the distribution where the ground state is almost completely pop-

ulated and all other states populations are negligibly small. This means that the Boltzmann

distribution Pm is a very poor approximation of the real vibrational states populations, espe-

cially at high voltages.

To get the realistic populations picture inside the framework of the scattering theory ap-

proach we formulate dynamical equation for the time evolution of Pm. To do it, we start by

using the Eq. (4) to introduce the quantity

Wmm′ = W
R←L

mm′ + W
L←R

mm′ + W
L←L

mm′ + W
R←R

mm′ , (7)

which gives the rate to change the bridge’s vibrational state from m to m
′

as a result of all

possible tunneling events and reflections. We use it to write the dynamical equation in the form

dPm

dt

=

∑

m′

Wm′mPm′ −
∑

m′′

Wmm′′Pm. (8)

Physically, it means that the population Pm change itself as a result of two probability fluxes:

one goes from the state m to all other states m
′′

and another one comes from all states m
′

to m. To get the stationary population distribution we have to solve the “balance equation,”

when the right hand side of Eq. (8) is equal to zero. This procedure allows to get distributions

which are very similar to those in Fig. 4, staying at the same time inside the framework of the

scattering theory approach. Using this populations in the Landauer formula (Eq. (3)) we obtain

the curve which is plotted by the dash-dotted line in Fig. 3. This result is based on the realistic
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population distribution and poses also the information about the transmission peaks width. In

this sense it unites the advantages of both methods.

Conclusion

As it follows from the origins of the scattering theory, it describes the transport process,

where electrons tunnel through the bridge one by one. This method can’t take into account

correlations between electrons. After each tunneling event the bridge automatically returns to

the thermal equilibrium with vibrational populations given by the Boltzmann factors. It was

shown that such approximate treatment may distort the results significantly. Computational

accuracy, however, may be improved if we use the “balance equation” to calculate the station-

ary vibrational population distribution for each voltage. In the second order WBR ME the

information about transmission function width is lost, while the scattering approach formulas

keep this information. As a result steps in the current voltage characteristics in ME method are

much sharper than they are in reality. They are broadened only by the Fermi-Dirac distribution

in leads. Some numerical challenges may be expected in attempts to solve the ME. But as soon

as it is solved and the RDM of the bridge is calculated, we got very detailed information about

the state of the bridge. It may be used to calculate not only the current but all the observables

we need. Of curse there are other approaches which allow to calculate the current. There is, for

example, a powerful method which is based on the non-equilibrium Green functions technique.

Incorporation of this method to the common comparison scheme may become the topic of future

works in this direction.
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