Fractions in Ancient Indian Mathematics

I. Sýkorová
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic.

Abstract. Fractions have been used in Indian mathematics since ancient times. In this article the notational system is described and ancient Indian terms are explained. Basic arithmetic operations with fractions and their mathematical properties are presented.

Introduction

The knowledge of fractions in India can be traced to ancient times. The fractions one-half (ardha) and three-fourths (tri-pāda) occurred already in one of the oldest Vedic works the Rgveda (circa 1000 BC). In mathematical works Śulba-sūtras (circa 500 BC),1 fractions were not only mentioned, but were used in statements and solutions of problems.

Unlike ancient Egyptians who used only unit fractions (i.e. fractions with unit numerators) in ancient India composite fractions were used.2 Fractions were necessary for the expression of smaller units of weight, length, time, money, etc. All works of mathematics began with definitions of the weights and measures employed in them. Some of works contained a special rule for reduction of measures into a proper fraction. The systems of weights and measures described in different works differed. It depended on the time and the locality in which the book was composed, see [Kaye, 1933, Colebrooke, 1817, Rangacarya, 1912].

Historical sources

The best known mathematical texts containing fractions are as follows. Fractions were used in Bakhshāli manuscript (circa 400 AD) – the anonymous mathematical work written on birch–bark. The rules for arithmetic with fractions were described especially by Brahmagupta (circa 598–670) in his work Brāhma-sphuta-siddhānta, Mahāvīra (circa 800–870) in his work Ganita-sūra-samgraha, Śrīdara (circa 870–930) in his work Trīṣatika, Śripati (1019–1066) in his work Ganita-tilaka and Bhaskara II (1114–1185) in his book Lilāvatī.

Fractions

The Sanskrit term for a fraction was bhinna which means “broken”. The other terms for a fraction were bhāga and ariśa meaning “part” or “portion”. The term kāla which in Vedic times represented one-sixteenth was later used for a fraction too. Ganeśa, a commentator of Līlāvatī, called a numerator bhāga, ariśa, vibhāga or laga and the terms hara, hāru and chheda he used for a denominator.

In Śulba-sūtra, unit fractions were named by a number with the term bhāga or ariśa, thus paṅca-bhāga (five parts) was the name of 1/5. Sometimes fractions were denoted by an ordinal number with the term bhāga or ariśa, so paṅcama-bhāga (fifth part) is also equivalent to 1/5. Even the word bhāga was occasionally omitted, probably for the sake of metrical convenience, thus only paṅcama (fifth) could be used for 1/5. Composite fractions like 2/5 or 3/8 were called dvi-saptama (two sevenths) and tri-aṣṭama (three eighths) respectively.

Fractions were written in the same way as we do now, the numerator above the denominator, but without the line between them. Both the numerator and the denominator were expressed

1 Śulba-sūtras are works in which geometrical rules for constructions of sacrificial altars are given.
2 Apart from fractions with unit numerators Egyptians used also 2/3, see [Bečvář et al., 2003].
in the decimal place value system. When several fractions occurred in the same problem, they were separated from each other by a vertical and a horizontal line. When a mixed number has to be written the integer was given above the fraction so 2\(\frac{3}{5}\) was written as \(\begin{array}{c}2 \\ 3 \\ 5 \end{array}\).

The next figure shows folio 10 verso from the *Bakhšalī* manuscript.

![Figure 1](image.png)

Figure 1. There is the mixed number 3\(\frac{3}{8}\) (in the middle), which was called *trayastraya-ashta* (three three eighths), see [Kaye, 1933].

Due to the lack of proper symbolism, the Indian mathematicians divided combinations of fractions into several classes and there existed rules for calculation with them. These classes were called *jāti* and the word *bhinna* denoted such a class of fractions too.

Reduction to the lowest term and reduction to the common denominator

It was recommended to reduce a fraction to the lowest term before performing operations. The process of reduction was called *apavrattana*. This procedure was not included among operations and is not described in mathematical works. Probably it was taught by oral instruction.

The reduction to a common denominator was called *kalā-savarana*, *savaryana* or *sama-chhedavidhi*. This operation was required when the operation addition or subtraction followed. The process was generally mentioned together with these operations.

Mahāvīra was the first who mentioned the lowest common multiple, he used the term *niruddha* for it. Bhāskara II recommended the process for shortening, but didn’t apply the word *niruddha*.

Arithmetic operations

The terms for addition and subtraction of fractions were *bhinna-samkalita* and *bhinna-vyutkalita* respectively. The method of performing operations with fractions was the same as now. Addition and subtraction were performed after the fractions were reduced to a common denominator. When fractions were added or subtracted together with integers, the integer was seen as a fraction with a unit denominator.

\[
\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm cb}{bd}
\]

or

\[
z \pm \frac{a}{b} = \frac{z \pm a}{b}
\]

Multiplication of fractions was called *bhinna-gunana*. Brahmagupta described multiplication as the product of the numerators divided by the product of the denominators, see [Colebrooke, 1817].

\[
\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}
\]
Mahāvīra moreover reminded cross reduction in order to shorten the work, see [Rangacarya, 1912]. The process of cross reduction was called vajrāpavartana-vidhi and the numerator of the first fraction was abbreviated with the denominator of the second one and vice versa. So product

\[
\frac{3}{4} \cdot \frac{2}{9}
\]

is reduced to \[\frac{1}{2} \cdot \frac{1}{3}\].

The operation of division was called bhinna-bhāgahāra and was performed in the same way as today, first the numerator and the denominator of the divisor were interchanged and then the operation of multiplication was performed.

\[
\frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}
\]

Square and square-root, cube and cube-root were included among basic arithmetic operations. Brahmagupta expressed the square of a fraction as the square of the numerator of a proper fraction divided by the square of the denominator. He used the similar description for the square-root of a fraction: the square-root of the numerator divided by the square-root of the denominator, see [Colebrooke, 1817]. The rules for cube and cube-root were analogical.

\[
\left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2}, \quad \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}, \quad \left(\frac{a}{b}\right)^3 = \frac{a^3}{b^3}, \quad \sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}
\]

Classes of fractions in combination

For the sake of shortage of suitable symbolism the expressions with fraction were divided into several classes, see [Datta, Singh, 1935].

(1) The class bhāga (“simple fractions”), i.e. the form with two fractions \(\frac{a}{b} ± \frac{c}{d}\), with three fractions \(\frac{a}{b} ± \frac{c}{d} ± \frac{e}{f}\) or with more fractions \(\frac{a_1}{b_1} ± \frac{a_2}{b_2} ± \ldots ± \frac{a_n}{b_n}\) was usually written as \(\frac{a}{b} \cdot \frac{c}{d}\) or \(\frac{a}{b} \cdot \frac{c}{d}\cdot \frac{e}{f}\), where the dot denotes subtraction. This form with three fractions was written as \(\frac{a}{b} \cdot \frac{c}{d} \cdot \frac{e}{f}\) or \(\frac{a}{b} \cdot \frac{c}{d} \cdot \frac{e}{f}\).

(2) The class prabhāga (“fractions of fractions”), i.e. the form \(\frac{a}{b} : \frac{c}{d}\) or \(\frac{a}{b} : \frac{c}{d} : \frac{e}{f}\) which was written as \(\frac{a}{b} : \frac{c}{d} : \frac{e}{f}\) or \(\frac{a}{b} : \frac{c}{d} : \frac{e}{f}\).

(3) The class bhāganubandha (“fractions in association”) included form

a) rūpa-bhāganubandha (“fractions containing associated integers”) meant

\[
(a + \frac{b}{c}) \text{ written as } \frac{a}{b} \cdot \frac{c}{d}
\]

b) bhāga-bhāganubandha (“fractions containing associated fractions”), i.e. \(\frac{a}{b} + \frac{c}{d} \cdot \frac{e}{f}\)

or \(\frac{a}{b} + \frac{c}{d} \cdot \frac{e}{f} + \frac{f}{g} \cdot \left(\frac{a}{b} + \frac{c}{d} \cdot \frac{e}{f}\right)\) in notation \(\frac{a}{b} \cdot \frac{c}{d} \cdot \frac{e}{f}\) or \(\frac{a}{b} \cdot \frac{c}{d} \cdot \frac{e}{f}\).
(4) The class bhāgapavāha (“fractions in dissociation”) included form

a) rūpa-bhāgapavāha (“fractions containing dissociated integers”) meant

\((a - \frac{b}{c})\) written as \[
\begin{array}{c}
\frac{a}{c} \\
\bullet \\
\frac{b}{c}
\end{array}
\]

b) bhāga-bhāgapavāha (“fractions containing dissociated fractions”), i.e. \((\frac{a}{b} - \frac{c}{d} \cdot \frac{a}{b})\) or

\(\left(\frac{a}{b} - \frac{c}{d} \cdot \frac{a}{b} - \frac{e}{f} \cdot \left(\frac{a}{b} - \frac{c}{d} \cdot \frac{a}{b}\right)\right)\) written as

\[
\begin{array}{c}
\frac{a}{c} \\
\bullet \\
\frac{b}{c}
\end{array}
\] \quad \text{or} \quad
\[
\begin{array}{c}
\frac{a}{d} \\
\bullet \\
\frac{b}{d}
\end{array}
\] \quad \text{or}
\[
\begin{array}{c}
\frac{a}{e} \\
\bullet \\
\frac{c}{e}
\end{array}
\]

(5) The class bhāga-bhāga (“complex fractions”) denoted expressions \((a : \frac{b}{c})\) or \((\frac{a}{b} : \frac{c}{d})\) which

were written as \[
\begin{array}{c}
\frac{a}{c} \\
\bullet \\
\frac{b}{c}
\end{array}
\]

There didn’t appear any graphic symbol for division, the written form was the same as for bhāganubandha. The fact that division was required followed from the formulation of problems.

(6) Some authors meant extra class bhāga-mātr, i.e. combinations of forms enumerated above.

Mahāvīra remarked that the number of such combinations was 26. As there were five primary classes, he enumerated the total number of combinations

\[\binom{5}{2} + \binom{5}{3} + \binom{5}{4} + \binom{5}{5} = 10 + 10 + 5 + 1 = 26.\]

The rules for reduction in the first and the second class are the same as the rules for addition, subtraction and multiplication, the rule for reduction in the fifth class corresponds to the rule for division of fractions. The rule for reduction in the class bhāga-bhāganubandha and bhāga-bhāgapavāha could be written as

\[
\frac{a}{b} \pm \frac{c}{d} = \frac{a \cdot (d \pm c)}{b \cdot d} = \frac{a}{b} \cdot \frac{d \pm c}{d}.
\]

The following example was given by Śrīdhara (circa 870–930) from [Datta, Singh, 1935].

What is the result when half, one-fourth of one-fourth, one divided by one-third, half plus half of itself, and one-third diminished by half of itself, are added together?

In today’s notation it is

\[
\frac{1}{2} + \left(\frac{1}{4} \cdot \frac{1}{4}\right) + \left(\frac{1}{3} \div \frac{1}{3}\right) + \left(\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{2} \cdot \frac{1}{3}\right)
\]

corresponding old Indian notation was

\[
\begin{array}{c}
\frac{1}{2} \\
\bullet \\
\frac{1}{4} \\
\frac{1}{4}
\end{array}
\]

\[
\begin{array}{c}
\frac{1}{1} \\
\bullet \\
\frac{1}{1}
\end{array}
\]

\[
\begin{array}{c}
\frac{1}{2} \\
\bullet \\
\frac{1}{3}
\end{array}
\]

\[
\begin{array}{c}
\frac{1}{1} \\
\bullet \\
\frac{1}{2}
\end{array}
\]

\[
\begin{array}{c}
\frac{1}{1} \\
\bullet \\
\frac{1}{3}
\end{array}
\]

\[
\begin{array}{c}
\frac{1}{2} \\
\bullet \\
\frac{1}{2}
\end{array}
\]

136
The unclarity of notation is obvious, \(\frac{1}{4} \cdot \frac{1}{4} \) could be read as \(\left(\frac{1}{4} \cdot \frac{1}{4} \right) \) or as \(\left(\frac{1}{4} + \frac{1}{4} \right) \), \(\frac{1}{4} \) could mean \(\frac{1}{4} \) as well as \(1\frac{1}{4} \). The right meaning of the notation could be understood only from the formulation of the problem.

Unit fractions

In old India, there didn’t exist a special term for unit fraction. The term used was *rūpa-māsaka-rāsi* (“quantity with one as numerator”).

Mahāvīra gave several rules for expressing any fraction as the sum of unit fractions. These rules didn’t occur in any other work, probably the other authors didn’t consider them important, see [Rangacarya, 1912].

(a) To express \(\frac{1}{n} \) as the sum of \(n \) unit fractions. The rule which was given in words can be expressed by the formula

\[
1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{3^n-2} + \frac{1}{3^n-1}
\]

After leaving out the first and the last fractions, there are \((n - 2)\) terms in the geometric progression with \(\frac{1}{3} \) as the first term and \(\frac{1}{3} \) as the common ratio. The sum of these \((n - 2)\) terms is

\[
s_{n-2} = \frac{1}{3} \cdot \frac{1 - \left(\frac{1}{3} \right)^{n-2}}{1 - \frac{1}{3}} = \frac{3^{n-2} - 1}{2 \cdot 3^{n-2}}
\]

and together with the first and the last term

\[
\frac{1}{2} + \frac{1}{2 \cdot 3^{n-2}} + \frac{3^{n-2} - 1}{2 \cdot 3^{n-2}} = \frac{3^{n-2} + 1 + 3^{n-2} - 1}{2 \cdot 3^{n-2}} = \frac{2 \cdot 3^{n-2} - 1}{2 \cdot 3^{n-2}} = 1
\]

(b) To express \(\frac{1}{n} \) as the sum of an odd number of unit fractions. The rule can be algebraically represented as

\[
1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots + \frac{1}{2(n-1)} \cdot \frac{1}{2n} + \frac{1}{2n}
\]

The validity of this formula is evident

\[
2 \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots + \frac{1}{2(n-1)} \cdot \frac{1}{2n} + \frac{1}{2n} \right) = \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \ldots + \left(\frac{1}{2n-1} - \frac{1}{2n} \right) + \frac{1}{2n} = 2 \cdot \frac{1}{2} = 1
\]

(c) To express a unit fraction as the sum of a number of other fractions, the numerators being given. This rule gives

\[
\frac{1}{n} = \frac{a_1}{n(n + a_1)} + \frac{a_2}{(n + a_1)(n + a_1 + a_2)} + \frac{a_3}{(n + a_1 + a_2)(n + a_1 + a_2 + a_3)} + \ldots + \frac{a_p}{(n + a_1 + a_2 + \ldots + a_{p-2})(n + a_1 + a_2 + \ldots + a_{p-1})} + \frac{a_p}{(n + a_1 + a_2 + \ldots + a_{p-1})}
\]

When \(a_1 = a_2 = \ldots = a_p = 1 \), in this way, we can express the unit fraction \(\frac{1}{n} \) as the sum of \(p \) unit fractions.
(d) To express any fraction as the sum of unit fractions

If we denote the given fraction as \(\frac{p}{q} \) and \(i \) is so chosen that \(\frac{q+i}{p} = m \), where \(m \in \mathbb{N} \), then

\[\frac{p}{q} = \frac{1}{m} + \frac{i}{m \cdot q} \]

The first summand is a unit fraction and a similar process can be used to the second one to get other unit fractions. Since \(i < p \), the process ends after a finite number of steps. The result depends on the optionally chosen quantities.

(e) To express a unit fraction as the sum of two other unit fractions. Mahāvīra describes two rules which can be algebraically expressed as

\[\frac{1}{n} = \frac{1}{p \cdot n} + \frac{1}{p-1} \]

where the natural \(p \) is so chosen that \(n \) is divisible by \((p - 1) \).

The other way according to the second rule is

\[\frac{1}{n} = \frac{1}{a \cdot b} = \frac{1}{a(a + b)} + \frac{1}{b(a + b)} \]

Conclusion

The use of fractions was common in medieval India, Indian mathematicians gave a lot of rules for arithmetic operations with fractions. The present method of fraction notation is derived from Indian sources.

The Indian way of number notation including fractions was transmitted into the Islamic world. The Arabs added the line which we now use to separate the numerator and the denominator. From Arab countries fractions spread to medieval Europe.

References