DOBÍHAJÍCÍ STUDIJNÍ PLÁNY
Matematicko-fyzikální fakulty
2003/2004
Obsah

Úvodní slovo ... 5
Harmonogram akademického roku 2003/2004 7
 Zimní semestr (ZS) ... 7
 Letní semestr (LS) .. 8
Obecné informace ... 9
 Univerzita Karlova v Praze .. 9
 Vedení Univerzity Karlovy ... 9
 Zástupci MFF v akademickém senátu UK 9
Matematicko-fyzikální fakulta ... 10
 Orgány fakulty .. 10
 Fyzikální sekce ... 15
 Informatická sekce ... 31
 Matematická sekce ... 36
 Jiná pracoviště .. 42
 Účelová zařízení ... 44
Děkanát ... 44
Vysokoškolské studium na MFF ... 49
 Kontrola studia (bodový systém) 49
 Výuka jazyků ... 50
 Tělesná výchova ... 51
Přehled studijních programů, studijních oborů a studijních plánů na MFF ... 53
 Bakalářské studium ... 53
 Magisterské studium .. 54
 Garanti studijních programů .. 55
Studijní plány studijního programu MATEMATIKA 57
 A. Magisterské studium .. 57
 1. Základní informace ... 57
 2. První stupeň studia odborné matematiky 58
 3. Druhý stupeň studia odborné matematiky 59
 3.1. Souborná zkouška ... 59
 3.2. Popis bloku A .. 61
 3.3. Vedlejší obor ... 62
 3.4. Diplomová práce ... 64
 3.5. Doporučený průběh 2. roku studia 65
 3.6. Státní závěrečná zkouška 65
 3.7. Projekt ... 66
 4. Studijní plány jednotlivých oborů 66
 4.1. Matematické struktury 66
 4.2. Matematická analýza .. 74
 4.3. Výpočtová matematika 82
 4.4. Pravděpodobnost, matematická statistika a ekonometrie 88
 4.4.1. Ekonometrie ... 88
<table>
<thead>
<tr>
<th>Obsah</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.2. Matematická statistika ..</td>
</tr>
<tr>
<td>4.4.3. Teorie pravděpodobnosti a náhodné procesy</td>
</tr>
<tr>
<td>4.4.4. Matematika a management ..</td>
</tr>
<tr>
<td>4.5. Finanční a pojistná matematika ...</td>
</tr>
<tr>
<td>4.6. Matematické a počítačové modelování ve fyzice a v technice</td>
</tr>
<tr>
<td>4.7. Matematika — filosofie (mezifakultní studium)</td>
</tr>
<tr>
<td>4.8. Učitelství matematiky pro střední školy v kombinaci s odbornou matematikou ..</td>
</tr>
<tr>
<td>4.9. Učitelství matematiky v kombinaci s druhým aprobačním předmětem pro střední školy ..</td>
</tr>
<tr>
<td>B. Bakalářské studium ..</td>
</tr>
<tr>
<td>1. Základní informace ...</td>
</tr>
<tr>
<td>1.1. Průběh studia ..</td>
</tr>
<tr>
<td>1.2. Ukončení studia ...</td>
</tr>
<tr>
<td>2. Společný základ ...</td>
</tr>
<tr>
<td>3. Studijní plány jednotlivých oborů ...</td>
</tr>
<tr>
<td>3.1. Pojistná matematika (PB) ..</td>
</tr>
<tr>
<td>3.2. Finanční matematika (FB) ...</td>
</tr>
<tr>
<td>3.3. Matematika v obchodování a podnikání (Business Administration — BA) ...</td>
</tr>
<tr>
<td>3.4. Matematika a ekonomie (ME) ..</td>
</tr>
<tr>
<td>3.5. Matematika a počítače v praxi (MAPO) ...</td>
</tr>
<tr>
<td>3.6. Obecná matematika (OM) ..</td>
</tr>
<tr>
<td>Studijní plány studijního programu FYZIKA ...</td>
</tr>
<tr>
<td>A. Magisterské studium ..</td>
</tr>
<tr>
<td>1. Základní informace ...</td>
</tr>
<tr>
<td>2. První stupeň studia ...</td>
</tr>
<tr>
<td>3. Druhý stupeň studia odborné fyziky ...</td>
</tr>
<tr>
<td>3.1. Společný základ a souborná zkouška ...</td>
</tr>
<tr>
<td>3.2. Diplomová práce ...</td>
</tr>
<tr>
<td>3.3. Státní závěrečná zkouška ..</td>
</tr>
<tr>
<td>3.4. Kurs bezpečnosti práce ..</td>
</tr>
<tr>
<td>4. Studijní plány jednotlivých oborů ...</td>
</tr>
<tr>
<td>4.1. Astronomie a astrofyzika ...</td>
</tr>
<tr>
<td>4.2. Geofyzika ..</td>
</tr>
<tr>
<td>4.3. Meteorologie a klimatologie ..</td>
</tr>
<tr>
<td>4.4. Teoretická fyzika ...</td>
</tr>
<tr>
<td>4.5. Fyzika kondenzovaných a makromolekulárních látek</td>
</tr>
<tr>
<td>4.5.1 Studijní plán fyzika pevných látek ..</td>
</tr>
<tr>
<td>4.5.2 Studijní plán makromolekulární fyzika</td>
</tr>
<tr>
<td>4.6. Optika a optoelektronika ...</td>
</tr>
<tr>
<td>4.6.1 Studijní plán kvantová a nelineární optika</td>
</tr>
<tr>
<td>4.6.2 Studijní plán optoelektronika a fotonika</td>
</tr>
<tr>
<td>4.7. Fyzika povrchů a ionizovaných prostředí ...</td>
</tr>
<tr>
<td>4.8. Biofyzika a chemická fyzika ...</td>
</tr>
<tr>
<td>4.8.1 Studijní plán biofyzika ..</td>
</tr>
<tr>
<td>4.8.2 Studijní plán chemická fyzika ..</td>
</tr>
</tbody>
</table>
4.9. Jaderná a subjaderná fyzika 164
4.10. Matematické a počítačové modelování ve fyzice a technice 168
4.11. Učitelství fyziky pro střední školy v kombinaci s odbornou fyzikou 172
4.12. Učitelství fyziky v kombinaci s druhým aprobačním oborem pro SŠ 173

B. Bakalářské studium .. 173
1. Základní informace ... 174
 1.1. Průběh studia ... 174
 1.2. Ukončení studia .. 174
2. Studijní plány jednotlivých oborů 175
 2.1. Obecná fyzika .. 175
 2.5. Užitá meteorologie 176

Studijní plány studijního programu INFORMATIKA 181
A. Magisterské studium .. 181
 1. Základní informace 181
 2. První stupeň studia 182
 3. Druhý stupeň studia 182
 3.1. Souborná zkouška 182
 3.2. Vedlejší obor 186
 3.3. Softwarový projekt 188
 3.4. Diplomová práce 188
 3.5. Státní závěrečná zkouška 188
 4. Studijní obory .. 190
 4.1. Teoretická informatika 191
 4.2. Diskrétní matematika a optimalizace 194
 4.3. Datové inženýrství 197
 4.4. Softwarové systémy 198
 4.5. Distribuované systémy 201
 4.6. Počítačová a formální lingvistika 202
 4.7. Učitelství informatiky pro střední školy v kombinaci s odbornou
 informatikou .. 203
 4.8. Učitelství informatiky v kombinaci s druhým aprobačním předmětem
 pro střední školy 204
B. Bakalářské studium .. 205
 1. Základní informace 205
 2. První stupeň studia 205
 3. Druhý stupeň studia 206
 Aplikovaná informatika 206

Studium učitelství ... 209
A. Studium učitelství pro střední školy 209
 1. Základní informace 209
 1.1. Průběh studia .. 209
 1.2. Souborná zkouška 210
 1.3. Diplomová práce 210
 1.4. Státní závěrečná zkouška 210
 2. Studijní plány jednotlivých aprobačních předmětů 211
 2.1. Učitelské studium matematiky pro střední školy 211
 2.2. Učitelské studium fyziky pro střední školy 219

3
Obsah

2.3. Učitelské studium informatiky pro střední školy 227
2.4. Učitelské studium deskriptivní geometrie pro střední školy 235

B. Studium učitelství pro základní školy .. 239
 1. Základní informace .. 239
 1.1. Průběh studia ... 239
 1.2. První část státní závěrečné zkoušky 239
 1.3. Diplomová práce ... 239
 1.4. Druhá část státní závěrečné zkoušky 240
 2. Studijní plány ... 240
 2.1. Učitelské studium matematiky pro základní školy 240
 2.2. Učitelské studium fyziky pro základní školy 246

C. Rozšiřující a doplňující studium .. 251
 1. Rozšiřující studium učitelství pro střední školy 251
 1.1. Doporučený průběh rozšiřujícího studia učitelství matematiky pro střední školy ... 251
 1.2. Doporučený průběh rozšiřujícího studia učitelství fyziky pro střední školy .. 252
 1.3. Doporučený průběh rozšiřujícího studia učitelství informatiky pro střední školy .. 254
 1.4. Doporučený průběh rozšiřujícího studia učitelství deskriptivní geometrie pro střední školy .. 256
 2. Rozšiřující studium učitelství pro základní školy 257
 2.1. Doporučený průběh rozšiřujícího studia učitelství matematiky pro základní školy ... 257
 2.2. Doporučený průběh rozšiřujícího studia učitelství fyziky pro základní školy .. 258

Z historie Univerzity Karlovy ... 261
Seznam zaměstnanců MFF ... 265
Úvodní slovo

Studijní plány magisterského a bakalářského studia na MFF, kterým se často také říká oranžová Karolinka, obsahují velmi podrobné informace o organizaci studia a jeho náplni. Pozornost zasluhuje již harmonogram akademického roku. Je třeba si uvědomit, že obsahuje závazné termíny, jejichž nedodržení může vést k dosti nepříjemným důsledkům. Mohu potvrdit, že po celou dobu mého působení na fakultě to vždy byla nejčastěji vyhledávaná stránka v Karolince.

Kontrola studia na MFF je založena na bodovém systému, který odpovídá kreditním systémům užívaným na západních univerzitách. Náš systém stanovuje jednak rozsah studijních povinností, které musí student splnit v daném roce svého studia, jedná se o podmínky potřebné k tomu, aby mu mohla být zadána diplomová práce a aby se mohl přihlásit k souborné zkoušce či ke státní závěrečné zkoušce. Fakulta kladne velký důraz i na výuku cizích jazyků. Nejdůležitější úlohu v našich oborech má dnes angličtina, která se stala jakousi latinou novověku. Je třeba, aby ji každý absolvent MFF zvládl tak, aby byl nejen schopen číst a psát odborné texty ve svém oboru, ale aby také dokázal konverzovat o běžných tématech každodenního života. Po velmi důkladném zvážení a projednání se stala angličtina povinným předmětem pro všechny studenty, kteří zahájili své studium na MFF v roce 1999 nebo později. Fakulta však umožňuje studentům i výuku dalších cizích jazyků, zejména němčiny, francouzštiny, španělštiny a ruštiny.

Jádrem publikace jsou pochopitelně studijní plány jednotlivých programů a oborů. Najdete zde i vzorové průchody. To jsou plány studia, které garantují studijních programů a garantující pracoviště studentům doporučují. I když si v rámci Studijního a zkušebního
řádu MFF každý student může sestavit svůj vlastní plán, zkušenost ukazuje, že velká část studentů využívá právě tyto vzorové průchody.

Důležitým doplněkem k Studijním plánům MFF je samostatně vydaný Seznam předmětů, v němž jsou uvedeny všechny předměty vyučované na MFF i se stručnou anotací. Obě zmíněné publikace můžete rovněž najít na webové stránce fakulty na adrese http://www.mff.cuni.cz. Seznam zaměstnanců a studentů MFF Vám poskytne služba WHO IS na fakultním serveru.

Pokud budete potřebovat další informace nebo rady, s důvěrou se obraťte na zaměstnance MFF. V odborných záležitostech Vám poradí garantii jednotlivých studijních programů a odpovědní učitelé jednotlivých oborů či studijních plánů. V otázkách týkajících se studijních předpisů se můžete obrátit na pracovnice studijního oddělení a na proděkana pro studijní záležitosti. Kromě toho porozumění jistě najdete u svých starších kolegů. Mějte však na paměti, že i případný velký problém můžete ve spolupráci s učiteli a se studijním oddělením úspěšně vyřešit, pokud ho začnete řešit včas.

Dovolte, vážení studenti, abych Vám popřál mnoho úspěchů ve studiu.

Prof. RNDr. Jiří Anděl, DrSc.
proděkan pro studijní záležitosti
Harmonogram akademického roku 2003/2004

Zimní semestr (ZS)

6. 9. – 13. 9. 2003 Přípravné soustředění a zápis 1. ročníku — Albeř
17. 9. 2003 Náhradní termín zápisu 1. ročníku
r. 2002/2003
8. 9. – 26. 9. 2003 Podzimní termín státních a bakalářských závěrečných zkoušek
8. 9. – 26. 9. 2003 Podzimní termín souborných zkoušek
29. 9. – 9. 1. 2004 Výuka v zimním semestru
15. 10. 2003 Imatrikulace 1. ročníku
6. 10. – 24. 10. 2003 Zápis (u vybraných předmětů bude časový režim zápisu upřesněn vyhláškou)
1. 10. 2003 Vypsání témat diplomových a bakalářských prací
10. 11. 2003 Termín zadání diplomových a bakalářských prací
18. 11. 2003 Promoce
12. 12. 2003 Odevzdání diplomových a bakalářských prací pro zimní termín státních závěrečných zkoušek
22. 12. 2003 – 1. 1. 2004 Vánoční prázdniny
12. 1. – 13. 2. 2004 Zkouškové období v ZS
26. 1. – 13. 2. 2004 Zimní termín státních a bakalářských závěrečných zkoušek
Zimní termín souborných zkoušek
Zimní výcvikový kurz — dle oznámení katedry tělesné výchovy
Obecné informace

Letní semestr (LS)

16. 2. – 21. 5. 2004 Výuka v letním semestru
23. 2. – 12. 3. 2004 Zápis do letního semestru
do 19. 3. 2004 1. ročník — kontrola splnění povinností za ZS
16. 4. 2004 Odevzdání diplomových pro letní termín státních
závěrečných zkoušek
3. 5. 2004 Uzavření studia závěrečných ročníků magisterského studia
— kontrola splnění všech podmínek pro přípouštění k SZZ
31. 5. 2004 Odevzdání bakalářských prací pro letní termín
bakalářských státních závěrečných zkoušek
24. 5. – 25. 6. 2004 Zkouškové období v LS
14. 5. – 4. 6. 2004 Letní termín státních závěrečných zkoušek
Letní termín souborných zkoušek
11. 6. 2004 Uzavření studia závěrečných ročníků bakalářského studia
— kontrola splnění všech podmínek pro přípouštění k SZZ
21. 6. – 25. 6. 2004 Letní termín bakalářských státních závěrečných zkoušek
14. 6. 2004 Přijímací zkoušky (Bc. a Mgr. studium)
24. – 25. 6. 2004 Přijímací zkoušky (PhDr. studium)
15. – 18. 6. 2004 Doktorandský týden
1. – 2. 7. 2004 Promoce (Bc. a Mgr. studium)
Letní výcvikový kurz — dle oznámení katedry tělesné
výchovy
1. 7. – 31. 8. 2004 Letní prázdny
13. 8. 2004 Odevzdání diplomových a bakalářských prací pro podzimní
termín státních závěrečných zkoušek
Obecné informace

Univerzita Karlova v Praze

Ovocný trh 5, 116 36 Praha 1, telefon 22449 1111

Vedení Univerzity Karlovy

Rektor: Prof. Ing. Ivan Wilhelm, CSc.
Prorektor pro vědu a výzkum: Prof. MUDr. Pavel Klener, DrSc.
Prorektor pro zahraniční styky: Prof. MUDr. Josef Stingl, CSc.
Prorektor pro sociální záležitosti: Prof. RNDr. Eva Kvasničková, CSc.
Prorektor pro studijní záležitosti: Doc. RNDr. Jaroslava Svobodová, CSc.
Prorektor pro vnější vztahy: Doc. PhDr. Michal Šobr, CSc.
Prorektor pro rozvoj: Doc. PhDr. Stanislav Štech, CSc.
Kvestor: Ing. Josef Kubíček
Kanclér: RNDr. Tomáš Jelínek

Zástupci MFF v akademickém senátu UK

Prof. RNDr. Jan Hála, DrSc.
Doc. RNDr. Miloš Zahradník, CSc.
Mgr. Petr Olmer
Mgr. Jan Foniok
Matematicko-fyzikální fakulta

Orgány fakulty

1. Akademický senát
Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1289, e-mail: pas@mff.cuni.cz (předsednictvo AS), skas@mff.cuni.cz (studentská komora), domácí stránka: http://www.mff.cuni.cz/fakulta/as

Předsednictvo senátu
1. místopředseda: RNDr. Oldřich Bílek
2. místopředseda: Předseda studentské komory

Zaměstnanecká komora
Prof. RNDr. Ivan Barvík, DrSc.
RNDr. Oldřich Bílek
RNDr. Ondřej Čepek, Ph.D.
Prof. RNDr. Tomáš Kepka, DrSc.
RNDr. Věra Kohlová
RNDr. Rudolf Kryl
Doc. RNDr. Karel Najzar, CSc.
Doc. RNDr. Oldřich Odvárko, DrSc.
Prof. PhDr. Jarmila Paneová, DrSc.
RNDr. Josef Pešička, CSc.
Doc. RNDr. Zuzana Prášková, CSc.
Doc. RNDr. Miloš Rotter, CSc.
Prof. RNDr. Milan Tichý, DrSc.
Doc. RNDr. Jiří Veselý, CSc.
Prof. RNDr. Karel Zimmermann, DrSc.
Doc. RNDr. Karel Zvára, CSc.

Studentská komora
Pavel Cejnar
Zdeňka Jakubková
Mgr. Svatopluk Krýsl
Stanislava Kucková
Martin Mádlík
Přemysl Paška
Marianna Poříčková
Radek Sýkora
Ekonomická komise

Prof. RNDr. Milan Tichý, DrSc.; RNDr. Jan Hric; Karel Jelínek; RNDr. Josef Pešička, CSc.; Radek Sýkora; Prof. RNDr. Karel Zimmermann, DrSc.

Legislativní komise

Prof. RNDr. Ivan Barvík, DrSc.; Doc. RNDr. Aleš Drápal, CSc.; Mgr. Jan Foniok; RNDr. Vojtěch Kapsa, CSc.; RNDr. Věra Kohlová; Stanislava Kucková; Doc. RNDr. Zuzana Prášková, CSc.

Studijní komise

2. Vedení fakulty

Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1289, fax 22191 1292, e-mail: sdek@dekanat.mff.cuni.cz

Děkan

Prof. RNDr. Ivan Netuka, DrSc.

Kolegium

Proděkan pro vědeckou činnost a zahraniční styky, zástupce děkana: Doc. RNDr. Jaromír Plášek, CSc.
Proděkan pro studijní záležitosti: Prof. RNDr. Jiří Anděl, DrSc.
Proděkan pro rozvoj: Prof. RNDr. Bedřich Sedláček, DrSc.
Proděkan pro fyziku: Doc. RNDr. Zdeněk Němeček, DrSc.
Proděkan pro informatiku: Doc. RNDr. Antonín Kučera, CSc.
Proděkan pro matematiku: Prof. RNDr. Vladimír Souček, DrSc.
Tajemník: RNDr. Petr Karas

3. Vědecká rada

Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1289, fax 22191 1292, e-mail: sdek@dekanat.mff.cuni.cz

Předseda

Prof. RNDr. Ivan Netuka, DrSc.

Členové

Prof. RNDr. Jan Bednář, CSc.
Prof. RNDr. Ladislav Bican, DrSc.
Prof. RNDr. Jiří Bičák, DrSc.
Prof. RNDr. Miloslav Feistauer, DrSc.
Prof. PhDr. Eva Hajičová, DrSc.
Prof. Ing. Miloslav Havlíček, DrSc.
Prof. RNDr. Pavel Hösdl, DrSc.
Obecné informace

Prof. RNDr. Marie Hušková, DrSc.
Prof. RNDr. Jiří Chýla, DrSc.
Prof. Ing. Michal Ilavský, DrSc.
Ing. Karel Jungwirth, DrSc.
Prof. RNDr. Jaroslav Lukeš, DrSc.
Prof. RNDr. Milan Mareš, DrSc.
Prof. Ing. Bořivoj Melichar, DrSc.
Ing. Vladimír Nekvasil, DrSc.
Prof. RNDr. Ivan Netuka, DrSc.
Doc. RNDr. Jaromír Plášek, CSc.
Prof. RNDr. Jaroslav Pokorný, CSc.
Prof. RNDr. Aleš Pultr, DrSc.
Doc. RNDr. Karel Segeth, CSc.
Prof. RNDr. Vladimír Sechovský, DrSc.
Prof. RNDr. Lubomír Skála, DrSc.
Prof. RNDr. Josef Štěpán, DrSc.
Doc. RNDr. Jiří Wiedermann, DrSc.

Čestní členové

Prof. RNDr. Vlastislav Červený, DrSc.
Prof. RNDr. Václav Dupač, DrSc.
Prof. RNDr. Oldřich Kowalski, DrSc.
Prof. RNDr. Jaroslav Kurzweil, DrSc.
Prof. RNDr. Ivo Marek, DrSc.
Prof. RNDr. Ladislav Procházka, DrSc.
Prof. RNDr. Bedřich Sedláčk, DrSc.
Prof. RNDr. Michal Suk, DrSc.
Prof. RNDr. Petr Vopěnka, DrSc.

4. Disciplinární komise

Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1289, fax 22191 1292,
e-mail: sdek@dekanat.mff.cuni.cz

Předseda

Prof. RNDr. Jiří Anděl, DrSc.

Členové

Mgr. Jan Foniok
Stanislava Kucková
Doc. RNDr. Antonín Kučera, CSc.
Doc. RNDr. Jiří Langer, CSc.
Mgr. Petr Škovroň
Náhradníci

Doc. RNDr. Oldřich Odvárko, DrSc.
Mgr. Petr Olmer
Doc. RNDr. Danka Slavínská, CSc.
Mgr. Petr Vilím

5. Poradní orgány vedení fakulty

Ke Karlovu 3, 121 16 Praha 2

Ediční komise

Poradní orgán děkana.

Předseda: Mgr. Miroslav Zelený, Dr.
Doc. RNDr. Jiří Fiala, CSc.
RNDr. Martin Klazar, Dr.
Stanislava Kucková
Doc. RNDr. Jiří Langer, CSc.
Doc. RNDr. Jiří Veselý, CSc.

Knihovní rada

Poradní orgán proděkana určeného děkanem pro oblasti knihovny.

Předseda: Prof. RNDr. Petr Malý, DrSc.
RNDr. Daniel Hlubinka, Ph.D.
RNDr. Drahomíra Hrušková
Mgr. Petr Olmer
Prof. RNDr. Jaroslav Pokorný, CSc.

Propagační komise

Poradní orgán proděkana určeného pro oblast propagace.

Předseda: RNDr. Helena Valentová, Ph.D.
Fyzikální KS: Mgr. Pavel Krtouš, Ph.D.
Informatický KS: Doc. RNDr. Pavel Töpfer, CSc.
Matematický KS: RNDr. Martin Klazar, Dr.
Doc. RNDr. Aleš Drápal, CSc.
PhDr. Alena Havlíčková
Petr Chovanec
Mgr. Vladan Majerech, Dr.
Patricia Rexová
Doc. RNDr. Ivana Stulíková, CSc.
RNDr. Stanislav Zelenda
Obecné informace

Rozvrhová komise
Poradní orgán proděkana pro studijní záležitosti.

Předseda:
RNDr. David Bednárek
Doc. RNDr. Jiří Kadleček, CSc.
RNDr. František Lustig, CSc.
RNDr. Petr Mayer, Dr.
RNDr. Filip Zavoral, Ph.D.
RNDr. Petr Zinburg

Komise pro počítačové sítě
Poradní orgán proděkana určeného děkanem pro oblast počítačových sítí.

Předseda:
Doc. RNDr. Antonín Kučera, CSc.
Správce počítačové domény Kolej: Mgr. Jiří Calda
Správce počítačové domény Malá Strana: RNDr. Libor Forst
Správce počítačové domény Karlin: RNDr. Oldřich Ulrych
Správce počítačové domény Troja: RNDr. Ludvík Urban, CSc.
Správce počítačové domény Karlov: Mgr. Petr Vlášek

Náhradová komise
Poradní orgán tajemníka fakulty.

Předseda:
Miloslava Fuchsová
JUDr. Dana Macharová
PhDr. Milena Stiborová, CSc.
Marcela Tomášková

Inventarizační a likvidační komise
Poradní orgán tajemníka fakulty.

Předseda:
Milan Mikulejský
Likvidátor: Karol Štrečko
Zapisovatel: Marcela Tomášková
PaedDr. Šárka Domalípová
RNDr. Václav Kubát, CSc.
Ing. Miloš Pfeffer, CSc.
Ing. František Šebek
RNDr. Oldřich Ulrych
RNDr. Petr Zinburg
Fakultní rada pro udělování studentských fakultních grantů

Předseda: Prof. RNDr. Jiří Anděl, DrSc.
Petr Chovanec
Doc. RNDr. Mírko Rokyta, CSc.
Doc. RNDr. Josef Štěpánek, CSc.
PaedDr. Helena Švecová, CSc.
Doc. RNDr. Pavel Töpfer, CSc.

Fyzikální sekce

101. Astronomický ústav UK

V Holešovičkách 2, 182 00 Praha 8, telefon 22191 2572, fax 22191 2577,
e-mail: mfau@mbox.troja.mff.cuni.cz

Ředitel ústavu: Doc. RNDr. Petr Harmanec, DrSc.
Zástupce ředitele ústavu: Doc. RNDr. Vladimír Karas, DrSc.
Tajemník ústavu: Doc. RNDr. Marek Wolf, CSc.
Sekretářka ústavu: Hana Míková
Docentů: Doc. RNDr. Vladimír Karas, DrSc.
Doc. RNDr. Attila Mészáros, DrSc.
Doc. RNDr. Martin Šolc, CSc.
Doc. RNDr. David Vokrouhlický, DrSc.
Doc. RNDr. Marek Wolf, CSc.

Odborný asistent: Mgr. Ladislav Šubr, Ph.D.
Vědecký pracovník: Doc. RNDr. Petr Harmanec, DrSc.
Ostatní pracovníci: Hana Míková
Externí pracovník: RNDr. Pavel Mayer, DrSc.

102. Fyzikální ústav UK

Ke Karlovu 5, 121 16 Praha 2, telefon 22191 1344, 22191 1346, fax 224 92 27 97,
e-mail: fuuk@karlov.mff.cuni.cz

Ředitel ústavu: Prof. RNDr. Pavel Höschl, DrSc.
Zástupce ředitele ústavu: Doc. RNDr. Vladimír Baumruk, CSc.
Sekretářka ústavu: Hana Kučerová
Profesoři: Prof. RNDr. Ivan Barvík, DrSc.
Prof. RNDr. Pavel Höschl, DrSc.
Prof. Ing. Štefan Višňovský, DrSc.
Docentů: Doc. RNDr. Vladimír Baumruk, CSc.
Doc. RNDr. Jiří Bok, CSc.
Doc. Ing. Jan Franc, CSc.
Doc. RNDr. Dana Gášková, CSc.
Doc. RNDr. Roman Grill, CSc.
Doc. RNDr. Petr Heřman, CSc.
Doc. RNDr. Pavel Hlídek, CSc.
Doc. RNDr. Miroslav Kučera, CSc.
Doc. RNDr. Peter Mojzeš, CSc.
Doc. RNDr. Pavel Moravec, CSc.
Doc. RNDr. Jaromír Plášek, CSc.
Doc. RNDr. Josef Štěpánek, CSc.
Doc. RNDr. Jaroslav Večeř, CSc.
Doc. RNDr. Milan Zvára, CSc.

Odborní asistenti:
RNDr. Ivan Barvík, Ph.D.
Mgr. Roman Chaloupka, Ph.D.
Doc. Mgr. Miroslav Nývlt, Dr.
RNDr. Kateřina Ruszová, Ph.D.

Vědečtí pracovníci:
Ing. Eduard Belas, CSc.
Roman Fesh
Mgr. Oleh Horodchuk
Mgr. Petr Horodyský
RNDr. Eva Kočišová, Ph.D.
Mgr. Vladimír Kopecký
Pavel Lipavský, CSc.
Mgr. Milan Orlita
Ing. Oldřich Podzimek, CSc.
RNDr. Marek Procházka, Ph.D.
Mykhaylo Shumylyak
Mgr. František Šanda, Ph.D.

Ostatní pracovníci:
Miloš Černý
Jiří Fryštacký
Hana Kučerová
Věra Poláková
Ing. Petr Praus, CSc.
Miloš Richter
Karol Strečko
Roman Šilha
Mgr. Ivan Turkevych

Externí pracovník:
Mgr. Alena Vojtíšková

Oddělení biofyziky

Oddělení fyziky biomolekul

Oddělení magnetooptiky

Prof. Ing. Štefan Višňovský, DrSc.; Doc. RNDr. Miroslav Kučera, CSc.
Oddělení polovodičů a polovodičové optoelektroniky

Oddělení teoretické

Prof. RNDr. Ivan Barvík, DrSc.; Doc. RNDr. Jiří Bok, CSc.; Pavel Lipavský, CSc.; Mgr. František Šanda, Ph.D.

Oddělení kryogenní

Ing. Eduard Belas, CSc.; Karol Strečko

Mechanická dílna

Miloš Richter; Roman Šilha

103. Kabinet výuky obecné fyziky

Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1283, fax 22191 1618,
e-mail: mfkvof@plk.mff.cuni.cz

Vedoucí kabinetu: Doc. RNDr. Jan Nedbal, CSc.
Zástupce vedoucího kabinetu: Doc. RNDr. Ivana Stulíková, CSc.
Tajemnice kabinetu: RNDr. Věra Kohlová
Sekretářka kabinetu: Dagmar Drahná
Docenti: Doc. RNDr. Jan Nedbal, CSc.
Doc. RNDr. Ivana Stulíková, CSc.
Odborní asistenti: Mgr. Jitka Pelcová, Ph.D.
RNDr. Helena Valentová, Ph.D.
Lektoři: RNDr. Vojtěch Hanzal
RNDr. Věra Kohlová
RNDr. Jiří Matas, CSc.
Ostatní pracovníci: Ing. Antonín Caletka
Stanislav Čech
Dagmar Drahná
Josef Jaček
RNDr. Ivo Křivka, CSc.
Ing. Bohumil Kurka
Ing. František Nábělek
RNDr. Petr Zinburg

17
104. Katedra didaktiky fyziky

Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1233, fax 22191 1408,
e-mail: kdf@mff.cuni.cz

Vedoucí katedry: Doc. RNDr. Leoš Dvořák, CSc.
Zástupce vedoucího katedry: Prof. RNDr. Emanuel Svoboda, CSc.
Tajemnice a sekretářka katedry: PaedDr. Helena Švecová, CSc.
Profesor: Prof. RNDr. Emanuel Svoboda, CSc.
Docenti: Doc. RNDr. Leoš Dvořák, CSc.
 Doc. RNDr. Růžena Kolářová, CSc.
 Doc. RNDr. Zdena Lustigová, CSc.
 Doc. RNDr. Milan Rojko, CSc.
 Doc. RNDr. Miroslav Svoboda, CSc.
Odborní asistenti: RNDr. Zdeněk Drozd, Ph.D.
 RNDr. Peter Žilavý, Ph.D.
Lektoři: RNDr. Irena Koudelková
 RNDr. František Lustig, CSc.
 RNDr. Dana Mandíková, CSc.
Vědecký pracovník: RNDr. Pavla Zíleniecová, CSc.
Asistent: Mgr. Martin Chvál
Ostatní pracovníci: Mgr. Kamila Goldová
 Božena Havlíková
 Gabriela Hyková
 Mgr. Miroslav Jílek
 Jiří Mihovič
 Mgr. Vladislava Nová
 Mgr. Martin Svoboda
 PaedDr. Helena Švecová, CSc.
 RNDr. Stanislav Zelenda
Externí pracovník: Jakub Jermář

Oddělení didaktiky fyziky pro střední školy

Oddělení didaktiky fyziky pro základní školy

Pracovní skupina pro pedagogiku a celoživotní vzdělávání

RNDr. Pavla Zíleniecová, CSc.

Laboratoř distančního vzdělávání

Doc. RNDr. Zdena Lustigová, CSc.; RNDr. Stanislav Zelenda
105. Katedra elektroniky a vakuové fyziky

V Holešovičkách 2, 182 00 Praha 8, telefon 22191 2325, fax 28468 5095, 22191 2345,
e-mail: mfkevf@mbox.troja.mff.cuni.cz

Vedoucí katedry: Prof. RNDr. Vladimír Matolín, DrSc.
Zástupce vedoucího katedry: Doc. RNDr. Jana Šafránková, DrSc.
Tajemník katedry: RNDr. Jan Wild, CSc.
Sekretářka katedry: Marcela Králíková
Profesoři: Prof. RNDr. Rudolf Hrach, DrSc.
 Prof. RNDr. Vladimír Matolín, DrSc.
 Prof. RNDr. Milan Tichý, DrSc.
Docenti: Doc. RNDr. Juraj Glosík, DrSc.
 Doc. RNDr. Věra Hrachová, CSc.
 Doc. RNDr. Zdeněk Němeček, DrSc.
 Doc. RNDr. Ivan Oštádal, CSc.
 Doc. RNDr. Petr Repa, CSc.
 Doc. RNDr. Jana Šafránková, DrSc.
Odborní asistenti: Mgr. Pavel Kudrna, Dr.
 RNDr. Karel Mašek, Dr.
 Mgr. Iva Matolínová, Dr.
 RNDr. Lubomír Přech, Dr.
 RNDr. Ondřej Santolík, Dr.
 RNDr. Pavel Sobotík, CSc.
 RNDr. Miroslav Vicher, Ph.D.
Vědečtí pracovníci: Mgr. Štefan Dušík
 RNDr. Ivan Emmer, CSc.
 Mgr. Stanislav Fabík
 RNDr. Tomáš Gronych, CSc.
 Mgr. Tomáš Hrnčíř
 RNDr. Adolf Kaňka, Dr.
 RNDr. Josef Mysliveček, Ph.D.
 RNDr. Václav Nehasil, Dr.
 RNDr. Jiří Pavluch, CSc.
 RNDr. Ladislav Peksa, CSc.
 Mgr. Radek Plašil, Ph.D.
 Prof. RNDr. Miloš Šícha, DrSc.
 Mgr. František Šutara, Ph.D.
 RNDr. Kateřina Veltruská, CSc.
 RNDr. Jan Wild, CSc.
Ostatní pracovníci: Mgr. Gregor Báňo
 RNDr. Pavel Hedbávný, CSc.
 Jindřich Hejda
 Marcela Chvalkovská
 Mgr. Pavel Kaňkovský
 Marcela Králíková
 Marcela Nováková
 Jiří Palacký
Obecné informace

Jitka Sedláčková
RNDr. Ludvík Urban, CSc.
Ing. Andriy Velyhan

Externí pracovníci:
Ing. Jiří Macl
Mgr. Jan Mérka, Dr.

Pracovní skupina fyziky plazmatu

Doc. RNDr. Věra Hrachová, CSc.; Doc. RNDr. Juraj Glosik, DrSc.; RNDr. Adolf Kaňka, Dr.;
Mgr. Pavel Kudrna, Dr.; Mgr. Radek Plašil, Ph.D.; Prof. RNDr. Miloš Šícha, DrSc.; Prof. RNDr.
Milan Tichý, DrSc.

Pracovní skupina fyziky povrchů

Prof. RNDr. Vladimír Matolín, DrSc.; Mgr. Stanislav Fabík; Mgr. Tomáš Hrnčíř; RNDr. Karel
Mašek, Dr.; Mgr. Iva Matolinová, Dr.; RNDr. Václav Nehasil, Dr.; RNDr. Jiří Pavluch, CSc.; Mgr.
František Šutara, Ph.D.; RNDr. Kateřina Veltruská, CSc.

Pracovní skupina fyziky tenkých vrstev

Doc. RNDr. Ivan Ošťádal, CSc.; RNDr. Ivan Emmer, CSc.; RNDr. Josef Mysliveček, Ph.D.;
RNDr. Pavel Sobotík, CSc.

Pracovní skupina kosmické fyziky

Doc. RNDr. Jana Safránková, DrSc.; Doc. RNDr. Zdeněk Němeček, DrSc.; RNDr. Lubomír Přech,
Dr.; RNDr. Ondřej Santolík, Dr.; Ing. Andriy Velyhan

Pracovní skupina počítačové fyziky

Prof. RNDr. Rudolf Hrach, DrSc.

Pracovní skupina vakuové fyziky

Doc. RNDr. Petr Řepa, CSc.; RNDr. Tomáš Gronych, CSc.; RNDr. Jan Wild, CSc.

Metrologická laboratoř vakua

Doc. RNDr. Petr Řepa, CSc.; RNDr. Tomáš Gronych, CSc.; RNDr. Ladislav Peksa, CSc.

Správa počítačové domény Troja

RNDr. Ludvík Urban, CSc.; Mgr. Pavel Kaňkovský

Správa počítačové laboratoře TF

Prof. RNDr. Milan Tichý, DrSc.

Mechanická dílna

Jindřich Hejda; Jiří Palacký
106. Katedra fyziky kovů

Ke Karlovu 5, 121 16 Praha 2, telefon 22191 1358, 22191 1359, 22492 3450, fax 22191 1490, e-mail: mfkfk@met.mff.cuni.cz

Vedoucí katedry: Doc. RNDr. František Chmelík, CSc.
Zástupce vedoucího katedry: RNDr. Přemysl Málek, CSc.
Tajemník katedry: RNDr. Josef Pešička, CSc.
Sekretářka katedry: Regina Černá
Profesoři: Prof. RNDr. Jaroslav Haslinger, DrSc.
 Prof. RNDr. Petr Kratochvíl, DrSc.
 Prof. RNDr. Pavel Lukáč, DrSc.
 Prof. RNDr. Zuzanka Trojanová, DrSc.

Docenti: Doc. RNDr. František Chmelík, CSc.
 Doc. RNDr. Bohumil Smola, CSc.
 Doc. RNDr. Vladimír Šima, CSc.
Odborný asistent: RNDr. Miroslav Cieslar, CSc.
Vědečtí pracovníci: Doc. RNDr. Miloš Janeček, CSc.
 RNDr. Přemysl Málek, CSc.
 RNDr. Josef Pešička, CSc.
 Mgr. Alexandra Rudajevová, CSc.
Ostatní pracovníci: Ing. Jaromír Buriánek
 Marta Čepová
 Regina Černá
 Ing. Patrik Dobroň
 Ing. Viera Gärtnerová
 Mgr. Michal Hájek
 Mgr. Bohumil Chalupa
 Mgr. Aleš Jäger
 Ing. Jiří Macl
 RNDr. Kristián Máthis
 Ing. Marian Potočnák

107. Katedra fyziky nízkých teplot

V Holešovičkách 2, 182 00 Praha 8, telefon 22191 2565, 22191 2567, fax 22191 2567, e-mail: mfkfnt@mbox.troja.mff.cuni.cz

Vedoucí katedry: Doc. RNDr. Jiří Englich, DrSc.
Zástupce vedoucího katedry: RNDr. Ladislav Skrbek, DrSc.
Tajemnic katedry: Doc. RNDr. Helena Štěpánková, CSc.
Sekretářka katedry: Jitka Hankeová
Profesoři: Prof. Ing. Miroslav Finger, DrSc.
 Prof. RNDr. Bedřich Sedláček, DrSc.
Docenti: Doc. Ing. František Bečvář, DrSc.
 Doc. RNDr. Jiří Englich, DrSc.
 Doc. RNDr. Miloš Rotter, CSc.
 Doc. RNDr. Helena Štěpánková, CSc.
Obecné informace

Odborní asistenti: Mgr. Jakub Čížek, Ph.D.
Mgr. Jaroslav Kohout, Dr.

Vědečtí pracovníci: RNDr. Zdeněk Janů, CSc.
RNDr. Miroslav Koláč, DrSc.
RNDr. Jan Kuriplach, CSc.
RNDr. Ivan Procházka, CSc.
RNDr. Ladislav Skrbek, DrSc.
RNDr. Jiří Spěváček, DrSc.
RNDr. Karel Závěta, CSc.

Ostatní pracovníci: Ladislav Doležal
Jitka Hankeová
Mgr. Jana Janotová
RNDr. Jan Lang, Ph.D.
Mgr. Václav Motyčka
Ing. Miloš Pfeffer, CSc.
Ing. Miloslav Slunečka
Ing. Viera Slunečková
Ing. Otakar Souček
Mgr. Zdeněk Tošner
Miroslav Zelinka

Externí pracovníci: Ernst-Georg Caspary
Ing. Alexey Gordeev
Ing. Adriana Lančok
RNDr. Daniel Nižňanský, CSc.
Ing. Miloslav Novák
Ing. František Soukup
Doc. RNDr. Ivana Stulíková, CSc.
Ing. Rudolf Tichý

Oddělení radiospektroskopie

Doc. RNDr. Helena Štěpánková, CSc.; Doc. RNDr. Jiří Englích, DrSc.; Mgr. Jaroslav Kohout, Dr.;
RNDr. Jan Lang, Ph.D.; Ing. Miloš Pfeffer, CSc.; Prof. RNDr. Bedřich Sedláček, DrSc.; RNDr. Jiří
Spěváček, DrSc.; Mgr. Zdeněk Tošner

Oddělení spinové fyziky

RNDr. Ivan Procházka, CSc.; Doc. Ing. František Bečvář, DrSc.; Mgr. Jakub Čížek, Ph.D.; Prof.
Ing. Miroslav Finger, DrSc.; RNDr. Jan Kuriplach, CSc.; Doc. RNDr. Ivana Stulíková, CSc.

Oddělení kryogenní techniky

Mgr. Jaroslav Kohout, Dr.; Ladislav Doležal; RNDr. Miroslav Koláč, DrSc.; Miroslav Zelinka

Laboratoř NMR studií molekulárních struktur

Doc. RNDr. Jiří Englích, DrSc.; RNDr. Jan Lang, Ph.D.; RNDr. Jiří Spěváček, DrSc.; Doc.
RNDr. Helena Štěpánková, CSc.; Mgr. Zdeněk Tošner

22
SPOLEČNÁ LABORATOŘ NÍZKÝCH TEPLOT (SLNT)

společné pracoviště MFF UK, FZÚ AV ČR a ÚACH AV ČR

RNDr. Ladislav Skrbek, DrSc.

Laboratoř supravodivosti SLNT

RNDr. Zdeněk Janů, CSc.; Ing. Miloslav Novák; Ing. František Soukup; Ing. Rudolf Tichý

Laboratoř fyziky a techniky nízkých teplot SLNT

Doc. RNDr. Miloš Rotter, CSc.; Ing. Alexey Gordeev; Mgr. Jana Janotová; RNDr. Ladislav Skrbek, DrSc.; Ing. Otakar Souček

Laboratoř Moessbauerovy spektroskopie SLNT

109. Katedra fyziky elektronových struktur

Ke Karlovu 5, 121 16 Praha 2, telefon 22191 1393, 22491 5014, fax 22491 1061, e-mail: kfes@karlov.mff.cuni.cz

Vedoucí katedry: Prof. RNDr. Vladimír Sechovský, DrSc.
Zástupce vedoucího katedry: Doc. RNDr. Radomír Kužel, CSc.
Sekretářka katedry: Božena Ženíšková
Profesoři: Prof. RNDr. Vladimír Sechovský, DrSc.
Doc. RNDr. Václav Valvoda, CSc.
Prof. RNDr. Bedřich Velický, CSc.
Docenti: Doc. RNDr. Martin Diviš, CSc.
Doc. RNDr. Ladislav Havela, CSc.
Doc. RNDr. Jan Klíma, CSc.
Doc. RNDr. David Rafaja, CSc.
Doc. Ing. Štěfan Zajac, CSc.
Odborní asistenti: Mgr. Stanislav Daniš, Ph.D.
Mgr. Pavel Javorský, Dr.
Mgr. Aleksandr Kolomiyets, Dr.
Mgr. Tomáš Novotný, Ph.D.
Vědečtí pracovníci: Fuminori Honda, Ph.D.
Mgr. Viktorya Cherkaska
Matuš Mihalik
Mgr. Khryshtyna Miliyanchuk
Mgr. Karel Prokeš, Ph.D.
Mgr. Ján Rusz
RNDr. Pavel Svoboda, CSc.
RNDr. Ilja Turek, DrSc.

Ostatní pracovníci: Mgr. Blanka Janoušová
Jan Kleger
Obecné informace

Jan Matlák
Mgr. Jiří Prchal
Štěpán Sechovský
Božena Ženíšková

Externí pracovník:
RNDr. Hana Šíchová, CSc.

Oddělení strukturní analýzy

Doc. RNDr. David Rafaja, CSc.; Doc. RNDr. Radomír Kužel, CSc.; Jan Matlák; RNDr. Hana Šíchová, CSc.; Prof. RNDr. Václav Valvoda, CSc.

Oddělení magnetických vlastností

Oddělení teoretické fyziky

Prof. RNDr. Bedřich Vělický, CSc.; Doc. RNDr. Jan Klima, CSc.; Mgr. Tomáš Novotný, Ph.D.; RNDr. Ilja Turek, DrSc.

110. Katedra makromolekulární fyziky

V Holešovičkách 2, 182 00 Praha 8, telefon 22191 2362, fax 22191 2350,
e-mail: kmf@kmf.troja.mff.cuni.cz

Vedoucí katedry:
Prof. Ing. Michal Ilavský, DrSc.
Zástupce vedoucího katedry:
Prof. RNDr. Hynek Biederman, DrSc.
Tajemník katedry:
RNDr. Lenka Hanyková, Dr.
Profesoři:
Doc. RNDr. Jaromír Fähnrich, CSc.
Doc. RNDr. Antonín Havránek, CSc.
Doc. RNDr. Petr Chvosta, CSc.
Doc. RNDr. Milan Marvan, CSc.
Doc. RNDr. Danka Slavínková, CSc.
Doc. RNDr. Jiří Toušek, CSc.
Doc. RNDr. Jana Toušková, CSc.
Doc. RNDr. Miroslava Trchová, CSc.
Doc. RNDr. Lenka Hanyková, Dr.
Odborný asistent:
RNDr. Dobroslav Kindl, CSc.
Vědečtí pracovníci:
Ing. Mirosl. Dušková-Smrčková, Dr.
RNDr. Josef Klimovič, CSc.
RNDr. Ivan Krakovský, CSc.
RNDr. Jan Prokeš, CSc.
Ostatní pracovníci:
Anna Aulická
RNDr. Ivo Křivka, CSc.
Milan Mikulejský
Mgr. Martin Mišína, Dr.
Ing. Viktor Myroshnychenko
RNDr. Eva Tobolková
Oldřich Turek
Marcela Ublanská

Externí pracovníci:
Doc. RNDr. Jan Nedbal, CSc.
RNDr. Helena Valentová, Ph.D.

Skupina mechanických a fotoelastických vlastností polymerů
Prof. Ing. Michal Ilavský, DrSc.; Doc. RNDr. Antonín Havránek, CSc.; Doc. RNDr. Petr Chvosta, CSc.; RNDr. Ivan Krakovský, CSc.; Doc. RNDr. Milan Marvan, CSc.; Ing. Viktor Myroshnychenko; RNDr. Helena Valentová, Ph.D.

Skupina dielektrických vlastností a termostimulovaných jevů
Doc. RNDr. Jaromír Fahnrich, CSc.; RNDr. Lenka Hanyková, Dr.; Milan Mikulejský; Doc. RNDr. Jan Nedbal, CSc.

Skupina optické elektronové a vibrační spektrometrie a fotofyziky polymerů
RNDr. Josef Klimovič, CSc.; Doc. RNDr. Miroslava Trchová, CSc.

Skupina fyziky plasmových polymerů
Prof. RNDr. Hynek Biederman, DrSc.; Doc. RNDr. Danko Slavinská, CSc.

Skupina fyziky polovodičů
RNDr. Jan Prokeš, CSc.; Anna Aulická; RNDr. Dobroslav Kindl, CSc.; RNDr. Ivo Křivka, CSc.; RNDr. Eva Tobolková; Doc. RNDr. Jiří Toušek, CSc.; Doc. RNDr. Jana Toušková, CSc.

111. Katedra geofyziky
V Holešovičkách 2, 182 00 Praha 8, telefon 22191 2535, 22191 1216, fax 22191 2555, 22191 1214, e-mail: geo@mff.cuni.cz

Vedoucí katedry: Doc. RNDr. Jiří Zahradník, DrSc.
Zástupce vedoucího katedry: Doc. RNDr. Ctirad Matyska, DrSc.
Tajemník katedry: Doc. RNDr. Ondřej Čadek, CSc.
Sekretář katedry: Mgr. Jiří Kuča
Profesor: Prof. RNDr. Zdeněk Martinec, DrSc.
Docenti: Doc. RNDr. Ondřej Čadek, CSc.
Doc. RNDr. Ctirad Matyska, DrSc.
Doc. RNDr. Ondřej Čadek, CSc.
Doc. RNDr. Ctirad Matyska, DrSc.
Doc. RNDr. Jiří Zahradník, DrSc.
Doc. RNDr. Oldřich Novotný, CSc.
Doc. RNDr. Jiří Zahradník, DrSc.

Odborní asistenti: RNDr. Johana Brokešová, CSc.
Mgr. Petr Bulant, Dr.
Mgr. Hana Čížková, Dr.

Vědečtí pracovníci: Prof. RNDr. Vlastislav Červený, DrSc.
Obecné informace

Ostatní pracovníci:
- RNDr. Václav Bucha, CSc.
- Eva Drahotová
- RNDr. Ladislav Hanyk, Ph.D.
- Mgr. Jiří Kuča
- RNDr. Ivo Opršal, Ph.D.
- Mgr. Vladimír Plicka

Externí pracovník:
- RNDr. Alena Janáčková, CSc.

113. Katedra chemické fyziky a optiky

Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1248, fax 22191 1249, e-mail: kchf@mff.cuni.cz

Vedoucí katedry:
- Prof. RNDr. Jan Hála, DrSc.

Zástupce vedoucího katedry:
- Prof. RNDr. Lubomír Skála, DrSc.

Tajemník katedry:
- RNDr. Vojtěch Kapsa, CSc.

Profesoři:
- Prof. RNDr. Jiří Čížek, DrSc.
- Prof. RNDr. Jan Hála, DrSc.
- Prof. RNDr. Lubomír Skála, DrSc.

Docenti:
- Doc. RNDr. Pavla Čapková, DrSc.
- Doc. RNDr. Jiří Fiala, CSc.
- Prof. RNDr. Petr Malý, DrSc.
- Doc. RNDr. Jaroslav Pantoflíček, CSc.

Odborní asistenti:
- RNDr. Petr Němec, Ph.D.
- Mgr. Tomáš Polívka, Dr.
- RNDr. Miroslav Pospíšil, Ph.D.
- RNDr. Jakub Pšencík, Ph.D.
- RNDr. František Trojánek, Ph.D.
- RNDr. Jan Valenta, Ph.D.
- Mgr. Jaroslav Zamastil, Ph.D.

Lektor:
- RNDr. Oldřich Bílek

Vědečtí pracovníci:
- Mgr. Hana Cisařová
- RNDr. Roman Dedic, Ph.D.
- RNDr. Juraj Dian, CSc.
- Mgr. Petr Janda
- RNDr. Vojtěch Kapsa, CSc.
- Mgr. Miloslav Kofín
- RNDr. Petr Pančoška, CSc.
- Doc. Ing. Petr Sladký, CSc.
- RNDr. Antonín Svoboda, CSc.

Ostatní pracovníci:
- RNDr. Miroslav Dienstbier
- Miroslav Dušek
- Mgr. Petr Gabriel
- Milena Šmiedová
- RNDr. Eva Uhlířová
Orgány a pracoviště MFF

Externí pracovníci:
- Karel Volf
- Doc. Ing. Jiří Čtyroký, DrSc.
- Pavel Jungwirth, CSc.
- RNDr. Miroslav Miler, DrSc.
- Prof. RNDr. Ivan Pelant, DrSc.
- Prof. RNDr. Karel Vacek, DrSc.

Oddělení kvantové optiky a optoelektroniky

Prof. RNDr. Petr Malý, DrSc.; Doc. Ing. Jiří Čtyroký, DrSc.; Miroslav Dušek; RNDr. Miroslav Miler, DrSc.; RNDr. Petr Němec, Ph.D.; Doc. RNDr. Jaroslav Pantoflíček, CSc.; Prof. RNDr. Ivan Pelant, DrSc.; RNDr. František Trojánek, Ph.D.

Oddělení optické spektroskopie

Prof. RNDr. Jan Hála, DrSc.; RNDr. Roman Dědic, Ph.D.; RNDr. Juraj Dian, CSc.; Mgr. Tomáš Polivka, Dr.; RNDr. Jakub Pšenčík, Ph.D.; RNDr. Antonín Svoboda, CSc.; RNDr. Jan Valenta, Ph.D.

Oddělení optotermální spektroskopie

Doc. Ing. Petr Sladký, CSc.; Mgr. Hana Cisařová; RNDr. Miroslav Dienstbier; Mgr. Petr Gabriel; Milena Šmídová

Oddělení kvantové a nelineární fyziky

Prof. RNDr. Lubomír Skála, DrSc.; RNDr. Oldřich Bilek; Doc. RNDr. Ing. Jaroslav Burda, CSc.; Doc. RNDr. Pavla Čapková, DrSc.; Prof. RNDr. Jiří Čížek, DrSc.; Doc. RNDr. Jiří Fiala, CSc.; Pavel Jungwirth, CSc.; RNDr. Vojtěch Kapsa, CSc.; Mgr. Jaroslav Zamastil, Ph.D.

114. Ústav částicové a jaderné fyziky

V Holešovičkách 2, 182 00 Praha 8, telefon 22191 2437, 22191 2448, fax 22191 2434, 22191 2462, e-mail: ucjf@mff.cuni.cz

Ředitel ústavu: Prof. RNDr. Jiří Hořejší, DrSc.
Zástupce ředitele ústavu: RNDr. Jiří Dolejší, CSc.
Tajemnice ústavu: Michaela Šlapalová
Sekretářka ústavu: Ivana Vavříková
Profesoři: Prof. Ing. Jiří Formánek, DrSc.
Prof. RNDr. Jiří Hořejší, DrSc.
Prof. RNDr. Jan Kvasil, DrSc.
Prof. Ing. Ivan Wilhelm, CSc.
Doc. RNDr. Zbyšek Trka, DrSc.
Doc. Ing. Josef Žáček, DrSc.
Odborní asistenti: RNDr. Pavel Cejnar, Dr.
RNDr. Zdeněk Doležal, Dr.
RNDr. Peter Kodyš, CSc.
Mgr. Milan Krtička, Ph.D.
RNDr. Jiří Novotný, CSc.
Obecné informace

Vědečtí pracovníci:
- RNDr. Jiří Dolejší, CSc.
- Mikhail Ivanov, CSc.
- Mgr. František Knapp
- RNDr. Rupert Leitner, DrSc.
- Prof. RNDr. Ladislav Rob, DrSc.
- Prof. RNDr. Michal Suk, DrSc.
- Ing. Jan Vrzal, CSc.

Ostatní pracovníci:
- RNDr. Jan Brož
- Jaroslav Černý
- Jana Čeřovská
- Tomáš Chábera
- Ing. Stanislav Krejčík
- Pavel Krumphanzl
- Ing. Petr Kubík
- Marie Navrátilová
- Michaela Šlapalová
- Jan Švejda
- RNDr. Petr Tas
- Mgr. Alexei Tsvetkov, Ph.D.
- Štefan Valkár, CSc.
- Ivana Vavříková
- Ing. Vít Vorobel

Externí pracovníci:
- RNDr. Tomáš Davídek, Ph.D.
- Mgr. Karol Kampf
- Mgr. Marian Kolesár
- Mgr. Tomáš Laštovička
- Ing. Michal Malinský
- RNDr. Dalibor Nosek, Dr.
- Mgr. Miroslav Nožička
- Mgr. Karel Soustružník
- Mgr. Tomáš Sýkora, Ph.D.
- Mgr. Michaela Urbanová
- RNDr. Alice Valkárová, DrSc.

Oddělení teorie

Prof. RNDr. Jan Kvasil, DrSc.; RNDr. Pavel Cejnar, Dr.; RNDr. Jiří Dolejší, CSc.; Prof. Ing. Jiří Formánek, DrSc.; Prof. RNDr. Jiří Hořejší, DrSc.; RNDr. Jiří Novotný, CSc.; Doc. Ing. Zdeněk Pluhař, CSc.; Mgr. Tomáš Sýkora, Ph.D.

Oddělení experimentální fyziky elementárních částic

Doc. Ing. Josef Žáček, DrSc.; RNDr. Tomáš Davídek, Ph.D.; RNDr. Rupert Leitner, DrSc.; Prof. RNDr. Ladislav Rob, DrSc.; Prof. RNDr. Michal Suk, DrSc.; RNDr. Petr Tas; Doc. RNDr. Zbyšek Trka, DrSc.; Štefan Valkár, CSc.; RNDr. Alice Valkárová, DrSc.
Oddělení experimentální a aplikované jaderné fyziky

Prof. Ing. Ivan Wilhelm, CSc.; RNDr. Jan Brož; RNDr. Zdeněk Doležal, Dr.; Mikhail Ivanov, CSc.; RNDr. Peter Kodyš, CSc.; Ing. Stanislav Krejčík; Ing. Petr Kubík; Ing. Vít Vorobel; Ing. Jan Vrzal, CSc.

115. Katedra meteorologie a ochrany prostředí

V Holešovičkách 2, 182 00 Praha 8, telefon 22191 2547, fax 22191 2533, e-mail: kmop@mff.cuni.cz

Vedoucí katedry: Prof. RNDr. Jan Bednář, CSc.
Zástupce vedoucího katedry: Doc. RNDr. Jaroslava Kalvová, CSc.
Tajemník katedry: RNDr. Aleš Raidl, Ph.D.
Sekretářka katedry: Jana Karnoltová
Profesor: Prof. RNDr. Jan Bednář, CSc.
Docenti: Doc. RNDr. Michal Baťka, DrSc.
Doc. RNDr. Josef Brechler, CSc.
Doc. RNDr. Jaroslava Kalvová, CSc.
Odborní asistenti: RNDr. Tomáš Halenka, CSc.
RNDr. Aleš Raidl, Ph.D.

Vědecký pracovník: Ing. Luděk Beneš, Ph.D.

Ostatní pracovníci: Jana Karnoltová
Externí pracovníci: Doc. RNDr. Jaroslav Kopáček, CSc.
Doc. RNDr. Otakar Zikmunda, CSc.

116. Ústav teoretické fyziky

V Holešovičkách 2, 182 00 Praha 8, telefon 22191 2493, fax 22191 2496, e-mail: mfktf@mbox.troja.mff.cuni.cz

Ředitel ústavu: Prof. RNDr. Jiří Horáček, DrSc.
Zástupce ředitele ústavu: Doc. RNDr. Oldřich Semerák, Dr.
Tajemník ústavu: Doc. RNDr. Oldřich Semerák, Dr.
Sekretářka ústavu: Eva Kotalíková
Profesoři: Prof. RNDr. Jiří Bičák, DrSc.
Prof. RNDr. Jiří Horáček, DrSc.
Doc. RNDr. Jiří Langer, CSc.
Doc. RNDr. Jan Obdržálek, CSc.
Doc. RNDr. Jiří Podolský, CSc.
Doc. RNDr. Oldřich Semerák, Dr.

Odborní asistenti: RNDr. Martin Cížek, Ph.D.
Mgr. Pavel Krtouš, Ph.D.
Mgr. Tomáš Ledvinka, Ph.D.

Vědečtí pracovníci: RNDr. Karel Houfek
Mgr. Martin Žofka, Ph.D.

Ostatní pracovníci: Eva Kotalíková
Externí pracovníci: Doc. RNDr. Leoš Dvořák, CSc.
Obecné informace

Doc. RNDr. Pavel Exner, DrSc.
Doc. RNDr. Jan Fischer, DrSc.
RNDr. Petr Hadrava, CSc.
Doc. RNDr. Václav Janiš, DrSc.
Prof. RNDr. Roman Kotecký, DrSc.
RNDr. Miroslav Kotrla, CSc.
Ing. Ladislav Krčín, DrSc.
Prof. RNDr. Ivo Nezbeda, DrSc.
Prof. RNDr. Jiří Niederle, DrSc.
RNDr. František Slanina, CSc.

Sdružení pracovišť (centra)

Centrum teoretické fyziky, astronomie a astrofyziky

V jeho rámci jsou koordinovány vybrané aktivity Ústavu teoretické fyziky a Astronomického ústavu UK.

Centrum biofyziky, chemické fyziky, optiky a optoelektroniky

V jeho rámci jsou koordinovány vybrané aktivity Fyzikálního ústavu UK a Katedry chemické fyziky a optiky.

Centrum fyziky pevných a makromolekulárních látek

V jeho rámci jsou koordinovány vybrané aktivity Katedry fyziky nízkých teplot a Katedry makromolekulární fyziky.

Centrum pro rozvoj výuky fyziky

V jeho rámci jsou koordinovány vybrané aktivity Katedry didaktiky fyziky a Kabinetu výuky obecné fyziky.

Výzkumné centrum

Centrum částicové fyziky

telefon 22191 2437, 22191 2452, e-mail: horejsi@ipnp.troja.mff.cuni.cz

(pracovníci z MFF)
Informatická sekce

201. Kabinet software a výuky informatiky
Malostranské nám. 25, 118 00 Praha 1, telefon 22191 4217, fax 22191 4281, e-mail: KSVI@mff.cuni.cz

Vedoucí kabinetu: RNDr. Rudolf Kryl
Zástupce vedoucího kabinetu: Doc. RNDr. Pavel Töpfer, CSc.
Tajemník kabinetu: RNDr. Josef Pelikán
Sekretářka kabinetu: Blanka Žižková
Docenti: Doc. RNDr. Pavel Töpfer, CSc.
Odborný asistent: RNDr. Tomáš Dvořák, CSc.
Lektoři: RNDr. Rudolf Kryl
RNDr. František Mráz, CSc.
RNDr. Josef Pelikán
Ostatní pracovníci: Mgr. Csaba Garai
RNDr. Tomáš Holan, Ph.D.
Petr Hruška
Mgr. Lenka Kebortová
Mgr. Kristýna Kupková
Mgr. Lucie Pelikánová
Mgr. Miloš Šmíd
Miloslav Trmač
Blanka Žižková
Externí pracovník: Mgr. Jakub Dvořák

Centrum pro podporu zrakově postižených - laboratoř Carolina
RNDr. Rudolf Kryl; Mgr. Jakub Dvořák; Mgr. Csaba Garai; Mgr. Lenka Kebortová; Mgr. Kristýna Kupková; Mgr. Miloš Šmíd; Miloslav Trmač

202. Katedra aplikované matematiky
Malostranské nám. 25, 118 00 Praha 1, telefon 22191 4230, fax 257531014, e-mail: mfkam@kam.mff.cuni.cz

Vedoucí katedry: Prof. RNDr. Aleš Pultr, DrSc.
Zástupce vedoucího katedry: Doc. RNDr. Jan Kratochvíl, CSc.
Tajemník katedry: RNDr. Jan Palata, CSc.
Sekretářka katedry: Hana Čáslenská
Profesoři: Prof. RNDr. Jiří Matoušek, DrSc.
Prof. RNDr. Jaroslav Nešetřil, DrSc.
Prof. RNDr. Aleš Pultr, DrSc.
Prof. RNDr. Karel Zimmermann, DrSc.
Docenti: Doc. RNDr. Libuše Grygarová, DrSc.
Doc. RNDr. Jan Kratochvíl, CSc.
Doc. RNDr. Luděk Kučera, CSc.
Obecné informace

Odborní asistenci:
Doc. RNDr. Martin Loebl, CSc.
Prof. RNDr. Jiří Rohn, DrSc.
RNDr. Jiří Fiala, Ph.D.
RNDr. Martin Klazar, Dr.
RNDr. Pavel Valtr, Dr.

Lekoři:
RNDr. Naděžda Krylová, CSc.
RNDr. Jan Palata, CSc.

Ostatní pracovníci:
Hana Čásenská
Hana Polišenská

Externí pracovníci:
Doc. RNDr. Zdeněk Hedrlín, CSc.
Mgr. Petr Hliněný, Ph.D.
RNDr. Jan Krajíček, DrSc.
Prof. RNDr. František Nožička
RNDr. Petr Pančoška, CSc.
RNDr. Pavel Pudlák, DrSc.
Doc. RNDr. Jiří Sgall, DrSc.
Doc. RNDr. Daniel Turzík, CSc.
Mgr. Jaroslav Vacek

Oddělení kombinatoriky
Doc. RNDr. Luděk Kučera, CSc.; RNDr. Martin Klazar, Dr.; Doc. RNDr. Jan Kratochvíl, CSc.;
Doc. RNDr. Martin Loebl, CSc.; Prof. RNDr. Jiří Matoušek, DrSc.; Doc. RNDr. Jiří Sgall, DrSc.;
RNDr. Pavel Valtr, Dr.

Oddělení operačního výzkumu
Prof. RNDr. Karel Zimmermann, DrSc.; Doc. RNDr. Libuše Grygarová, DrSc.; Prof. RNDr.
František Nožička; RNDr. Jan Palata, CSc.; Prof. RNDr. Jiří Rohn, DrSc.

Oddělení optimalizačního modelování a mimofakultní výuky

Centrum diskrétní matematiky, teoretické informatiky a aplikací (DIMATIA)
Prof. RNDr. Jaroslav Nešetřil, DrSc.; RNDr. Martin Klazar, Dr.; RNDr. Jan Krajíček, DrSc.;
Doc. RNDr. Jan Kratochvíl, CSc.; Doc. RNDr. Luděk Kučera, CSc.; Doc. RNDr. Martin Loebl,
CSc.; Prof. RNDr. Jiří Matoušek, DrSc.; Hana Polišenská; RNDr. Pavel Pudlák, DrSc.; Doc.
RNDr. Jiří Sgall, DrSc.; Doc. RNDr. Daniel Turzík, CSc.; RNDr. Pavel Valtr, Dr.

204. Katedra softwarového inženýrství
Malostranské nám. 25, 118 00 Praha 1, telefon 22191 4264, fax 22191 4323,
e-mail: ksiksi@ksi.ms.mff.cuni.cz

Vedoucí katedry:
Prof. RNDr. Jaroslav Pokorný, CSc.

Zástupce vedoucího katedry:
Prof. Ing. František Plášil, DrSc.

Tajemník katedry:
RNDr. Filip Zavoral, Ph.D.

Sekretářka katedry:
Jana Dejmková

Profesoři:
Prof. RNDr. Jaroslav Král, DrSc.
Orgány a pracoviště MFF

Prof. Ing. František Plášil, DrSc.
Prof. RNDr. Jaroslav Pokorný, CSc.

Docent:
Doc. Ing. Václav Jirovský, CSc.

Odborní asistenti:
Mgr. Michal Kopecký, Ph.D.
RNDr. Iveta Mrázová, CSc.
Ing. Petr Tůma, Dr.
RNDr. Filip Zavoral, Ph.D.

Lektoři:
RNDr. David Bednárek
RNDr. Alena Koubková, CSc.
RNDr. Antonín Říha, CSc.

Vědečtí pracovníci:
Doc. PhDr. RNDr. Evžen Kindler, CSc.
Daniel Laurence Moody, Ph.D.

Asistent:
Mgr. Michal Žemlička

Ostatní pracovníci:
Jana Dejmíková
RNDr. Antonín Kosík
RNDr. David Obdržálek
RNDr. Ing. Jiří Peterka
Mgr. Jakub Yaghob, Ph.D.

Externí pracovníci:
RNDr. Antonín Beneš, Ph.D.
RNDr. Petr Božovský, CSc.
Ing. Jan Janeček, CSc.
Mgr. Pavel Kaňkovský
Mgr. Martin Maňásek
Mgr. Luděk Marek
Mgr. Roman Neruda, CSc.
RNDr. Jan Pavelka, CSc.
Doc. RNDr. Jan Rauch, CSc.
Doc. Ing. Karel Richta, CSc.
RNDr. Ing. Tomáš Ruškač
Prof. Peter Sokolowsky
Doc. RNDr. Jiří Šíma, CSc.
RNDr. Jaroslav Zamastil

Výzkumná skupina distribuovaných systémů
Prof. Ing. František Plášil, DrSc.; Ing. Petr Tůma, Dr.

Výzkumná skupina databází
Prof. RNDr. Jaroslav Pokorný, CSc.; Mgr. Michal Kopecký, Ph.D.; RNDr. Ing. Tomáš Ruškač;
RNDr. Antonín Říha, CSc.; Mgr. Michal Žemlička

205. Katedra teoretické informatiky a matematické logiky
Malostranské nám. 25, 118 00 Praha 1, telefon 22191 4250, fax 257 532 087,
e-mail: ktiml@ktiml.ms.mff.cuni.cz

Vedoucí katedry:
Prof. RNDr. Petr Štěpánek, DrSc.

Zástupce vedoucího katedry:
RNDr. Václav Koubek, DrSc.
<table>
<thead>
<tr>
<th>Tajemník katedry:</th>
<th>RNDr. Jan Hric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sekretářka katedry:</td>
<td>Libuše Boublíková</td>
</tr>
</tbody>
</table>
| Profesoři: | Prof. RNDr. Petr Štěpánek, DrSc.
| | Prof. RNDr. Milan Vlach, DrSc.
| | Prof. RNDr. Petr Vopěnka, DrSc. |
| Docenti: | Doc. RNDr. Mirko Krivánek, CSc.
| | Doc. RNDr. Antonín Kučera, CSc.
| | Doc. RNDr. Petr Kůrka, CSc.
| | Doc. RNDr. Josef Mlček, CSc.
| | Prof. RNDr. Petr Simon, DrSc.
| | Doc. RNDr. Jiří Wiedermann, DrSc. |
| Odborní asistenti: | RNDr. Roman Barták, Ph.D.
| | RNDr. Ondřej Čepek, Ph.D.
| | Mgr. Vladan Majerech, Dr.
| | Mgr. Marta Vomlelová, Ph.D. |
| Lektor: | RNDr. Jan Hric |
| Vědečtí pracovníci: | RNDr. Václav Koubek, DrSc.
| | Martin Plátek, CSc. |
| Ostatní pracovníci: | Libuše Boublíková
| | Mgr. Jan Hrůza
| | Petra Novotná
| | Mgr. Josef Urban |
| Externí pracovníci: | Prof. RNDr. Petr Hájek, DrSc.
| | RNDr. Michal Chytil, DrSc. |

206. Středisko informatické sítě a laboratoří

Malostranské nám. 25, 118 00 Praha 1, telefon 22191 4209, fax 257 533 961, e-mail: sisal@mff.cuni.cz

<table>
<thead>
<tr>
<th>Vedoucí střediska:</th>
<th>RNDr. Libor Forst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zástupce vedoucího střediska:</td>
<td>Ing. František Šebek</td>
</tr>
<tr>
<td>Tajemnice střediska:</td>
<td>Mgr. Lenka Tahalová</td>
</tr>
<tr>
<td>Sekretářka střediska:</td>
<td>Ivana Dobnerová</td>
</tr>
<tr>
<td>Odborný asistent:</td>
<td>RNDr. Martin Beran, Ph.D.</td>
</tr>
</tbody>
</table>
| Ostatní pracovníci: | Mgr. Jiří Calda
| | Ivana Dobnerová
| | RNDr. Libor Forst
| | RNDr. Vojtěch Jákl
| | Jakub Jelínek
| | Petr Kos
| | Dan Lukeš
| | RNDr. Ondřej Matouš
| | Mgr. Roman Pavlík
| | Mgr. Pavel Semerád
| | Ing. František Šebek
| | Mgr. Josef Šimůnek
| | Mgr. Lenka Tahalová |
207. Ústav formální a aplikované lingvistiky

Malostranské nám. 25, 118 00 Praha 1, telefon 22191 4278, fax 22191 4309, e-mail: hajic@ufal.ms.mff.cuni.cz

Ředitel ústavu: Doc. RNDr. Jan Hajič, Dr.
Zastupkyně ředitele ústavu: Prof. PhDr. Jarmila Panegová, DrSc.
Tajemnice ústavu: prom. fil. Květoslava Králíková
Sekretářka ústavu: Libuše Brdičková
Profesor: Prof. PhDr. Jarmila Panegová, DrSc.
Odborný asistent: RNDr. Vladislav Kuboň, Ph.D.
Vědečtí pracovníci: PhDr. Alevtina Bémová, CSc.

Ostatní pracovníci: Libuše Brdičková
Drahomíra Doležalová
RNDr. Jaroslava Hlaváčová
prom. fil. Květoslava Králíková

Externí pracovník: Mgr. Jiří Kárník

Výzkumná centra

K 1. 7. 2000 bylo v rámci Programu podpory výzkumu a vývoje MŠMT Výzkumná centra zahájeno řešení projektů:

LNOOA063 Centrum komputační lingvistiky. Za odbornou stránku realizace projektu zodpovídá prof. PhDr. Eva Hajičová, DrSc., Ústav formální a aplikované lingvistiky. Na řešení projektu se kromě Univerzity Karlovy podílí Ústav pro jazyk český AV ČR a ZČU Plzeň. Spoluzakládající organizace uzavřely smlouvu o sdružení, na jejímž základě bylo zřízeno na dobu pěti let Centrum komputační lingvistiky.

LNOOA056 Institut teoretické informatiky — Centrum mladé vědy. Za odbornou stránku realizace projektu zodpovídá prof. RNDr. Jaroslav Nešetřil, DrSc., Katedra aplikované matematiky. Na řešení projektu se kromě Univerzity Karlovy podílí Matematický ústav AVČR, Ústav informatiky AV ČR a ZČU Plzeň. Spoluzakládající organizace uzavřely smlouvu o sdružení, na jejímž základě byl zřízen na dobu pěti let Institut teoretické informatiky - Centrum mladé vědy.

Centrum komputační lingvistiky

Malostranské nám. 25, 118 00 Praha 1, telefon 22191 4304, fax 22191 4304

Prof. PhDr. Eva Hajičová, DrSc.; PhDr. Alevtina Bémová, CSc.; Mgr. Alena Böhmová; Václava Benešová; Ondřej Beránek; RNDr. Jan Čufín; Mgr. Martin Čmejrek; Mgr. Milan Fučík; Doc. RNDr. Jan Hajič, Dr.; Prof. PhDr. Eva Hajičová, DrSc.; Mgr. Jiří Havelka; RNDr. Jaroslava Hlaváčová; Mgr. Martin Holub; Mgr. Petr Homola; Mgr. Václav Honetschläger; Marie Hučínová; Mgr. Emil Jeřábek; Marie Kaplanová; Anna Kotěšovcová; Jakub Kračmár; Marie Křížková; RNDr. Vladislav Kuboň, Ph.D.; Lucie Kučová; Mgr. Pavel Květoň; RNDr. Markéta Lopatková, Ph.D.; Mgr. Kateřina Marková; Mgr. Jiří Mírovský; RNDr. Roman Ondruška; Mgr. Petr Pajas; Prof.
Obecné informace

PhDr. Jarmila Panevová, DrSc.; Mgr. Nino Peterek; Mgr. Petr Podveský; Magda Rázimová; RNDr. Kiril Ribarov; Mgr. Veronika Rezníčková; Prof. PhDr. Petr Šigallo, DrSc.; Mgr. Karolina Skwarska; Barbora Smrčková; Mgr. Otakar Smiš; Pavel Šídák; Martin Špáta; Mgr. Jan Štěpánek; Pavel Tupek; PhDr. Zdeňka Urešová; Jana Vějvodová; Kateřina Veselá; Dr. Tomáš Vido; Mgr. Barbora Vidová-Hladká, Ph.D.; Mgr. Daniel Zeman; Ing. Zdeněk Zabokrtský

Institut teoretické informatiky - centrum mladé vědy

Malostranské nám. 25, 118 00 Praha 1, telefon 22191 4324, fax 257531014

Matematická sekce

301. Katedra algebry

Sokolovská 83, 186 75 Praha 8, telefon 22191 3242, fax 222323 386, e-mail: ka@mff.cuni.cz

Vedoucí katedry: Doc. RNDr. Jiří Tůma, DrSc.
Zástupce vedoucího katedry: Doc. RNDr. Jan Trlifaj, CSc.
Tajemnice katedry: RNDr. Eva Nováková
Sekretářka katedry: Eva Ramešová
Profesoři: Prof. RNDr. Ladislav Bican, DrSc. Prof. RNDr. Tomáš Kepka, DrSc.
Lektor: RNDr. Eva Nováková
Vědečtí pracovníci: Prof. RNDr. Jaroslav Ježek, DrSc. Mgr. Marian Kechlibar
Ostatní pracovníci: Eva Ramešová
302. Katedra didaktiky matematiky

Sokolovská 83, 186 75 Praha 8, telefon 22191 3226, fax 22191 3227, e-mail: kdm@mff.cuni.cz

Vedoucí katedry: Prof. RNDr. Adolf Karger, DrSc.
Zástupce vedoucího katedry: Doc. RNDr. Leo Boček, CSc.
Tajemník katedry: RNDr. Václav Kubát, CSc.
Sekretářka katedry: Eva Kovaříková
Profesor: Prof. RNDr. Adolf Karger, DrSc.
Docenti:
Doc. RNDr. Leo Boček, CSc.
Doc. RNDr. Emil Calda, CSc.
Doc. RNDr. Jiří Kadlec, CSc.
Doc. RNDr. Oldřich Odvárko, DrSc.
Odborný asistent: Mgr. Zbyněk Šír, Ph.D.
Lektoři:
RNDr. Jan Kašpar, CSc.
RNDr. Václav Kubát, CSc.
RNDr. Jarmila Robová, CSc.
PhDr. Alena Šarounová, CSc.
Ostatní pracovníci: Eva Kovaříková
Externí pracovníci: RNDr. Milan Kočandrle, CSc.

303. Katedra matematické analýzy

Sokolovská 83, 186 75 Praha 8, telefon 222323 390, 22191 3246, fax 222323 390, e-mail: kma@mff.cuni.cz

Vedoucí katedry: Doc. RNDr. Mirko Rokyta, CSc.
Zástupce vedoucího katedry: Prof. RNDr. Jaroslav Lukeš, DrSc.
Tajemník katedry: Doc. RNDr. Pavel Pyrih, CSc.
Sekretářka katedry: Helena Pištěková
Profesoři:
Prof. RNDr. Miroslav Hušek, DrSc.
Prof. RNDr. Jaroslav Lukeš, DrSc.
Prof. RNDr. Břetislav Novák, DrSc.
Prof. RNDr. Luděk Zajíček, DrSc.
Docenti:
Doc. RNDr. Petr Holický, CSc.
Doc. RNDr. Oldřich John, CSc.
Doc. RNDr. Jiří Kopáček, CSc.
Prof. RNDr. Jan Malý, DrSc.
Doc. RNDr. Jaroslav Milota, CSc.
Doc. RNDr. Pavel Pyrih, CSc.
Doc. RNDr. Mirko Rokyta, CSc.
Doc. RNDr. Jana Stará, CSc.
Doc. RNDr. Zdeněk Vlášek, CSc.
Doc. RNDr. Miloš Zahradník, CSc.
Odborní asistenti: Mgr. Eva Fašangová, Dr.
RNDr. Ondřej Kalenda, Ph.D.
Mgr. Petr Kaplický, Ph.D.
Obecné informace

RNDr. Jan Kolář, Ph.D.
Mgr. Eva Murtinová, Ph.D.
RNDr. Luboš Pick, CSc.
RNDr. Dalibor Pražák, Ph.D.
RNDr. Jiří Spurný, Ph.D.
Mgr. Miroslav Zelený, Dr.

Lektor:
RNDr. Jaroslav Drahoš, CSc.

Ostatní pracovníci:
RNDr. Jan Čerych, CSc.
Helena Pištěková

Externí pracovník:
RNDr. Jiří Jelínek, CSc.

Oddělení diferenciálních rovnic a funkcionální analýzy

Oddělení teorie funkcí a teorie potenciálu

Prof. RNDr. Luděk Zajíček, DrSc.; RNDr. Jan Čerych, CSc.; Doc. RNDr. Petr Holík, CSc.; Prof. RNDr. Miroslav Hušek, DrSc.; RNDr. Jiří Jelínek, CSc.; RNDr. Ondřej Kalenda, Ph.D.; RNDr. Jan Kolář, Ph.D.; Prof. RNDr. Jaroslav Lukeš, DrSc.; Mgr. Eva Murtinová, Ph.D.; Prof. RNDr. Břetislav Novák, DrSc.; Doc. RNDr. Pavel Pyrih, CSc.; RNDr. Jiří Spurný, Ph.D.; Mgr. Miroslav Zelený, Dr.

Oddělení výuky matematiky pro fyziky

304. Katedra numerické matematiky

Sokolovská 83, 186 75 Praha 8, telefon 221913364, fax 224811036,
e-mail: knm@karlin.mff.cuni.cz

Vedoucí katedry:
Prof. RNDr. Miloslav Feistauer, DrSc.

Zástupce vedoucího katedry:
Doc. RNDr. Karel Najzar, CSc.

Tajemnice katedry:
RNDr. Jitka Segethová, CSc.

Sekretářka katedry:
Eva Plandorová

Profesoři:
Prof. RNDr. Miloslav Feistauer, DrSc.
Prof. RNDr. Ivo Marek, DrSc.

Docentí:
Doc. RNDr. Jiří Felcman, CSc.
Doc. RNDr. Vladimír Janovský, DrSc.
Doc. RNDr. Josef Kofroň, CSc.
Doc. RNDr. Karel Najzar, CSc.
Doc. RNDr. Jan Zitko, CSc.

Odborní asistenti:
RNDr. Vít Dolejší, Ph.D.
Mgr. Petr Knobloch, Dr.
RNDr. Petr Mayer, Dr.

Lektor:
RNDr. Jitka Segethová, CSc.
Ostatní pracovníci: Eva Plandorová
Externí pracovníci: RNDr. Jan Chleboun, CSc.
Prof. RNDr. Michal Křížek, DrSc.
Doc. RNDr. Karel Segeth, CSc.

305. Katedra pravděpodobnosti a matematické statistiky
Sokolovská 83, 186 75 Praha 8, telefon 22232 3316, 22191 3287, fax 22232 3316,
e-mail: kpms@mff.cuni.cz

Vedoucí katedry:
Zástupce vedoucího katedry:
Tajemnice katedry:
Sekretářka katedry:
Profesoři:
Docenti:
Odborní asistenti:
Lektor:
Vědečtí pracovníci:
Ostatní pracovníci:
Externí pracovníci:
Obecné informace

Doc. RNDr. Jan Ámos Višek, CSc.
RNDr. Milan Vítek
Prof. RNDr. Karel Zimmermann, DrSc.

Oddělení matematické statistiky

Prof. RNDr. Jana Jurečková, DrSc.; Doc. RNDr. Jaromír Antoch, CSc.; Prof. RNDr. Jiří Anděl, DrSc.; Prof. RNDr. Václav Dupač, DrSc.; Prof. Ing. František Fabian, CSc.; Prof. RNDr. Václav Fabian; RNDr. Daniel Hlubinka, Ph.D.; Prof. RNDr. Marie Hušková, DrSc.; Mgr. Michal Kulich, Ph.D.; Ing. Josef Machek, CSc.; Doc. RNDr. Karel Zvára, CSc.

Oddělení ekonometrie

Prof. RNDr. Jitka Dupačová, DrSc.; Prof. RNDr. Tomáš Cipra, DrSc.; RNDr. Pavel Charamza, CSc.; RNDr. Petr Lachout, CSc.; Doc. RNDr. Zuzana Prášková, CSc.; RNDr. Miron Tegze, CSc.; Doc. RNDr. Jan Ámos Višek, CSc.; Prof. RNDr. Karel Zimmermann, DrSc.

Oddělení finanční a pojistné matematiky

Doc. RNDr. Jan Hurt, CSc.; Prof. RNDr. Petr Mandl, DrSc.; RNDr. Lucie Mazurová, Ph.D.; JUDr. Věra Škopová; RNDr. Milan Vítek; RNDr. Jitka Zichová, Dr.

Oddělení teorie pravděpodobnosti a náhodných procesů

Prof. RNDr. Viktor Beneš, DrSc.; Prof. Lev Klebanov; Doc. RNDr. Jan Rataj, CSc.; RNDr. Ivan Saxl, DrSc.; Prof. RNDr. Josef Štěpán, DrSc.

Evropské centrum pro medicínskou informatiku, statistiku a epidemiologii (EuroMISE Centrum) UK a AV ČR, společné pracoviště MFF UK a UI AV ČR

182 07 Praha 8, Pod vodárenskou věží 2, telefon 66 05 36 40, telefon a fax 689 70 13
Prof. RNDr. Jana Zvárová, DrSc.; Jaroslava Golková; Ing. Petr Hanzlíček; RNDr. Karel Hrach, Ph.D.; Jana Kurucová; RNDr. Jindra Reissigová

306. Matematický ústav UK

Sokolovská 83, 186 75 Praha 8, telefon 22232 3394, fax 222323 394, e-mail: mu@karlin.mff.cuni.cz

Ředitel ústavu: Doc. RNDr. Jarolím Bureš, DrSc.
Zástupce ředitele ústavu: Doc. RNDr. Jiří Veselý, CSc.
Tajemník ústavu: RNDr. Roman Lávička, Ph.D.
Sekretářka ústavu: Jana Šťastná
Profesoři: Prof. RNDr. Oldřich Kowalski, DrSc.
Prof. Ing. František Maršík, DrSc.
Prof. RNDr. Ivan Netuka, DrSc.
Prof. RNDr. Vladimír Souček, DrSc.
Prof. RNDr. Věra Trnková, DrSc.
Docenti: Doc. RNDr. Jindřich Bečvář, CSc.
Doc. RNDr. Jarolím Bureš, DrSc.
Doc. RNDr. Josef Málek, CSc.
Orgány a pracoviště MFF

Doc. RNDr. Jan Rataj, CSc.
Doc. Ing. Tomáš Roubíček, DrSc.
Doc. RNDr. Jiří Veselý, CSc.

Odborní asistenti:
Mgr. Lukáš Krump, Ph.D.
RNDr. Roman Lávička, Ph.D.
Mgr. Milan Pokorný, Ph.D.
RNDr. Petr Somberg, Ph.D.

Vědečtí pracovníci:
Prof. RNDr. Jan Kratochvíl, DrSc.
Doc. RNDr. Jiří Souček, DrSc.

Ostatní pracovníci:
Mgr. Anna Najmanová
Ing. Jaroslav Richter
Jana Šťastná
RNDr. Oldřich Ulrych
Mgr. Michal Voců

Externí pracovníci:
Prof. RNDr. Adolf Karger, DrSc.
Doc. RNDr. Mirko Rokyta, CSc.

Oddělení geometrie

Doc. RNDr. Jarolím Bureš, DrSc.; Prof. RNDr. Adolf Karger, DrSc.; Mgr. Lukáš Krump, Ph.D.;
Doc. RNDr. Jan Rataj, CSc.; RNDr. Petr Somberg, Ph.D.; Prof. RNDr. Vladimír Souček, DrSc.;
Prof. RNDr. Věra Trnková, DrSc.

Oddělení historie matematiky

Doc. RNDr. Jindřich Bečvář, CSc.; Prof. RNDr. Ivan Netuka, DrSc.; Doc. RNDr. Jiří Veselý, CSc.

Oddělení klasické a moderní analýzy

Prof. RNDr. Ivan Netuka, DrSc.; RNDr. Roman Lávička, Ph.D.; Doc. RNDr. Jiří Veselý, CSc.

Oddělení matematického modelování

Doc. RNDr. Josef Málek, CSc.; Prof. RNDr. Jan Kratochvíl, DrSc.; Prof. Ing. František Maršík,
DrSc.; Mgr. Milan Pokorný, Ph.D.; Doc. RNDr. Mirko Rokyta, CSc.; Doc. Ing. Tomáš Roubíček,
DrSc.; Doc. RNDr. Jiří Souček, DrSc.

Počítačová laboratoř

RNDr. Oldřich Ulrych; Mgr. Michal Voců

Redakce časopisu CMUC

Prof. RNDr. Ivan Netuka, DrSc.; Mgr. Anna Najmanová; Doc. RNDr. Jan Rataj, CSc.; Doc. Ing.
Tomáš Roubíček, DrSc.; Doc. RNDr. Jiří Veselý, CSc.
Obecné informace

Jiná pracoviště

511. Knihovna fakulty
Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1256, 22191 1253, fax 22191 1446, e-mail: knihovna@dekanat.mff.cuni.cz

Vedoucí knihovny: RNDr. Drahomíra Hrušková
Zástupce vedoucí knihovny: Mgr. Milena Kučová

Oddělení fyzikální
121 16 Praha 2, Ke Karlovu 3, telefon 221 911 256, 221 911 257, 221 911 253
Mgr. Jiří Kuča; Mgr. Milena Kučová; Mgr. Petra Puklová; Renata Surynková; David Volenec

Půjčovna studijní literatury (fyzikální obory)
V současné době je půjčovna přesunuta do fyzikálního oddělení knihovny na Karlov
Hana Rašková; Ivanka Tůmová

Oddělení matematicko-informatické
V současné době je oddělení přesunuto do fyzikálního oddělení knihovny na Karlov
Markéta Jiříčková; Marcela Kahounová; Martina Malá; Jaroslava Švecová

Knihovna dějin přírodních věd
180 00 Praha 8, V Holešovičkách 2, telefon 221 912 608, 221 912 609 (zajišťováno oddělením fyzikálním)
Renata Surynková
512. Kabinet jazykové přípravy

V Holešovičkách 2, 182 00 Praha 8, telefon 22191 2654, 22191 2656, 22191 2657, 22191 2658, fax 22191 2656, e-mail: mfkjp@mbox.troja.mff.cuni.cz

Vedoucí kabinetu: PhDr. Alexandra Křepinská, CSc.
Zástupce vedoucí kabinetu: PhDr. Milena Režná
Tajemník kabinetu: PhDr. Marie Houšková
Sekretářka kabinetu: Jitka Hankeová
Lektoři:

- PhDr. Miluše Bubeníková
- Mgr. Marie Doležalová
- Mgr. Eva Dos Reis
- Mgr. Eva Emmerová
- Mgr. Zuzana Hořká
- PhDr. Marie Houšková
- Jay Michael Kashdan, BA
- Mgr. Soňa Klusnová
- PhDr. Alexandra Křepinská, CSc.
- PhDr. Milena Režná
- Mgr. Ljupka Seserinac
- Karen Svirsky, MA
- Vladimír Svirsky, MA
- PhDr. Pavlína Šubrtová
- PhDr. Lenka Vachalovská, CSc.

Ostatní pracovníci: Jitka Hankeová

513. Katedra tělesné výchovy

Bruslařská 10, 102 00 Praha 10, telefon 274877521, fax 274877521, e-mail: ktv@ms.mff.cuni.cz

Vedoucí katedry: PhDr. Antonín Klazar
Zástupce vedoucího katedry: PaedDr. Jan Maršík
Tajemník katedry: PaedDr. Stanislav Stehno
Sekretářka katedry: Hana Bolchová
Docent: Doc. PhDr. Eva Blahušová, CSc.
Lektoři:

- Mgr. Petra Diblíková
- PaedDr. Eva Ditětová
- PaedDr. Šárka Domalípová
- Mgr. Tomáš Jaroš
- PhDr. Antonín Klazar
- Mgr. Petr Kovář
- PaedDr. Jan Maršík
- Mgr. Miroslav Poddaný
- PaedDr. Stanislav Stehno
- Mgr. Zuzana Vaníčková

Ostatní pracovníci: Hana Bolchová
Obecné informace

Účelová zařízení

611. Optická a sklářská dílna fakulty
V Holešovičkách 2, 182 00 Praha 8, telefon 22191 2646

Vedoucí pracoviště: Jindřich Walter
Zástupce vedoucího pracoviště: Josef Řezníček
Ostatní pracovníci: Ivana Kubínová
Jan Ulrych

612. Reprografické středisko fakulty
Sokolovská 83, 186 75 Praha 8, telefon 22191 3141, e-mail: repro@karlin.mff.cuni.cz

Vedoucí střediska: Helena Petránková
Ostatní pracovníci: Filip Kreuziger
Monika Maurová-Menzelová
Ing. Eliška Nováková
Dominik Sychra

Děkanát

721. Sekretariát
Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1289, fax 22191 1292,
e-mail: sdek@dekanat.mff.cuni.cz

Tajemník: RNDr. Petr Karas
Vedoucí sekretariátu a sekretářka děkana: Terezie Pávková
Sekretářka tajemníka: Jana Ježilová
Řidič: Jaromír Jureček
Ostatní pracovníci: Jiří Fišer
Marcela Nožičková
Karol Štrečko

Podatelna

Dagmar Kukalová
Jana Mráčková

722. Hospodářské oddělení
Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1415, fax 22191 1422,
e-mail: ho@dekanat.mff.cuni.cz

Vedoucí oddělení: Miloslava Fuchsová
Úsek finanční

Ivana Kubínová
Hana Podolská
Lucie Šimůnková

Pokladna

Miloslava Prágerová

Úsek správy majetku

Správa majetku: Marcela Tomášková
Likvidace majetku: Karol Strečko

Věcná účtárna

Zlatuše Kašparová
Bohuslava Hejbalová
Jitka Svobodová
Libuše Šmídová

723. Oddělení pro vědu a zahraniční styky

Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1222, fax 22191 1277,
e-mail: ovzs@dekanat.mff.cuni.cz

Vedoucí oddělení: PhDr. Milena Stiborová, CSc.
Ostatní pracovníci: Jana Formánková

724. Studijní oddělení

Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1254, fax 22191 1426,
e-mail: studijni@mff.cuni.cz

Vedoucí oddělení: JUDr. Dana Macharová

Bakalářské a magisterské studium

1. ročník, rigorózní řízení: PhDr. Věra Michálková
Fyzika, stipendia: Helena Kisvetrová
Informatika: Zdeňka Kutinová
Matematika: Marcela Všechovská
Přijímací řízení: Ladislava Špitová
Učitelství, celoživotní vzdělávání: Anna Šindelářová

Doktorské studium a zahraniční studenti

Ing. Jana Jágrová
Mgr. Dagmar Zádrapová
725. Oddělení pro vnější vztahy a propagaci
Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1235, fax 22191 1235, e-mail: havlicko@dekanat.mff.cuni.cz

Vedoucí oddělení: PhD. Alena Havlíčková
Ostatní pracovníci: Jana Ježilová
Mgr. Matouš Jirák
Tomáš Matoušek
Martin Pauer

726. Personální oddělení
Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1298, 22191 1287, fax 22191 1406, e-mail: jancak@dekanat.mff.cuni.cz, rezanino@dekanat.mff.cuni.cz

Vedoucí oddělení: Mgr. Tomáš Jančák
Ostatní pracovníci: Bc. Jitka Řezaninová

727. Mzdová účtárna
Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1240, fax 22191 1406, e-mail: nozickov@dekanat.mff.cuni.cz

Vedoucí oddělení: Marcela Nožičková
Ostatní pracovníci: Emília Kališová
Hana Podolská

728. Správa počítačové sítě Karlov a centrálního informačního uzlu
Ke Karlovu 3, 121 16 Praha 2, telefon 22191 1373, fax 22191 1292, e-mail: netadm@karlov.mff.cuni.cz

Vedoucí oddělení: Mgr. Petr Vlášek
Zástupce vedoucího oddělení: RNDr. Pavel Zakouřil, Ph.D.
Ostatní pracovníci: Mgr. Tomáš Drbohlav
Mgr. Bohumil Chalupa
Ing. Václav Mrázek

731. Správa budov
V Holešovičkách 2, 182 00 Praha 8, telefon 22191 2116, fax 22191 2140, e-mail: porubsky@dekanat.mff.cuni.cz

Vedoucí správy budov: Ing. Jindřich Porubský
Investiční a stavební technik: Ing. Lenka Kučerová
Sekretářka: Hana Mošnová
Budovy Karlov
Správce budovy: Vlasta Šestáková
Petr Smolák

Budova Karlín
Správce budovy: Karel Sobota

Budova Malá Strana
Správce budovy: František Nevrlý

Areál Troja
Správce budovy: Jiří Kouřimský
Jana Hodinová

732. Referát energetika
telefon 22191 2130, fax 22191 1292, e-mail: ther@dekanat.mff.cuni.cz
Vedoucí referátu: Pavel Thér

733. Referát požárního a bezpečnostního technika
Ke Karlovu 3, 121 16 Praha 2, telefon 22191 4201, fax 22191 1292,
e-mail: hajek@dekanat.mff.cuni.cz
Vedoucí referátu: Leoš Hájek
Obecné informace
Vysokoškolské studium na MFF

Kontrola studia (bodový systém)

Pro kontrolu průběhu druhého stupně denního studia (bakalářského i magisterského) je použit bodový systém. Student získává body za:

- předměty, které si zapsal a z nichž získal zápočet nebo složil zkoušku,
- činnosti, které si předem nezapsal, ale které skutečně vykonal a které přispívají k jeho odbornému vzdělání (např. ročníková práce, softwarový projekt, absolvoval mimořádného přednáškového kurzu zahraničního hosta zakončeného zkouškou apod.); v tomto případě uděluje body proděkan pro studijní záležitosti na základě návrhu vedoucího činnosti a schválení příslušného garanta studijního programu,
- studijní výsledky získané na jiné škole (pokud mu tam nejsou započítány do plnění studijních povinností) nebo získané jiným mimořádným způsobem; v tomto případě uděluje body proděkan pro studijní záležitosti na základě doložené žádosti posluchače,
- úspěšné složení souborné zkoušky.

Body získané za zapsané předměty jsou nezávislé na známce a odpovídají až na explicitně stanovené výjimky rozsahu výuky (za jednu týdenní hodinu výuky probíhající jeden semestr získá student jeden bod).

Za úspěšné složení souborné zkoušky na oborech matematika, fyzika a informatika získá student šest bodů. Na oboru učitelství získá čtyři body za soubornou zkoušku z jednoho aprobačního předmětu (tj. celkem osm bodů za oba aprobační předměty). Tyto body jsou opět nezávislé na známce.

Body, které student získává, se během celého studia sčítají. Pro zápis do dalšího roku studia musí mít určitý počet bodů, přičemž se rozlišují dvě hranice bodů — normální a minimální. Jsou stanoveny takto:

<table>
<thead>
<tr>
<th>pro zápis na hranice</th>
<th>magisterském studiu</th>
<th>bakalářském studiu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>normální minimální</td>
<td>normální minimální</td>
</tr>
<tr>
<td>do 2. roku studia</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>do 3. roku studia</td>
<td>84</td>
<td>76</td>
</tr>
<tr>
<td>do 4. roku studia</td>
<td>124</td>
<td>116</td>
</tr>
<tr>
<td>do 5. roku studia</td>
<td>164</td>
<td>156</td>
</tr>
<tr>
<td>do 6. roku studia</td>
<td>204</td>
<td>204</td>
</tr>
<tr>
<td>do 7. roku studia</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>do 8. roku studia</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>do 9. roku studia</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>do 10. roku studia</td>
<td>364</td>
<td></td>
</tr>
</tbody>
</table>

Vysokoškolské studium na MFF

Získá-li student v dosavadním průběhu studia alespoň normální počet bodů požadovaný pro zápis do určitého roku studia, má právo se do něj v následujícím školním roce zapsat bez jakýchkoliv omezení.

Získá-li student alespoň minimální počet bodů, ale méně než normální počet bodů, může se zapsat do dalšího studijního roku podmíněně. V tomto případě si ale musí zapsat studijní povinnosti tak, aby v následujícím studijním roce mohl bodovou ztrátu vyrovnat a dosáhnout pro zápis do dalšího školního roku normálního počtu bodů.

Body se neudělují za:

– tělesnou výchovu (viz dále),
– jazykovou výuku (viz dále),
– pedagogickou a odbornou praxi,
– zápočet z kursu bezpečnosti práce (SZZ008),
– zápočet z diplomové práce (SZZ001).

Výuka jazyků

Povinná výuka angličtiny (resp., v případě studentů, kteří nastoupili na MFF před školním rokem 1999/2000, cizích jazyků) probíhá mimo bodový systém. Za absolvování nepovinné výuky lze body získat (viz dále).

a) Studenti, kteří nastoupili do 1. ročníku před školním rokem 1994/95, musí složit zkoušku z cizího jazyka nejpozději do zadání diplomové práce nebo do udělení titulu bakalář.

b) Studenti, kteří nastoupili do 1. ročníku ve školních létech 1994/95 až 1998/99:

– Povinně zapisují ve 2. studijním roce zkoušku z (jednoho) cizího jazyka.
– Mají možnost přihlásit se ke zkoušce z jazyka již v 1. ročníku, případně požádat o uznání zkoušky vykonané jinde. V případě uznání zkoušky či jejího úspěšného složení se na ně již nevztahují povinnosti stanovené výše.

Po složení zkoušky z jazyka si mohou studenti, kteří nastoupili do 1. ročníku ve školním roce 1998/99 nebo dříve, zapsat jako volitelný předmět některý z následujících kurzů.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angličtina pro matematiky</td>
<td>0/2 Z</td>
<td>—</td>
<td>JAZ013</td>
</tr>
<tr>
<td>Angličtina pro fyziky</td>
<td>0/2 Z</td>
<td>—</td>
<td>JAZ011</td>
</tr>
<tr>
<td>Angličtina pro informatiky</td>
<td>0/2 Z</td>
<td>—</td>
<td>JAZ012</td>
</tr>
<tr>
<td>Obchodní angličtina</td>
<td>0/2 Z</td>
<td>—</td>
<td>JAZ015</td>
</tr>
<tr>
<td>First Certificate - přípravný kurs</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>JAZ014</td>
</tr>
</tbody>
</table>
Tyto kurzy jsou zařazeny do bodového systému fakulty, každý z nich je možné zapsat pouze jednou. Maximální počet bodů, který může student získat během studia za tyto jazykové kurzy, jsou 4 body z jednoho jazyka.

c) Studenti, kteří nastoupili do 1. ročníku ve školním roce 1999/2000 a později:

– Pokud posluchač nesloží zkoušku z angličtiny dříve, je povinen si zapsat angličtinu v každém z prvních čtyř semestrů svého studia na MFF v rozsahu alespoň 0/2 a v každém z prvních dvou semestrů z ní získat zápočet. Méně pokročilí studenti mohou zapisovat angličtinu v prvních čtyřech semestrach v rozsahu 0/4.

– Nesloží-li posluchač zkoušku z angličtiny do konce 4. semestru, zapíše si angličtinu v rozsahu nejméně 0/2 i v 5. a 6. semestru.

Tělesná výchova

Výuka tělesné výchovy probíhá mimo bodový systém.

Tělesná výchova je povinná na bakalářském studiu první dva roky. Na magisterském studiu je povinná v 1. ročníku a v průběhu dalších tří studijních let musí student získat celkem osm jednotek, které může obdržet za následující tělovýchovné předměty:

| Tělesná výchova | Za absolvování TV v délce jednoho semestru student získá 2 jednotky. |
| Letní nebo zimní výcvikový kurz | Za absolvování jednoho kurzu student získá 2 jednotky. |

Kromě těchto aktivit nabízí katedra tělesné výchovy zájmovou tělesnou výchovu a další zimní a letní kursy.

Pokud student nezíská dostatečný počet jednotek za tělovýchovné předměty, musí si zapsat podle vlastního výběru další předměty (a složit z nich zkoušky nebo zápočty) tak, aby při započítání jedné jednotky za dvě týdenní hodiny semestrální výuky doplnil počet získaných jednotek na požadovaných osm. Za tyto předměty se neudělují body.
Přehled studijních programů,
studijních oborů a studijních plánů na
MFF

Bakalářské studium

Studijní program fyzika
- Užitá meteorologie
- Vakuová a kryogenní technika
- Fyzika v medicíně
- Bezpečnost jaderných zařízení
- Obecná fyzika

Studijní program informatika
- Aplikovaná informatika

Studijní program matematika
- Pojistná matematika
- Finanční matematika
- Matematika v obchodování a podnikání
- Matematika a ekonomie
- Matematika a počítače v praxi
- Obecná matematika
Přehled studijních programů

Magisterské studium

Studijní program fyzika

- Astronomie a astrofyzika
- Geofyzika
- Meteorologie a klimatologie
- Teoretická fyzika
- Fyzika kondenzovaných a makromolekulárních látek
 - Fyzika pevných látek
 - Makromolekulární fyzika
- Optika a optoelektronika
 - Kvantová a nelineární optika
 - Optoelektronika a fotonika
- Fyzika povrchů a ionizovaných prostředí
 - Fyzika povrchů a rozhraní
 - Fyzika plazmatu a ionizovaných prostředí
- Biofyzika a chemická fyzika
 - Biofyzika
 - Chemická fyzika
- Jaderná a subjaderná fyzika
- Matematické a počítačové modelování ve fyzice a v technice
- Učitelství fyziky pro střední školy v kombinaci s odbornou fyzikou
- Učitelství fyziky v kombinaci s druhým aprobačním oborem pro střední školy

Studijní program informatika

- Datové inženýrství
- Distribuované systémy
- Diskrétní matematika a optimalizace
- Počítačová a formální lingvistika
- Softwarové systémy
- Teoretická informatika
- Učitelství informatiky pro střední školy v kombinaci s odbornou informatikou
- Učitelství informatiky v kombinaci s druhým aprobačním oborem pro střední školy
- Navazující studium

Studijní program matematika

- Matematická analýza
 - Teorie funkcí, funkcionální analýza a teorie potenciálu
 - Diferenciální rovnice
Přehled studijních programů

- Matematické struktury
- Výpočtová matematika
 - Výpočtová matematika — algoritmy
 - Výpočtová matematika — software
 - Výpočtová matematika pro průmyslovou praxi
- Pravděpodobnost, matematická statistika a ekonometrie
 - Ekonometrie
 - Matematická statistika
 - Teorie pravděpodobnosti a náhodné procesy
 - Matematika a management
- Finanční a pojistná matematika
- Matematické a počítačové modelování ve fyzice a v technice
- Matematika — filozofie (mezifakultní studium)
- Učitelství matematiky pro střední školy v kombinaci s odbornou matematikou
- Učitelství matematiky v kombinaci s druhým aprobačním oborem pro střední školy

Studijní program učitelství pro střední školy

- Matematika — fyzika
- Matematika — deskriptivní geometrie
- Matematika — informatika
- Fyzika — informatika

Studijní program učitelství pro základní školy

- Matematika — fyzika

Garanti studijních programů

Fyzika: Prof. RNDr. Lubomír Skála, DrSc.
Matematika: Doc. RNDr. Jana Stará, CSc.
Informatika: Doc. RNDr. Pavel Töpfer, CSc.
Učitelství pro SŠ a ZŠ: Prof. RNDr. Adolf Karger, DrSc.
Přehled studijních programů
Studijní plány studijního programu
MATEMATIKA

A. Magisterské studium

1. Základní informace

Absolvent magisterského studia získává titul magistr (Mgr.). Magisterské studium programu Matematika trvá standardně 5 let, maximálně 10 let.

Studijní obory magisterského studia studijního programu Matematika:

- Matematické struktury 4.1
- Matematická analýza 4.2
- Výpočtová matematika 4.3
- Pravděpodobnost, matematická statistika a ekonometrie 4.4
- Finanční a pojišťná matematika 4.5
- Matematické a počítačové modelování ve fyzice a v technice 4.6
- Matematika — filosofie (mezifakultní studium) 4.7
- Učitelství matematiky pro střední školy v kombinaci s odbornou matematikou 4.8
- Učitelství matematiky v kombinaci s druhým aprobačním předmětem pro střední školy 4.9

Studijní obor sestává z jednoho nebo více studijních plánů vedoucích ke státní závěrečné zkoušce jednoho typu.

Studijní plány učitelství matematiky v kombinaci s druhým aprobačním předmětem se řídí studijními plány učitelství všeobecně vzdělávacích předmětů (viz 4.9). Studenti učitelství matematiky pro střední školy v kombinaci s odbornou matematikou studují v rámci zvoleného oboru odborného programu matematika, tj. v rámci oborů 4.1–4.6. Současně mají povinnost absolvovat během studia i výuku vztahující se k učitelské disciplíně (viz 4.8).

Náplň I. stupně studia (1. ročníku) odborné matematiky je společná pro obory (4.1–4.7, 4.9) a její plnění je kontrolováno po každém semestru (kap. 2.). Na II. stupni studia si student volí složení výuky tak, aby průběžně splňoval bodové hranice pro zápis do dalšího roku studia a aby splnil podmínky stanovené zvoleným studijním plánem.
pro zadání diplomové práce (viz 3.4) a pro přihlášení ke státní závěrečné zkoušce (viz 3.6).

Náplň II. stupně magisterského studia odborné matematiky se skládá ze tří bloků předmětů:

Blok A — společný základ odborné matematiky: absolování většiny předmětů bloku A vyžadují všechny studijní plány;

Blok B — základ daného studijního oboru (plánu): jeho absolování je jednou z podmínek pro přihlášení ke státní závěrečné zkoušce;

Blok C (Doporučené předměty) — speciální předměty studijního oboru (plánu): tyto předměty pokrývají spolu s předměty předchozích bloků požadavky ke státní závěrečné zkoušce a na většině studijních oborů musí student absolvovat z tohoto bloku určitý počet hodin přednášek a cvičení (seminářů) podle vlastního výběru.

Dále jsou uvedeny doporučené průběhy studia ve druhém stupně, které obsahují předměty bloku A a B a některé předměty bloku C. Posluchači studují podle zvoleného studijního oboru tak, aby průběžně plnili bodové hranice pro zápis do dalšího roku studia.

Studenti ve 4. a 5. roce studia se při výběru předmětů řídí doporučením vedoucího diplomové práce.

2. První stupeň studia odborné matematiky

Povinná výuka v 1. ročníku

Povinné předměty jsou uváděny tučně.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza 1a</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>MAA001</td>
</tr>
<tr>
<td>Matematická analýza 1b</td>
<td></td>
<td></td>
<td>MAA002</td>
</tr>
<tr>
<td>Lineární algebra a geometrie I</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>ALG001</td>
</tr>
<tr>
<td>Lineární algebra a geometrie II</td>
<td></td>
<td></td>
<td>ALG002</td>
</tr>
<tr>
<td>Programování</td>
<td>2/0</td>
<td>Z</td>
<td>PRM001</td>
</tr>
<tr>
<td>Diskrétní matematika</td>
<td>2/0</td>
<td>Z</td>
<td>DMA005</td>
</tr>
<tr>
<td>Úvod do teorie množin</td>
<td>2/0</td>
<td>Z</td>
<td>LTM030</td>
</tr>
<tr>
<td>Proseminář z kalkulu</td>
<td>0/2</td>
<td>Z</td>
<td>MAA005</td>
</tr>
<tr>
<td>Výběrové přednášky</td>
<td>2/0</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Cizí jazyk</td>
<td>0/2</td>
<td>Z</td>
<td>TVY001</td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2</td>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>

1. Získání zápočtu za letní semestr není podmínkou přípustění ke zkoušce.

2. Student může volit jakékoli předměty vyučované na MFF. Je nutno absolvovat (splnit všechny předepsané podmínky) dva dvouhodinové předměty nebo jeden čtyřhodinový předmět. Dvouhodinovým (resp. čtyřhodinovým) předmětem se v tomto případě rozumí předmět, jehož podmínky absolvování obsahují zkoušku a jehož předmětná má rozsah alespoň dvě hodiny týdne (resp. buď alespoň čtyři hodiny týdne v jednom semestru nebo alespoň dvě hodiny týdne ve dvou semestrech). Tedy například složí dvě zkoušky z předmánek v rozsahu alespoň 2/0 nebo zkoušku z předmánek v rozsahu 4/0 či 2/0, 2/0.
Předměty prvního ročníku jsou v „Seznamu předmětů“ označeny [M 1].

3. Druhý stupeň studia odborné matematiky

3.1. Souborná zkouška

Souborná zkouška na programu Matematika není povinná. Student ji může po splnění stanovených podmínek skládat kdykoli v průběhu studia.

Doporučujeme, aby student složil soubornou zkoušku na konci 2. roku studia. Termíny zkoušek a podávání přihlášek k souborné zkoušce se řídí harmonogramem školního roku. Za složení souborné zkoušky student získává 6 bodů. Souborná zkouška se skládá z jedné části; to znamená, že posluchač se hlásí k souborné zkoušce jako celku, je z ní hodnocen jednou známkou a v případě neúspěchu ji také celou opakuje.

Podmínky pro přihlášení k souborné zkoušce

– absolování 1. ročníku a získání nejméně 30 bodů.

Požadavky k souborné zkoušce

Zkouška má přehledový charakter. Jsou kladený širší otázky a žádá se, aby poslu-chač prokázal pochopení základních problémů, byl schopen je ilustrovat na konkrétních situacích a osvědčil určitou míru syntézy a hlubšího pochopení. Předmětem zkoušky jsou následující partie matematiky:

1. **Vektorové prostory**
 Vektorové prostory, báze, dimenze, Steinitzova věta, dimenze spojení a průniku podprostorů.

2. **Matice a determinanty**

3. **Lineární a bilineární formy**

4. **Unitární prostory**

5. **Euklidovský prostor**
Samodružné body, směry a podprostory. Rozklad shodností na základní shodnosti a po-
dobnosti na shodnost a stejnolehlost. Kúzelosečky a kvadriky. Metrické a polární vlast-
nosti. Základní typy kuželoseček a kvadrik a jejich popis a převedení na kanonický

tvar.
6. Grupy a reprezentace grup
 Normální podgrupy, věty o homomorfismu a izomorfismu. Reprezentace grup, cha-
raktery, konstrukce regulární reprezentace.
7. Okruhy
 Charakterizace těles pomocí ideálů.
8. Moduly a multilineární algebra
 Direktní součiny a součity modulů. Symetrické a antisymetrické tenzory.
9. Okruhy polynomů
 Ireducibilní rozklady. Euklidův algoritmus.
10. Komutativní tělesa
 Algebraické a transcendentní prvky. Rozšíření konečného stupně, struktura koneč-
11. Polynomy více neurčitých
 Symetrické polynomy, hlavní věta o symetrických polynomech.
12. Svazy a Booleovy algebry
 Úplné svazy, modulární svazy. Struktura konečných Booleových algebry.
13. Univerzální algebra
 Homomorfismy a kongruence. Součiny algebry. Termny a volné algebry. Variety al-
geber.
14. Limita posloupností a funkčí
 Heineho věta. Spojitost a derivace funkčí jedné reálné proměnné, základní vlast-
nosti. Geometrický význam derivace.
15. Primitivní funkce a Newtonův (určitý) integrál
 Metody výpočtu primitivní funkce, integrace per partes a substitucí, rozklad na
parciální zlomky, integrace racionalních funkcí a funkčí, které lze vhodnou substitucí na
racionalní funkce převést. Riemannův integrál, jeho základní vlastnosti a vztah ke pr
imitivní funkč. Základní kritéria existence Newtonova a Riemannova integrálu. Geome-
trický význam určitého integrálu.
16. Hlubší vlastnosti reálných čísel
 Hromadné hodnoty posloupností. Bolzano-Cauchyova podmínka, Bolzano-
Weierstrassova věta, limity monotonní posloupností a funkčí. Existence extrémů
spojitých funkcí, Darbouxova vlastnost spojitých funkcí.
17. Věty o střední hodnotě a jejich důsledky
 Vztah monotonie a derivace. L'Hospitalovo pravidlo. Taylorův polynom. Konvexní
funkce. Vyšetřování průběhu funkce (včetně asymptot).
18. Číselné řady
 Vlastnosti konvergentních řad, kritéria absolutní a neabsolutní konvergence.
19. Posloupnosti a řady funkčí
 Stejnoměrná konvergence. Kritéria stejnoměrné konvergence posloupností a řad
funkčí. Spojitost a derivace limítní funkce. Mocninné řady. Taylorovy řady. Elementární
funkce a jejich Taylorovy rozvoje.
20. Weierstrassova věta o aproximaci spojité funkce polynomy

21. Funkce více proměnných
Otevřené množiny a spojitá zobrazení v eukleidovských prostorech. Parciální derivace, derivace ve směru, totální diferenciál, souvislosti mezi nimi. Geometrický význam totálního diferenciálu. Funkce zadané implicitně a jejich derivace. Extrémy spojitých funkcí více proměnných. Existence extrémů a zjišťování lokálních extrémů. Nutné a po-
stačující podmínky pro lokální extrémy. Nutné podmínky pro vázané extrémy.

22. Diferenciální rovnice
Jednoduché diferenciální rovnice 1. řádu. Metody řešení rovnic se separovanými
proměnnými a typů, které lze na rovnice se separovanými proměnnými převést. Lineární
rovnice 1. řádu. Věta o existenci a jednoznačnosti řešení. Lineární diferenciální rovnice
n-tého řádu. Fundamentální systém řešení, metoda variace konstant.

23. Fourierovy řady
Skalární součin, Hilbertův prostor. Ortogonální systémy, ortogonální báze. Pojem
Fourierovy řady, Besselova nerovnost. Trigonometrické polynomy, úplnost trigonometer-
rického systému. Fourierovy řady po částečně hladkých funkcích. Krátkost konver-
gence Fourierových řad.

24. Vícerozměrný integrál v eukleidovských prostorech
Fubiniova věta, věta o substituci.

25. Křivky
Definice křivky, parametrizace křivky obloukem, tečna, normála a binormála
křivky. Křivost a torse křivky, Frenetovy formule, příklady.

26. Plochy
Definice plochy, křivky na ploše, tečný vektor, tečná rovina, metrické vlastnosti
plochy, první základní forma plochy, úhel křivek na ploše, obsah části plochy, geodetické
křivky, geodetická křivost křivky na ploše, druhá základní forma plochy, význačné směry
a křivky na ploše, Gaussova a střední křivost plochy, příklady.

3.2. Popis bloku A
Předměty bloku A jsou v „Seznamu předmětů“ označeny [M 2].

Podmínky absolvování bloku A
Posluchač absolvuje blok A, jestliže absolvuje povinné předměty bloku A.

Povinné předměty bloku A

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza 2a</td>
<td>4/2 Z, Zk</td>
<td></td>
<td>MAA003</td>
</tr>
<tr>
<td>Matematická analýza 2b</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>MAA004</td>
</tr>
<tr>
<td>Algebra I</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>ALG026</td>
</tr>
<tr>
<td>Algebra II</td>
<td></td>
<td>2/0 Zk</td>
<td>ALG027</td>
</tr>
<tr>
<td>Teorie míry a integrálu</td>
<td>4/2 Z, Zk</td>
<td></td>
<td>MAA068</td>
</tr>
<tr>
<td>Pravděpodobnost a matematická statistika</td>
<td></td>
<td>4/2 Z, Zk</td>
<td>STP022</td>
</tr>
<tr>
<td>Základy numerické matematiky 1</td>
<td>2/0 Zk</td>
<td></td>
<td>NUM004</td>
</tr>
<tr>
<td>Základy numerické matematiky 2</td>
<td></td>
<td>4/2 Z, Zk</td>
<td>NUM005</td>
</tr>
<tr>
<td>Diferenciální geometrie křivek a ploch</td>
<td></td>
<td>2/0 Zk</td>
<td>GEM012</td>
</tr>
<tr>
<td>Úvod do funkcionální analýzy ¹</td>
<td>2/2 Z, Zk</td>
<td>2/2 Z, Zk</td>
<td>RFA006</td>
</tr>
</tbody>
</table>
1Student zapisuje tento předmět buď pouze v zimním, a nebo pouze v letním semestru.
Doporučujeme, aby student absolvoval povinné předměty do konce 3. roku studia před zadáním diplomové práce.

Pokud složí student do konce 3. roku studia soubornou zkoušku, stačí mu k absolvování povinných předmětů bloku A, jestliže získá všechny zápočty z povinných předmětů a složí zkoušky z povinných předmětů s výjimkou zkoušek z Diferenciální geometrie křivek a ploch (GEM012), z Matematické analýzy 2b (MAA004) a z Algebry II (ALG027).

3.3. Vedlejší obor

Během svého studia na fakultě mohou studenti odborné matematiky navštěvovat také jiné než matematické předmášky. Body získané z těchto předmětů se započítávají do součtu bodů požadovaných k řádnému ukončení ročníku a pro přihlášení k souborné a státní závěrečné zkoušce. Doporučeny jsou zejména předměty vedlejších oborů Fyzika, Biologie nebo Ekonomie, které jsou uvedeny v následující nabídce.

Vedlejší obor Fyzika

Některé z těchto předmětů přirozeným způsobem doplňují a rozšiřují matematické vzdělání v jednotlivých studijních oborech. Další nabízené předměty představují obecný fyzikální pohled na svět podaný takovým způsobem, který nevyžaduje předchozí znalosti fyziky nad rámec středoškolské výuky. Jsou proto vhodné pro posluchače, kteří se nezaměřují na odborné studium fyziky. Nabídka doporučených fyzikálních předmětů bude postupně rozšiřována.

Předměty doporučené spíše pro 1. až 3. rok studia:

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzika pro matematiky I (1, 2, 3)</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>FYM002</td>
</tr>
<tr>
<td>Fyzika pro matematiky II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>FYM003</td>
</tr>
<tr>
<td>Analytická mechanika (1, 2, 3)</td>
<td>2/1 Zk</td>
<td>—</td>
<td>OFY032</td>
</tr>
<tr>
<td>Kvantová fyzika pro nefyziky (1, 2, 3)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>JSF059</td>
</tr>
<tr>
<td>Elektromagnetické pole a speciální teorie relativity (1, 2, 3)</td>
<td>—</td>
<td>2/1 Zk</td>
<td>TMF034</td>
</tr>
</tbody>
</table>
Předměty doporučené spíše pro 3. až 5. rok studia:

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vybrané kapitoly z kvantové mechaniky (1, 2, 3)</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>OFY043</td>
</tr>
<tr>
<td>Symetrie molekul (1)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>BCM027</td>
</tr>
<tr>
<td>Obecná teorie relativity a diferenciální geometrie (1)</td>
<td>—</td>
<td>2/1 Zk</td>
<td>GEM027</td>
</tr>
<tr>
<td>Tvarová a materiálová optimalizace (2)</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>MOD005</td>
</tr>
<tr>
<td>Úvod do fyziky plazmatu a počítačové fyziky (2)</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>FYM012</td>
</tr>
<tr>
<td>Matematické modelování ve fyzice (2)</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>MOD004</td>
</tr>
<tr>
<td>Statistická fyzika (3)</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>TMF003</td>
</tr>
<tr>
<td>Pravděpodobnostní metody ve fyzice I (3)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>BCM078</td>
</tr>
<tr>
<td>Pravděpodobnostní metody ve fyzice II</td>
<td>—</td>
<td>2/0 Zk</td>
<td>BCM079</td>
</tr>
<tr>
<td>Počítačové simulace ve fyzice mnoha částic (3)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>TMF021</td>
</tr>
<tr>
<td>Úvod do kapalné krystalického uspořádání (3)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>BCM069</td>
</tr>
<tr>
<td>Pravděpodobnost a matematika fázových přechodů I (3)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>TMF027</td>
</tr>
<tr>
<td>Pravděpodobnost a matematika fázových přechodů II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>TMF047</td>
</tr>
<tr>
<td>Astronomická pozorování, modely a zpracování obrazových informací (3)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>OFY020</td>
</tr>
</tbody>
</table>

Vedlejší obor Biologie

Předměty vedlejšího oboru Biologie rozšiřují vzdělání studentů matematiky v přírodovědných vědcích. Jsou vhodné zejména pro ty studenty, kteří chtějí své budoucí profesionální zaměření orientovat na aplikace matematiky v biomedicinálním výzkumu. Výuka biologie probíhá na Přírodovědecké fakultě UK. Doporučené předměty jsou určeny pro studenty 1. a 2. ročníku studia odborné biologie nebo učitelství biologie a nevyžadují proto žádné speciální znalosti nad rámec středoškolské výuky. (S výjimkou „Základů molekulární biologie a genetiky“ se učitelské alternativy od odborných zřetelně liší menším týdenním počtem hodin přednášek.)

Povinné předměty vedlejšího oboru Biologie

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologie buňky (Půta, Černý)</td>
<td>4/0 Zk</td>
<td>—</td>
<td>B150P31</td>
</tr>
<tr>
<td>Biologie buňky (Nedvídek a kol.)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>B150P73</td>
</tr>
<tr>
<td>Biochemie (Folk)</td>
<td>—</td>
<td>3/0 Zk</td>
<td>B150P04</td>
</tr>
<tr>
<td>Biochemie (Nováková)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>B150P34</td>
</tr>
<tr>
<td>Základy molekulární biologie a genetiky (Pospíšek, Pikálek a kol.)</td>
<td>—</td>
<td>3/0 Zk</td>
<td>B140P67</td>
</tr>
<tr>
<td>Základy molekulární biologie a genetiky (Pikálek, Pospíšek a kol.)</td>
<td>—</td>
<td>3/0 Zk</td>
<td>B140P66</td>
</tr>
</tbody>
</table>
Vedlejší obor Biologie

Předměty vedlejšího oboru Biologie rozšiřují vzdělání studentů matematiky ve společensko-ekonomických vědách. Jsou vhodné zejména pro ty studenty, kteří se chtějí zabývat aplikacemi matematiky v ekonomii. Výuka probíhá na MFF UK. Některé přednášky jsou zajišťovány přednášejícími z FSV UK. Nabídka doporučených ekonomicky zaměřených přednášek se bude postupně rozšiřovat.

Vedlejší obor Ekonomie

Předměty vedlejšího oboru Ekonomie rozšiřují vzdělání studentů matematiky ve společensko-ekonomických vědách. Jsou vhodné zejména pro ty studenty, kteří se chtějí zabývat aplikacemi matematiky v ekonomii. Výuka probíhá na MFF UK. Některé přednášky jsou zajišťovány přednášejícími z FSV UK. Nabídka doporučených ekonomicky zaměřených přednášek se bude postupně rozšiřovat.

3.4. Diplomová práce

Podmínky pro zadání diplomové práce:

- získání celkem 80 bodů
- složení zkoušky z cizího jazyka
- bud složení souborné zkoušky anebo splnění studijních povinností z následujících předmětů:

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza 2a</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>MAA003</td>
</tr>
<tr>
<td>Matematická analýza 2b</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MAA004</td>
</tr>
</tbody>
</table>
3.5. Doporučený průběh 2. roku studia

Povinné předměty jsou uváděny tučně.

2. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza 2a</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>MAA003</td>
</tr>
<tr>
<td>Matematická analýza 2b</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MAA004</td>
</tr>
<tr>
<td>Algebra I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>ALG026</td>
</tr>
<tr>
<td>Algebra II</td>
<td>—</td>
<td>2/0 Zk</td>
<td>ALG027</td>
</tr>
<tr>
<td>Teorie míry a integrálu</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>MAA0068</td>
</tr>
<tr>
<td>Pravděpodobnost a matematická statistika</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP022</td>
</tr>
<tr>
<td>Základy numerické matematiky 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>NUM004</td>
</tr>
<tr>
<td>Základy numerické matematiky 2</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>NUM005</td>
</tr>
<tr>
<td>Diferenciální geometrie křivek a ploch</td>
<td>—</td>
<td>2/0 Zk</td>
<td>GEM012</td>
</tr>
</tbody>
</table>

1Student může volit jakýkoli předmět vyučovaný na MFF. Pokud je již student neabsolvoval v 1. ročníku, doporučujeme předměty: Teorie grafů a algoritmy pro matematiky (DMA001), Fyzika pro matematiky (FYM002), (FYM003), Ekonomie, Diskretní pravděpodobnost (STP064), Principy statistického uvažování (STP003), Metrické struktury (MAA006), Základy teorie metrických prostorů (MAT003), Doplňující partie z matematické analýzy (MAA022). Doporučujeme, aby si posluchači, kteří chtějí studovat obor Finanční a pojišťová matematika, zapisali v letním semestru předměty Úvod do financí (FAP009). Studenti, kteří nerespektují toto doporučení, si mohou studium neúměrně zkomplikovat.

Ve 2. roce studia se koná pro zájemce Proseminář z kalkulu II (MAA013), (MAA014), Proseminář z teorie míry (MAA011), Proseminář z algebry (ALG032) a Proseminář z diferenciální geometrie (GEM007). Za tyto prosemináře posluchač získává body v obvyklém rozsahu. Podrobněji budou posluchači informováni na studijním oddělení před zápisem.

3.6. Státní závěrečná zkouška

Státní závěrečná zkouška na programu Matematika se skládá ze dvou částí, kterými jsou obhajoba diplomové práce a ústní zkouška, popsána dále ve studijních plánech jed-
notlivých oborů. Každá část je hodnocena známkou (ze kterých se pak stanoví celková
známka státní závěrečné zkoušky); při neúspěchu opakuje posluchač nejvýše dvakrát
ty části, ze kterých neprospěl. Posluchač se přihlašuje současně na všechny části státní
závěrečné zkoušky, které dosud nesložil.

Všeobecné podmínky pro přihlášení ke státní závěrečné zkoušce:

- absolvování I. stupně studia (1. ročník)
- absolvování bloku A
- získání nejméně 174 bodů za celé studium
- podání diplomové práce

Specifické podmínky pro přihlášení a stručné požadavky ke státní závěrečné zkoušce
určují jednotlivé studijní obory (kap. 4). Podrobnější informace poskytnou garantující
pracoviště nebo studijní oddělení. Termíny pro podání přihlášky ke státní závěrečné
zkoušce určuje harmonogram školního roku.

3.7. Projekt

Student ve 2. až 4. roce studia může požádat o zadání projektu. Jeho bodové
ohodnocení (max. 6 bodů) stanoví děkan na základě doporučení zadávajícího učitele
a garanta studijního programu Matematika.

4. Studijní plány jednotlivých oborů

4.1. Matematické struktury

Garantující pracoviště: katedra algebry

Odpovědný učitel: Doc. RNDr. Jarolím Bureš, CSc. (MÚ UK)

Vývoj matematiky se od konce minulého století do značné míry děje cestou definice
nových matematických struktur a jejich následnou analýzou. Tento vývoj však není
samotoučný, nýbrž vyjadřuje pozoruhodnou a nesamozřejmou zkušenost, že zkoumání
vhodně definované obecné struktury přináší informace o zcela konkrétních objektech.

Studijní obor Matematické struktury (STR) nabízí studium těch částí matematiky,
ve kterých se strukturní přístup prosadil nejvýrazněji. Student absolvuje blok
základních přednášek, které ho uvádějí do jednotlivých oborů, a poté si vybírá z bohaté
nabídky úzeji orientovaných témat. Zhruba řečeno se zaměří hlouběji buď na algebru
a logiku nebo na topologii a geometrii. Do toho rámce jsou přítom zahrnuty i příbuzné
obory, jako jsou diskrétní matematika, dynamika, harmonická analýza, teorie kategorií
a teorie množin.

Studijní obor není orientován pouze na výchovu budoucích vědců. Řada přednášek
se totiž týká teoretických základů předmětů, které mají široké praktické uplatnění.
Posluchač se tak může profilovat směrem k informatice (automaty, přepisovací systémy,
teorie modelů, kombinatorické algoritmy, složitost, kódy a konečná tělesa), nebo směrem
k modelování společenských a přírodních procesů (dynamika, chaos, ergodická teorie,
stočastické procesy), případně též k matematické fyzice (teorie grup, nekomutativní
geometrie, teorie twistorů).
Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce (předměty bloku A, resp. B) jsou uváděny tučně.

3. rok studia

<table>
<thead>
<tr>
<th>Název ZS LS Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvod do analýzy na varietách 2/2 Z, Zk — GEM002</td>
</tr>
<tr>
<td>Úvod do funkcionální analýzy — 2/2 Z, Zk RFA006</td>
</tr>
<tr>
<td>Úvod do teorie grup 2/2 Z, Zk — ALG017</td>
</tr>
<tr>
<td>Úvod do teorie Lieových grup — 2/2 Z, Zk ALG018</td>
</tr>
<tr>
<td>Obecná topologie I 2/2 Z, Zk — MAT039</td>
</tr>
<tr>
<td>Okruhy a moduly 2/2 Z, Zk — ALG028</td>
</tr>
<tr>
<td>Komutativní algebra 1 — 3/1 Z, Zk ALG015</td>
</tr>
<tr>
<td>Úvod do komplexní analýzy 2/2 Z, Zk — MAA021</td>
</tr>
<tr>
<td>Základy matematické logiky — 2/0 Zk LTM006</td>
</tr>
<tr>
<td>Diferenciální geometrie — 2/0 Zk GEM010</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název ZS LS Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasická teorie parciálních diferenciálních rovnic — 2/2 Z, Zk DIR005</td>
</tr>
<tr>
<td>Základy teorie kategorií 2/2 Z, Zk — MAT001</td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení ke státní závěrečné zkoušce

– splnění všeobecných podmínek (viz 3.6),
– absolvování bloku B studijního oboru STR,
– získání alespoň 10 bodů za semináře.

Státní závěrečná zkouška

Ústní část státní závěrečné zkoušky studijního oboru Matematické struktury se skládá ze společných požadavků z okruhů Algebra a logika a Geometrie a topologie a z požadavků užšího zaměření. Toto zaměření si posluchač určí volbou jednoho z témat uvedených níže.

Požadavky ke státní závěrečné zkoušce

I. Společné požadavky

I.1. Algebra a logika

1. Grupy

2. Okruhy a moduly

3. Komutativní algebry

4. Matematická logika

I.2. Geometrie a topologie

1. Diferenciální geometrie

2. Komplexní analýza

Holomorfní funkce, Cauchy-Riemannovy podmínky. Cauchyova věta, Cauchyova integrální formule a její aplikace na výpočet integrálu. Taylorova a Laurentova řada, příklady funkcí komplexní proměnné vzniklých rozšířením reálných funkcí (např. log, exp, goniometrické funkce). Residuum a residuová věta, základní příklady na výpočet integrálů.

3. Funkcionální analýza

Banachovy prostory, Hilbertovy prostory, jejich základní vlastnosti, příklady. Spojitá lineární zobrazení a jejich vlastnosti, Hahn-Banachova věta, věta o uzavřeném zobrazení, věta o uzavřeném grafu. Základy spektrální teorie kompaktních operátorů v Hilbertově prostoru. Adjungované operátory, samoadjungované operátory a jejich vlastnosti.

4. Obecná topologie

Topologický prostor, jeho základní popisy (otevřené a uzavřené množiny, uzávěrová operace, okoli atd.) Spojitá zobrazení a homeomorfismy. Podprostory, faktorprostory. Oddělovací axiomy a jejich význam pro vlastnosti prostoru. Separabilní topologické
Matematické struktury

II. Užší zaměření

B1. Harmonická analýza a teorie reprezentací (HA)

1. Algebraická topologie

2. Teorie reprezentací

3. Analýza na varietách
 Vnější algebra vektorového prostoru, Diferenciální formy na varietě a jejich integrace. Forma objemu na riemannovské varietě a integrace funkcí. Variety s krajem, Stokesova věta.

4. Harmonická analýza

B2. Riemannova geometrie (RG)

1. Analýza na varietách
 Vnější algebra vektorového prostoru, diferenciální formy na varietě a jejich integrace. Variety s krajem, Stokesova věta. Forma objemu na riemannovské varietě a integrace funkcí.

2. Riemannova geometrie

3. Algebraická topologie

4. Homogenní prostory
 Lieovy grupy a homogenní prostory. Invariantní formy a konexe na homogenním prostoru. Příklady klasických prostorů.
B3. Algebra v přírodních vědách (AP)

1. **Teorie reprezentací grup a algeber**

 Reprezentace konečných grup, Maschkeho věta, charakterky reprezentace, iředucibilní charakterky, věta o ortogonálnitě, Burnsídova věta, věta o stupně iředucibilní reprezentace. Algebry cest grafů, lineární reprezentace grafů, Gabrielova věta, AR-graf konečně dimenzionální algebry.

2. **Rozšíření grup**

 Rozšíření s Abelovou grupou A, kohomologické grupy \(n(\Pi,A) \). Jejich interpretace pro \(n = 1, 2, 3 \).

3. **Homologická algebra**

 Funktory \(\text{Hom} \), \(\otimes \), ploché moduly, injektivní a projektivní rezolventy, Funktory \(\text{Tor}^n \) a \(\text{Ext}^n \), Vztah \(\text{Ext}^1 \) a rozšíření modulů.

4. **Kotransitivní algebry**

B4. Algebra v informatice (AI)

1. **Univerzální algebry**

 Limity a kolimity diagramů, termy, volné algebry, variety a Birkhoffova věta, svazy variet, Malcevovy podmínky, Schreierova vlastnost, podmínky amalgamačního typu.

2. **Automaty a pologrupy, přepisovací systémy**

 Regulární jazyky, gramatiky, syntaktické monoidy, bezkontextové jazyky, Eilenbergova věta, konvergence v grafech, kritické dvojice a unifikace termů, Knuth-Bendixův algoritmus, splňovací dobře kvaziuspořádání.

3. **Kombinatorická teorie grup**

 Volné součiny grup a jejich prezentace, Nielsenova a Reidemeister-Schreierova metoda použitá pro podgrupy volných grup. HNN rozšíření včetně normální formy a Brittonova lemmanatu, fundamentální grupa 2-komplexu.

4. **Kódy**

 Cyklotomické polynomy, exponent polynomu, algoritmy pro rozklad polynomu, lineární kódy, Hammingovy kódy, cyklické kódy, BCH kódy.

B5. Matematická logika a teorie množin (ML)

1. **Nerozhodnutelnost a neúplnost**

2. **Teorie modelů**

3. Transfinitní čísla, transitivní modely

4. Generické rozšíření. Nestandardní teorie

B6. Universální algebra a matematická logika (UL)

1. Universální algebra

Limity a kolimity diagramů, termy, volné algebry, variety a Birkhoffova věta, svazy variet, Malcevovy podmínky, Schreierova vlastnost, podmínky amalgamačního typu.

2. Automaty a pologrupy, přepisovací systémy

Regulární jazyky, gramatiky, syntaktické monoidy, bezkontextové jazyky, Eilenbergova věta, konvergence v grafech, kritické dvojice a unifikace termů, Knuth-Bendixův algoritmus, simplifikaceční dobré kvaziuspořádání.

3. Teorie modelů

tální věta, regulární ultramocnina.

4. Transfinitní čísla, transitivní modely

B7. Obecná topologie a teorie kategorií (TTK)

1. Obecná topologie

2. Topologické grupy a Lieovy grupy

Topologické grupy — levá a pravá uniformita, věta o otevřené poddgrupě, volné topologické grupy. Základy teorie Lieových grup, příklady Lieových grup.

3. Teorie kategorií

4. Algebraická topologie
Fundamentální grupa prostoru — základní vlastnosti. Singulární homologická a ko-homologická teorie, jejich základní vlastnosti. CW-komplexy — jejich elementární vlastnosti a určení jejich homologických grup. Některé aplikace algebraické topologie v analýze, topologii a geometrii. Věta o universálních koeficientech a Kunnethova formule.

B8. Dynamika (DYN)
1. Systémy diferenciálních rovnic
Systémy diferenciálních rovnic prvního řádu, stacionární body a jejich stabilita, linearizace, stabilní a nestabilní varieta, Ljapunovovy funkce, strukturální stabilita, bifurkace.
2. Dynamické systémy
Topologické dynamické systémy, trajektorie, pseudotrajektorie, periodické body a jejich stabilita, minimální, transitivní a chaotické systémy, distální a proximální systémy, atraktory, oblasti atrakce, rekurentní body, symbolická dynamika, topologická entropie.
3. Stochastické procesy
Stochastické procesy a jejich rozdělení, korelační funkce, stacionární procesy, Markovské procesy a řetězce.
4. Ergodická teorie
Metrické dynamické systémy, ergodické věty (von Neumannova a Birkhoffova), dekompozice invariantní míry na ergodické složky, isomorfismus a spektrální ekvivalence, Lebesgueovo a bodové spektrum, entropie.

B9. Teorie grafů a kombinatorické algoritmy (TG)
1. Grafy
2. Kombinatorika
3. Algoritmy
Díjkstrův algoritmus pro nejkratší cestu. Toky v sítích. Toky v sítích (moderní algoritmy). Minimální kostra grafu. Heuristické algoritmy pro těžké problémy (isomorfismus, barvení, minimal cut) a jejich analýza.
4. Výpočetní složitost
B10. Kombinatorická geometrie a geometrické algoritmy (KG)

1. Konvexitu

Věty o konvexních množinách, vlastnosti konvexních mnohostěnů (např. kombinatorická složitost), perfektní grafy, konvexitu a kombinatorické optimalizace (elipsoidová metoda, lineární programování).

2. Výpočetní složitost

Složitost algoritmu, modely výpočtu, teorie NP-úplnosti s důrazem na geometrické problémy (např. Steinerův problém).

3. Výpočetní geometrie

Voroneho diagram a Delaunayova triangulace, arrangementy nadrovin, strategie návrhu geometrických algoritmů (pravděpodobnostní, inkrementální), příklady efektivních algoritmů pro konkrétní problémy (problém lokalizace bodu, výpočet konvexního obalu, konstrukce arrangementu, lineární programování v malé dimenzi, triangulace mnohúhelníka v rovině).

4. Kombinatorická geometrie

Složitost arrangementu nadrovin (věta o zóně), kombinatorika bodů a přímek v rovině, geometrické reprezentace grafů a uspořádaných množin (průnikové a inkluzní).

Blok B studijního oboru Matematické struktury (STR)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvod do analýzy na varietách</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>GEM002</td>
</tr>
<tr>
<td>Základy matematické logiky</td>
<td>—</td>
<td>2/0 Zk</td>
<td>LTM006</td>
</tr>
<tr>
<td>Úvod do teorie grup</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>ALG017</td>
</tr>
<tr>
<td>Úvod do teorie Lieových grup</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>ALG018</td>
</tr>
<tr>
<td>Obecná topologie I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MAT039</td>
</tr>
<tr>
<td>Okruhy a moduly</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>ALG028</td>
</tr>
<tr>
<td>Komutativní algebra 1</td>
<td>—</td>
<td>3/1 Z, Zk</td>
<td>ALG015</td>
</tr>
<tr>
<td>Klasická teorie parcilních diferenciálních rovinic ²</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>DIR005</td>
</tr>
<tr>
<td>Základy teorie kategorií ²</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MAT001</td>
</tr>
</tbody>
</table>

1Předmět je ekvivalentní s předmětem Topologie (MAT018).

2Student volí jeden z takto označených předmětů podle vlastního výběru.

Doporučené předměty (blok C)

Zkratky v závorce označují téma státní závěrečné zkoušky, k němuž je předmět doporučen.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Přepisující systémy (AI,UL)</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>ALG011</td>
</tr>
<tr>
<td>Univerzální algebra 1,2 (AI,UL)</td>
<td>2/2 Z, Zk</td>
<td>2/2 Z</td>
<td>ALG012</td>
</tr>
<tr>
<td>Automaty a gramatiky (AI,UL)*</td>
<td>—</td>
<td>3/2 Z, Zk</td>
<td>TIN013</td>
</tr>
<tr>
<td>Kombinatorická teorie grup (AI)*</td>
<td>2/2 Z</td>
<td>2/0 Zk</td>
<td>ALG033</td>
</tr>
<tr>
<td>Konečná tělesa a lineární kódy 1 (AI)*</td>
<td>—</td>
<td>2/0 Zk</td>
<td>ALG013</td>
</tr>
<tr>
<td>Reprezentace grup 1,2 (AP)*</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>ALG021</td>
</tr>
<tr>
<td>Moduly a homologická algebra (AP)*</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>ALG029</td>
</tr>
<tr>
<td>Komutativní algebra 2 (AP)*</td>
<td>2/0 Zk</td>
<td>—</td>
<td>ALG016</td>
</tr>
</tbody>
</table>
4.2. Matematická analýza

Garantující pracoviště: katedra matematické analýzy
Odpovědný učitel: Doc. RNDr. Oldřich John, CSc.

Matematická analýza (MA) zahrnuje řadu oblastí matematiky — teorii funkcí reálné a komplexní proměnné, teorii míry a integrálu, funkcionální analýzu, obyčejné i parciální diferenciální rovnice, teorii potenciálu aj. Jejich vývoj byl inspirován také potřebami fyziky, biologie, ekonomie a jiných věd. Díky velmi vysoké adaptabilitě získané studiem a schopnosti podílet se tvořivě na řešení problémů z celé řady oborů je uplatnění absolventů značně univerzální a není omezeno na pracoviště s čistě badatelským zaměřením.

Studijní obor Matematická analýza obsahuje studijní plán Teorie funkcí, funkcionální analýzu a teorie potenciálu a studijní plán Diferenciální rovnice.
Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce (předměty bloku A, resp. B) jsou uváděny tučně, doporučené předměty (předměty bloku C) standardním písmem, nepovinné výběrové předměty kurzivou.

Příklad 1

(studijní plán Teorie funkcí, funkcionální analýza a teorie potenciálu)

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvod do funkcionální analýzy</td>
<td>—</td>
<td>—</td>
<td>RFA006</td>
</tr>
<tr>
<td>Úvod do komplexní analýzy</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MAA021</td>
</tr>
<tr>
<td>Úvod do analýzy na varietách</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>GEM002</td>
</tr>
<tr>
<td>Funkcionální analýza I</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>RFA005</td>
</tr>
<tr>
<td>Teorie funkci komplexní proměnné I</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MAA016</td>
</tr>
<tr>
<td>Obyčejné diferenciální rovnice</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>DIR001</td>
</tr>
<tr>
<td>Klasická teorie parcíálních diferenciálních rovnic</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>DIR005</td>
</tr>
<tr>
<td>Topologie</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MAT018</td>
</tr>
<tr>
<td>Diferenciální geometrie</td>
<td>—</td>
<td>2/0 Zk</td>
<td>GEM010</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderní teorie parcíálních diferenciálních rovnic</td>
<td>—</td>
<td>2/0 Zk</td>
<td>DIR004</td>
</tr>
<tr>
<td>Teorie funkci komplexní proměnné II</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MAA067</td>
</tr>
<tr>
<td>Teorie potenciálu I</td>
<td>2/0 Zk</td>
<td>—</td>
<td>DIR008</td>
</tr>
<tr>
<td>Variační počet *</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>DIR009</td>
</tr>
<tr>
<td>Funkcionální analýza 2</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>RFA007</td>
</tr>
<tr>
<td>Teorie reálných funkcí 1 *</td>
<td>2/0 Zk</td>
<td>—</td>
<td>RFA013</td>
</tr>
<tr>
<td>Teorie reálných funkcí 2 *</td>
<td>—</td>
<td>2/0 Zk</td>
<td>RFA014</td>
</tr>
</tbody>
</table>

Příklad 2

(studijní plán Diferenciální rovnice)

Doporučujeme, aby student v průběhu studia absolvoval některou z přednášek fyziky pro matematiky.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvod do funkcionální analýzy</td>
<td>—</td>
<td>—</td>
<td>RFA006</td>
</tr>
<tr>
<td>Úvod do komplexní analýzy</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MAA021</td>
</tr>
<tr>
<td>Úvod do analýzy na varietách</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>GEM002</td>
</tr>
<tr>
<td>Funkcionální analýza I</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>RFA005</td>
</tr>
<tr>
<td>Teorie funkci komplexní proměnné I</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MAA016</td>
</tr>
<tr>
<td>Obyčejné diferenciální rovnice</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>DIR001</td>
</tr>
<tr>
<td>Klasická teorie parcíálních diferenciálních rovnic</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>DIR005</td>
</tr>
</tbody>
</table>

75
Podmínky pro přihlášení ke státní závěrečné zkoušce

- splnění všeobecných podmínek (viz 3.6),
- absolvování bloku B studijního oboru MA,
- získání alespoň 10 bodů za semináře

Státní závěrečná zkouška

Ústní část státní závěrečné zkoušky studijního oboru Matematická analýza se skládá ze společných požadavků z okruhů Reálná a komplexní analýza, Funkcionální analýza, Diferenciální rovnice a z dalších požadavků jednotlivých studijních plánů.

Požadavky ke státní závěrečné zkoušce pro studijní plán Teorie funkcí, funkcionální analýza a teorie potenciálu

Reálná a komplexní analýza

1. **Teorie míry**
 - Míra, vnější míra, konstrukce, znaménkové míry, měřitelné funkce, Luzinova věta, Jegorovova věta, součin měr a Fubiniho věta, radialovým míry v R^n, Rieszova věta o reprezentaci, Radon-Nikodymová věta, derivování měr, Hausdorffova míra.

2. **Lebesgueův integrál**
 - Zavedení, limitní přechody, Fubiniho věta, věta substituce. Absolutně spojitě funkce a souvislost s neurčitým Lebesgueovým integrálem, derivace monotónní funkce, funkce s konečnou variací.

3. **Fourierovy řady**

4. **Holomorfní funkce**
 - Cauchy-Riemannovy podmínky, primitivní funkce a křivkový integrál, Cauchyova věta a Cauchyův vztah a jejich důsledky: vztah holomorfních funkcí a mocninových řad, princip maximálního modulu, Morerova věta, Stieltjes-Osgoodova věta, Osgoodova věta, Jensenova formule, Jordanova věta.
5. Izolované singularity holomorfních funkcí
Laurentovy řady, Casoratti-Weierstrassova věta, Picardova věta, reziduová věta, vlastnosti indexu bodu, aplikace reziduové věty.

6. Meromorfní funkce
Princip argumentu, Rouchéova věta, Mittag-Lefflerova věta, Cauchyova metoda rozkladu meromorfních funkcí, Rungeho věta, celé funkce a nekonečné součiny, funkce Γ a β.

7. Prostory holomorfních funkcí
Kompaktnost, úplnost, charakterizace duálu, aplikace.

8. Konformní zobrazení
Inverze holomorfních funkcí, Schwarzovo lemma, Riemannova věta, hraniční chování konformních zobrazení, příklady.

9. Holomorfní funkce více komplexních proměnných
Souvislost s mocninou řádu, oddělená holomorfnost, Cauchyův vzorec, věty o jednoznačnosti, Hartogsova věta, oblasti holomorfnosti.

10. Elementární analytické funkce
Logaritmus, obecná mocnina. Analytické funkce: zavedení, operace s analytickými funkcemi, Riemannova plocha, funkce neomezeně pokračovatelné — věta o monodromii, izolované singularity, příklady.

11. Integrální transformace
Laplaceova transformace: vlastnosti obrazu jako funkce komplexní proměnné, inverzní transformace, Fourierova transformace funkcí z L_1, L_2 i v $L_1(R^n)$, vlastnosti obrazu, obraz konvoluce a derivace, Plancherelova věta, inverzní transformace.

Funkcionální analýza

1. Banachovy prostory

2. Hilbertovy prostory
Ortogonální projekce, věta o nejlepší aproximaci, reprezentace spojité lineární formy, ortonormální báze.

3. Lokálně konvexní prostory

4. Spektrální teorie
Spektrum, rezolventa, spektrální poloměr prvku Banachovy algebry, rezolventní funkce, kompaktnost a neprázdnost spektra, vlastní čísla. Spektrum lineárního (i ne- spojitého) operátoru, kompaktní operáory, Fredholmovy věty, adjungované zobrazení, Hilbert-Schmidtova věta o kompaktních samoadjungovaných operátech, spektrální rozklad spojitého samoadjungovaného operátoru. Funkční kalkulus — Dunfordův — pro spojité operátory a holomorfní funkce a Rieszův pro samoadjungované operátory. Invariantní prostory a jejich existence.
5. Diferenciální počet v Banachových prostorech

Gateauxova a Fréchetova derivace, věta o implicitních funkcích a lokálním difeomorfismu. Věty o pevných bodech (Banachova, Brouwerova, Schauderova), topologický stupeň a jeho zavedení. Základy variačního počtu, formulace klasických úloh, nutná podmínka pro minimum, rovnice Euler-Lagrangeova, integrál z vektorové funkce (Riemannův, Pettisův).

Diferenciální rovnice

1. Diferenciální rovnice n-tého řádu a soustavy n rovnic prvního řádu

Řešení se spojitou derivací, lokálně absolutně spojité řešení. Existence a jednoznačnost (Carathéodoryho podmínky, podmínky pro jednoznačnost, maximální řešení). Spojitá závislost řešení na počátečních podmínkách a na parametrech. Vztah řešení a kompaktních podmnožin definičního oboru pravé strany.

2. Soustavy lineárních diferenciálních rovnic a rovnic n-tého řádu

Fundamentální systém, Liouvilleova formule, variace konstant. Autonomní soustavy, soustavy s periodickou maticí a její transformace na soustavu autonomní.

3. Diferencovatelnost řešení vzhledem k počátečním podmínkám

Rovnice ve variacích.

4. Autonomní soustavy

Posunutí řešení v časové ose, trajektorie a fázový prostor řešení. Tři typy řešení (stacionární, periodické, řešení nabývající každé své hodnoty pouze jednou). Stabilita stacionárního řešení. Stabilní a nestabilní varieta stacionárního řešení.

5. Bifurkace

6. Lokální řešitelnost Cauchyovy úlohy pro parciální diferenciální rovnice

7. Cauchyho úloha pro rovnici vedení tepla a vlnovou rovnici

Intuitivní odvození fundamentálních řešení, jednoznačnost řešení. Princip maxima pro rovnici vedení tepla. Rychlost šíření a zhazování počátečních podmínek. Charakter řešení vlnové rovnice, šíření vln v prostoru dimenze 1, 2, 3.

8. Fourierova metoda

Řešení okrajové úlohy pro rovnici vedení tepla a vlnovou rovnici v prostoru dimenze 1, pro Poissonovu rovnici na speciálních oblastech.

9. Harmonické funkce

Intuitivní odvození fundamentálního řešení okrajové úlohy pro Laplaceovu a Poissonovu rovnici, řešení Dirichletovy úlohy na kouli. Harmonické funkce a jejich vlastnosti: princip maxima, věta o průměru, Liouvilleova věta, Harnackovy věty. Metoda důkazu existence řešení Dirichletovy úlohy.

10. Existence zobecněného řešení eliptických úloh

Variaci formulace okrajové úlohy pro eliptickou lineární rovnici druhého řádu. Sobolevovy prostory, stopy, kompaktnost vnoření.
Požadavky ke státní závěrečné zkoušce pro studijní plán Diferenciální rovnice

Reálná a komplexní analýza

1. Teorie míry
 Míra, vnější míra, konstrukce, měřitelné funkce, Luzinova věta, součin měr a Fubiniova věta, Rieszova věta o reprezentaci, Radon-Nikodymová věta.

2. Lebesgueův integrál
 Zavedení, limitní přechody, Fubiniova věta, věta substitucí. Absolutně spojité funkce a souvislost s neurčitým Lebesgueovým integrálem, derivace monotonní funkce, funkce s konečnou variací.

3. Fourierovy řady
 L_1-teorie: Riemann-Lebesgueova věta, věta o lokalizaci, Jordan-Dirichletovo kriterium, $(C,1)$-sčítatelnost, Fejérova věta, L_2-teorie.

4. Holomorfní funkce
 Cauchy-Riemannovy podmínky, primitivní funkce a křivkový integrál, Cauchyova věta a Cauchyův vzorec a jejich důsledky: vztah holomorfních funkcí a mocninných řad, princip maxima modulu, Stieltjes-Osgoodova věta. Jordanova věta.

5. Izolované singularity holomorfních funkcí
 Laurentovy řady, Casoratti-Weierstrassova věta, residuová věta, vlastnosti indexu bodu, aplikace residuové věty.

6. Meromorfní funkce
 Princip argumentu, Rouchéova věta, Mittag-Lefflerova věta, funkce Γ a β.

7. Konformní zobrazení
 Inverze holomorfních funkcí, Schwarzovo lemma, Riemannova věta, příklady.

8. Holomorfní funkce více komplexních proměnných
 Souvislost s mocninnými řadami, oddělená holomorfnost, Cauchyův vzorec, věty o jednoznačnosti.

9. Elementární analytické funkce
 Logaritmus, obecná mocnina.

10. Diferenciální rovnice v komplexním oboru
 Existenční věty pro lineární diferenciální rovnice a jejich systémy, rovnice Fuchsova typu, příklady.

11. Integrální transformace
 Laplaceova transformace: vlastnosti obrazu jako funkce komplexní proměnné, inverzní transformace, užití v teorií obyčejných diferenciálních rovnic, Fourierova transformace funkcí z L_1, L_2 (i $L_1(R^n)$), vlastnosti obrazu, obraz konvoluce a derivace, Plancherelova věta, inverzní transformace. Fourierova transformace funkci z S, Fourierova transformace distribucí, užití v teorií diferenciálních rovnic.

Funkcionální analýza

1. Banachovy prostory
2. *Hilbertovy prostory*

Ortogonalní projekce, věta o nejlepší aproximaci, reprezentace spojité lineární formy, ortonormální báze.

3. *Lokálně konvexní prostory*

4. *Spektrální teorie*

Spektrum, rezolventa, spektrální poloměr prvku Banachovy algebry, rezolventní funkce, kompaktnost a neprázdnost spektra, vlastní čísla. Spektrum lineárního (i nespojitého) operátoru, kompaktní operátory, Fredholmovy věty, adjungované zobrazení, Hilbert–Schmidtova věta o kompaktních samoadjungovaných operátech, spektrální rozklad spojitého a nespojitého samoadjungovaného operátoru. Funkční kalkulus — Dunfordův — pro spojité operátory a holomorfní funkce.

5. *Diferenciální počet v Banachových prostorech*

Gateauxova a Fréchetova derivace, věta o implicitních funkcích a lokálním difeomorfismu. Věty o pevných bodech (Banachova, Brouwerova, Schauderova), použití na diferenciální a integrální rovnice, topologický stupeň a jeho zavedení. Základy variačního počtu, formule klasických úloh, nutná podmínka pro minimum, rovnice Euler–Lagrangeova, existenční věta pro konvexní polospojité funkcionály. Integrál z vektorové funkce (Riemannův, Bochnerův).

Diferenciální rovnice

1. *Diferenciální rovnice n-tého řádu a soustavy n rovnice prvního řádu*

Řešení se spojitou derivací, lokálně absolutně spojité řešení. Existence a jednoznačnost (Carathéodoryho podmínky, podmínky pro jednoznačnost, maximální řešení). Spojitá závislost řešení na počátečních podmínkách a na parametrech. Vztah řešení a kompaktních podmnožin definicihoho oboru pravé strany.

2. *Soustavy lineárních diferenciálních rovnic a rovnice n-tého řádu*

Fundamentální systém, Liouvilleova formule, variace konstant. Autonomní soustavy, soustavy s periodickou maticí a její transformace na soustavu autonomní. Okrajová úloha pro rovnice druhého řádu na kompaktním intervalu, adjungovaná úloha, Greenova funkce, samoadjungovaná úloha a úplný systém vlastních funkcí.

3. *Diferencovatelnost řešení vzhledem k počátečním podmínkám*

Rovnice ve variacích.

4. *Autonomní soustavy*

Posunutí řešení v časové ose, trajektorie a fázový prostor řešení. Tři typy řešení (stacionární, periodické, řešení nabývající každé své hodnoty pouze jednou). Stabilita stacionárního řešení. Stabilní a nestabilní varieta stacionárního řešení.

5. *První integrál*

Funkcionálně nezávislé první integrály.

6. *Asymptotické vlastnosti autonomních rovnic*

Limitní množiny, Poincaré–Bendixsonova teorie rovných soustav. Pojem chaotické řešení.
7. **Bifurkace**
 Jednoduché bifurkace stacionárního řešení autonomní rovnice. Hopfova bifurkace.

8. **Stabilita a asymptotická stabilita**
 Metoda ljapunovských funkcí.

9. **Lokální řešitelnost Cauchyho úlohy pro parcíální diferenciální rovnice**

10. **Cauchyho úloha pro rovnici vedení tepla a vlnovou rovnici**
 Intuitivní odvození fundamentálních řešení, jednoznačnost řešení. Princip maxima pro rovnici vedení tepla. Rychlost šíření a zhlazování počátečních podmínek. Charakter řešení vlnové rovnice, šíření vln v prostoru dimenze 1, 2, 3.

11. **Fourierova metoda**
 Řešení okrajové úlohy pro rovnici vedení tepla a vlnovou rovnici v prostoru dimenze 1, pro Poissonovu rovnici na speciálních oblastech.

12. **Harmonické funkce**
 Intuitivní odvození fundamentálního řešení okrajové úlohy pro Laplaceovu a Poissonovu rovnici, řešení Dirichletovy úlohy na kouli. Harmonické funkce a jejich vlastnosti: princip maxima, věta o průměru, Liouvilleova věta, Harnackovy věty, odstranitelné singularity. Metoda důkazu existence řešení Dirichletovy úlohy.

13. **Existence zobecněného řešení eliptických úloh**
 Variacioní formulace okrajové úlohy pro eliptickou lineární rovnici druhého řádu. Sobolevovy prostory (pro obecné p), stopy, kompaktnost vnoření.

14. **Nelineární eliptické rovnice**
 Slabá řešení, souvislost s variacioním počtem, metoda monotonních operátorů.

15. **Lineární a nelineární evoluční rovnice**
 Slabá řešení, semigrupy, apriorní odhady a jejich použití.

Blok B studijního oboru Matematická analýza (MA)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funkcionální analýza I</td>
<td></td>
<td>4/2 Z, Zk</td>
<td>RFA005</td>
</tr>
<tr>
<td>Teorie funkci komplexní proměnné I</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>MAA016</td>
</tr>
<tr>
<td>Teorie funkci komplexní proměnné II</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>MAA067</td>
</tr>
<tr>
<td>Obyčejné diferenciální rovnice</td>
<td>4/2 Z, Zk</td>
<td></td>
<td>DIR001</td>
</tr>
<tr>
<td>Klasická teorie parcíálních diferenciálních rovnice</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>DIR005</td>
</tr>
<tr>
<td>Moderní teorie parcíálních diferenciálních rovnice</td>
<td></td>
<td>2/0 Zk</td>
<td>DIR004</td>
</tr>
<tr>
<td>Úvod do analyzy na varietách</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>GEM002</td>
</tr>
</tbody>
</table>

Předměty (DIR005) a (DIR004) jsou ekvivalentní se zrušenou přednáškou M 138.
Předměty (MAA016) a (MAA067) jsou ekvivalentní se zrušenou přednáškou M 147.

Doporučené předměty (blok C)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topologie 1</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>MAT018</td>
</tr>
</tbody>
</table>
4.3. Výpočtová matematika

Garantující pracoviště: katedra numerické matematiky
Odpovědný učitel: RNDr. Jitka Segethová, CSc.

Výpočtová (numerická) matematika (VM) se zabývá zpracováním matematických modelů pomocí výpočetní techniky. Realizuje přechod od teoretické matematiky k prakticky použitelným výsledkům. S jejím použitím se lze setkat v technice a v přírodních vědách, v ekonomice, lékařských vědách aj. Student se seznámí jak s teorií výpočtových procesů a algoritmů, tak s aplikacemi v oblastech počítačového modelování, simulace a řízení složitých struktur a procesů. Důraz je kladen na tvorivou práci s počítačem, vytváření software na vysoké úrovni a práci s počítačovými sítiemi.

Absolventi nacházejí uplatnění především tam, kde se systematicky používá výpočetní technika (průmysl, školství, základní i aplikovaný výzkum, veřejná správa, justice, banky apod.).

Studijní obor Výpočtová matematika obsahuje studijní plány Výpočtová matematika — algoritmy, Výpočtová matematika — software a Výpočtová matematika pro průmyslovou praxi.

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce (předměty bloku A, resp. B) jsou uváděny tučně, doporučené předměty (předměty bloku C) standardním písmem, nepovinné výběrové předměty kurzivou.

Příklad 1

(studijní plán Výpočtová matematika — algoritmy)

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvod do funkcionální analýzy</td>
<td></td>
<td></td>
<td>RFA006</td>
</tr>
<tr>
<td>Úvod do komplexní analýzy</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>MAA021</td>
</tr>
<tr>
<td>Přibližné a numerické metody 1</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>NUM001</td>
</tr>
<tr>
<td>Funkcionální analýza</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>RFA017</td>
</tr>
<tr>
<td>Obyčejné diferenciální rovnice v reálném oboru</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>DIR012</td>
</tr>
<tr>
<td>Parciální diferenciální rovnice</td>
<td>2/2 Z</td>
<td>2/2 Z, Zk</td>
<td>DIR039</td>
</tr>
<tr>
<td>Metoda konečných prvků</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>NUM015</td>
</tr>
<tr>
<td>Numerická lineární algebra</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>NUM006</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerické metody matematické analýzy</td>
<td></td>
<td>2/0 Zk</td>
<td>NUM011</td>
</tr>
</tbody>
</table>
5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelineární diferenciální rovnice</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>DIR050</td>
</tr>
<tr>
<td>Seminář numerické matematiky</td>
<td>0/2 Z</td>
<td>0/2 Zk</td>
<td>NUM014</td>
</tr>
<tr>
<td>Bifurkační analýza dynamických systémů</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>NUM100</td>
</tr>
</tbody>
</table>

Příklad 2

(studijní plán Výpočtová matematika — software)

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvod do funkcionální analýzy</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>RFA006</td>
</tr>
<tr>
<td>Úvod do komplexní analýzy</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>MAA021</td>
</tr>
<tr>
<td>Obyčejné diferenciální rovnice v reálném oboru</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>DIR012</td>
</tr>
<tr>
<td>Parciální diferenciální rovnice</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>DIR039</td>
</tr>
<tr>
<td>Funkcionální analýza</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>RFA017</td>
</tr>
<tr>
<td>Metoda konečných prvků</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>NUM015</td>
</tr>
<tr>
<td>Základy matematické logiky</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>LTM006</td>
</tr>
<tr>
<td>Přibližné a numerické metody 1</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>NUM001</td>
</tr>
<tr>
<td>Numerická lineární algebra</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>NUM006</td>
</tr>
<tr>
<td>Numerické metody matematické analýzy</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>NUM011</td>
</tr>
<tr>
<td>Programování v C/C++</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>PRG012</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelineární numerická algebra I.</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>NUM021</td>
</tr>
<tr>
<td>Nelineární numerická algebra II.</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>NUM121</td>
</tr>
<tr>
<td>Numerické řešení diferenciálních rovnic</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>NUM010</td>
</tr>
<tr>
<td>Numerický software 1</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>NUM018</td>
</tr>
<tr>
<td>Numerický software 2</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>NUM019</td>
</tr>
<tr>
<td>Principy počítačů a operační systémy</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>PRM041</td>
</tr>
<tr>
<td>Automaty a gramatiky</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>TIN013</td>
</tr>
<tr>
<td>Vyčíslitelnost</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>LTM021</td>
</tr>
<tr>
<td>Teorie spline funkcí a waveletů 1</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>NUM016</td>
</tr>
<tr>
<td>Teorie spline funkcí a waveletů 2</td>
<td>2/0 Z</td>
<td>2/0 Zk</td>
<td>NUM017</td>
</tr>
</tbody>
</table>
5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminář numerické matematiky</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>NUM014</td>
</tr>
</tbody>
</table>

Příklad 3

(studijní plán Výpočtová matematika pro průmyslovou praxi)

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvod do funkcionální analýzy</td>
<td>—</td>
<td>—</td>
<td>RFA006</td>
</tr>
<tr>
<td>Úvod do komplexní analýzy</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MAA021</td>
</tr>
<tr>
<td>Funkcionální analýza</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>RFA017</td>
</tr>
<tr>
<td>Obyčejné diferenciální rovnice v reálném oboru</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>DIR012</td>
</tr>
<tr>
<td>Parciální diferenciální rovnice</td>
<td>2/2 Z</td>
<td>2/2 Z, Zk</td>
<td>DIR039</td>
</tr>
<tr>
<td>Metoda konečných prvků</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>NUM015</td>
</tr>
<tr>
<td>Přibližné a numerické metody 1</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>NUM001</td>
</tr>
<tr>
<td>Matematické modelování ve fyzice</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>MOD004</td>
</tr>
<tr>
<td>Numerická lineární algebra</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>NUM006</td>
</tr>
<tr>
<td>Jedna dvousemestrální přednáška</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>z doporučených výběrových přednášek (viz dále)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teorie spline funkci a waveletů 1</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>NUM016</td>
</tr>
<tr>
<td>Teorie spline funkci a waveletů 2</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>NUM017</td>
</tr>
<tr>
<td>Numerický software 1</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>NUM018</td>
</tr>
<tr>
<td>Numerický software 2</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>NUM019</td>
</tr>
<tr>
<td>Numerické řešení evolučních rovnic</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>NUM012</td>
</tr>
<tr>
<td>Nelineární numerická algebra I.</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>NUM021</td>
</tr>
<tr>
<td>Nelineární numerická algebra II.</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>NUM121</td>
</tr>
<tr>
<td>Tři dvousemestrální přednášky z doporučených výběrových přednášek (viz dále)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Doporučené výběrové přednášky pro 3. a 4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerické modelování problémů elektrotechniky 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MOD023</td>
</tr>
<tr>
<td>Numerické modelování problémů elektrotechniky 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MOD024</td>
</tr>
<tr>
<td>Matematické metody v mechanice tekutin</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>MOD001</td>
</tr>
<tr>
<td>Tvarová a materiálová optimalizace</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>MOD005</td>
</tr>
<tr>
<td>Úvod do fyziky plazmatu a počítačové fyziky</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>FYM012</td>
</tr>
<tr>
<td>Matematické modely přenosu částic</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>MOD016</td>
</tr>
</tbody>
</table>
Podmínky pro přihlášení ke státní závěrečné zkoušce

- splnění všeobecných podmínek (viz 3.6),
- absolvování bloku B studijního oboru VM,
- získání alespoň 24 bodů za doporučené předměty.

Státní závěrečná zkouška

Ústní část státní závěrečné zkoušky studijního oboru Výpočtová matematika se skládá ze společných požadavků z okruhů Matematická a funkcionální analýza, Numerické metody a z dalších požadavků jednotlivých studijních plánů.

Požadavky ke státní závěrečné zkoušce

I. Společné požadavky

Matematická a funkcionální analýza

1. Základy diferenciálního a integrálního počtu

2. Obyčejné diferenciální rovnice
Věty o existenci a jednoznačnosti řešení počátečních úloh. Lineární rovnice s konstantními koeficienty. Závislost řešení na počátečních podmínkách a parametrech. Okrajové úlohy.

3. Parciální diferenciální rovnice matematické fyziky
Klasifikace parciálních diferenciálních rovnic 2. řádu, Cauchyova a smíšená úloha pro rovnici struny a vedení tepla. Úlohy pro Poissonovu rovnici a vlnovou rovnici. Harmonické funkce. Slabá řešení.

4. Základy komplexní analýzy
Základní pojmy. Cauchyova a reziduová věta, Laurentova řada, meromorfní funkce.

5. Základní pojmy funkcionální analýzy
Metrické, Banachovy a Hilbertovy prostory. Příklady.

6. Lineární operátory a funkcionály
Spojité lineární operátory a funkcionály, uzavřené lineární operátory. Věty o rozšíření, princip stejnoměrné omezenosti a Banachova-Steinhausova věta a jejich aplikace. Duální operátory.

7. Spektrální teorie lineárních operátorů
Spektrum, rezolventní množina, rezolventa, základní vlastnosti. Funkce operátoru.
8. Speciální typy operátorů
Samoadjungované a kompaktní operátory a jejich spektrální vlastnosti. Aplikace na řešení integrálních rovnic. Monotónní operátory.

Numerické metody
1. Interpolace a aproximace funkcí
Lagrangeova a Hermiteova interpolace, konvergence. Interpolace pomocí spline-funkci. Aproximace funkcí metodou nejmenších čtverců.
2. Numerická kvadratura
3. Numerické metody lineární algebry
LU faktorizace a Gaussova eliminace, pivotace. Základní iterační metody, gradientní metody. Šoštavy s obdélníkovou maticí, nejlepší řešení ve smyslu nejmenších čtverců. Metody výpočtu vlastních čísel matice. Mocninná metoda, přehled metod.
4. Řešení nelineárních algebraických úloh
Newtonova metoda pro řešení nelineární rovnice a jejich soustav. Separace kořenů polynomu a metody pro výpočet kořenů polynomu.
5. Minimalizace funkcionálu
Metody spádových směrů, metody sdružených gradientů, metody s lokálně omezeným krokom, metody s proměnnou metrikou.
6. Numerické řešení obyčejných diferenciálních rovnic
Jednokrokové a vícekrokové metody řešení počátečních úloh. Základní metody řešení okrajových úloh, metoda sítí, variační metody.
7. Numerické metody řešení parciálních diferenciálních rovnic
Základní metody řešení eliptických, parabolických a hyperbolických úloh — metoda sítí, variační metody, metoda konečných prvků.

II. Užší zaměření
Studijní plán Výpočtová matematika — algoritmy (1)
1. Teorie monotónních a potenciálních operátorů
Věty o existenci a jednoznačnosti.
2. Nelineární operátové rovnice
3. Projektivní metody
Metoda bikonjugovaných gradientů. Metoda GMRES.

Studijní plán Výpočtová matematika — software (2)
1. Počítače a operační systémy
Výpočtová matematika

2. Výroková a predikátová logika

3. Automaty a jazyky

4. Vyčíslitelnost
Algoritmicky vyčíslitelné funkce, jejich vlastnosti, ekvivalence jejich různých matematických definic. Rekursivní a rekursivně spočetné množiny a jejich vlastnosti.

Studijní plán Výpočtová matematika pro průmyslovou praxi (3)

1. Matematické metody pružných a pružně plastických těles
Odvození základních rovnic, klasické formulace úloh lineární pružnosti, variační principy v teorii malých deformací, slabé řešení úloh lineární pružnosti, pružně plastická tělesa, numerické metody řešení.

2. Matematické metody v mechanice tekutin
Odvození základních rovnic, nevířivé proudění (Bernoulliova rovnice, potenciál rychlosti, proudová funkce, okrajové úlohy popisující nevířivé proudění), zavířené proudění (Eulerovy rovnice, nelineární hyperbolické systémy, slabá řešení, entropická podmínka), vazké nestlačitelné proudění (Navierovy-Stokesovy rovnice, slabá řešení), základní numerické metody.

3. Matematické modely v elektrotechnice
Formulace a analýza rovnic pro nelineární magnetické a teplotní pole v elektrických strojích, matematický popis polovodičových součástek, hlavní třídy numerických metod (metoda konečných prvků, metoda sítí, bilanční metoda), apriorní a aposteriorní odhady chyby.

Blok B studijního oboru Výpočtová matematika (VM)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obyčejné diferenciální rovnice v reálném oboru</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>DIR012</td>
</tr>
<tr>
<td>Parciální diferenciální rovnice</td>
<td>2/2 Z</td>
<td>2/2 Z, Zk</td>
<td>DIR039</td>
</tr>
<tr>
<td>Numerický software 1</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>NUM018</td>
</tr>
<tr>
<td>Numerický software 2</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>NUM019</td>
</tr>
<tr>
<td>Metoda konečných prvků</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>NUM015</td>
</tr>
</tbody>
</table>

Doporučené předměty (blok C)
Čísla v závorce označují studijní plán, k němuž je předmět zejména doporučen.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funkcionální analýza (1, 2, 3)</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>RFA017</td>
</tr>
<tr>
<td>Nelineární funkcionální analýza (1)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>RFA018</td>
</tr>
</tbody>
</table>

87
4.4. Pravděpodobnost, matematická statistika a ekonometrie

Studijní obor Pravděpodobnost, matematická statistika a ekonometrie zahrnuje čtyři studijní plány:

Ekonometrie	4.4.1
Matematická statistika	4.4.2
Teorie pravděpodobnosti a náhodné procesy	4.4.3
Matematika a management	4.4.4

4.4.1. Ekonometrie

Garantující pracoviště: katedra pravděpodobnosti a matematické statistiky
Odpovědný učitel: Prof. RNDr. Jitka Dupačová, DrSc.
Ekonometrie (EK) se zabývá matematickým modelováním složitých ekonomických jevů a systémů, analýzou a verifikací těchto modelů, predikcí a optimálním rozhodování. Vychází z matematické ekonomie, využívá a rozvíjí potřebné statistické a optimizační metody, včetně jejich výpočtové realizace, i metody z oblasti náhodných procesů a časových řad. Studenti se mohou zaměřit na finanční matematiku, speciální partie statistiky používané v průmyslu a managementu, v průzkumu trhu apod., mohou si doplnit znalosti ekonomie, informatiky i abstraktní matematiky.

Absolventi se uplatní ve všech oblastech vyžadujících hlubší znalosti matematiky a statistiky, především ve finančním sektoru a ve státním i soukromém managementu.

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce (předměty bloku A resp. B) jsou uváděny tučně.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická statistika 1</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>STP001</td>
</tr>
<tr>
<td>Matematická statistika 2</td>
<td>—</td>
<td>4/2</td>
<td>Z, Zk</td>
</tr>
<tr>
<td>Optimalizace I</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>EKN011</td>
</tr>
<tr>
<td>Teorie pravděpodobnosti 1</td>
<td>4/0</td>
<td>Zk</td>
<td>STP050</td>
</tr>
<tr>
<td>Úvod do komplexní analýzy</td>
<td>2/2</td>
<td>Z, Zk</td>
<td>MAA021</td>
</tr>
<tr>
<td>Matematická ekonomie</td>
<td>—</td>
<td>4/0</td>
<td>Zk</td>
</tr>
<tr>
<td>Doporučené přednášky a cvičení</td>
<td>—</td>
<td>4/2</td>
<td>Z, Zk</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Náhodné procesy I</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>STP038</td>
</tr>
<tr>
<td>Náhodné procesy II</td>
<td>—</td>
<td>4/2</td>
<td>Z, Zk</td>
</tr>
<tr>
<td>Ekonometrie</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>EKN001</td>
</tr>
<tr>
<td>Úvod do funkcionální analýzy</td>
<td>—</td>
<td>2/2</td>
<td>Z, Zk</td>
</tr>
<tr>
<td>Základní seminář</td>
<td>0/2</td>
<td>Z</td>
<td>EKN003</td>
</tr>
<tr>
<td>Seminář pro ekonometry</td>
<td>—</td>
<td>0/2</td>
<td>Z</td>
</tr>
<tr>
<td>Doporučené přednášky a cvičení</td>
<td>4/0</td>
<td>Zk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/2</td>
<td>Z, Zk</td>
<td></td>
</tr>
</tbody>
</table>

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminář — modelování v ekonomii</td>
<td>0/2</td>
<td>Z</td>
<td>EKN005</td>
</tr>
<tr>
<td>Doporučené přednášky a cvičení</td>
<td>4/2</td>
<td>Z, Zk</td>
<td></td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení ke státní závěrečné zkoušce

- splnění všeobecných podmínek (viz 3.6),
- absolvování bloku B studijního plánu EK,
- získání alespoň 20 bodů za doporučené předměty,

Státní závěrečná zkouška

Ústní část státní závěrečné zkoušky studijního plánu Ekonometrie se skládá z požadavků z okruhů Základy statistiky, Náhodné procesy, Ekonometrie.

Požadavky ke státní závěrečné zkoušce

1. **Základy statistiky**

 Prostý a uspořádaný náhodný výběr, korelační a regresní analýza. Výběry z konečných populací. Transformace náhodných vektorů, jednorozměrné a mnohorozměrné normální rozdělení, χ^2, t a F rozdělení a jejich použití.

 Základní poznatky z teorie odhadu a testování hypotéz. Vlastnosti odhadů, konstrukce testů.

 Wishartovo a Hotellingovo rozdělení, odhady a testy v mnohorozměrném normálním rozdělení. Hlavní komponenty, kanonické korelace, faktorová a diskriminační analýza.

 Regresní modely, vlastnosti reziduí a jejich použití v regresní diagnostice.

2. **Náhodné procesy**

 Markovovy řetězce s diskrétním časem, řízené řetězce. Markovovy řetězce se spojitým časem, Kolmogorovovy diferenciální rovnice, procesy množení a zániku, modely hromadné obsluhy.

3. **Ekonometrie**

 Různé zobecnění klasického modelu lineární regrese v rámci ekonometrie. Soustavy simultánních rovnic (odhady, identifikace, predikce).

Blok B studijního plánu Ekonometrie (EK)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická statistika 1</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP001</td>
</tr>
<tr>
<td>Matematická statistika 2</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP002</td>
</tr>
<tr>
<td>Teorie pravděpodobnosti 1</td>
<td>4/0 Zk</td>
<td>—</td>
<td>STP050</td>
</tr>
<tr>
<td>Optimalizace I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>EKN011</td>
</tr>
<tr>
<td>Matematická ekonomie</td>
<td>—</td>
<td>4/0 Zk</td>
<td>EKN009</td>
</tr>
<tr>
<td>Ekonometrie</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>EKN001</td>
</tr>
<tr>
<td>Náhodné procesy I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP038</td>
</tr>
<tr>
<td>Náhodné procesy II</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP039</td>
</tr>
<tr>
<td>Základní seminář</td>
<td>0/2 Z</td>
<td>—</td>
<td>EKN003</td>
</tr>
<tr>
<td>Seminář pro ekonometrii</td>
<td>—</td>
<td>0/2 Z</td>
<td>EKN024</td>
</tr>
<tr>
<td>Seminář — modelování v ekonomii</td>
<td>0/2 Z</td>
<td>—</td>
<td>EKN005</td>
</tr>
</tbody>
</table>
Matematická statistika

Doporučené předměty (blok C)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mnohorozměrná statistická analýza</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>STP018</td>
</tr>
<tr>
<td>Regrese *</td>
<td>4/2 Z, Zk</td>
<td></td>
<td>STP094</td>
</tr>
<tr>
<td>Časové řady</td>
<td></td>
<td>4/2 Z, Zk</td>
<td>STP006</td>
</tr>
<tr>
<td>Teorie skladu a obsluhy *</td>
<td></td>
<td>2/0 Zk</td>
<td>STP133</td>
</tr>
<tr>
<td>Variační problémy matematické ekonomie</td>
<td>2/0 Zk</td>
<td></td>
<td>EKN008</td>
</tr>
<tr>
<td>Optimalizace II s aplikací ve financích *</td>
<td></td>
<td>4/2 Z, Zk</td>
<td>EKN004</td>
</tr>
<tr>
<td>Výpočetní prostředí pro statistickou analýzu dat</td>
<td>4/2 Z, Zk</td>
<td></td>
<td>STP004</td>
</tr>
<tr>
<td>Statistická kontrola jakosti</td>
<td></td>
<td>4/0 Zk</td>
<td>STP013</td>
</tr>
<tr>
<td>Ankety a výběry z konečných populací</td>
<td>2/0 Zk</td>
<td></td>
<td>STP027</td>
</tr>
<tr>
<td>Analýza investic *</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>FAP005</td>
</tr>
<tr>
<td>Matematika ve finančních a pojišťovníctví</td>
<td></td>
<td>4/0 Zk</td>
<td>FAP004</td>
</tr>
<tr>
<td>Ekonomie I 1</td>
<td>2/2 Z</td>
<td></td>
<td>EKN033</td>
</tr>
<tr>
<td>Ekonomie II 1</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>EKN034</td>
</tr>
<tr>
<td>Pokročilé partie ekonometrie *</td>
<td></td>
<td>2/0 Zk</td>
<td>EKN007</td>
</tr>
<tr>
<td>Stochastická analýza *</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>STP119</td>
</tr>
<tr>
<td>Matematika pro management a marketing</td>
<td>4/0 Zk</td>
<td></td>
<td>MAN005</td>
</tr>
<tr>
<td>Seminář z výpočetních aspektů optimalizace*</td>
<td></td>
<td>0/2 Z</td>
<td>UOS006</td>
</tr>
</tbody>
</table>

1Výuka probíhá na FSV UK.

4.4.2. Matematická statistika

Garantující pracoviště: katedra pravděpodobnosti a matematické statistiky
Odpovědný učitel: Prof. RNDr. Jana Jurečková, DrSc.

Matematická statistika (MS) vychází z moderní teorie pravděpodobnosti. Zabývá se především takovými modely reálného světa, které berou v úvahu možné náhodné vlivy. Její metody jsou stále více využívány k vyhodnocování informací založených pouze na částečných znalostech. Studenti se seznámí jak se základy statistického uvažování, tak s celou škálou metod používaných v praxi včetně práce se statistickými programovými systémy. Mohou se také seznámit s aplikacemi v nejrůznějších oblastech — např. v biologii, medicíně a průmyslu.

Vzhledem k univerzálnímu zaměření studia je uplatnění absolventů velmi široké, např. v lékařské informatice, biologickém výzkumu, v organizacích státní správy, ve výzkumných ústavech, na vysokých školách a řadě dalších institucí.

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce (předměty bloku A resp. B) jsou uváděny tučně.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická statistika 1</td>
<td>4/2 Z, Zk</td>
<td></td>
<td>STP001</td>
</tr>
<tr>
<td>Matematická statistika 2</td>
<td></td>
<td>4/2 Z, Zk</td>
<td>STP002</td>
</tr>
<tr>
<td>Teorie pravděpodobnosti 1</td>
<td>4/0 Zk</td>
<td></td>
<td>STP050</td>
</tr>
<tr>
<td>Úvod do komplexní analýzy</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>MAA021</td>
</tr>
<tr>
<td>Název</td>
<td>ZS</td>
<td>LS</td>
<td>Kód</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Úvod do funkcionální analýzy</td>
<td>—</td>
<td>2/2 Z Zk</td>
<td>RFA006</td>
</tr>
<tr>
<td>Optimalizace I</td>
<td>4/2 Z Zk</td>
<td>—</td>
<td>EKN011</td>
</tr>
<tr>
<td>Doporučené přednášky a cvičení</td>
<td>—</td>
<td>4/2 Z Zk</td>
<td></td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Náhodné procesy I</td>
<td>4/2 Z Zk</td>
<td>—</td>
<td>STP038</td>
</tr>
<tr>
<td>Náhodné procesy II</td>
<td>—</td>
<td>4/2 Z Zk</td>
<td>STP039</td>
</tr>
<tr>
<td>Statistický seminář I</td>
<td>0/2 Z</td>
<td>—</td>
<td>STP008</td>
</tr>
<tr>
<td>Statistický seminář II</td>
<td>—</td>
<td>0/2 Z</td>
<td>STP009</td>
</tr>
<tr>
<td>Doporučené přednášky a cvičení</td>
<td>4/0 Zk</td>
<td>4/2 Z Zk</td>
<td></td>
</tr>
<tr>
<td>Doporučené přednášky a cvičení</td>
<td>4/2 Z Zk</td>
<td>4/0 Zk</td>
<td></td>
</tr>
</tbody>
</table>

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistický seminář III</td>
<td>0/2 Z</td>
<td>—</td>
<td>STP010</td>
</tr>
<tr>
<td>Doporučené přednášky a cvičení</td>
<td>4/2 Z Zk</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení ke státní závěrečné zkoušce

- splnění všeobecných podmínek (viz 3.6),
- absolvování bloku B studijního plánu MS,
- získání alespoň 30 bodů za doporučené předměty.

Státní závěrečná zkouška

Ústní část státní závěrečné zkoušky studijního plánu Matematická statistika se skládá z požadavků z okruhů Základy pravděpodobnosti a statistiky, Náhodné procesy, Matematická statistika.

Požadavky ke státní závěrečné zkoušce

1. Základy pravděpodobnosti a statistiky

Pravděpodobnostní prostor, podmíněná pravděpodobnost, nezávislost náhodných jevů, Bayesova věta pro náhodné jevy, 0-1 zákon, Borel-Cantelliho lemma.

Definice náhodné veličiny a náhodného vektoru, nezávislost náhodných veličin a vektorů, distribuční funkce, diskrétní a spojitě rozdělení, střední hodnota, rozptyl a variační matice, nezávislost, Čebyševova nerovnost, slabý a silný zákon velkých čísel, centrální limitní věty, důležité rozdělení (normální, t, F, χ^2, exponenciální, rovnoměrné, alternativní, binomické, negativně binomické, Poissonovo, multinomické, hypergeometrické), souvislost mezi nimi, aproximace, použití.

Nulová a alternativní hypotéza, kritický obor, hladina testu, Neyman-Pearsonovo lemma, bodové a intervalové odhady, nestrannost, konsistence a eficiencie odhadů, Rao-Cramérova věta, postačující a úplné statistiky.
Náhodný výběr, uspořádaný náhodný výběr, t-testy, F-test shody rozptylů, F-test podmodelu, \(\chi^2 \)-testy dobré shody, testy v kontingenčních tabulkách, logaritmicko-lineární modely.

Regresní modely, vlastnosti reziduí a jejich použití v regresní diagnostice, kritéria pro hodnocení návrhů experimentů.

2. Náhodné procesy

Markovovy řetězce s diskrétním časem, počáteční rozdělení, pravděpodobnosti přechodu, absolutní pravděpodobnosti, klasifikace stavů, rozložitelné a nerozložitelné řetězce, stacionární rozdělení, Markovovy řetězce s oceněním a diskontováním, řízené řetězce.

Markovovy řetězce se spojitým časem (konečné a spočetné), intenzity přechodu, Kolmogorovovy diferenciální rovnice, limitní pravděpodobnosti, Poissonův proces, Yu-leův proces, lineární a obecný proces růstu a zániku. Markovské modely hromadné obsluhy.

3. Vybrané partie stochastiky

Teorie testování hypotéz, stejnoměrně nejsilnější test a stejnoměrně nejsilnější ne-stranný test.

Principy bayesovského statistického uvažování, metody volby apriorních rozdělení, bayesovské intervalové a bodové odhady.

Mnohorozměrné normální rozdělení a odhad jeho parametrů, Wishartovo a Hotellingovo rozdělení, jejich vztah k jednorozměrným rozdělením, použití. Hlavní komponenty, kanonické korelace, diskriminační a shluková analýza.

Waldův sekvenční test a jeho modifikace, operační charakteristika a střední počet pozorování. Waldovy nerovnosti a jejich použití.

Jednovýběrové a dvouvýběrové pořadové testy, pořadové testy nezávislosti, jejich základní vlastnosti. Nejpoužívanější pořadové testy. Robustní odhady parametrů (M-odhady) a jejich vlastnosti.

Základní typy pravděpodobnostních výběrů, pravděpodobnosti zahrnutí, odhady průměru a úhrnu, optimální alokace, poměrový a regresní odhad při prostém náhodném výběru.

Blok B studijního plánu Matematická statistika (MS)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická statistika 1</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP001</td>
</tr>
<tr>
<td>Matematická statistika 2</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP002</td>
</tr>
<tr>
<td>Teorie pravděpodobnosti 1</td>
<td>4/0 Zk</td>
<td>—</td>
<td>STP050</td>
</tr>
<tr>
<td>Náhodné procesy I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP038</td>
</tr>
<tr>
<td>Náhodné procesy II</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP039</td>
</tr>
<tr>
<td>Statistický seminář I</td>
<td>0/2 Z</td>
<td>—</td>
<td>STP008</td>
</tr>
<tr>
<td>Statistický seminář II</td>
<td>—</td>
<td>0/2 Z</td>
<td>STP009</td>
</tr>
<tr>
<td>Statistický seminář III</td>
<td>0/2 Z</td>
<td>—</td>
<td>STP010</td>
</tr>
</tbody>
</table>
Doporučené předměty (blok C)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mnohorozměrná statistická analýza</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>STP018</td>
</tr>
<tr>
<td>Sekvenční a bayesovské metody</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP024</td>
</tr>
<tr>
<td>Neparametrické a robustní metody</td>
<td>4/0 Zk</td>
<td>—</td>
<td>STP085</td>
</tr>
<tr>
<td>Analyza kategoriálních dat</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>STP128</td>
</tr>
<tr>
<td>Vybrané partie ze stochastiky</td>
<td>3/0 Zk</td>
<td>3/0 Zk</td>
<td>STP143</td>
</tr>
<tr>
<td>Navrhování experimentů</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>STP120</td>
</tr>
<tr>
<td>Ankety a výběry z konečných populací</td>
<td>2/0 Zk</td>
<td>—</td>
<td>STP027</td>
</tr>
<tr>
<td>Regresie</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP094</td>
</tr>
<tr>
<td>Časové řady</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP006</td>
</tr>
<tr>
<td>Teorie skladu a obsluhy</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP133</td>
</tr>
<tr>
<td>Řízení jakosti a spolehlivosti</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MAN004</td>
</tr>
<tr>
<td>Teorie odhadu a testování hypotéz</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP028</td>
</tr>
<tr>
<td>Výpočetní prostředí pro statistickou analýzu dat</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP004</td>
</tr>
<tr>
<td>Teorie pravděpodobnosti 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP051</td>
</tr>
<tr>
<td>Čvičení z teorie pravděpodobnosti 1</td>
<td>0/2 Z</td>
<td>—</td>
<td>STP144</td>
</tr>
<tr>
<td>Čvičení z teorie pravděpodobnosti 2</td>
<td>—</td>
<td>0/2 Z</td>
<td>STP145</td>
</tr>
<tr>
<td>Statistická kontrola jakosti</td>
<td>—</td>
<td>4/0 Zk</td>
<td>STP013</td>
</tr>
<tr>
<td>Matematika ve finančních a pojišťovnictví</td>
<td>—</td>
<td>4/0 Zk</td>
<td>FAP004</td>
</tr>
<tr>
<td>Zobecněné lineární modely</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>STP126</td>
</tr>
<tr>
<td>Stochastická analýza</td>
<td>4/0 Zk</td>
<td>—</td>
<td>STP149</td>
</tr>
<tr>
<td>Prostorové modelování, prostorová statistika</td>
<td>4/0 Zk</td>
<td>—</td>
<td>STP005</td>
</tr>
<tr>
<td>Statistické praktikum</td>
<td>—</td>
<td>0/2 Z</td>
<td>STP106</td>
</tr>
<tr>
<td>Statistická teorie informace</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP150</td>
</tr>
<tr>
<td>Limitní věty pro součety náhodných veličin</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP157</td>
</tr>
<tr>
<td>Statistická rozhodovací teorie</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP158</td>
</tr>
<tr>
<td>Markovské distribuce nad grafy</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP127</td>
</tr>
<tr>
<td>Metody MCMC (Markov chain Monte Carlo)</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>STP139</td>
</tr>
</tbody>
</table>

*Takto označené předměty nejsou vyučovány každý rok.

4.4.3. Teorie pravděpodobnosti a náhodné procesy

Garantující pracoviště: katedra pravděpodobnosti a matematické statistiky
Odpovědný učitel: Prof. RNDr. Viktor Beneš, DrSc.

Studijní plán Teorie pravděpodobnosti a náhodné procesy (TP) nabízí vzdělání v oblasti pravděpodobnosti a matematické statistiky s cílem vychovat odborníky pro tvorbu a užití pravděpodobnostních modelů v přírodovědných, technických i ekonomických oborech. Studium náhodných procesů v čase je dotaženo až k řešení stochastických diferenciálních rovnic, které slouží např. k optimálnímu řízení. Současně probíhá výuka modelování v prostoru s četnými aplikacemi. Absolvování zaměření umožňuje specializaci v průmyslové matematice, v biomatematice, matematické statistice i v matematice finanční či pojistné.
Uplatnění absolventů je možné na vysokých školách a ve výzkumných ústavech, mimo akademickou sféru v průmyslu, v oblastech bankovnictví a pojišťovnictví či informačních technologií.

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce (předměty bloku A resp. B) jsou uváděny tučně.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Náhodné procesy I</td>
<td>4/2</td>
<td>Zk</td>
<td>STP038</td>
</tr>
<tr>
<td>Náhodné procesy II</td>
<td>—</td>
<td>4/2</td>
<td>STP039</td>
</tr>
<tr>
<td>Teorie pravděpodobnosti 1</td>
<td>4/0</td>
<td>Zk</td>
<td>STP050</td>
</tr>
<tr>
<td>Teorie pravděpodobnosti 2</td>
<td>—</td>
<td>2/0</td>
<td>STP051</td>
</tr>
<tr>
<td>Matematická statistika 1</td>
<td>4/2</td>
<td>Zk</td>
<td>STP001</td>
</tr>
<tr>
<td>Úvod do komplexní analýzy</td>
<td>2/2</td>
<td>Zk</td>
<td>MAA021</td>
</tr>
<tr>
<td>Úvod do funkcionální analýzy</td>
<td>—</td>
<td>2/2</td>
<td>RFA006</td>
</tr>
<tr>
<td>Doporučené předměty</td>
<td>4/2</td>
<td>Z,Zk</td>
<td></td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastická analýza</td>
<td>4/2</td>
<td>Zk</td>
<td>STP119</td>
</tr>
<tr>
<td>Prostorové modelování, prostoreová statistika</td>
<td>4/0</td>
<td>Zk</td>
<td>STP005</td>
</tr>
<tr>
<td>Stochastické diferenciální rovnice</td>
<td>—</td>
<td>4/0</td>
<td>DIR041</td>
</tr>
<tr>
<td>Seminář z pravděpodobnosti I</td>
<td>0/2</td>
<td>Z</td>
<td>STP121</td>
</tr>
<tr>
<td>Seminář z pravděpodobnostních rozdělení</td>
<td>2/0</td>
<td>Z</td>
<td>STP118</td>
</tr>
<tr>
<td>Doporučené předměty</td>
<td>4/0</td>
<td>Zk</td>
<td>STP118</td>
</tr>
</tbody>
</table>

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminář z pravděpodobnosti III</td>
<td>0/2</td>
<td>Z</td>
<td>STP123</td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení ke státní závěrečné zkoušce

- splnění všeobecných podmínek (viz 3.6),
- absolvování bloku B studijního plánu TP,
- získání alespoň 20 bodů za přednášky a 2 bodů za cvičení ze seznamu doporučených předmětů,

Státní závěrečná zkouška

Ústní část státní závěrečné zkoušky studijního plánu Teorie pravděpodobnosti a náhodné procesy se skládá z požadavků z okruhů Teorie pravděpodobnosti a základy matematické statistiky, Stochasticální dynamika, Náhodné procesy.

Požadavky ke státní závěrečné zkoušce

1. **Základy pravděpodobnosti a statistiky**

 Pravděpodobnostní prostor, podmíněná pravděpodobnost, Bayesova věta. Náhodná veličina a vektor, jejich charakteristiky, základní jednorozměrná a mnohorozměrná rozdělení.

 Typy konvergence náhodných veličin. Charakteristické funkce, nezávislost, mula-jednotkové zákony, zákony velkých čísel, centrální limitní věty. Podmíněná střední hodnota, martingaly s diskrétním časem a jejich konvergence, centrální limitní věta pro martingalové difference.

 Prostý a uspořádaný náhodný výběr, postačující a úplné statistiky, bodový a intervalový odhad nestranost, konzistence a vydatnost, Rao-Cramerova věta. Nulová a alternativní hypotéza, kritický obor, hladina testu, Neyman-Pearsonovo lemma, p-hodnota, t-testy, chí-kvadrát test shody a nezávislosti v kontingenční tabulce. Korelační a regresní analýza, lineární model.

2. **Náhodné procesy**

 Poissonův a Coxův bodový proces, shlukové a regulární modely. Charakteristiky bodových procesů a jejich odhady. Konečné procesy dané hustotou, podmíněná intenzita, věrohodnost a pseudověrohodnost pro bodové procesy. MCMC (Markovské Monte Carlo), Metropolis-Hastingsův algoritmus, perfektní simulace.

3. **Vybrané partie stochastiky**

 Stochastické diferenciální rovnice, silná řešení, existence a jednoznačnost řešení pro rovnice s lipschitzovskými koeficienty. Lineární rovnice, explicitní řešení. Markovské bodové procesy, Straussův model, procesy s plošnou interakcí. Hammersley-Cliffordova věta.

Blok B studijního plánu Teorie pravděpodobnosti (TP)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Náhodné procesy I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP038</td>
</tr>
<tr>
<td>Náhodné procesy II</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP039</td>
</tr>
<tr>
<td>Teorie pravděpodobnosti 1</td>
<td>4/0 Zk</td>
<td>—</td>
<td>STP050</td>
</tr>
<tr>
<td>Teorie pravděpodobnosti 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP051</td>
</tr>
<tr>
<td>Název</td>
<td>ZS</td>
<td>LS</td>
<td>Kód</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Cvičení z teorie pravděpodobnosti 1</td>
<td>0/2 Z</td>
<td>—</td>
<td>STP144</td>
</tr>
<tr>
<td>Cvičení z teorie pravděpodobnosti 2</td>
<td>—</td>
<td>0/2 Z</td>
<td>STP145</td>
</tr>
<tr>
<td>Optimalizace I</td>
<td>4/0 Zk</td>
<td>—</td>
<td>EKN012</td>
</tr>
<tr>
<td>Řízení jakosti a spolehlivosti</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MAN004</td>
</tr>
<tr>
<td>Časové řady</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP006</td>
</tr>
<tr>
<td>Teorie skladu a obsluhy *</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP133</td>
</tr>
<tr>
<td>Matematická statistika 2</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP002</td>
</tr>
<tr>
<td>Sekvenční a bayesovské metody *</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP024</td>
</tr>
<tr>
<td>Teorie odhadu a testování hypotéz *</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP028</td>
</tr>
<tr>
<td>Matematika ve finančních a pojišťovnictví</td>
<td>—</td>
<td>4/0 Zk</td>
<td>FAP004</td>
</tr>
<tr>
<td>Statistická kontrola jakosti</td>
<td>—</td>
<td>4/0 Zk</td>
<td>STP013</td>
</tr>
<tr>
<td>Kvalitativní teorie stochastických systémů *</td>
<td>—</td>
<td>4/0 Zk</td>
<td>STP138</td>
</tr>
<tr>
<td>Markovská distribuce nad grafy *</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP127</td>
</tr>
<tr>
<td>Wienerův proces *</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP147</td>
</tr>
<tr>
<td>Principy invariance *</td>
<td>4/0 Zk</td>
<td>—</td>
<td>STP125</td>
</tr>
<tr>
<td>Bodové procesy</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MAT011</td>
</tr>
<tr>
<td>Geometrická teorie miry</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MAT010</td>
</tr>
<tr>
<td>Statistická teorie informace</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP150</td>
</tr>
<tr>
<td>Limitní věty pro součty náhodných veličin</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP157</td>
</tr>
<tr>
<td>Statistická rozhodovací teorie *</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP158</td>
</tr>
<tr>
<td>Martingaly a markovské procesy</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP159</td>
</tr>
<tr>
<td>Metody MCMC (Markov chain Monte Carlo)</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>STP139</td>
</tr>
<tr>
<td>Struktury podmíněné nezávislosti</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP160</td>
</tr>
<tr>
<td>Ergodická teorie *</td>
<td>—</td>
<td>3/0 Zk</td>
<td>STP163</td>
</tr>
</tbody>
</table>

*Takto označené předměty nejsou vyučovány každý rok.

4.4.4. Matematika a management

Garantující pracoviště: katedra pravděpodobnosti a matematické statistiky
Odpovědný učitel: Prof. RNDr. Jana Jurečková, DrSc.

Studijní obor Matematika a management (MMN) se zabývá studiem matematických metod pro řízení podniku, plánováním a statistickým vyhodnocováním průmyslových experimentů a průběhu výroby, včetně kvality výrobního procesu. Výuka zahrnuje předměty matematiky, obchodné právní předměty i předměty průmyslové statistiky, patřící do disciplíny označované Quality Management.
Matematika Mgr.

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce (předměty bloku A resp. B) jsou uváděny tučně, doporučené předměty (předměty bloku C) standardním písmem.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistika</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP097</td>
</tr>
<tr>
<td>Časové řady</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP006</td>
</tr>
<tr>
<td>Optimalizace I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>EKN011</td>
</tr>
<tr>
<td>Matematická ekonomie</td>
<td>—</td>
<td>4/0 Zk</td>
<td>EKN009</td>
</tr>
<tr>
<td>Účetnictví</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>FAP013</td>
</tr>
<tr>
<td>Hospodářská politika I</td>
<td>2/0 Z</td>
<td>—</td>
<td>MAN011</td>
</tr>
<tr>
<td>Teorie pravděpodobností I</td>
<td>4/0 Zk</td>
<td>—</td>
<td>STP050</td>
</tr>
<tr>
<td>Statistická kontrola jakosti</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP012</td>
</tr>
<tr>
<td>Úvod do komplexní analýzy</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MAA021</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Řízení jakosti a spolehlivosti</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MAN004</td>
</tr>
<tr>
<td>Informační systémy pro management</td>
<td>—</td>
<td>0/2 Z</td>
<td>MAN002</td>
</tr>
<tr>
<td>Finanční management</td>
<td>—</td>
<td>2/0 Zk</td>
<td>FAP008</td>
</tr>
<tr>
<td>Seminář M+M I</td>
<td>0/2 Z</td>
<td>—</td>
<td>STP053</td>
</tr>
<tr>
<td>Seminář M+M II</td>
<td>—</td>
<td>0/2 Z</td>
<td>STP054</td>
</tr>
<tr>
<td>Regrese *</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP094</td>
</tr>
<tr>
<td>Navrhování experimentů *</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>STP120</td>
</tr>
<tr>
<td>Ankety a výběry z konečných populací</td>
<td>2/0 Zk</td>
<td>—</td>
<td>STP027</td>
</tr>
<tr>
<td>Teorie skladu a obsluhy *</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>STP132</td>
</tr>
<tr>
<td>Úvod do funkcionální analýzy</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>RFA006</td>
</tr>
<tr>
<td>Obchodní a správní právo</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FAP024</td>
</tr>
</tbody>
</table>

*Takto označené předměty nejsou vyučovány každý rok.

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminář M+M III</td>
<td>0/2 Z</td>
<td>—</td>
<td>STP055</td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení ke státní závěrečné zkoušce

- splnění všeobecných podmínek (viz 3.6),
- absolvování bloku B studijního oboru MMN,
- získání alespoň 16 bodů za doporučené předměty,
Státní závěrečná zkouška

Ústní část státní závěrečné zkoušky studijního oboru Matematika a management se skládá z požadavků z okruhů Matematická statistika, Řízení jakosti, Management.

Požadavky ke státní závěrečné zkoušce

1. Základy pravděpodobnosti a statistiky

Základní rozdělení pravděpodobností (binomické, Poissonovo, multinomické, normální, gama, beta, logistické, exponentiální třída), základní charakteristiky, použití a vlastnosti. Závislost a nezávislost, podmíněná pravděpodobnost, Bayesův vzorec.

Slabý a silný zákon velkých čísel, Borel-Cantelliho věta, centrální limitní věty.

Jednorozměrné a vícerozměrné normální rozdělení, rozdělení kvadratických forem, rozdělení odvozená z normálního (χ², t a F), jejich použití v matematické statistice, χ²-testy dobré shody, kontingenční tabulky.

Regresní modely (bodové odhady, oblasti spolehlivosti, testy hypotéz), vlastnosti reziduí a jejich použití v regresní diagnostice.

2. Náhodné procesy

Statistická přejímka (statistická přejímka srovnáváním a měřením, rektifační přejímání postupy). Statistická regulace technologických procesů (Shewhartovy diagramy, postupy založené na kumulativních součtech), regulace procesů pomocí klouzavých průměrů (MA) a pomocí klouzavých průměrů s exponentiálním zapomínáním (EWMA).

Základy plánování experimentů (znáhodněné bloky, latinské čtverce, faktoriální experimenty, Taguchiho metodologie).

Pravděpodobnostní výběr a jeho charakteristiky, výběrové plány (prostý náhodný, Poissonův, zamítací, Durbinův-Sampfordův, postupný, systematický, vícestupňový, oblastní), metody odhadu úhrnu znaku Y (jednoduchý lineární, regresní, poměrový).

Modely časových řad: dekompoziční metody (trend, sezónnost, periodicit, testy náhodnosti), Boxova-Jenkinsova metodologie (ARMA modely, identifikace, odhad, verifikace modelů).

Matematická teorie skladu. Deterministické modely; pořizování zásob od dodavatelů, vlastní výrobní činnost. Stochastický statický model, dynamický model. Strategie (s,S).

3. Vybrané partie stochastiky

Finanční management: úrokování, časová hodnota peněz, struktura úrokových měr, inflace, peněžní toky, cenné papíry, trhy cenných papírů, oceňování cenných papírů, technická a fundamentální analýza, riziko portfolia, modely utváření cen kapitálových statků (CAMP), arbitrážní cenový model (APT), podíloví ukazatelů, investiční a finanční rozhodování, analýza portfolia, hodnota firmy, odpisy, finanční leasing. Národní hospodárství: agregátérní poptávka, rovnovážný důchod a rovnovážný výstup, trh zboží a peněz, IS-LM model, monetární a fiskální politika v modelu IS-LM, agregátérní poptávka a nabídka, poptávka po penězích, centrální banka a peněžní zásoba, spotřeba, investice, inflace, nezaměstnanost, státní rozpočet, dlouhodobý růst a prosperita, mezinárodní vazby, moderní makroekonomická teorie.
Blok B studijního oboru Matematika a management (MMN)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistika</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP097</td>
</tr>
<tr>
<td>Časové řady</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP006</td>
</tr>
<tr>
<td>Optimalizace I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>EKN011</td>
</tr>
<tr>
<td>Statistická kontrola jakosti</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>STP012</td>
</tr>
<tr>
<td>Řízení jakosti a spolehlivosti</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MAN004</td>
</tr>
<tr>
<td>Matematická ekonomie</td>
<td>—</td>
<td>4/0 Zk</td>
<td>EKN009</td>
</tr>
<tr>
<td>Účetnictví</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>FAP013</td>
</tr>
<tr>
<td>Hospodářská politika I</td>
<td>2/0 Z</td>
<td>—</td>
<td>MAN011</td>
</tr>
<tr>
<td>Informační systémy pro management</td>
<td>—</td>
<td>0/2 Z</td>
<td>MAN002</td>
</tr>
<tr>
<td>Finanční management</td>
<td>—</td>
<td>2/0 Zk</td>
<td>FAP008</td>
</tr>
<tr>
<td>Obchodní a správní právo</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FAP024</td>
</tr>
<tr>
<td>Seminář M+M I</td>
<td>0/2 Z</td>
<td>—</td>
<td>STP053</td>
</tr>
<tr>
<td>Seminář M+M II</td>
<td>—</td>
<td>0/2 Z</td>
<td>STP054</td>
</tr>
<tr>
<td>Seminář M+M III</td>
<td>0/2 Z</td>
<td>—</td>
<td>STP055</td>
</tr>
<tr>
<td>Ankety a výběry z konečných populací</td>
<td>2/0 Zk</td>
<td>—</td>
<td>STP027</td>
</tr>
<tr>
<td>Teorie pravděpodobnosti 1</td>
<td>4/0 Zk</td>
<td>—</td>
<td>STP050</td>
</tr>
</tbody>
</table>

Doporučené předměty (blok C)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výpočetní prostředí pro statistickou analýzu dat</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP004</td>
</tr>
<tr>
<td>Navrhování experimentů *</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>STP120</td>
</tr>
<tr>
<td>Simulační metody *</td>
<td>2/0 Zk</td>
<td>—</td>
<td>STP042</td>
</tr>
<tr>
<td>Matematika pro management a marketing *</td>
<td>4/0 Zk</td>
<td>—</td>
<td>MAN005</td>
</tr>
<tr>
<td>Teorie skladu a obsluhy *</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>STP132</td>
</tr>
<tr>
<td>Regrese *</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP094</td>
</tr>
<tr>
<td>Analýza investic *</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>FAP005</td>
</tr>
<tr>
<td>Úvod do financí</td>
<td>—</td>
<td>2/0 Zk</td>
<td>FAP009</td>
</tr>
<tr>
<td>Obchodní angličtina</td>
<td>0/2 Z</td>
<td>—</td>
<td>JAZ015</td>
</tr>
<tr>
<td>Mnohorozměrná statistická analýza</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>STP018</td>
</tr>
<tr>
<td>Účetnictví II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>FAP014</td>
</tr>
<tr>
<td>Hospodářská politika II</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MAN008</td>
</tr>
</tbody>
</table>

*Takto označené předměty nejsou vyučovány každý rok.

4.5. Finanční a pojistná matematika

Garantující pracoviště: katedra pravděpodobnosti a matematické statistiky
Odpovědný učitel: Doc. RNDr. Jan Hurt, CSc.

Směr Finanční a pojistná matematika (FPM) představuje moderní formu studia aktuárských věd označovanou jako aktuárský přístup k finančním rizikům. Vedle základních matematických předmětů jsou předměty zejména aplikace teorie pravděpodobnosti v životním a majetkovém pojištění a matematické modely užívané ve finančním průmyslu. Studenti získají též potřebné znalosti z teorie financí, z pojistného a finančního práva a účetnictví.
Absolventi se uplatní v pojišťovnách a penzijních fondech, v bankách, ve státní správě, v poradenských firmách apod.

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce (předměty bloku A resp. B) jsou uváděny tučně, doporučené předměty (předměty bloku C) standardním písmem.

Předmět Finanční management FAP008 absolvují jako povinný předmět bloku B studenti, kteří byli přijati v r. 1999-2000 a později.

Důrazně doporučujeme posluchačům, aby ve druhém roce studia absolvovali předmět Úvod do financí (FAP009), na který ve třetím ročníku navazují další přednášky.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Náhodné procesy I</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>STP038</td>
</tr>
<tr>
<td>Náhodné procesy II</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Teorie pravděpodobnosti 1</td>
<td>4/0</td>
<td>Zk</td>
<td></td>
</tr>
<tr>
<td>Statistika</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>STP097</td>
</tr>
<tr>
<td>Finanční management 1</td>
<td>—</td>
<td>2/0</td>
<td>FAP008</td>
</tr>
<tr>
<td>Matematiky ve financích 1</td>
<td>2/0</td>
<td>Zk</td>
<td></td>
</tr>
<tr>
<td>Úvod do komplexní analýzy</td>
<td>2/2</td>
<td>Z, Zk</td>
<td></td>
</tr>
<tr>
<td>Úvod do funkcionální analýzy</td>
<td>—</td>
<td>2/2</td>
<td>RFA006</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Životní pojištění 2</td>
<td>2/2</td>
<td>Z</td>
<td>FAP016</td>
</tr>
<tr>
<td>Neživotní pojištění 2</td>
<td>2/0</td>
<td>Zk</td>
<td>FAP015</td>
</tr>
<tr>
<td>Účetnictví</td>
<td>2/2</td>
<td>Z, Zk</td>
<td>FAP013</td>
</tr>
<tr>
<td>Veřejné finance 3</td>
<td>—</td>
<td>2/0</td>
<td>FAP006</td>
</tr>
<tr>
<td>Seminář z aktuárních věd</td>
<td>0/2</td>
<td>Z</td>
<td>FAP011</td>
</tr>
</tbody>
</table>

1 Předměty Úvod do financí FAP009, Matematiky ve financích FAP022 a Finanční management FAP008 patří do bloku B oboru Finanční a pojistná matematika. Pokud si student navíc zapiše některý z předmětů Matematika ve financích a pojistovnictví FAP031 (resp. FAP002, FAP004) získá za celou skupinu předmětů maximálně 6 bodů.

2 Předměty Životní pojištění FAP016 a Neživotní pojištění FAP015 patří do bloku B oboru Finanční a pojistná matematika. Pokud si student navíc zapiše některý z předmětů Matematika ve financích a pojistovnictví FAP031 (resp. FAP002, FAP004) získá za celou skupinu předmětů maximálně 12 bodů.

3 Předměty se koná mimo MFF a počet posluchačů je omezen (zápis po dohodě s oddělením finanční a pojistné matematiky KPMS).

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teorie rizika</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>FAP034</td>
</tr>
<tr>
<td>Seminář z aktuárních věd</td>
<td>0/2</td>
<td>Z</td>
<td>FAP011</td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení ke státní závěrečné zkoušce

- splnění všeobecných podmínek (viz 3.6),
- absolvování bloku B studijního oboru FPM,
- získání alespoň 14 bodů za přednášky a 2 bodů za cvičení ze seznamu doporučených předmětů,

Státní závěrečná zkouška

Ústní část státní závěrečné zkoušky studijního oboru Finanční a pojistná matematika se skládá z požadavků z okruhů Aplikovaná pravděpodobnost, Životní a neživotní pojištění, Finance a účetnictví.

Požadavky ke státní závěrečné zkoušce

1. Aplikovaná pravděpodobnost

 Základní rozložení pravděpodobností v pojistné matematice

 Charakteristiky rozložení a jejich odhady

 Bayesův princip

 Zákon velkých čísel a centrální limitní věta

 Markovovy řetězce

 Lineární regrese

 Metoda nejmenších čtverců v lineární regresi. Regrese s gaussovskými odchylkami. Testy významnosti regresních koeficientů.

 Analýza časových řad

 Teorie kredibilit

 Buhlmannův model. Přesná kredibilita.

 Model kolektivního rizika

2. Životní a neživotní pojištění

 Tabulky úmrtnosti

Finanční a pojistná matematika

Kapitálové a důchodové pojištění

Pojistné rezervy životního pojištění

Modely pojištění osob s více stavů

Životní pojištění skupiny osob

Platební schopnost pojišťovny, zajišťování

Pojistné rezervy neživotního pojištění
Základní právní předpisy. Rezervy na pojistná plnění. Trojúhelníková schemata.

Tarifování

3. Finance a účetnictví

Úrok, časová hodnota peněz

Darová soustava
Správa daní. Daň z příjmu a ostatní přímé daně. Daň z přidané hodnoty, spotřební daně.

Finanční instituce

Cenné papíry

Účetnictví

Blok B studijního oboru Finanční a pojistná matematika (FPM)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Náhodné procesy I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP038</td>
</tr>
<tr>
<td>Náhodné procesy II</td>
<td></td>
<td>4/2 Z, Zk</td>
<td>STP039</td>
</tr>
<tr>
<td>Teorie pravděpodobnosti 1</td>
<td>4/0 Zk</td>
<td>—</td>
<td>STP050</td>
</tr>
<tr>
<td>Statistika</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP097</td>
</tr>
<tr>
<td>Účetnictví</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>FAP013</td>
</tr>
<tr>
<td>Úvod do financí</td>
<td></td>
<td>2/0 Zk</td>
<td>FAP009</td>
</tr>
<tr>
<td>Matematické metody ve financích</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FAP022</td>
</tr>
<tr>
<td>Veřejné finance</td>
<td></td>
<td>2/0 Zk</td>
<td>FAP006</td>
</tr>
</tbody>
</table>
Doporučené předměty (blok C)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demografie *</td>
<td></td>
<td>2/0 Zk</td>
<td>FAP001</td>
</tr>
<tr>
<td>Stochastické finanční modely *</td>
<td>2/0</td>
<td></td>
<td>FAP012</td>
</tr>
<tr>
<td>Účetnictví II</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>FAP014</td>
</tr>
<tr>
<td>Mikroekonomie</td>
<td>2/2</td>
<td></td>
<td>EKN010</td>
</tr>
<tr>
<td>Analýza investic *</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>FAP005</td>
</tr>
<tr>
<td>Bankovnictví 1</td>
<td>2/2</td>
<td></td>
<td>FAP017</td>
</tr>
<tr>
<td>Pojišťovací právo</td>
<td>2/0</td>
<td></td>
<td>FAP019</td>
</tr>
<tr>
<td>Optimalizace I</td>
<td>4/0</td>
<td></td>
<td>EKN012</td>
</tr>
<tr>
<td>Výpočetní prostředky finanční a pojistné</td>
<td></td>
<td>4/2 Z, Zk</td>
<td>FAP007</td>
</tr>
</tbody>
</table>

1Přednáška se koná mimo MFF a počet posluchačů je omezen (zápis po dohodě s oddělením finanční a pojistné matematiky KPMS).

4.6. Matematické a počítačové modelování ve fyzice a v technice

Garantující pracoviště: Matematický ústav UK

Odpovědný učitel: Doc. RNDr. Josef Málek, CSc.

Studijní obor Matematické a počítačové modelování ve fyzice a v technice (MOD) je mezioborovým studiem, které spojuje matematiku, fyziku a částečně i informatiku. Posluchači získají znalosti v moderních partiích matematiky a v základních oblastech teoretické fyziky a seznámí se s použitím počítačů ve fyzice a v některých technických aplikacích.

Doporučený průběh studia

Doporučujeme, aby do konce 2. roku studia studenti absolvovali Fyziku pro matematiky (FYM002), (FYM003) nebo dvojici přednášek Fyzika I (OFY021), Vybrané partie z teoretické fyziky I (MAF029).

Předměty povinné ke státní závěrečné zkoušce (předměty bloku A, resp. B) jsou uváděny tučně, doporučené předměty (předměty bloku C) standardním písmem, nepovinné výběrové předměty kurzivou.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvod do funkcionalní analýzy</td>
<td>2/2</td>
<td>Z, Zk</td>
<td>RFA006</td>
</tr>
<tr>
<td>Funkcionalní analýza I</td>
<td></td>
<td>4/2 Z, Zk</td>
<td>RFA005</td>
</tr>
<tr>
<td>Obyčejné diferenciální rovnice</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>DIR001</td>
</tr>
<tr>
<td>Klasická teorie parcílních diferenciálních rovnic</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>DIR005</td>
</tr>
<tr>
<td>Název</td>
<td>ZS</td>
<td>LS</td>
<td>Kód</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Matematické metody v klasické a kvantové mechanice 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MOD032</td>
</tr>
<tr>
<td>Matematické metody v klasické a kvantové mechanice 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MOD033</td>
</tr>
<tr>
<td>Termodynamika a statistická fyzika</td>
<td>—</td>
<td>3/1 Z, Zk</td>
<td>OFY036</td>
</tr>
<tr>
<td>Přibližné a numerické metody 2</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>NUM002</td>
</tr>
<tr>
<td>Úvod do fyziky plazmatu a počítačové fyziky</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>FYM012</td>
</tr>
<tr>
<td>Speciální teorie relativity</td>
<td>2/0 Zk</td>
<td>—</td>
<td>OFY023</td>
</tr>
<tr>
<td>Matematická teorie pružnosti 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MOD017</td>
</tr>
<tr>
<td>Matematická teorie pružnosti 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MOD018</td>
</tr>
<tr>
<td>Nelineární diferenciální rovnice a nerovnice I</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>DIR042</td>
</tr>
<tr>
<td>Nelineární diferenciální rovnice a nerovnice II</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>DIR043</td>
</tr>
<tr>
<td>Biotermodynamika</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MOD036</td>
</tr>
<tr>
<td>Seminář z mechaniky kontinua</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>MOD013</td>
</tr>
<tr>
<td>Vybrané problémy matematického modelování</td>
<td>—</td>
<td>0/2 Z</td>
<td>MOD036</td>
</tr>
<tr>
<td>Elektromagnetické pole a speciální teorie relativity</td>
<td>—</td>
<td>2/1 Zk</td>
<td>TMF034</td>
</tr>
<tr>
<td>Výběrová přednáška</td>
<td>—</td>
<td>2/0 Zk</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematické metody v klasické a kvantové mechanice 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MOD032</td>
</tr>
<tr>
<td>Matematické metody v klasické a kvantové mechanice 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MOD033</td>
</tr>
<tr>
<td>Nelineární diferenciální rovnice a nerovnice I</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>DIR042</td>
</tr>
<tr>
<td>Nelineární diferenciální rovnice a nerovnice II</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>DIR043</td>
</tr>
<tr>
<td>Vybrané kapitoly z kvantové mechaniky</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>OFY043</td>
</tr>
<tr>
<td>Termodynamika a statistická fyzika</td>
<td>—</td>
<td>3/1 Z, Zk</td>
<td>OFY036</td>
</tr>
<tr>
<td>Přibližné a numerické metody 2</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>NUM002</td>
</tr>
<tr>
<td>Numerický software 1</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>NUM018</td>
</tr>
<tr>
<td>Numerický software 2</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>NUM019</td>
</tr>
<tr>
<td>Matematické metody v mechanice tekutin</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>MOD001</td>
</tr>
<tr>
<td>Biotermodynamika</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MOD036</td>
</tr>
</tbody>
</table>
5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminář z mechaniky kontinua</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>MOD013</td>
</tr>
<tr>
<td>Vybrané problémy matematického modelování</td>
<td>—</td>
<td>0/2 Z</td>
<td>MOD015</td>
</tr>
<tr>
<td>Elektromagnetické pole a speciální teorie</td>
<td>—</td>
<td>2/1 Zk</td>
<td>TMF034</td>
</tr>
</tbody>
</table>

Podmínky pro zadání diplomové práce

- splnění obecných podmínek (viz 3.4),
- absolvování dvojice předmětů Fyzika I (OFY021), Vybrané partie z teoretické fyziky I (MAF029) nebo dvojice předmětů Fyzika pro matematiky 1, 2 (FYM002), (FYM003),
- získání 80 bodů, z toho alespoň 40 bodů z předmětů bloku B studijního oboru MOD (viz níže).

Podmínky pro přihlášení ke státní závěrečné zkoušce

- splnění všeobecných podmínek (viz 3.6)
- absolvování bloku B studijního oboru MOD
- získání alespoň 20 bodů za doporučené předměty

Státní závěrečná zkouška

Ústní část státní závěrečné zkoušky studijního oboru Matematické a počítačové modelování ve fyzice a v technice se skládá z požadavků z okruhů Klasická a moderní analýza, Matematické modelování a numerické metody, Základy fyziky.

Požadavky ke státní závěrečné zkoušce

1. **Klasická a moderní analýza**

 Teorie funkcí reálné proměnné

 Základy diferenciálního a integrálního počtu funkcí jedné a více reálných proměnných, teorie míry a integrálu, Fourierovy řady, věta o implicitních funkcích.

 Teorie funkcí komplexní proměnné

 Derivace, holomorfní funkce, Cauchyova věta a Cauchyův vzorec, izolované singularity, reziduová věta, meromorfní funkce, konformní zobrazení, Riemannova věta.

 Funkcionální analýza

 Metrické prostory, vektorové prostory, normované lineární prostory, teorie lineárních operátorů, Hilbertovy a Banachovy prostory, spojité nelineární funkcionály, Hahn-Banachova věta, Fredholmovy věty, řešení integrálních rovnic, řešení nelineárních operátorových rovnic: metoda monotonních operátorů, Banachova věta, věty Brouwerova a Schaudera, Lebesgueovy a Sobolevy prostory a jejich duální.
2. Matematické modelování a numerické metody

Obyčejné diferenciální rovnice
Lokální existence řešení obyčejných diferenciálních rovnic prvního řádu (klasická a zobecněná teorie), jednoznačnost, maximální řešení, lineární rovnice vyšších řádů, soustavy lineárních rovnic prvního řádu a jejich řešení.

Parciální diferenciální rovnice
Lineární rovnice 1. řádu, metoda charakteristik, klasifikace rovnic 2. řádu, formulace základních úloh pro jednotlivé typy rovnic, jejich řešitelnost, Fourierova metoda, princip maxima, vlastnosti harmonických funkcí, slabá řešení eliptických úloh, metoda monotonních operátorů, zobecněná řešení pro parabolickou a hyperbolickou rovnici, integrální transformace.

Numerické metody řešení diferenciálních rovnic
Diskrétní metody řešení obyčejných diferenciálních rovnic; metoda sítí pro řešení eliptických, parabolických a hyperbolických úloh; diskretizace, řešitelnost diskrétních soustav, konvergence, stabilita, iterační metody pro řešení velkých soustav lineárních rovnic.

Základní matematické modely mechaniky kontinua tuhé a kapalné fáze
Formulace zákonů zachování ve tvaru diferenciálních rovnic, Eulerovy a Navierovy-Stokesovy rovnice, nevazké nevířivé proudění — formulace pomocí potenciálu rychlosti a proudové funkce, úloha pro vazké nestlačitelné proudění.

Základní pojmy z teorie pružnosti, tenzor napětí, tenzor deformace, Hookův zákon, Lamého rovnice.

3. Základy fyziky

Mechanika kontinua
Tensorová algebra a analýza, tenzory velké deformace, infinitezimální deformace. Bilanční rovnice, Cauchyho věta, tenzor napětí, konstituční vztahy, princip objektivity, materiálová symetrie. Tekutiny, pevné látky, elastické látky, ideální, newtonovské a ne-newtonovské tekutiny, elastické pevné látky. Formulace okrajových úloh a jednoduché příklady jejich řešení.

Termodynamika

Statistická fyzika
Soubory ve statistické fyzice, Liouvilleova rovnice, mikrokanonický, kanonický a velký kanonický soubor, Maxwellovo-Boltzmannovo, Fermiho-Diracovo a Boseovo-Einsteinovo rozdělení, záření černého tělesa, stavová rovnice plynů.
Matematika Mgr.

Kvantová mechanika
Základní pojmy a postuláty kvantové mechaniky, Schrödingerova rovnice, relace neurčitosti, jednočásticové a dvoučásticové problémy, lineární harmonický oscilátor, částice v potenciálově jámě, přibližné metody kvantové mechaniky, spin.

Elektromagnetické pole a speciální teorie relativity

Blok B studijního oboru Matematické a počítačové modelování ve fyzice a v technice (MOD)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funkcionální analýza I</td>
<td></td>
<td>4/2 Z, Zk</td>
<td>RFA005</td>
</tr>
<tr>
<td>Obyčejné diferenciální rovnice</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>DIR001</td>
</tr>
<tr>
<td>Klasická teorie parciálních diferenciálních rovnic</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>DIR005</td>
</tr>
<tr>
<td>Moderní teorie parciálních diferenciálních rovnic</td>
<td></td>
<td>2/0 Zk</td>
<td>DIR004</td>
</tr>
<tr>
<td>Přibližné a numerické metody 1</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>NUM001</td>
</tr>
<tr>
<td>Přibližné a numerické metody 2</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>NUM002</td>
</tr>
<tr>
<td>Termodynamika kontinua</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>MOD035</td>
</tr>
<tr>
<td>Matematické modelování ve fyzice</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>MOD004</td>
</tr>
<tr>
<td>Mechanika kontinua</td>
<td>3/2 Z, Zk</td>
<td>—</td>
<td>MOD012</td>
</tr>
<tr>
<td>Vybrané kapitoly z kvantové mechaniky 1</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>OFY043</td>
</tr>
<tr>
<td>Termodynamika a statistická fyzika 2</td>
<td></td>
<td>3/1 Z, Zk</td>
<td>OFY036</td>
</tr>
</tbody>
</table>

1Místo tohoto předmětu student může absolvovat Úvod do kvantové mechaniky (OFY027).

2Místo tohoto předmětu student může absolvovat Statistickou fyziku (TMF003).

Doporučené předměty (blok C)

Nelineární analýza

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelineární diferenciální rovnice a nerovnice I</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>DIR042</td>
</tr>
<tr>
<td>Nelineární diferenciální rovnice a nerovnice II</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>DIR043</td>
</tr>
<tr>
<td>Vybrané kapitoly z teorie optimalizace</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>MOD014</td>
</tr>
<tr>
<td>Nelineární funkcionální analýza</td>
<td>2/0 Zk</td>
<td>—</td>
<td>RFA018</td>
</tr>
<tr>
<td>Variační počet</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>DIR009</td>
</tr>
<tr>
<td>Matematická teorie Navierových-Stokesových rovnic</td>
<td>—</td>
<td>2/0 Zk</td>
<td>DIR010</td>
</tr>
<tr>
<td>Vybrané kapitoly z nelineárních diferenciálních rovnic</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>DIR036</td>
</tr>
</tbody>
</table>
Matematické a počítačové modelování ve fyzice a v technice

Matematické teorie mechaniky kontinua

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická teorie pružnosti 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MOD017</td>
</tr>
<tr>
<td>Matematická teorie pružnosti 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MOD018</td>
</tr>
<tr>
<td>Matematické metody v klasické a kvantové mechanice 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MOD032</td>
</tr>
<tr>
<td>Matematické metody v klasické a kvantové mechanice 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MOD033</td>
</tr>
<tr>
<td>Matematické metody v mechanice tekutin</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>MOD001</td>
</tr>
<tr>
<td>Seminář z mechaniky kontinua</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>MOD013</td>
</tr>
<tr>
<td>Vybrané problémy matematického modelování</td>
<td>—</td>
<td>0/2 Z</td>
<td>MOD015</td>
</tr>
</tbody>
</table>

Numerické metody

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerický software 1</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>NUM018</td>
</tr>
<tr>
<td>Numerický software 2</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>NUM019</td>
</tr>
<tr>
<td>Víceúrovňové metody</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>NUM013</td>
</tr>
<tr>
<td>Matematické modely přenosu částic</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>MOD016</td>
</tr>
<tr>
<td>Tvarová a materiálová optimalizace</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>MOD005</td>
</tr>
<tr>
<td>Numerické modelování problémů elektrotechniky 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MOD023</td>
</tr>
<tr>
<td>Numerické modelování problémů elektrotechniky 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MOD024</td>
</tr>
<tr>
<td>Moderní algoritmy numerické optimalizace</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MOD038</td>
</tr>
</tbody>
</table>

Vybrané matematické předměty

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometrická teorie míry</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MAT010</td>
</tr>
<tr>
<td>Úvod do analýzy na varietách</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>GEM002</td>
</tr>
<tr>
<td>Kalibrační pole a nekomutativní geometrie *</td>
<td>2/0 Zk</td>
<td>—</td>
<td>GEM030</td>
</tr>
<tr>
<td>Pravděpodobnost a matematická statistika</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP022</td>
</tr>
</tbody>
</table>

Vybrané předměty fyziky

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvod do fyziky plazmatu a počítačové fyziky</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>FYM012</td>
</tr>
<tr>
<td>Pravděpodobnost a matematika fázových přechodů I</td>
<td>—</td>
<td>2/0 Zk</td>
<td>TMF027</td>
</tr>
<tr>
<td>Pravděpodobnost a matematika fázových přechodů II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>TMF047</td>
</tr>
<tr>
<td>Speciální teorie relativity</td>
<td>2/0 Zk</td>
<td>—</td>
<td>OFY023</td>
</tr>
<tr>
<td>Deterministický chaos, nelineární oscilace a vlny</td>
<td>—</td>
<td>2/0 Zk</td>
<td>EVF022</td>
</tr>
<tr>
<td>Kvantová teorie I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>FPL010</td>
</tr>
<tr>
<td>Kvantová teorie II</td>
<td>—</td>
<td>3/2 Z, Zk</td>
<td>FPL011</td>
</tr>
<tr>
<td>Biotermodynamika</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MOD036</td>
</tr>
</tbody>
</table>
4.7. Matematika — filosofie (mezifakultní studium)

Garantující pracoviště: katedra matematické logiky a filosofie matematiky
Odpovědný učitel: Prof. RNDr. Petr Vopěnka, DrSc.

Mezifakultní studium probíhá zčásti na MFF a zčásti na FF UK. Studenti skládají přijímací zkoušku na obou fakultách.

Studijní plán matematiky si posluchači volí podle pravidel platných na MFF pro program Matematika. Studijní plán filosofie určuje FF UK a je rozložen do dvou cyklů. První cyklus se skládá ze 6 semestrů a je ukončen postupovou zkouškou. Druhý cyklus se skládá ze 4 semesterů a je ukončen státní závěrečnou zkouškou.

Bodová hodnota za úspěšné složení zkoušky na filosofické fakultě se posluchačům započítává do bodového zisku požadovaného zvoleným studijním plánem matematiky.

Státní závěrečná zkouška sestává ze dvou částí; každou z nich posluchači skládají na příslušné fakultě podle jejich požadavků. Diplomovou práci studenti vypracovávají z jednoho oboru studované kombinace a její obhajoba je součástí příslušné části státní závěrečné zkoušky. Absolventi studia obdrží diplom MFF s vyznačením kombinace.

4.8. Učitelství matematiky pro střední školy v kombinaci s odbornou matematikou

Garantující pracoviště: katedra didaktiky matematiky
Odpovědný učitel: Prof. RNDr. Adolf Karger, DrSc.

Studijní plány oboru učitelství matematiky pro střední školy v kombinaci s odbornou matematikou se skládají ze studijních plánů některého z oborů odborné matematiky (4.1-4.6) a předmětů povinných k získání učitelské aprobace (viz níže)

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedagogika</td>
<td>2/0</td>
<td>0/2 Z, Zk</td>
<td>PED012</td>
</tr>
<tr>
<td>Psychologie I</td>
<td>—</td>
<td>0/2 Z</td>
<td>PED008</td>
</tr>
<tr>
<td>Psychologie II</td>
<td>2/0</td>
<td>Zk</td>
<td>PED009</td>
</tr>
</tbody>
</table>

Takto označené předměty nejsou vyučovány každý rok.
Doporučený průběh studia těchto předmětů viz odst. 2.1 Učitelské studium matematiky pro střední školy.

Studentům tohoto studia doporučujeme, aby složili zkoušky z předmětů Geometrie I, II, III, jejichž náplň je obsažena v požadavcích ke státní závěrečné zkoušce. Dále doporučujeme, aby si tito studenti nenechávali absolvování pedagogické praxe až na poslední ročník studia vzhledem k omezeným možnostem přidělování na střední školy.

Státní zkouška z tohoto oboru zahrnuje kromě otázek z matematiky ze zvoleného studijního oboru odborné matematiky 4.1–4.6 také didaktická tématá, uvedená v požadavcích ke státní závěrečné zkoušce v odst. 2.1 Učitelské studium matematiky pro střední školy.

4.9. Učitelství matematiky v kombinaci s druhým aprobačním předmětem pro střední školy

Garantující pracoviště: katedra didaktiky matematiky

Odpovědný učitel: Prof. RNDr. Adolf Karger, DrSc.

Studijní plány oboru učitelství matematiky v kombinaci s druhým aprobačním předmětem pro střední školy

Se skládají ze studijních plánů matematiky, které jsou uvedeny v odst. 2.1 Učitelské studium matematiky pro střední školy a studijních plánů druhého aprobačního oboru. Na tyto studenty se vztahuje odstavec 1 („Základní informace“) kapitoly „Studium učitelství“.

Na MFF je standardní kombinací aprobačních předmětů s matematikou matematika-informatika, matematika-deskriptivní geometrie a matematika-fyzika. Studijní plány informatiky jsou v odst. 2.3 Učitelské studium informatiky pro střední školy a studijní plány deskriptivní geometrie v odst. 2.4 Učitelské studium deskriptivní geometrie pro střední školy. Studijní plány fyziky jsou v odst. 2.2 Učitelské studium fyziky pro střední školy.

B. Bakalářské studium

1. **Základní informace**

1.1. **Průběh studia**

První stupeň studia (1. ročník) probíhá podle společného studijního plánu, jehož plnění je kontrolováno po každém semestru, s výjimkou studijního oboru Obecná matematika. Při zápisu do druhého roku studia se studenti rozhodují pro některý studijní obor. Na druhém stupni studia posluchači studují podle zvoleného studijního oboru tak,
aby průběžně plnili bodové hranice pro zápis do dalšího roku studia a aby splnili podmínky pro přihlášení ke státní závěrečné zkoušce. Bakalářské studium trvá standardně 3 roky, maximálně 6 let.

Studijní obory bakalářského studia programu Matematika:

- Pojistná matematika 3.1
- Finanční matematika 3.2
- Matematika v obchodování a podnikání (Business Administration) 3.3
- Matematika a ekonomie 3.4
- Matematika a počítače v praxi 3.5
- Obecná matematika 3.6

Posluchači, kteří předpokládají, že budou studovat obor Pojistná matematika nebo Finanční matematika, oznámí svůj zájem na oddělení finanční a pojistné matematiky katedry pravděpodobnosti a matematické statistiky. Budou pak upozorněni na konání mimořádných přednášek.

1.2. Ukončení studia

Bakalářské studium ve studijním programu Matematika je ukončeno státní závěrečnou zkouškou, která má dvě části: obhajobu závěrečné práce (projektu) a ústní zkoušku. Každá část je hodnocena známkou (ze kterých se pak stanoví celková známka státní závěrečné zkoušky); při neúspěchu opakuje posluchač nejvýše dvakrát ty části, ze kterých neuspěl. Posluchač se přihlašuje současně na všechny části státní závěrečné zkoušky, které dosud nesloužil.

Závěrečná práce je zadávána zpravidla ve třetím roce studia. Na práci vypracuje posudek její vedoucí a jeden oponent.

Všechny termíny (zadání závěrečné práce, obhajobu závěrečné práce a přihlášení ke státní závěrečné zkoušce) určuje garantující pracoviště. Ke zkoušce se posluchači hlásí na příslušném pracovišti a na studijním oddělení.

Podmínky pro přihlášení k ústní části státní závěrečné zkoušky

s výjimkou studijního oboru Obecná matematika

- absolvování povinné výuky společného základu a povinné výuky zvoleného studijního oboru,
- získání minimálně 70 bodů,
- složení zkoušky z cizího jazyka,
- podání závěrečné práce (projektu).

Požadavky k ústní části státní závěrečné zkoušky

jsou určeny zvlášť pro každý obor a jsou k dispozici na garantujících pracovištích.
Po ukončení samostatného bakalářského studia může posluchač pokračovat v Mgr. studiu mimo MFF např.

– studiem ekonomie na FSV UK, Smetanovo nábřeží 6, Praha 1,
– studiem teoretické biologie v Institutu základů vzdělanosti UK, M. D. Rettigové 4, Praha 1.

Blížší informace podají kromě těchto škol také doc. RNDr. O. John, CSc., katedra matematické analýzy (ekonomie) a doc. RNDr. P. Kůrka, CSc., katedra teoretické informatiky a matematické logiky (teoretická biologie).

2. Společný základ

Povinná výuka v 1. ročníku

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza Ia</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>MAA007</td>
</tr>
<tr>
<td>Matematická analýza Ib</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>MAA008</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>ALG003</td>
</tr>
<tr>
<td>Lineární algebra II</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>ALG004</td>
</tr>
<tr>
<td>Programování 1</td>
<td>2/2</td>
<td>Z</td>
<td>PRM001</td>
</tr>
<tr>
<td>Diskrétní matematika</td>
<td>0/2</td>
<td>Zk</td>
<td>DMA006</td>
</tr>
<tr>
<td>Volitelná přednáška 2</td>
<td>2/0</td>
<td>Zk</td>
<td></td>
</tr>
<tr>
<td>Volitelná přednáška 3</td>
<td>2/0</td>
<td>Zk</td>
<td></td>
</tr>
<tr>
<td>Cizí jazyk</td>
<td>0/2</td>
<td>Z</td>
<td>TVY001</td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2</td>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>

1Získání zápočtu za letní semestr není podmínkou přípustné ke zkoušce.
2Doporučujeme studentům, aby volili Fyziku pro matematiky (FYMO02), (FYMO03) nebo Ekonomii.

Studentům, kteří mají zájem o studijní obor Matematika a ekonomie, doporučujeme absolvovat Ekonomii na FSV UK.

Student může volit jakékoli předměty vyučované na MFF. Je nutno absolvovat (splnit všechny předepsané podmínky) dva dvouhodinové předměty nebo jeden čtyřhodinový předmět. Dvouhodinovým (resp. čtyřhodinovým) předmětem se v tomto případě rozumí předmět, jehož podmínky absolvování obsahují zkoušku a jehož přednáška má rozsah alespoň dvě hodiny týdně (resp. buď alespoň čtyři hodiny týdně v jednom semestru nebo alespoň dvě hodiny týdně ve dvou semestrech). Tedy například složí dvě zkoušky z přednášek v rozsahu alespoň 2/0 nebo zkoušku z přednášky v rozsahu 4/0 či 2/0, 2/0.

3Doporučujeme, aby si posluchači oborů Finanční matematika a Pojistná matematika zapsali v letním semestru předmět Úvod do financí (FAP009), posluchači oboru Matematika v obchodování a podnikání zapsali v letním semestru předmět Veřejné finance (FAP006), posluchači oborů Matematika a ekonomie zapsali v letním semestru první semestr předmětu Mikroekonomie (ZZZ266) a posluchači oboru Matematika a počítače v praxi zapsali letní semestr předmětu Matematika na počítači (PRM039). Studenti, kteří nerespektují tato doporučení, si mohou studium neúměrně zkomplikovat.

Společná výuka ve 2. roce studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza 2a</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>MAA018</td>
</tr>
</tbody>
</table>
3. Studijní plány jednotlivých oborů

3.1. Pojistná matematika (PB)

Garantující pracoviště: katedra pravděpodobnosti a matematické statistiky
Odpovědný učitel: Doc. RNDr. Jan Hurt, CSc.

Průběh studia

Důrazně doporučujeme posluchačům, aby v prvním roce studia absolvovali předmět Úvod do financí (FAP009), na který ve druhém ročníku navazují další předmásky.

Výuka ve 2. roce studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demografie *</td>
<td>—</td>
<td>2/0 Zk</td>
<td>FAP001</td>
</tr>
<tr>
<td>Matematické metody ve financích 1</td>
<td>2/0</td>
<td>Zk</td>
<td>FAP022</td>
</tr>
<tr>
<td>Základy matematického modelování</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MOD009</td>
</tr>
</tbody>
</table>

Výuka ve 3. roce studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Životní pojištění 2</td>
<td>2/2</td>
<td>Z, Zk</td>
<td>FAP016</td>
</tr>
<tr>
<td>Neživotní pojištění 2</td>
<td>2/0</td>
<td>Zk</td>
<td>FAP015</td>
</tr>
<tr>
<td>Účetnictví</td>
<td>2/2</td>
<td>Z, Zk</td>
<td>FAP013</td>
</tr>
<tr>
<td>Statistika</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>STP097</td>
</tr>
<tr>
<td>Výpočetní prostředky finanční a pojistné matematiky</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>FAP007</td>
</tr>
<tr>
<td>Pojišťovací právo</td>
<td>2/0</td>
<td>Zk</td>
<td>FAP019</td>
</tr>
<tr>
<td>Praktikum</td>
<td>—</td>
<td>0/2 Z</td>
<td>FAP023</td>
</tr>
</tbody>
</table>

* Vzhledem k malému počtu posluchačů oboru předmět není vyučován každý rok.
1 Předměty Úvod do financí FAP009 a Matematické metody ve financích FAP022 patří mezi povinné předměty oboru Pojistná matematika. Pokud si student navíc zapíše některý z předmětů Matematika ve financích a pojišťovnictví FAP031 (resp. FAP002, FAP004) získá za celou skupinu předmětů maximálně 4 body.
2 Předměty Životní pojištění FAP016 a Neživotní pojištění FAP015 patří mezi povinné předměty oboru Pojistná matematika. Pokud si student navíc zapíše některý z předmětů Matematika ve financích a pojišťovnictví FAP031 (resp. FAP002, FAP004) získá za celou skupinu předmětů maximálně 12 bodů.

Požadavky k ústní části státní závěrečné zkoušky

1. **Životní pojištění a demografie**

2. Neživotní pojištění

3. Finance a účetnictví

3.2. Finanční matematika (FB)
Garantující pracoviště: katedra pravděpodobnosti a matematické statistiky
Odpovědný učitel: Doc. RNDr. Jan Hurt, CSc.

Průběh studia
Důrazně doporučujeme posluchačům, aby v prvním roce studia absolvovali předmět Úvod do financí (FAP009), na který ve druhém ročníku navazují další přednášky.

Výuka ve 2. roce studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematické metody ve financích ¹</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FAP022</td>
</tr>
<tr>
<td>Základy matematického modelování</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MOD009</td>
</tr>
<tr>
<td>Finanční management ¹</td>
<td>—</td>
<td>2/0 Zk</td>
<td>FAP008</td>
</tr>
</tbody>
</table>

¹ Předměty Úvod do financí FAP009, Matematické metody ve financích FAP022 a Finanční management FAP008 jsou povinnými předměty oboru Finanční matematika. Pokud si student navíc zapíše některý z předmětů Matematika ve financích a pojišťovnictví FAP031 (resp. FAP002, FAP004) získá za celou skupinu předmětů maximálně 6 bodů.

Výuka ve 3. roce studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Účetnictví</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>FAP013</td>
</tr>
<tr>
<td>Výpočetní prostředky finanční a pojistné matematiky</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>FAP007</td>
</tr>
<tr>
<td>Bankovnictví ¹</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>FAP017</td>
</tr>
<tr>
<td>Statistika</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>STP097</td>
</tr>
<tr>
<td>Pojišťovací právo</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FAP019</td>
</tr>
<tr>
<td>Účetnictví II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>FAP014</td>
</tr>
<tr>
<td>Věřejné finance ¹</td>
<td>—</td>
<td>2/0 Zk</td>
<td>FAP006</td>
</tr>
<tr>
<td>Praktikum</td>
<td>—</td>
<td>0/2 Z</td>
<td>FAP023</td>
</tr>
</tbody>
</table>

¹Takto označené předměty se nekonají na MFF. Jsou určeny pouze pro posluchače bakalářského studia oborů Finanční matematika a Pojistná matematika a magisterského studia oborů Finanční a pojistná matematika.
Požadavky k ústní části státní závěrečné zkoušky

1. Finanční matematika

2. Finance a účetnictví

3. Statistika

3.3. Matematika v obchodování a podnikání (Business Administration — BA)

Garantující pracoviště: katedra pravděpodobnosti a matematické statistiky

Odpovědný učitel: Prof. RNDr. Tomáš Cipra, DrSc.

Průběh studia

Výuka ve 2. roce studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikroekonomie</td>
<td>2/2</td>
<td>Zk</td>
<td>EKN010</td>
</tr>
<tr>
<td>Účetnictví</td>
<td>2/2</td>
<td>Zk</td>
<td>FAP013</td>
</tr>
<tr>
<td>Veřejné finance</td>
<td></td>
<td>2/0</td>
<td>FAP006</td>
</tr>
<tr>
<td>Software ekonomické praxe</td>
<td>0/2</td>
<td>Z</td>
<td>EKN022</td>
</tr>
<tr>
<td>Informační systémy pro management</td>
<td></td>
<td>0/2</td>
<td>MAN002</td>
</tr>
</tbody>
</table>

Výuka ve 3. roce studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematika pro management *</td>
<td>4/0</td>
<td>Zk</td>
<td>MAN005</td>
</tr>
<tr>
<td>Ankety a výběry z konečných populací</td>
<td>2/2</td>
<td>Zk</td>
<td>STP026</td>
</tr>
<tr>
<td>Matematika ve finančních a pojišťovnictví</td>
<td>4/2</td>
<td>Zk</td>
<td>FAP002</td>
</tr>
<tr>
<td>Analýza investic *</td>
<td></td>
<td>2/2</td>
<td>FAP005</td>
</tr>
<tr>
<td>Statistické modelování v ekonomii</td>
<td></td>
<td>2/2</td>
<td>MOD010</td>
</tr>
<tr>
<td>Časové řady</td>
<td></td>
<td>4/2</td>
<td>STP006</td>
</tr>
<tr>
<td>Seminář z výpočetních aspektů optimalizace</td>
<td></td>
<td>0/2</td>
<td>UOS006</td>
</tr>
</tbody>
</table>

116
Matematika a ekonomie

<table>
<thead>
<tr>
<th>Základní seminář</th>
<th>0/2 Z</th>
<th>—</th>
<th>EKN003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výběroveá přednáška</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>Obchodní angličtina</td>
<td>0/2 Z</td>
<td>—</td>
<td>JAZ015</td>
</tr>
</tbody>
</table>

Požadavky k ústní části státní závěrečné zkoušky

1. **Statistické metody**

Základní metody analýzy časových řad (dekompoziční metody, Boxova-Jenkinsova metodologie, spektrální analýza). Základní ekonometrické přístupy (regresní modely).

2. **Finance, daně, účetnictví**

Daňový systém ČR. Základní účetnické pojmy. Účtová osnova a třídy. Rozvaha. Výkaz zisků a ztrát.

3. **Matematika pro management a marketing**

3.4. **Matematika a ekonomie (ME)**

Garantující pracoviště: katedra matematické analýzy

Odpovědný učitel: Doc. RNDr. Oldřich John, CSc.

Průběh studia

Výuka ve 2. roce studia

Student absolvuje následující předměty na FSV UK.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospodářská politika I</td>
<td>2/0</td>
<td>—</td>
<td>MAN011</td>
</tr>
<tr>
<td>Hospodářská politika II</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MAN008</td>
</tr>
<tr>
<td>Mikroekonomie 2.sem. (pokračování)</td>
<td>2/2 Zk</td>
<td>2/2 Z</td>
<td>ZZZ266</td>
</tr>
<tr>
<td>Mikroekonomie a chování 1.sem.</td>
<td>2/2 Zk</td>
<td>2/2 Z</td>
<td>ZZZ267</td>
</tr>
</tbody>
</table>

Výuka ve 3. roce studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikroekonomie a chování 2. sem. (pokračování)</td>
<td>2/2 Zk</td>
<td>2/2 Z</td>
<td>ZZZ267</td>
</tr>
<tr>
<td>Diferenciální rovnice 1</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>DIR003</td>
</tr>
<tr>
<td>Makroekonomie</td>
<td>2/2 Zk</td>
<td>2/2 Z</td>
<td>ZZZ062</td>
</tr>
</tbody>
</table>
Dějiny ekonomických teorií 4/0 Zk — ZZZ066
Ekonomická transformace 2/0 Z 2/0 Zk ZZZ068

1 Tento předmět student absolvuje na MFF.
Dále si student vybere jednu výběrovou přednášku ze skupiny ekonomických předmětů na FSV UK a jednu výběrovou přednášku z matematických předmětů na MFF.

Požadavky k ústní části státní závěrečné zkoušky

Lineární algebra
- Vektorové prostory, báze, dimenze. Steinitzova věta, dimenze spojení a průniku podprostorů. Homomorfizmy a matice. Hodnost a defekt, matice homomorfizmů, transformace souřadnic, elementární transformace.
- Inverzní matice a jejich užití. Soustavy lineárních rovnic, podmínky řešitelnosti, lineál všech řešení. Determinanty, věta o násobení determinantů, výpočet determinantů, Cramerovo pravidlo.
- Vlastní čísla a vlastní podprostory. Existence a jednoznačnost Jordanova kanonickeho tvaru matice.

Matematická analýza
- Primitivní funkce a Newtonův určitý integrál. Metody výpočtu primitivní funkce. Riemannův integrál, jeho základní vlastnosti a vztah k primitivním funkcím. Základní kritéria existence Newtonova a Riemannova integrálu.
- Funkce více proměnných. Otevřené množiny a spojitá zobrazení v eukleidovských prostorech. Totální diferenciací a jeho geometrický význam. Implicitní funkce. Extrémy a vázané extrémy funkcí více proměnných.
- Diferenciální rovnice. Rovnice 1. řádu, separace proměnných. Věta o existenci a jednoznačnosti řešení lineární rovnice n-tého řádu. Systémy lineárních rovnic 1. řádu.

Statistické metody

3.5. Matematika a počítače v praxi (MAPO)
Garantující pracoviště: katedra numerické matematiky
Odpovědný učitel: RNDr. Jitka Segethová, CSc.

Studijní obor se otevře, pokud si jej na začátku druhého roku studia zvolí alespoň čtyři studenti.
Průběh studia

Výuka ve 2. roce studia

Povinné předměty

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programování v C/C++</td>
<td>2/2</td>
<td>Z, Zk</td>
<td>PRG012</td>
</tr>
<tr>
<td>Databázové systémy</td>
<td>2/2</td>
<td>Z, Zk</td>
<td>DBI002</td>
</tr>
</tbody>
</table>

Volitelné předměty

Studenti volí z následujících předmětů tak, aby dosáhli minimálně 8 bodů. Se souhlasem garanta studijního programu Matematika si mohou zapsat i jiné předměty než níže uvedené.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvod do financí</td>
<td>—</td>
<td>2/0 Zk</td>
<td>FAP009</td>
</tr>
<tr>
<td>Matematické metody ve financích</td>
<td>2/0</td>
<td>Zk</td>
<td>FAP022</td>
</tr>
<tr>
<td>Účetnictví</td>
<td>2/2</td>
<td>Z, Zk</td>
<td>FAP013</td>
</tr>
<tr>
<td>Úvod do hlubin TeXu</td>
<td>2/0</td>
<td>Z</td>
<td>PRM024</td>
</tr>
</tbody>
</table>

Výuka ve 3. roce studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obyčejné diferenciální rovnice v reálném oboru</td>
<td>2/2</td>
<td>Z, Zk</td>
<td>DIR012</td>
</tr>
<tr>
<td>Numerické řešení diferenciálních rovnic</td>
<td>2/2</td>
<td>Z, Zk</td>
<td>NUM010</td>
</tr>
<tr>
<td>Matematické modelování ve fyzice</td>
<td>2/0</td>
<td>Z</td>
<td>MOD004</td>
</tr>
<tr>
<td>Praktikum z numerického softwaru a numerické matematiky</td>
<td>0/4</td>
<td>Z</td>
<td>NUM003</td>
</tr>
<tr>
<td>Principy počítačů a operační systémy</td>
<td>2/0</td>
<td>Zk</td>
<td>PRM041</td>
</tr>
</tbody>
</table>

Požadavky k ústní části státní závěrečné zkoušky

Základy numerické matematiky

Základní software numerické matematiky. Student prokáže základní znalost programových balíků, zejména těch, které použil při zpracování závěrečné práce.

Základy matematické informatiky

Základy architektury počítačů, von Neumannovo schéma, mikroprogramování, rozdíl v programování pomocí vyšších programovacích jazyků, jazyka symbolických adres a mikroinstrukcí.

Multiprogramování - problematika synchronizace paralelních procesů, producent x konzument, server x klient, semafory, podmínky vzniku, detekce a prevence deadlocku.

Struktura operačních systémů - úloha hlavních komponent, plánování a správa procesů, správa paměti, historický vývoj, principy virtuální paměti, segmentace a stránkování na žádost, algoritmy pro vyhledávání obětí.
Principy překladačů - překlad řízený syntaxí, principy optimalizace vygenerovaného kódu.

Aplikace numerické matematiky

Numerické řešení evolučních rovnic.

Počáteční úloha (formulace vět o existenci a jednoznačnosti řešení). Geometrická interpretace řešení (vektorové pole, směrové pole, trajektorie, fázová křivka, tok vektorového pole, portrét trajektorií, fázový portrét).

3.6. Obecná matematika (OM)

Garantující pracoviště: katedra matematické analýzy
Odpovědný učitel: Doc. RNDr. Jana Stará, CSc.

Studijní směr je určen zejména pro studenty, kteří po ukončení části magisterského studijního programu Matematika, magisterského studia zanechali.

Studium se řídí obecnými předpisy bakalářského programu Matematika (odst. 1.1, 1.2).

Průběh studia

se řídí doporučeným průběhem studia 1. a 2. ročníku magisterského programu Matematika.

Podmínky pro přihlášení k ústní části státní závěrečné zkoušky

- absolování 1. ročníku (kap. 2) a povinných předmětů bloku A (viz 3.2) magisterského programu Matematika,
- získání minimálně 70 bodů,
- získání alespoň 10 bodů za předměty ze seznamu (viz níže),
- složení zkoušky z cizího jazyka,
- podání závěrečné práce (projektu).

Seznam

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teorie pravděpodobnosti 1</td>
<td>4/0 Zk</td>
<td>—</td>
<td>STP050</td>
</tr>
<tr>
<td>Teorie pravděpodobnosti 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>STP051</td>
</tr>
<tr>
<td>Pořadí</td>
<td>Název kurzu</td>
<td>Kreditů</td>
<td>Semestr</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>Matematická statistika 1</td>
<td>4/2 Z, Zk</td>
<td>—</td>
</tr>
<tr>
<td>2.</td>
<td>Matematická statistika 2</td>
<td>—</td>
<td>4/2 Z, Zk</td>
</tr>
<tr>
<td>3.</td>
<td>Matematické modelování ve fyzice</td>
<td>2/0</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>4.</td>
<td>Operační systémy a systémový software</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

Požadavky k ústní části státní závěrečné zkoušky

jsou shodné s požadavky k souborné zkoušce magisterského programu Matematika (viz 3.1).
Matematika Bc.
Studijní plány studijního programu
FYZIKA

A. Magisterské studium

Podle těchto studijních plánů studují posluchači, kteří nastoupili studium ve školním roce 2002/2003 nebo dříve.

1. Základní informace

Absolvent magisterského studia získává titul magistr (Mgr.). Magisterské studium studijního programu fyzika trvá standardně 5 let, maximálně 10 let.

Studijní obory magisterského studia studijního programu fyzika:

- Astronomie a astrofyzika (A) 4.1
- Geofyzika (G) 4.2
- Meteorologie a klimatologie (MK) 4.3
- Teoretická fyzika (TF) 4.4
- Fyzika kondenzovaných a makromolekulárních látek (FKML) 4.5
- Optika a optoelektronika (OOE) 4.6
- Fyzika povrchů a ionizovaných prostředí (FPIP) 4.7
- Biofyzika a chemická fyzika (BCHF) 4.8
- Jaderná a subjaderná fyzika (JF) 4.9
- Matematické a počítačové modelování ve fyzice a v technice (MOD) 4.10
- Účitelství fyziky pro střední školy v kombinaci s odbornou fyzikou 4.11
- Účitelství fyziky v kombinaci s druhým aprobačním oborem pro SS 4.12

Studijní obor sestává z jednoho nebo více studijních plánů vedoucích ke státní závěrečné zkoušce.

Studijní náplní I. stupně studia (1. ročníku) je společná pro celý studijní program fyzika a její plnění je kontrolováno po každém semestru (kap. 2). Na II. stupni studia si student volí složení výuky tak, aby průběžně splňoval bodové hranice pro zápisy do dalšího roku studia a aby splnil podmínky pro přihlášení k souborné zkoušce (viz 3.1), pro zadání diplomové práce (viz 3.2) a pro přihlášení ke státní závěrečné zkoušce (viz 3.3).

Studijní náplní II. stupně magisterského studia programu fyzika se skládá ze čtyř okruhů předmětů:
I. okruh — společný základ programu fyzika: studium společného základu je jednotné pro celý studijní program.

II. okruh — předměty povinné pro přihlášení k souborné nebo státní závěrečné zkoušce.

III. okruh — výběrově povinné předměty: z těchto předmětů student volí tak, aby vyhověl podmínkám přihlášení k souborné nebo státní závěrečné zkoušce. V druhém případě při tom dbá doporučení vedoucího své diplomové práce.

IV. okruh — nepovinné předměty: do tohoto okruhu patří všechny ostatní předměty vyučované na MFF, případně předměty vyučované na jiných fakultách UK nebo i jiných vysokých školách. U některých oborů jsou uvedeny ty z nepovinných předmětů, které tento obor svým posluchačům doporučuje.

2. První stupeň studia

Garantující pracoviště: kabinet výuky obecné fyziky (KVOF)

Povinné předměty v 1. ročníku

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>MAF033</td>
</tr>
<tr>
<td>Matematická analýza II</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>MAF034</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MAF027</td>
</tr>
<tr>
<td>Lineární algebra II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MAF028</td>
</tr>
<tr>
<td>Programování</td>
<td>2/2 Z</td>
<td>2/2 Z, Zk</td>
<td>PRF033</td>
</tr>
<tr>
<td>Fyzika I (mechanika a molekulová fyzika)</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>OFY021</td>
</tr>
<tr>
<td>Fyzika II (elektřina a magnetismus)</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>OFY018</td>
</tr>
<tr>
<td>Fyzikální praktikum I</td>
<td>—</td>
<td>0/4 KZ</td>
<td>OFY019</td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>TVY001</td>
</tr>
<tr>
<td>Cizí jazyk</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>Kurz bezpečnosti práce</td>
<td>—</td>
<td>—</td>
<td>SZZ008</td>
</tr>
</tbody>
</table>

1 Získání zápočtu za letní semestr není podmínkou připuštění ke zkoušce.

Doporučené nepovinné předměty

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzika v experimentech</td>
<td>1/0</td>
<td>1/0 Z</td>
<td>OFY008</td>
</tr>
<tr>
<td>Proseminář z matematické fyziky</td>
<td>0/2 Z</td>
<td>—</td>
<td>OFY002</td>
</tr>
<tr>
<td>Proseminář z elektrodynamiky</td>
<td>—</td>
<td>0/2 Z</td>
<td>OFY011</td>
</tr>
</tbody>
</table>
3. Druhý stupeň studia odborné fyziky

3.1. Společný základ a souborná zkouška

Garantující pracoviště: kabinet výuky obecné fyziky (KVOF)

Studium společného základu navazuje na výuku v 1. ročníku. Toto studium je pro studijní program fyzika společná, je rozvrženo běžně na tři semestry a zakončeno povinnou soubornou zkouškou ze základů fyziky, k níž se student přihláší po splnění požadovaných předepsaných studijním plánem. Souborná zkouška se nedělí na více částí (tj. skládá se z jedné části); to znamená, že posluchač se hlásí k souborné zkoušce jako celku, je z ní hodnocen jednou známkou a v případě neúspěchu ji také celou opakuje. Doporučuje se vykonat soubornou zkoušku během 3. roku studia, neboť její složení je podmínkou pro zadání diplomové práce. Složení souborné zkoušky však není podmínkou pro zápis do 4. roku studia.

Podmínky pro přihlášení k souborné zkoušce

- absolvování 1. ročníku,
- absolvování předmětů povinných pro přihlášení k souborné zkoušce,
- absolvování výběrově povinných předmětů v rozsahu nejméně 2/1 Z,Zk, znalosti z výběrově povinných předmětů se však u souborné zkoušky nevyžadují.

Doporučený průběh studia

Předměty povinné k souborné zkoušce jsou uváděny tučně, výběrově povinné předměty slabě, doporučené nepovinné kurzivou.

2. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematika pro fyziky I</td>
<td>4/3 Z, Zk</td>
<td>—</td>
<td>MAF003</td>
</tr>
<tr>
<td>Matematika pro fyziky II</td>
<td>—</td>
<td>4/3 Z, Zk</td>
<td>MAF004</td>
</tr>
<tr>
<td>Fyzika III (optika)</td>
<td>3/2 Z, Zk</td>
<td>—</td>
<td>OFY022</td>
</tr>
<tr>
<td>Teoretická mechanika</td>
<td>3/2 Z, Zk</td>
<td>—</td>
<td>OFY003</td>
</tr>
<tr>
<td>Speciální teorie relativity</td>
<td>2/0 Zk</td>
<td>—</td>
<td>OFY023</td>
</tr>
<tr>
<td>Fyzikální praktikum II</td>
<td>0/3 KZ</td>
<td>—</td>
<td>OFY024</td>
</tr>
<tr>
<td>Fyzika IV (atomová fyzika a elektronová struktura látek)</td>
<td>—</td>
<td>3/1 Z, Zk</td>
<td>OFY025</td>
</tr>
<tr>
<td>Klasická elektrodynamika</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>OFY026</td>
</tr>
<tr>
<td>Úvod do kvantové mechaniky</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>OFY027</td>
</tr>
<tr>
<td>Fyzikální praktikum III</td>
<td>—</td>
<td>0/4 KZ</td>
<td>OFY028</td>
</tr>
<tr>
<td>Proseminář z optiky</td>
<td>0/2 Z</td>
<td>—</td>
<td>OFY010</td>
</tr>
<tr>
<td>Proseminář z kvantové mechaniky</td>
<td>—</td>
<td>0/2 Z</td>
<td>OFY054</td>
</tr>
<tr>
<td>Problémy současné fyziky I ¹</td>
<td>0/2 Z</td>
<td>—</td>
<td>OFY047</td>
</tr>
<tr>
<td>Problémy současné fyziky II ¹</td>
<td>—</td>
<td>0/2 Z</td>
<td>OFY048</td>
</tr>
<tr>
<td>Astronomická pozorování, modely a zpracování obrazových informací</td>
<td>—</td>
<td>2/0 Zk</td>
<td>OFY020</td>
</tr>
</tbody>
</table>

¹ Započítává se pouze jedním bodem.
<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematika pro fyziky III</td>
<td>3/2</td>
<td>Z</td>
<td>MAF005</td>
</tr>
<tr>
<td>Fyzika V (jaderná a subjaderná fyzika)</td>
<td>3/1</td>
<td>Z</td>
<td>OFY029</td>
</tr>
<tr>
<td>Fyzikální praktikum IV</td>
<td>0/3</td>
<td>KZ</td>
<td>OFY030</td>
</tr>
<tr>
<td>Termodynamika a statistická fyzika</td>
<td>3/2</td>
<td>Z</td>
<td>OFY031</td>
</tr>
<tr>
<td>Metody zpracování fyzikálních měření</td>
<td>—</td>
<td>2/0</td>
<td>OFY034</td>
</tr>
<tr>
<td>MK, OOE, BCHF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metody zpracování fyzikálních měření (MK)</td>
<td>—</td>
<td>2/0</td>
<td>MET050</td>
</tr>
<tr>
<td>Numerické metody zpracování experimentálních dat (OOE, BCHF)</td>
<td>—</td>
<td>2/0</td>
<td>MAF035</td>
</tr>
<tr>
<td>Vybrané kapitoly z kvantové mechaniky</td>
<td>2/1</td>
<td>Z</td>
<td>OFY043</td>
</tr>
<tr>
<td>Kvantová teorie I (FKML)</td>
<td>4/2</td>
<td>Z</td>
<td>FPL010</td>
</tr>
<tr>
<td>Kvantová teorie I (OOE, BCHF)</td>
<td>4/2</td>
<td>Z</td>
<td>BCM110</td>
</tr>
<tr>
<td>Kvantová mechanika I (TF, JF)</td>
<td>4/2</td>
<td>Z</td>
<td>OFY045</td>
</tr>
<tr>
<td>Kvantová mechanika I (TF)</td>
<td>4/2</td>
<td>Z</td>
<td>JSF094</td>
</tr>
<tr>
<td>Základy kvantové teorie (FP1P, A)</td>
<td>4/2</td>
<td>Z</td>
<td>OFY042</td>
</tr>
<tr>
<td>Mechanika kontinua (G, MK)</td>
<td>2/1</td>
<td>Z</td>
<td>GEO014</td>
</tr>
<tr>
<td>Hydrodynamika (MK)</td>
<td>3/1</td>
<td>Z</td>
<td>MET034</td>
</tr>
<tr>
<td>Fourierova spektrální analýza (G)</td>
<td>2/1</td>
<td>Z</td>
<td>GEO005</td>
</tr>
<tr>
<td>Proseminář z jaderné a subjaderné fyziky</td>
<td>0/2</td>
<td>Z</td>
<td>OFY012</td>
</tr>
<tr>
<td>Výběrové praktikum z elektroniky a počítačové techniky</td>
<td>—</td>
<td>0/3</td>
<td>OFY004</td>
</tr>
</tbody>
</table>

1 Místo této přednášky je možno zapsat MAF008, nebo DIR001.
2 Místo této přednášky lze zapsat buď dvojici přednášek TMF043+TMF044 nebo přednášku RFA006.
3 Garantují pracoviště zajišťující příslušnou výuku.
4 Zapisuje se pouze v jednom semestru, doporučen je letní.

Výběrově povinné předměty se doporučuje zapisovat ve čtyři semestrech 4/2 podle schematu naznačeného v závorkách. Takto doporučená výuka odpovídá nejlépe výuce, která na ní na jednotlivých oborech navazuje a některá její témata mohou být i součástí požadavků ke státní závěrečné zkoušce. Absolvování této výuky však není nezbytnou podmínkou k zadání diplomové práce v příslušném oboru.

Požadavky k souborné zkoušce

Zkouška má přehledový charakter. Jsou kladeny jen širší otázky a žádá se, aby posluchač prokázal pochopení základních problémů, byl schopen ilustrovat na konkrétních situacích a osvědčil určitou míru znalostí. Kromě znalosti teorie je tedy potřeba prokázat i znalost základní metodiky měření příslušných veličin. Předmětem zkoušky jsou následující partie fyziky:

Mechanika hmotného bodu a soustav hmotných bodů

Společný základ a souborná zkouška

Kinematika a dynamika tuhého tělesa
Popis pomocí Eulerových úhlů, Eulerovy dynamické rovnice, Lagrangeova funkce pro tuhé těleso, pohyb setrvačníků.

Mechanika kontinua

Struktura látek
Atomová hypotéza, skupenství, typy vazeb, Brownův pohyb.

Základy termodynamiky

Základy kinetické teorie

Základní elektromagnetické veličiny a jejich měření
Intenzity elektrického a magnetického pole, elektrická a magnetická indukce. Materiálové vztahy. Měrné metody elektrických a magnetických veličin.

Maxwellovy rovnice a jejich základní důsledky
Elektromagnetické potenciály a jejich vlastnosti. Zákony zachování. Vlastnosti stacionárních, kvazistacionárních a nestacionárních polí.

Základní principy speciální teorie relativity
Princip relativity, Lorentzova transformace, relativistická invariance Maxwellových rovnice, relativistická pohybová rovnice hmotného bodu, ekvivalence hmotnosti a energie.

Elektrické obvody stacionární, kvazistacionární a střídavé

Elektromagnetické vlny

Geometrická optika

Variační formulace fyzikálních zákonů
Hamiltonův variační princip, vztah mezi mechanikou a geometrickou optikou. Hamiltonův princip pro soustavy s nekonečně mnoha stupní volnosti (struna, elektromagnetické pole).
Stavba atomů, molekul a kondenzovaných látek

Experimentalní základy kvantové hypotézy

Formalismus kvantové teorie

Vlnová funkce částic, hermitovské operátory a reprezentace měřitelných veličin. Schrödingerova rovnice.

Aplikace kvantové mechaniky

Volný elektron a elektron v potenciálové jámě, tunelový jev. Harmonický oscilátor.

Jaderné záření

Interakce jaderného záření s prostředním a metody detekce. Spektrometrie jaderného záření. Úmělé zdroje jaderného záření.

Atomové jádro

Subjaderná fyzika

3.2. Diplomová práce

Podmínky pro zadání diplomové práce

– složení souborné zkoušky,
– zkouška z cizího jazyka.

Zpracování diplomové práce je standardně rozvrženo na 3 semestry, student však má právo na ní pracovat 4 semestry, pokud nepřekročí celkovou povolenou délku studia.

3.3. Státní závěrečná zkouška

Termíny pro podání přihlášky ke státní závěrečné zkoušce určuje harmonogram školního roku. Student se k nim může přihlásit po splnění podmínek pro přihlášení, které jsou uvedeny v jednotlivých studijních plánech (kap. 4). Zkouška se skládá ze dvou částí:

– z obhajoby diplomové práce,
– z ústní zkoušky.

Na některých studijních oborech se ústní zkouška skládá z bloku Společné požadavky a z bloku Užší zaměření. Oba bloky dohromady však tvoří neoprávněnou část, která je hodnocena jedinou známkou.

Podmínky pro přihlášení a požadavky pro ústní zkoušku jsou součástí studijních plánů jednotlivých studijních oborů (kap. 4).

Obhajobu diplomové práce nebo ústní zkoušku lze opakovat nejvýše dvakrát.
3.4. Kurs bezpečnosti práce

Podmínkou pro samostatnou práci v laboratoři (záhájení praktik a experimentální diplomové práce) je získání zápočtu z kursu bezpečnosti práce (SZZ008), který je organizován pro všechny studenty fyziky kabinetem výuky obecné fyziky. Platnost tohoto kursu je dva roky.

4. Studijní plány jednotlivých oborů

4.1. Astronomie a astrofyzika

Garantující pracoviště: Astronomický ústav UK
Odpovědný učitel: Doc. RNDr. Martin Šolc, CSc.

Studenti, kteří se hlásí ke státní závěrečné zkoušce z fyziky, obor astronomie a astrofyzika, se během studia seznamují se základy astronomie, klasické astrofyziky a podle svého výběru dále s nebeskou mechanikou, relativistickou astrofyzikou, extragalaktickou astronomií, kosmologií, fyzikou těles sluneční soustavy atd., navštěvují semináře ústavu a absolvují praktika a praxe na observatořích s různými vědeckými programy.

Podmínky pro přihlášení ke státní závěrečné zkoušce

- absolvování předmětů povinných pro přihlášení ke státní závěrečné zkoušce,
- získání alespoň 184 bodů za celé studium,
- získání alespoň 13 bodů z výběrově povinných předmětů,
- podání diplomové práce v předepsané úpravě.

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce jsou uváděny tučně, výběrově povinné předměty slabě. Další nepovinné předměty si student volí tak, aby získal celkový požadovaný počet bodů.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Základy astronomie a astrofyziky I</td>
<td>—</td>
<td>4/0 Zk</td>
<td>AST006</td>
</tr>
<tr>
<td>Základy astronomie a astrofyziky II</td>
<td>—</td>
<td>4/0 Zk</td>
<td>AST007</td>
</tr>
<tr>
<td>Cvičení a praktikum z astronomie</td>
<td>—</td>
<td>0/4 Z</td>
<td>AST028</td>
</tr>
<tr>
<td>Metody zpracování fyzikálních měření</td>
<td>—</td>
<td>2/0 Zk</td>
<td>OFY034</td>
</tr>
<tr>
<td>Odborná praxe (v 6. semestru)</td>
<td>Z</td>
<td></td>
<td>SZZ002</td>
</tr>
</tbody>
</table>
4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrofyzika I</td>
<td>4/0 Zk</td>
<td>—</td>
<td>AST013</td>
</tr>
<tr>
<td>Astrofyzika II</td>
<td>—</td>
<td>4/0 Zk</td>
<td>AST014</td>
</tr>
<tr>
<td>Galaktická a extragalaktická</td>
<td>—</td>
<td>3/0 Zk</td>
<td>AST003</td>
</tr>
<tr>
<td>astronomie I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminář Astronomického ústavu UK</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>AST010</td>
</tr>
<tr>
<td>Speciální praktikum I (pro AA)</td>
<td>0/2 Z</td>
<td>—</td>
<td>AST017</td>
</tr>
<tr>
<td>Speciální praktikum II (pro AA)</td>
<td>—</td>
<td>0/2 Z</td>
<td>AST018</td>
</tr>
<tr>
<td>Diplomový seminář 1</td>
<td>0/1 Z</td>
<td>0/1 Z</td>
<td>AST031</td>
</tr>
<tr>
<td>Obecná relativity</td>
<td>—</td>
<td>3/0 Zk</td>
<td>TMF111</td>
</tr>
<tr>
<td>Relativistická fyzika I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>TMF037</td>
</tr>
<tr>
<td>Relativistická fyzika II</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>TMF038</td>
</tr>
<tr>
<td>Nebeská mechanika I</td>
<td>4/0 Zk</td>
<td>—</td>
<td>AST005</td>
</tr>
<tr>
<td>Nebeská mechanika II</td>
<td>—</td>
<td>4/0 Zk</td>
<td>AST011</td>
</tr>
<tr>
<td>Plazmová astrofyzika</td>
<td>—</td>
<td>2/0 Zk</td>
<td>AST032</td>
</tr>
<tr>
<td>Kosmická elektrodynamika</td>
<td>3/1 Z, Zk</td>
<td>—</td>
<td>AST008</td>
</tr>
<tr>
<td>Elementární procesy v kosmické fyzice</td>
<td>—</td>
<td>2/1 Zk</td>
<td>AST024</td>
</tr>
</tbody>
</table>

1 Diplomový seminář lze zapisovat opakovaně tak, aby během studia posluchač absolvoval celkem 3 semestry.

Výběrově povinné předměty zapíší studenti tak, aby z těchto předmětů získali nejméně 13 bodů.

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaktická a extragalaktická</td>
<td>2/0 Zk</td>
<td>—</td>
<td>AST004</td>
</tr>
<tr>
<td>astronomie II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cvičení z galaktické astronomie</td>
<td>0/2 Z</td>
<td>—</td>
<td>AST015</td>
</tr>
<tr>
<td>Seminář Astronomického ústavu UK</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>AST010</td>
</tr>
<tr>
<td>Diplomový seminář 1</td>
<td>0/1 Z</td>
<td>0/1 Z</td>
<td>AST031</td>
</tr>
<tr>
<td>Kosmologie</td>
<td>3/0 Zk</td>
<td>—</td>
<td>AST009</td>
</tr>
<tr>
<td>Elementární procesy v kosmické fyzice</td>
<td>—</td>
<td>2/1 Zk</td>
<td>AST024</td>
</tr>
<tr>
<td>Fyzika malých těles sluneční soustavy 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>AST020</td>
</tr>
<tr>
<td>Vybrané kapitoly z astrofyziky 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>AST021</td>
</tr>
<tr>
<td>Cvičení ze stelární astronomie</td>
<td>—</td>
<td>0/2 Z</td>
<td>AST016</td>
</tr>
<tr>
<td>Dějiny astronomie 2</td>
<td>1/1 Z</td>
<td>1/1 Z</td>
<td>AST026</td>
</tr>
<tr>
<td>Dvojhvězdy 3</td>
<td>—</td>
<td>2/0 Zk</td>
<td>AST019</td>
</tr>
<tr>
<td>Hvězdné atmosféry 3</td>
<td>2/0 Zk</td>
<td>—</td>
<td>AST002</td>
</tr>
<tr>
<td>Vybrané kapitoly ze spektroskopie 3</td>
<td>2/0 Zk</td>
<td>—</td>
<td>AST025</td>
</tr>
<tr>
<td>Sluneční fyzika 3</td>
<td>2/0 Zk</td>
<td>—</td>
<td>AST001</td>
</tr>
</tbody>
</table>

1 Diplomový seminář lze zapisovat opakovaně tak, aby během studia posluchač absolvoval celkem 3 semestry.

2 Tyto předměty se zaměřují každý rok na jiná témata a studenti je mohou zapisovat opakovaně.

3 Tyto předměty se zařazují ve dvouletém intervalu. Zapisuje se ten předmět, který se v daném školním roce koná.
Požadavky k ústní části státní závěrečné zkoušky

A. Společné předměty

1. Srovnání klasické a kvantové mechaniky
 Základy mechaniky kontinua, Navierova-Stokesova rovnice.

2. Kvantování fyzikálních veličin

3. Elektromagnetické pole

4. Jaderná a subjaderná fyzika

5. Symetrie ve fyzice

6. Termodynamika a statistická fyzika

7. Astronomie

8. Hvězdy, galaxie a stavba vesmíru
9. Astrofyzika

B. Předměty užšího zaměření

Posluchači volí dva z okruhů 1.–3. a jeden z okruhů 4.–6.

1. Kosmické plasma

2. Nebeská mechanika

3. Relativistická astrofyzika

4. Fyzika hvězd a dvojhvězd

5. Sluneční fyzika

6. Fyzika planetárních soustav

4.2. Geofyzika

Garantující pracoviště: katedra geofyziky
Odpovědný učitel: Doc. RNDr. Ondřej Čadek, CSc.

Katedra geofyziky nabízí magisterské studium ve všech oborech fyziky Země. Studium seismologie je orientováno na nové metody v teorii šíření seismických vln, fyziku.
zemětřesení, predikci pohybů půdy a strukturální studie (s možnými aplikacemi v naf-tové a uhelné prospeckci). Geodynamika a fyzikální geodézie zahrnuje studium konvek-tivních procesů v zemském plášti a jádře a dále studium fyzikálních parametrů Země s úzkou vazbou na gravimetrii, geotermiku a geomagnetismus. Výzkum v oboru fy-

zíky vysoké atmosféry, vztahů Slunce — Země a v dalších oblastech se provádí v úzké spolupráci s vědeckými ústavy AV ČR. Absolventi nacházejí uplatnění ve výzkumných ústavech geofyzikálního a geodetického zaměření a v průmyslových laboratořích zabý-

vajících se geofyzikální prospeckcí.

Podmínky pro přihlášení ke státní závěrečné zkoušce

- absolování předmětů povinných pro přihlášení ke státní závěrečné zkoušce,
- získání alespoň 184 bodů za celé studium,
- získání alespoň 20 bodů z výběrově povinných předmětů,
- podání diplomové práce v předepsané úpravě.

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce jsou uváděny tučně, výběrově po-

vinné předměty slabě. Další, nepovinné předměty si student volí tak, aby získal celkový požadovaný počet bodů.

a) pro studenty zaměřené na seismiku

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanika kontinua</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>GEO014</td>
</tr>
<tr>
<td>Fourierova spektrální analýza</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>GEO005</td>
</tr>
<tr>
<td>Metody zpracování fyzikálních měření</td>
<td>—</td>
<td>2/0 Zk</td>
<td>OFY034</td>
</tr>
<tr>
<td>Přehled geofyziky</td>
<td>2/0 Zk</td>
<td>—</td>
<td>GEO029</td>
</tr>
<tr>
<td>Tíhové pole a tvar Země</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>GEO017</td>
</tr>
<tr>
<td>Seismologie</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>GEO003</td>
</tr>
<tr>
<td>Newtonův potenciál ve fyzikálních vědách</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>GEO021</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geomagnetismus a geoelektřina</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>GEO066</td>
</tr>
<tr>
<td>Numerické metody ve Fortranu</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>GEO022</td>
</tr>
<tr>
<td>Šíření seismických vln</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>GEO002</td>
</tr>
<tr>
<td>Metody zpracování geofyzikálních dat</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>GEO057</td>
</tr>
<tr>
<td>Geotermika a radioaktivita Země</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>GEO015</td>
</tr>
<tr>
<td>Obrácené úlohy v geofyzice</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>GEO013</td>
</tr>
<tr>
<td>Geodynamický seminar I</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>GEO067</td>
</tr>
<tr>
<td>Seismický seminar I</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>GEO068</td>
</tr>
<tr>
<td>Seismologie II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>GEO074</td>
</tr>
<tr>
<td>Maticové metody v seismologii</td>
<td>2/0 Zk</td>
<td>—</td>
<td>GEO018</td>
</tr>
<tr>
<td>Praktikum ze seismologie</td>
<td>0/2 Z</td>
<td>—</td>
<td>GEO011</td>
</tr>
<tr>
<td>Paprskové metody v seismice</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>GEO032</td>
</tr>
</tbody>
</table>
Fyzika Mgr.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Povrchové elastické vlny</td>
<td>—</td>
<td>2/0 Zk</td>
<td>GEO034</td>
</tr>
<tr>
<td>Užitá geofyzika</td>
<td>—</td>
<td>2/0 Zk</td>
<td>GEO007</td>
</tr>
<tr>
<td>Užitá geofyzika — terénní měření</td>
<td>—</td>
<td>0/2 Z</td>
<td>GEO031</td>
</tr>
<tr>
<td>Vybrané kapitoly z parciálních diferenciálních rovnic</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MAF001</td>
</tr>
</tbody>
</table>

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stavba Země</td>
<td>3/0 Zk</td>
<td>—</td>
<td>GEO016</td>
</tr>
<tr>
<td>Geodynamický seminář II</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>GEO070</td>
</tr>
<tr>
<td>Seismický seminář II</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>GEO071</td>
</tr>
<tr>
<td>Seismické prostorové vlny v nehomogenních anizotrop. prostředících</td>
<td>2/0 Zk</td>
<td>—</td>
<td>GEO063</td>
</tr>
<tr>
<td>Modelování seismických vln</td>
<td>2/0 Zk</td>
<td>—</td>
<td>GEO052</td>
</tr>
<tr>
<td>Vysokofrekvenční modelování účinků seismického zdroje</td>
<td>2/0 Zk</td>
<td>—</td>
<td>GEO049</td>
</tr>
<tr>
<td>Inverze seismických vlnových polí a časů šíření</td>
<td>—</td>
<td>2/0 Zk</td>
<td>GEO051</td>
</tr>
<tr>
<td>Fortran 90 a paralelní programování</td>
<td>—</td>
<td>0/2 Z</td>
<td>PRF039</td>
</tr>
<tr>
<td>Moderní instrumentální seismologie</td>
<td>—</td>
<td>2/0 Zk</td>
<td>GEO041</td>
</tr>
</tbody>
</table>

b) pro studenty zaměřené na geodynamiku a magnetismus

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanika kontinua</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>GEO014</td>
</tr>
<tr>
<td>Fourierova spektrální analýza</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>GEO005</td>
</tr>
<tr>
<td>Metody zpracování fyzikálních měření</td>
<td>—</td>
<td>2/0 Zk</td>
<td>OFY034</td>
</tr>
<tr>
<td>Přehled geofyziky</td>
<td>2/0 Zk</td>
<td>—</td>
<td>GEO029</td>
</tr>
<tr>
<td>Tíhové pole a tvar Země</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>GEO017</td>
</tr>
<tr>
<td>Seismologie</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>GEO003</td>
</tr>
<tr>
<td>Newtonův potenciál ve fyzikálních vědách</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>GEO021</td>
</tr>
<tr>
<td>Vybrané kapitoly z parciálních diferenciálních rovnic</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MAF001</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geomagnetismus a geoelektřina</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>GEO066</td>
</tr>
<tr>
<td>Numerické metody ve Fortranu</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>GEO022</td>
</tr>
<tr>
<td>Šíření seismických vln</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>GEO002</td>
</tr>
<tr>
<td>Metody zpracování geofyzikálních dat</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>GEO057</td>
</tr>
<tr>
<td>Geotermika a radioaktivita Země</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>GEO005</td>
</tr>
<tr>
<td>Obrácené úlohy v geofyzice</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>GEO013</td>
</tr>
<tr>
<td>Geodynamický seminář I</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>GEO067</td>
</tr>
<tr>
<td>Seismický seminář I</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>GEO068</td>
</tr>
<tr>
<td>Matematické metody studia gravitačního pole a tvaru Země</td>
<td>2/0 Zk</td>
<td>—</td>
<td>GEO043</td>
</tr>
</tbody>
</table>
5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stavba Země</td>
<td>3/0 Zk</td>
<td>—</td>
<td>GEO016</td>
</tr>
<tr>
<td>Geodynamický seminář II</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>GEO070</td>
</tr>
<tr>
<td>Seismický seminář II</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>GEO071</td>
</tr>
<tr>
<td>Okrajové úlohy pro určení tíhového pole</td>
<td>2/0 Zk</td>
<td>2/0 Zk</td>
<td>GEO059</td>
</tr>
<tr>
<td>a tvaru Země</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fyzika ionofšery a magnetofšery</td>
<td></td>
<td>2/0 Zk</td>
<td>GEO006</td>
</tr>
</tbody>
</table>

Požadavky k ústní části státní závěrečné zkoušky

1. **Pohyby Země**

2. **Základy nebeské mechaniky**
 - Elementy dráhy planet. Poruchy elementů dráhy. Poruchy dráhy umělé družice vyvolané zploštěním planety a dalšími vlivy.

3. **Reologie Země**

4. **Seismické vlny**

5. **Řešení Maxwellových rovnic v úlohách geofyziky**
 - Elektromagnetická indukce v Zemi vyvolaná změnami vnějšího magnetického pole.

6. **Magnetohydrodynamika**
 - Soustava rovnic magnetického dynama v nitřech nebeských těles.

7. **Pohyb nabité částice v magnetickém poli**
 - Pohyb v homogenním a nehomogenním poli. Pohyb v poli magnetického dipólu.

8. **Termodynamické vlastnosti zemského nitra**
 - Fázové přechody. Adiabatický gradient.

9. **Newtonův potenciál**
 - Vlastnosti Newtonových potenciálů. Legendrovy polynomy a sférické funkce. Věta o multipolovém rozvoji pro gravitační, elektrostatický a magnetostatický potenciál.
10. Metody zpracování časových řad

11. Statistické metody vyhodnocování geofyzikálních dat

12. Řešení obrácených úloh
Lineární a nelineární obrácené úlohy. Úlohy přeурčené a podurčené. Aplikace.

13. Tíhové pole a tvar Země

14. Geomagnetismus a geoelektřina

15. Fyzika ionosféry a magnetosféry

16. Seismologie

17. Geotermika a radioaktivita Země

18. Stavba a dynamika Země

4.3. Meteorologie a klimatologie
Garantující pracoviště: katedra meteorologie a ochrany prostředí
Odpovědný učitel: Prof. RNDr. Jan Bednář, CSc.

Studijní obor Meteorologie a klimatologie se zaměřuje na vzdělání v hydrodynamice, termodynamice, statistice a numerické matematice. Posluchači se seznamují s aplikacemi fyzikálních poznatků pro vysvětlení dějů v zemské atmosféře, s různými metodami předpovědi počasí, se základními měřicími metodami včetně meteorologických družic a radiolokátorů aj.
Absolventi se uplatňují při teoretickém a praktickém řešení problematiky předpovědi počasí, antropogenních vlivů na děje v atmosféře, ochrany ovzduší a veškeré klimatologické problematiky.

Podmínky pro přihlášení ke státní závěrečné zkoušce

- absolování předmětů povinných pro přihlášení ke státní závěrečné zkoušce,
- získání alespoň 184 bodů za celé studium,
- získání alespoň 12 bodů z výběrově povinných předmětů,
- podání diplomové práce v předepsané úpravě.

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce jsou uváděny tučně, výběrově povinné předměty slabě. Další nepovinné předměty si student volí tak, aby získal celkový požadovaný počet bodů.

3. rok studia

Ve třetím roce studia se předpokládá plná znalost obsahu přednášky Hydrodynamika (MET034), která je doporučena pro 5. semestr. Doporučuje se v témže semestru absolvovat předmět Mechanika kontinua (GEO014).

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrodynamika</td>
<td>3/1 Z, Zk</td>
<td>—</td>
<td>MET034</td>
</tr>
<tr>
<td>Mechanika kontinua</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>GEO014</td>
</tr>
<tr>
<td>Metody zpracování fyzikálních měření</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MET050</td>
</tr>
<tr>
<td>Seminář zpracování fyzikálních měření</td>
<td>—</td>
<td>0/1 Z</td>
<td>MET049</td>
</tr>
<tr>
<td>Dynamická meteorologie</td>
<td>—</td>
<td>4/1 Z, Zk</td>
<td>MET023</td>
</tr>
<tr>
<td>Synoptická meteorologie I</td>
<td>—</td>
<td>3/0 Zk</td>
<td>MET035</td>
</tr>
<tr>
<td>Všeobecná klimatologie</td>
<td>—</td>
<td>4/0 Zk</td>
<td>MET012</td>
</tr>
<tr>
<td>Meteorologické přístroje a pozorovací metody</td>
<td>—</td>
<td>3/0 Zk</td>
<td>MET021</td>
</tr>
<tr>
<td>Programovací jazyky a operační systémy</td>
<td>—</td>
<td>2/2 KZ</td>
<td>PRF031</td>
</tr>
<tr>
<td>Deterministický chaos</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MAF026</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synoptická meteorologie II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MET036</td>
</tr>
<tr>
<td>Fyzika mezní vrstvy</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MET002</td>
</tr>
<tr>
<td>Analýza povětrnostní mapy I</td>
<td>1/3 KZ</td>
<td>—</td>
<td>MET013</td>
</tr>
<tr>
<td>Metody numerické matematiky I</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MAF013</td>
</tr>
<tr>
<td>Metody numerické matematiky II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MAF014</td>
</tr>
<tr>
<td>Analýza povětrnostní mapy II</td>
<td>—</td>
<td>1/3 KZ</td>
<td>MET014</td>
</tr>
<tr>
<td>Speciální klimatologický seminář</td>
<td>—</td>
<td>0/3 Z</td>
<td>MET010</td>
</tr>
<tr>
<td>Aplikace distančních pozorování</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MET020</td>
</tr>
<tr>
<td>a detekčních metod v meteorologii</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Synoptická interpretace diagnostických a prognostických polí</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MET033</td>
</tr>
<tr>
<td>Fyzika oblaků a srážek</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MET003</td>
</tr>
</tbody>
</table>

137
<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistické metody v meteorologii a klimatologii</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>MET011</td>
</tr>
<tr>
<td>Šíření akustických a elektromagnetických vln v atmosféře</td>
<td>3/0 Zk</td>
<td>—</td>
<td>MET004</td>
</tr>
<tr>
<td>Regionální klimatologie a klimatografie ČR</td>
<td>4/0 Zk</td>
<td>—</td>
<td>MET009</td>
</tr>
<tr>
<td>Vlnové pohyby a energetika atmosféry</td>
<td>3/0 Zk</td>
<td>—</td>
<td>MET025</td>
</tr>
<tr>
<td>Turbulence v atmosféře</td>
<td>3/0 Zk</td>
<td>—</td>
<td>MET032</td>
</tr>
<tr>
<td>Dynamické předpovědní metody</td>
<td>3/2 Z, Zk</td>
<td>—</td>
<td>MET024</td>
</tr>
<tr>
<td>Numerické řešení rovnic prognostických modelů</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MET008</td>
</tr>
<tr>
<td>Hydrologie (pro bakalářské studium)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MET028</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemismus atmosféry</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MET019</td>
</tr>
<tr>
<td>Speciální meteorologický seminář I</td>
<td>0/3 Z</td>
<td>—</td>
<td>MET038</td>
</tr>
<tr>
<td>Speciální meteorologický seminář II</td>
<td>—</td>
<td>0/3 Z</td>
<td>MET039</td>
</tr>
<tr>
<td>Speciální seminář realizace numerických modelů</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>MAF015</td>
</tr>
<tr>
<td>Letecká meteorologie</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MET015</td>
</tr>
<tr>
<td>Elektrické jevy v atmosféře</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MET001</td>
</tr>
<tr>
<td>Šíření exhalací v atmosféře</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MET005</td>
</tr>
<tr>
<td>Atmosférické procesy mezosynoptického měřítka</td>
<td>3/0 Zk</td>
<td>—</td>
<td>MET031</td>
</tr>
<tr>
<td>Matematické modelování oblačných a srážkových procesů v atmosféře</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MET054</td>
</tr>
<tr>
<td>Numerické řešení problémů proudění</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>MAF036</td>
</tr>
</tbody>
</table>

Doporučuje se absolvovat odbornou praxi 2 týdny a předdiplomní praxi 3 týdny po dohodě s katedrou.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

Pojem mezní vrstvy atmosféry. Teorie vazkého proudění, Stokesovy a Navierovy rovnice, charakteristiky podobnosti. Turbulence v atmosféře, mechanické a termické příčiny turbulentní difúze, rovnice turbulentního proudění, Reynoldsova napětí, Prandtlova teorie směsovací dély, koeficient turbulentní difúze, izotropní a neizotropní turbule

cence, intenzita turbule

cence, dynamická (frikční) rychlost. Teorie přízemní a spirální vrstvy, laminární podvrstva, vertikální profily proudění v přízemní vrstvě, Taylorova (Ekmanova) spirála a její zobecnění vzhledem k déjům v reálné atmosféře. Difúze tepla a vodní páry v mezní vrstvě, chody teploty a charakteristik vlhkosti vzduchu, konvekce v mezní vrstvě, turbulentní a konvekční toková tepla a vodní páry, podmínky výparu z hlediska déjů v mezní vrstvě, radiační déje v blízkosti zemského povrchu. Transformace kinetické energie v mezní vrstvě, kinetické energie turbulentních fluktuací rychlostí proudění, teorie podobnosti, Richardsonovo číslo, Moninova a Obuchovova délka, bezrozměrné vertikální profily složek hybnosti, teploty a vlhkosti, problém uzávěru. Proudění přes horské překážky, modely mezní vrstvy atmosféry.

Mikrostruktura a makrostruktura oblaků, úloha kondenzačních a krystalizačních jader, koalescence, teorie vzniku srážek, lom, odraz a rozptyl elektromagnetických vln v atmosféře, šíření zvuku v atmosféře, oblačná elektrina, elektrické výboje v atmosféře, vysvětlení základních úkazů atmosférické optiky, akustiky a elektriny, teorie meteorologické dohlednosti, radiolokační rovnice, radarové a družicové metody meteorologických pozorování.

B. Užší zaměření

Posluchači si volí dva z okruhů otázek 1 až 3.

1. okruh

Formulace rovnice předpovědních modelů, zjednodušující aproximace, zahrnutí vlnových pohybů, předpovědní model v hydrostatickém přiblížení, rovnice mělké vody, formulace počátečních a okrajových úloh předpovědních modelů (globální model, model na omezené oblasti), horizontalní i vertikální souřadnice používané v modelech, transformovaná vertikální souřadnice kopírující terén, příprava vstupních údajů, objektivní analýza a asimilace dat, inicializace, normální módy, metody časové integrace rovnic me-
teorologických modelů (explicitní a semiimplicitní metody časové aproximace), stabilita
aproximace a konvergence schémat časové integrace, prostorová aproximace rovníc —
diferencí metody, Galerkinovy aproximace – - spektrální metody a metoda konečných
prvků, metody faktorizace, aproximace nelineárních členů rovníc v Eulerově tvaru semi-
Lagrangeovou metodou, parametrizace některých fyzikálních dějů (fázových změn vody
v atmosféře, srážek, konvekce, dějů v mezní vrstvě, záření apod.). Synoptická interpre-
tace výstupů modelů, hlavní faktory limitující úspěšnou předpověď meteorologických
polí, prediktabilita atmosférických procesů, teoretické a praktické meze prediktability.

2. okruh

Struktura energetických a radiačně konvektivních modelů, parametrizace mezišíř-
kových přenosů energie, radiačních procesů, zpětné vazby. Trojrozměrné cirkulační kli-
matické modely. Struktura modelů se směsovací vrstvou v oceánu, interpretace mode-
lových výstupů. Struktura modelů atmosféra-oceán, parametrizace základních fyzikál-
ních procesů, interpretace výstupů (kontrolní klima, experiment s růstem koncentrací
skleníkových plynů a aerosolů v atmosféře). Statistické metody objektivní klasifikace
cirkulace atmosféry.

3. okruh

Antropogenní příměsí a jejich zdroje, emise, exhalace, imise, difúze příměsí v at-
mosféře, hlavní typy modelů pro transport znečišťujících příměsí v atmosféře a je-
jich aplikace, vstupní parametry, prostorová měřítka transportu znečišťujících příměsí,
znáčkovací látky, suchá a mokrá depozice, chemické reakce znečišťujících příměsí, zá-
kłady atmosférické chemie, znečištění srážkové a oblačné vody, přízemní a stratosférický
ozon, prekursory ozonu, typizace meteorologických podmínek pro účely ochrany čistoty
ovzduší, monitorování znečištění vzduchu, ekologické problémy související se znečiště-
ním atmosféry.

4.4. Teoretická fyzika

Garantující pracoviště: Ústav teoretické fyziky
Odpovědný učitel: Prof. RNDr. Jiří Bičák, DrSc.

Studenti teoretické fyziky získávají znalosti v řadě oblastí moderní fyziky (přede-
vším v kvantové mechanice a kvantové teorii pole, v relativistické fyzice, astrofyzice
a kosmologii, ve statistické fyzice a fyzice kondenzovaného stavu), v matematice (funk-
cionální analýza, tenzorová analýza na varietách, speciální funkce, diferenciální rovnice,
grupy a symetrie) a ve výpočetních metodách. Konkrétně se profilují prostřednictvím
volby výběrových předmětů a tématu diplomové práce.

Absolventi se uplatňují v základním a aplikovaném výzkumu, ve výuce teoretické
fyziky na vysokých školách a všude tam, kde mohou využít své široké fyzikální a ma-
tematické vědomosti a znalost práce s počítači.

Podmínky pro přihlášení ke státní závěrečné zkoušce

– absolování předmětů povinných pro přihlášení ke státní závěrečné zkoušce,
– získání alespoň 184 bodů za celé studium,
– získání alespoň 35 bodů z výběrově povinných předmětů (z toho alespoň 25 bodů
 z předmětů zakončených zkouškou),
– podání diplomové práce v předepsané úpravě.
Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce jsou uváděny tučně, výběrově povinné předměty slabě. Další nepovinné předměty si student volí tak, aby získal požadovaný celkový počet bodů.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termodynamika a statistická fyzika I</td>
<td>3/2 Z, Zk</td>
<td>—</td>
<td>TMF043</td>
</tr>
<tr>
<td>Termodynamika a statistická fyzika II</td>
<td>—</td>
<td>3/2 Z, Zk</td>
<td>TMF044</td>
</tr>
<tr>
<td>Kvantová teorie I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>JSF060</td>
</tr>
<tr>
<td>Kvantová teorie II</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>JSF061</td>
</tr>
<tr>
<td>Obecná relativita</td>
<td>—</td>
<td>3/0 Zk</td>
<td>TMF111</td>
</tr>
<tr>
<td>Metody zpracování fyzikálních měření</td>
<td>—</td>
<td>2/0 Zk</td>
<td>OFY034</td>
</tr>
<tr>
<td>Geometrické metody teoretické fyziky I</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>TMF059</td>
</tr>
<tr>
<td>Základy počítačové fyziky I</td>
<td>2/2 KZ</td>
<td>—</td>
<td>EVF040</td>
</tr>
<tr>
<td>Základy počítačové fyziky II</td>
<td>—</td>
<td>2/2 Zk</td>
<td>EVF041</td>
</tr>
<tr>
<td>Seminář teoretické fyziky I</td>
<td>0/2 Z</td>
<td>—</td>
<td>TMF005</td>
</tr>
<tr>
<td>Seminář teoretické fyziky II</td>
<td>—</td>
<td>0/2 Z</td>
<td>TMF012</td>
</tr>
</tbody>
</table>

1 Místo této přednášky lze zapsat předmět JSF094 (Kvantová mechanika I), OFY045 (Kvantová mechanika I) nebo BCM110 (Kvantová teorie I).

2 Místo této přednášky lze zapsat předmět JSF095 (Kvantová mechanika II), OFY046 (Kvantová mechanika II) nebo BCM111 (Kvantová teorie II).

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relativistická fyzika I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>TMF037</td>
</tr>
<tr>
<td>Relativistická fyzika II</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>TMF038</td>
</tr>
<tr>
<td>Kvantová teorie pole I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>JSF068</td>
</tr>
<tr>
<td>Kvantová teorie pole II</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>JSF069</td>
</tr>
<tr>
<td>Teorie kondenzovaného stavu I</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL108</td>
</tr>
<tr>
<td>Teorie kondenzovaného stavu II</td>
<td>—</td>
<td>2/0 Zk</td>
<td>FPL109</td>
</tr>
<tr>
<td>Výběrové a výběrově povinné předměty 12 bodů</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Místo této přednášky lze zapsat předmět JSF062 (Kvantová teorie pole I).

2 Místo této přednášky lze zapsat předmět JSF098 (Kvantová teorie pole II).

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminář matematické fyziky</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>TMF008</td>
</tr>
<tr>
<td>Další výběrové povinné předměty</td>
<td>6 bodů</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Další výběrové povinné předměty

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalibrační teorie polí</td>
<td>2/0 Zk</td>
<td>—</td>
<td>TMF022</td>
</tr>
<tr>
<td>Teorie grup a symetrie ve fyzice I</td>
<td>3/0 Zk</td>
<td>—</td>
<td>TMF017</td>
</tr>
<tr>
<td>Předmět</td>
<td>Schválen</td>
<td>Zk</td>
<td>Schválen</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>----</td>
<td>----------</td>
</tr>
<tr>
<td>Teorie grup a symetrie ve fyzice II</td>
<td>—</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Základy teorie elektroslabých interakcí</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>—</td>
</tr>
<tr>
<td>Teoretická atomová fyzika</td>
<td>2/0 Zk</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Teorie plazmatu</td>
<td>2/0 Zk</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Teorie fázových přechodů</td>
<td>2/0 Zk</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Vybrané partie teorie kvantovaných polí I</td>
<td>3/0 Zk</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Vybrané partie teorie kvantovaných polí II</td>
<td>—</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Vybrané kapitoly z matematické fyziky</td>
<td>—</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Deterministický chaos</td>
<td>—</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Procesy v kosmickém plazmatu</td>
<td>—</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Renormalizační teorie fázových přechodů</td>
<td>—</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Kvantová teorie molekul</td>
<td>—</td>
<td>3/2 Z, Zk</td>
<td>—</td>
</tr>
<tr>
<td>Pravděpodobnostní metody ve fyzice I</td>
<td>2/0 Zk</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Pravděpodobnostní metody ve fyzice II</td>
<td>—</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Pravděpodobnost a matematika fázových přechodů I</td>
<td>—</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Pravděpodobnost a matematika fázových přechodů II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Moderní aplikace statistické fyziky I</td>
<td>2/0 Zk</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Moderní aplikace statistické fyziky II</td>
<td>—</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Statistická fyzika kvantových mnohočásticových systémů I</td>
<td>2/0 Zk</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Statistická fyzika kvantových mnohočásticových systémů II</td>
<td>—</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Klasiccká teorie záření</td>
<td>—</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Interpretace kvantové mechaniky</td>
<td>2/1 Zk</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Úvod do molekulární fyziky tekuté fáze</td>
<td>—</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Počítačové simulace ve fyzice mnoha částic</td>
<td>2/0 Zk</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Pokročilé simulace ve fyzice mnoha částic</td>
<td>—</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Nebeská mechanika I</td>
<td>4/0 Zk</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Nebeská mechanika II</td>
<td>—</td>
<td>4/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Elementární procesy v kosmické fyzice</td>
<td>—</td>
<td>2/1 Zk</td>
<td>—</td>
</tr>
<tr>
<td>Seminář matematické fyziky</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>Relativistický seminář</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>Seminář atomové fyziky</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
</tbody>
</table>

V zájmu průběžné aktualizace může být tento seznam modifikován, předměty jednou uvedené však zůstávají v databázi. Pro splnění podmínky k připuštění ke státní závěrečné zkoušce je rozhodující, zda byl předmět v seznamu někdy v období posluchačova studia.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

1. **Relativistická fyzika**

2. Statistická fyzika

3. Kvantová fyzika

4. Fyzika pevných látek

5. Počítačová fyzika

Přehled hlavních směrů počítačové fyziky. Numerické metody: aproximace, nume-
rická integrace a derivace, řešení nelineárních rovnic, soustav lineárních rovnic, obyčej-
ých a parcíálních diferenciálních rovnic.

B. Užší zaměření

Studenti si zvolí dva z následujících okruhů otázek.

1. Matematické metody

Základy teorie míry, základy funkcionální analýzy a teorie distribucí. Banachovy a Hilbertovy prostory, lineární operátory a funkcionaly. Rovnice matematické fyziky, speciální funkce. Definice distribuce a základní operace s distribucemi, Fourierova trans-

2. Matematická fyzika

Grupy a jejich reprezentace, základní fyzikální aplikace. Geometrické metody ve fyzice (diferencovatelné variety, tenzory a diferenciální formy — příklady aplikací). Zá-
kladní pojmy teorie dynamických systémů, ergodičnost. Základy teorie pravděpodob-
nosti, zákon velkých čísel, centrální limitní věta, podmíněné pravděpodobnosti. Zá-
klady matematické statistické fyziky, termodynamická limita, Gibbsovy stavy, fázové přechody, Isingův model, Onsagerovo řešení, nízko- a vysokoteplotní rozvoje, dualita. Kritické jevy, renormalizační grupa, Feynmanův integrál, euklidovská kvantová teorie pole a statistická fyzika.
3. Hydrodynamika a teorie plazmatu

4. Relativistická fyzika a astrofyzika

5. Kvantová teorie pole

6. Fyzika pevných látek

7. Počítačová fyzika

4.5. Fyzika kondenzovaných a makromolekulárních látek

Garantující pracoviště: katedra makromolekulární fyziky
Odpovědný učitel: Doc. Danka Slavínská, CSc.

144
Studijní obor Fyzika kondenzovaných a makromolekulárních látek sdruhuje dva studijní plány:

- fyzika pevných látek,
- makromolekulární fyzika.

Fyzika pevných látek se zabývá studiem a mikrofyzikální interpretací vlastností látek v pevném skupenství. Tvoří proto základ elektroniky, nauky o materiálu, optoelektroniky a jiných fyzikálních a technických disciplín. Studenti získají znalosti z teoretické a experimentální fyziky polovodičů, kovů, supravodičů, magnetických a dielektrických materiálů i iontových krystalů. V závěru studia se výběrem předmětů a tématem diplomové práce specializují na jednu z těchto oblastí:

- fyzika polovodičů,
- fyzika kovů,
- strukturní analýza,
- fyzika nízkých teplot,
- fyzika magnetických látek,
- fyzika tenkých vrstev a povrchů,
- radiofrekvenční spektroskopie a využití jaderných metod,
- teorie pevných látek.

Těžiště výuky ve studijním plánu makromolekulární fyzika je v předmětech teoretické a experimentální fyziky vhodných pro popis struktury a statistických a dynamických vlastností makromolekul a makromolekulárních kompozitů jak v kondenzovaném stavu, tak v roztočích. Studenti získají rovněž znalosti z oblasti interakce záření s makromolekulárními látkami (např. o fotogeneraci a transportu náboje v organických polovodičích) a z oblasti přípravy a studia povrchových a objemových vlastností vrstev připravených plazmovou polymerací. Součástí výukového programu jsou i přednášky z chemie, zaměřené na popis vzniku makromolekulárních látek.

Vhodným uplatněním pro absolventy tohoto studijního oboru jsou pracoviště základního fyzikálního, biologického a chemického výzkumu a vysoké školy, laboratoře aplikovaného materiálového výzkumu a vývoje, zkušební laboratoře strojírenského, elektrotechnického, metalurgického a chemického průmyslu (zejména z oblasti polymerních látek a organické chemie), ústavy zaměřené na ochranu a modifikaci materiálů a pracoviště v hygienické a ekologické službě.

Podmínky pro přihlášení ke státní závěrečné zkoušce

- absolvování předmětů povinných pro přihlášení ke státní závěrečné zkoušce,
- získání minimálně 184 bodů za celé studium,
- pro studenty fyziky pevných látek: získání alespoň 10 bodů z výběrově povinných předmětů (podle pokynů vedoucího diplomové práce) a získání 4 bodů z doporučených seminářů,
- pro studenty makromolekulární fyziky: získání alespoň 11 bodů z výběrově povinných předmětů,
- podání diplomové práce v předepsané úpravě.

4.5.1 Studijní plán fyzika pevných látek

Odpovědný učitel: Doc. RNDr. Radomír Kužel, CSc. (KFES)
Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce jsou uváděny tučně, výběrově povinné předměty slabě. Další nepovinné předměty si student volí tak, aby získal celkový požadovaný počet bodů.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvantová teorie I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>FPL010</td>
</tr>
<tr>
<td>Kurz bezpečnosti práce</td>
<td>—</td>
<td>—</td>
<td>SZZ008</td>
</tr>
<tr>
<td>Kvantová teorie II</td>
<td>—</td>
<td>3/2 Z, Zk</td>
<td>FPL011</td>
</tr>
<tr>
<td>Struktura látek a difrakce záření</td>
<td>—</td>
<td>3/0 Zk</td>
<td>FPL012</td>
</tr>
<tr>
<td>Mechanické vlastnosti pevných látek</td>
<td>—</td>
<td>2/0 Zk</td>
<td>FPL060</td>
</tr>
<tr>
<td>Metody zpracování fyzikálních měření</td>
<td>—</td>
<td>2/0 Zk</td>
<td>OFY034</td>
</tr>
<tr>
<td>Experimentální cvičení I</td>
<td>—</td>
<td>0/2 Z</td>
<td>FPL066</td>
</tr>
<tr>
<td>Semestrální práce I</td>
<td>—</td>
<td>0/1 Z</td>
<td>FPL077</td>
</tr>
<tr>
<td>Struktura látek a difrakce záření</td>
<td>—</td>
<td>0/2 Z</td>
<td>FPL035</td>
</tr>
<tr>
<td>Přehled moderních analytických metod</td>
<td>—</td>
<td>1/0 Zk</td>
<td>FPL019</td>
</tr>
<tr>
<td>Difrakční metody</td>
<td>—</td>
<td>2/0 Zk</td>
<td>FPL030</td>
</tr>
<tr>
<td>Základy krystalografie</td>
<td>—</td>
<td>2/0 Zk</td>
<td>FPL107</td>
</tr>
<tr>
<td>Poruchy krystalové mříže</td>
<td>—</td>
<td>0/1 Z</td>
<td>FPL067</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teorie pevných látek</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>FPL026</td>
</tr>
<tr>
<td>Magnetické vlastnosti pevných látek</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL122</td>
</tr>
<tr>
<td>Dielektrické vlastnosti pevných látek</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL014</td>
</tr>
<tr>
<td>Termodynamika vícemlžkových systémů</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL110</td>
</tr>
<tr>
<td>Experimentální cvičení II</td>
<td>0/2 Z</td>
<td>—</td>
<td>FPL045</td>
</tr>
<tr>
<td>Semestrální práce II</td>
<td>0/1 Z</td>
<td>—</td>
<td>FPL078</td>
</tr>
<tr>
<td>Rentgenové difrakční studium reálné struktury PL</td>
<td>1/0 Zk</td>
<td>—</td>
<td>FPL029</td>
</tr>
<tr>
<td>Rozptyl rtg záření na tenkých vrstvách</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL013</td>
</tr>
<tr>
<td>Struktura povrchů a tenkých vrstev</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL106</td>
</tr>
<tr>
<td>Seminář strukturní analýzy I</td>
<td>0/2 Z</td>
<td>—</td>
<td>FPL037</td>
</tr>
<tr>
<td>Seminář z magnetismu I</td>
<td>0/2 Z</td>
<td>—</td>
<td>FPL118</td>
</tr>
<tr>
<td>Elektronová mikroskopie</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL115</td>
</tr>
<tr>
<td>Fyzika kovů</td>
<td>0/2 Zk</td>
<td>—</td>
<td>FPL112</td>
</tr>
<tr>
<td>Dislokace v pevných látkách</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL049</td>
</tr>
<tr>
<td>Permanentní magnety</td>
<td>1/0 Zk</td>
<td>—</td>
<td>FPL068</td>
</tr>
<tr>
<td>Tepelně aktivované procesy</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL094</td>
</tr>
<tr>
<td>Experimentální metody ve fyzice kovů</td>
<td>1/1 KZ</td>
<td>—</td>
<td>FPL058</td>
</tr>
<tr>
<td>Anihilace pozitronů v pevných látkách</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL103</td>
</tr>
<tr>
<td>Praktické užití elektronové mikroskopie</td>
<td>1/1 Z</td>
<td>—</td>
<td>FPL074</td>
</tr>
<tr>
<td>Úvod do fyziky vysokoteplotních supravodičů</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL101</td>
</tr>
<tr>
<td>Supravodivost</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>FPL177</td>
</tr>
</tbody>
</table>
Transportní a povrchové vlastnosti pevných látek — 2/0 Zk FPL018
Optické vlastnosti pevných látek a optoelektronika — 2/0 Zk OOE009
Fyzika nízkých teplot — 2/0 Zk FPL099
Radiofrekvenční spektroskopie pevných látek — 2/0 Zk FPL092

Experimentální cvičení III — 0/2 Z FPL023
Semestrální práce III — 0/1 Z FPL044

Magnetismus v intermetalických systémech — 2/0 Zk FPL075
Metody studia interakcí v magnetických systémech — 2/0 Zk FPL076

Využití rozptylu neutronů v materiálovém výzkumu — 2/0 Zk FPL073

Seminář strukturní analýzy II — 0/2 Z FPL028
Seminář z magnetismu II — 0/2 Z FPL119
Kinetika fázových transformací — 2/0 Zk FPL055

Mechanické vlastnosti nekovových materiálů — 2/0 Zk FPL051

Speciální seminář fyziky kovů 1 — 0/2 Z FPL056
Speciální seminář fyziky kovů 1 — 0/2 Z FPL113

Jaderné spektroskopické metody studia hyperjmemných interakcí — 1/1 Z, Zk FPL097

Seminar z fyziky nízkých teplot 1 — 0/2 Z 0/2 Z FPL098
Optoelektronika — 0/2 Z FPL022

Měřicí metody polovodičů — 2/0 Zk 2/0 Zk FPL020
Fyzikální základy optoelektroniky — 2/0 Zk 2/0 Zk FPL021

Fyzikální akustika 1/1 KZ — FPL059

Metody řešení a upřesňování krystalových struktur monokrystalů — 1/1 Z FPL039

Seminář analytických metod v elektronové mikroskopii — 0/4 Z FPL054

Supratekutost a Boseova-Einsteinova kondenzace — 2/1 Z, Zk FPL178

1Doporučuje se zapsat v letním semestru.

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systémy s korelovanými f-elektrony</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL072</td>
</tr>
<tr>
<td>Difrakce rentgenového záření dokonalými krystaly</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL038</td>
</tr>
<tr>
<td>Vybrané partie z teorie pevných látek</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL065</td>
</tr>
<tr>
<td>Fyzikální akustika</td>
<td>1/1 KZ</td>
<td>—</td>
<td>FPL059</td>
</tr>
<tr>
<td>Nové materiály a technologie</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL053</td>
</tr>
<tr>
<td>Elektronová mikroskopie s atomovým rozlišením</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL079</td>
</tr>
<tr>
<td>Základy kryotechniky</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL095</td>
</tr>
</tbody>
</table>

147
Fyzika Mgr.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vybrané kapitoly z teorie a metodik magnetické rezonance</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL093</td>
</tr>
<tr>
<td>Elektronová struktura ultratenkých magnetických vrstev</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL102</td>
</tr>
<tr>
<td>Seminář fyziky polovodičů I</td>
<td>0/2 Z</td>
<td>—</td>
<td>FPL104</td>
</tr>
<tr>
<td>Fyzika polovodičových součástek</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL024</td>
</tr>
<tr>
<td>Sluneční energie a fotovoltaika</td>
<td>1/0 Z</td>
<td>1/0 Zk</td>
<td>FPL031</td>
</tr>
<tr>
<td>Úvod do fyziky organických polovodičů</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL043</td>
</tr>
<tr>
<td>Mössbauerova spektroskopie</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL096</td>
</tr>
<tr>
<td>NMR vysokého rozlišení</td>
<td>2/0 Zk</td>
<td>2/0 Zk</td>
<td>FPL091</td>
</tr>
<tr>
<td>Kvantový popis NMR</td>
<td>1/1 Z, Zk</td>
<td>1/1 Z, Zk</td>
<td>FPL179</td>
</tr>
<tr>
<td>Jaderné metody studia magnetických systémů</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL129</td>
</tr>
<tr>
<td>Konstrukce a provoz kryogenních zařízení</td>
<td>1/1 Z, Zk</td>
<td>—</td>
<td>HIF136</td>
</tr>
</tbody>
</table>

1Doporučuje se zapsat v zimním semestrů.

4.5.2 Studijní plán makromolekulární fyzika

Odpovědný učitel: Doc. Danka Slavinská, CSc. (KMF)

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce jsou uváděny tučně, výběrově povinné předměty slabě. Další nepovinné předměty si student volí tak, aby získal celkový požadovaný počet bodů.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvantová teorie molekul</td>
<td>—</td>
<td>3/2 Z, Zk</td>
<td>BCM039</td>
</tr>
<tr>
<td>Metody zpracování fyzikálních měření</td>
<td>—</td>
<td>2/0 Zk</td>
<td>OFY034</td>
</tr>
<tr>
<td>Kurz bezpečnosti práce</td>
<td>—</td>
<td>—</td>
<td>SZZ008</td>
</tr>
<tr>
<td>Obecná chemie</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>BCM035</td>
</tr>
<tr>
<td>Fyzikální principy organizace molekulárních systémů I</td>
<td>—</td>
<td>2/0 Zk</td>
<td>BCM068</td>
</tr>
<tr>
<td>Elektronika</td>
<td>3/0 Zk</td>
<td>—</td>
<td>BCM071</td>
</tr>
<tr>
<td>Základy vytváření polymerních struktur</td>
<td>—</td>
<td>2/0 Zk</td>
<td>BCM060</td>
</tr>
<tr>
<td>Reologie</td>
<td>—</td>
<td>2/0 Zk</td>
<td>BCM064</td>
</tr>
<tr>
<td>Samostatná laboratorní práce</td>
<td>0/2 KZ</td>
<td>0/2 KZ</td>
<td>BCM080</td>
</tr>
<tr>
<td>Aplikace nízkoteplotního plazmatu</td>
<td>2/0 Zk</td>
<td>—</td>
<td>BCM059</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rentgenová strukturní analýza a elektronová mikroskopie</td>
<td>2/0 Zk</td>
<td>—</td>
<td>FPL025</td>
</tr>
<tr>
<td>Základy makromolekulární chemie</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>BCM066</td>
</tr>
<tr>
<td>Speciální praktikum I</td>
<td>0/4 KZ</td>
<td>—</td>
<td>BCM007</td>
</tr>
<tr>
<td>Speciální praktikum II</td>
<td>—</td>
<td>0/4 KZ</td>
<td>BCM032</td>
</tr>
<tr>
<td>Základy makromolekulární fyziky</td>
<td>2/0 Zk</td>
<td>—</td>
<td>BCM063</td>
</tr>
<tr>
<td>Transportní jevy v pevných látkách</td>
<td>3/0 Zk</td>
<td>—</td>
<td>FPL033</td>
</tr>
</tbody>
</table>
Relaxační chování polymerů — 2/0 Zk BCM058
Elektrické a optické vlastnosti polymerů — 2/0 Zk BCM038
Statistická termodynamika makromolekul — 2/0 Zk BCM085
Seminář z fyziky polymerů 0/2 Z 0/2 Z BCM091
Fyzika povrchů a tenkých vrstev polymerů 2/0 Zk — BCM090
Fyzika polovodičových součástek 2/0 Zk — FPL024
Sluneční energie a fotovoltaika 1 1/0 Zk 1/0 Z FPL031
Měřicí metody polovodičů 1 2/0 Zk 2/0 Zk FPL020
Automatizace experimentu — 1/2 Z FPL017
Termodynamika nerovnovázných procesů — 2/0 Zk BCM070
Moderní metody FTIR spektroskopie — 2/1 Z, Zk BCM000

1 Doporučuje se zapsat v zimním semestru.

5. rok studia

Název ZS LS Kód
Speciální praktikum III 0/4 KZ — BCM077
Teorie polymerních struktur 2/0 Zk — BCM076
Základy molekulární elektroniky 2/0 Zk — BCM072
Seminář z fyziky polymerů 0/2 Z 0/2 Z BCM091
Pravděpodobnostní metody ve fyzice I 2/0 Zk — BCM078
Strukturní teorie relaxačního chování polymerů 2/0 Zk — BCM062

Požadavky k ústní části státní závěrečné zkoušky

Společné požadavky

Principy kvantově mechanického popisu atomů, molekul a kondenzovaných soustav

Termodynamika a statistická fyzika kondenzovaných soustav

Struktura

Symetrie, základy krystalografie, tenzorový popis makroskopických vlastností látek. Reálná struktura látek a způsoby jejího popisu.

Experimentální metody

Základní difrakční a zobrazovací metody, difrakce rtg záření, elektronů a neutronů a metody určování struktury, elektronová mikroskopie. Teorie lineární odezvy, časová

Požadavky studijního plánu fyzika pevných látek

Mechanické vlastnosti

Plastická deformace, zpevnění, creep a lom čistých látek. Dynamické a statické odpevnění. Deformace a zpevnění slitin.

Magnetické a dielektrické vlastnosti

Magnetické a elektrické rezonance

Rezonanční jevy, typy interakcí a jejich projevy v radiofrekvenčním oboru. Nukleární magnetická rezonance, elektronová paramagnetická rezonance, elektrická kvadrupolová rezonance, cyklotronová rezonance.

Transportní jevy

Optické vlastnosti

Fyzika nízkých teplot

Základní metody získávání a měření nízkých teplot. Vlastnosti pevných látek a výměna tepla při nízkých teplotách. Supravodivost, supratekutost.

Požadavky studijního plánu makromolekulární fyzika

Základy molekulární a makromolekulární fyziky

Konformace molekul. Fázové stavy a přechody u molekulárních systémů (molekulární a kapalné krystaly, roztoky molekul a polymerů, teplota zesklenění). Polymerní roztoky, polymerní síť, gely, krystalické polymery, bipojmy, kompozity, membránové systémy. Stanovení molekulové hmotnosti, strukturálních charakteristik polymerní síť, morfologie krystalických polymerů, hierarchie struktur. Struktura a modifikace povrchu polymerů. Tenké polymerní vrstvy, jejich příprava a vlastnosti.

Teoretický popis molekulárních a makromolekulárních systémů

Mechanické a dielektrické vlastnosti polymerů

Elektrické a optické vlastnosti polymerů

4.6. Optika a optoelektronika

Garantující pracoviště: Fyzikální ústav UK
Odpovědný učitel: Prof. RNDr. Pavel Höschl, DrSc.

Studijní obor Optika a optoelektronika sdružuje dvě užší specializace:

– kvantová a nelineární optika,
– optoelektronika a fotonika

s vlastními studijními plány.

Těžiště výuky je v předmětech teoretické a experimentální fyziky prohlubujících základní fyzikální vzdělání o vlnovou a kvantovou optiku, nelineární optické vlastnosti látek, koherenční a statistické vlastnosti světla, metody a prvky pro optické komunikace (lasery, optická vlákna a detektory), optické zpracování informace. Kromě toho se rozšiřují znalosti o elektronových a fotonových procesech probíhajících v materiálech významných pro optoelektroniku a fotoniku v úzké vazbě na optimalizaci vlastností prvků. Podrobné pochopení fyzikální podstaty prvků a technologických procesů fotoniku a polovodičovou optoelektroniku podstatně zvyšuje možnosti uplatnění absolventů. Ze stejných důvodů jsou významné znalosti matematického modelování fyzikálních procesů.

Absolventi se uplatní jak ve fyzikálních, optických, optoelektronických a telekomunikačních laboratořích, tak při vývoji a aplikaci software.

Podmínky pro přihlášení ke státní závěrečné zkoušce

– absolování povinných předmětů pro přihlášení ke státní závěrečné zkoušce,
– získání alespoň 184 bodů za celé studium,
– pro studenty kvantové a nelineární optiky získání alespoň 8 bodů z výběrově povinných předmětů,
– pro studenty optoelektroniky a fotoniky získání alespoň 9 bodů z výběrově povinných předmětů,
– podání diplomové práce v předepsané úpravě.

4.6.1 Studijní plán kvantová a nelineární optika
Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce jsou uváděny tučně, výběrově povinné předměty slabě. Další nepovinné předměty si student volí tak, aby získal celkový požadovaný počet bodů.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerické metody zpracování experimentálních dat</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MAF035</td>
</tr>
<tr>
<td>Teorie pevných látek</td>
<td>—</td>
<td>3/2 Z, Zk</td>
<td>FPL001</td>
</tr>
<tr>
<td>Kvantová teorie II</td>
<td>—</td>
<td>3/2 Z, Zk</td>
<td>BCM111</td>
</tr>
<tr>
<td>Vlnová optika</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>OOE021</td>
</tr>
<tr>
<td>Základy optické spektroskopie</td>
<td>—</td>
<td>2/0 Zk</td>
<td>OOE001</td>
</tr>
<tr>
<td>Kurz bezpečnosti práce</td>
<td>—</td>
<td>—</td>
<td>SZZ008</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Základy kvantové a nelineární optiky I</td>
<td>3/1 Z, Zk</td>
<td>—</td>
<td>OOE027</td>
</tr>
<tr>
<td>Základy kvantové a nelineární optiky II</td>
<td>—</td>
<td>3/1 Z, Zk</td>
<td>OOE028</td>
</tr>
<tr>
<td>Speciální praktikum pro OOE I</td>
<td>0/4 KZ</td>
<td>—</td>
<td>OOE046</td>
</tr>
<tr>
<td>Speciální praktikum pro OOE II</td>
<td>—</td>
<td>0/4 KZ</td>
<td>OOE016</td>
</tr>
<tr>
<td>Kvantová optika I</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>BCM067</td>
</tr>
<tr>
<td>Kvantová optika II</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>BCM093</td>
</tr>
<tr>
<td>Optoelektronické materiály a technologie</td>
<td>2/0 Zk</td>
<td>—</td>
<td>OOE003</td>
</tr>
<tr>
<td>Atomární a molekulární systémy pro fotoniku</td>
<td>2/0 Zk</td>
<td>—</td>
<td>OOE031</td>
</tr>
</tbody>
</table>

5. rok studia

1 Zapisuje se pouze jeden z předmětů, podle toho, která akce se v daném školním roce koná.
Optika a optoelektronika

Luminiscenční spektroskopie polovodičů 2/0 Zk — OOE035
Integrovaná optika 2/0 Zk — OOE047
Teorie laseru 2/0 Zk — OOE034

4.6.2 Studijní plán optoelektronika a fotonika

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce jsou uváděny tučně, výběrově povinné předměty slabě. Další nepovinné předměty si student volí tak, aby získal celkový požadovaný počet bodů.

3. rok studia

Název	ZS	LS	Kód
Numerické metody zpracování experimentálních dat | — | 2/0 Zk | MAF035
Teorie pevných látek | — | 3/2 Z, Zk | FPL001
Kvantová teorie II | — | 3/2 Z, Zk | BCM111
Vlnová optika | — | 4/2 Z, Zk | OOE021
Základy optické spektroskopie | — | 2/0 Zk | OOE001
Kurz bezpečnosti práce | — | — | SZZ008

4. rok studia

Název	ZS	LS	Kód
Základy kvantové a nelineární optiky I 3/1 Z, Zk | — | OOE027
Základy kvantové a nelineární optiky II | — | 3/1 Z, Zk | OOE028
Optoelektronické materiály a technologie | 2/0 Zk | — | OOE003
Speciální praktikum pro OOE I 0/4 KZ | — | OOE046
Fyzika polovodičů pro optoelektroniku I | 2/0 Zk | — | OOE002
Fyzika polovodičů pro optoelektroniku II | — | 2/0 Zk | OOE008
Speciální praktikum pro OOE II | — | 0/4 KZ | OOE016
Elektronový transport v kvantových systémech | 2/1 Z, Zk | BCM096

Exkurze 1 | — | 0/1 Z | OOE014
Seminář 1 | — | 0/1 Z | OOE015
Atomární a molekulární systémy pro fotoniku 2/0 Zk | — | OOE031
Kvantová optika I 2/1 Z, Zk | — | BCM067
Kvantová optika II | — | 2/1 Z, Zk | BCM093
Základy konstrukce a výroby optických prvků 0/1 Z | — | OOE048
Spektroskopie s vysokým časovým rozlišením 2/0 Zk | — | OOE025
Nelineární optika polovodičů | — | 2/0 Zk | OOE059
Optika tenkých vrstev a vrstevnatých struktur | — | 2/0 Zk | OOE011

1 Zapisuje se pouze jeden z předmětů, podle toho, která akce se v daném školním roce koná.

153
Fyzika Mgr.

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzika polovodičů pro optoelektroniku III</td>
<td>2/0 Zk</td>
<td>—</td>
<td>OOE005</td>
</tr>
<tr>
<td>Nelineární optika polovodičových nanostruktur</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>OOE061</td>
</tr>
<tr>
<td>Speciální seminář z optoelektroniky</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>OOE010</td>
</tr>
<tr>
<td>Integrovaná a vláknová optika</td>
<td>2/0 Zk</td>
<td>—</td>
<td>OOE007</td>
</tr>
<tr>
<td>Luminiscenční spektroskopie polovodičů</td>
<td>2/0 Zk</td>
<td>—</td>
<td>OOE035</td>
</tr>
</tbody>
</table>

Požadavky k ústní části státní závěrečné zkoušky

Společné předměty

1. **Pokročilá kvantová mechanika**
 - Variační princip a poruchový počet.
 - Symetrie vlnové funkce, bosony a fermiony. Pauliho princip. Symetrie a zákony zachování. Stěpení hladin při snížení symetrie.
 - Pauliho a Diracova rovnice. Orbitální a spinový moment hybnosti, jejich operátory a kvantování. Skládání momentů hybnosti. Orbitální a spinový magnetický moment a jejich interakce s vnějším polem.

2. **Kvantová teorie molekul a pevných látek**

3. **Termodynamika a statistická fyzika molekulárních soustav**

154
4. Vlnová optika

5. Experimentální metody

Předměty studijního plánu Kvantová a nelineární optika

Základy kvantové a nelineární optiky

Předměty studijního plánu Optoelektronika a fotonika

Fyzikální základy optoelektroniky a fotoniky. Polovodičová optoelektronika

4.7. Fyzika povrchů a ionizovaných prostředí

Garantující pracoviště: katedra elektroniky a vakuové fyziky
Odpovědný učitel: Doc. RNDr. Petr Řepa, CSc.

Fyzika povrchů a ionizovaných prostředí je studijním oborem interdisciplinárního charakteru. Přináší základní poznatky o pohybu neutrálních a nabitých částic ve vakuu, plynu i kondenzované fázi a o jejich interakcích s těmito prostředními, s jejich rozhraními i mezi sebou navzájem. Jedná se o sklovení vakuové fyziky, fyziky povrchů, fyziky laboratorního a kosmického plazmatu a fyziky tenkých vrstev. Tento obor představuje základ řady aplikací jako jsou moderní diagnostické metody v materiálovém výzkumu, vakuové a plazmové technologie, výroba elektronických prvků, řízená termonukleární fúze nebo kosmický výzkum. Jednotlivé disciplíny mohou být studovány jak experimentálně, tak teoreticky nebo metodami počítačové fyziky. Studenti se stanou odborníky v moderních experimentálních metodách a v případě zájmu i v metodách softwarových a hardwarových včetně matematického a počítačového modelování a využití počítačů k řízení a automatizaci. Vzhledem ke značné šíři je obor rozdělen do dvou studijních plánů:

– fyzika povrchů a rozhraní (odpovědný učitel: Prof. RNDr. Vladimír Matolín, DrSc.),
– fyzika plazmatu a ionizovaných prostředí (odpovědný učitel: Prof. RNDr. Milan Tichý, DrSc.).

Témata diplomových prací si studenti vybírají ve shodě se zvoleným studijním plánem z těchto oblastí: vakuová fyzika, fyzika plazmatu, kosmická fyzika, fyzika povrchů, fyzika tenkých vrstev, počítačová fyzika, automatizace a kybernetizace experimentu. Široký záběr studijního oboru umožňuje absolventům rozsáhle uplatnit, a to nejen v základním či aplikovaném výzkumu, ale i v průmyslu a managementu různých společností.

Podmínky pro přihlášení ke státní závěrečné zkoušce

– absolování předmětů povinných pro přihlášení ke státní závěrečné zkoušce,
– získání alespoň 184 bodů za celé studium,
– získání alespoň 20 bodů z výběrově povinných předmětů studijního oboru,
– získání 4 zápočtů za diplomové semináře,
– podání diplomové práce v předepsané úpravě.

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce jsou uváděny tučně, výběrově povinné předměty slabě. Další nepovinné předměty si student volí tak, aby získal celkový požadovaný počet bodů.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metody zpracování fyzikálních měření</td>
<td>—</td>
<td>2/0 Zk</td>
<td>OFY034</td>
</tr>
<tr>
<td>Matematika pro fyzikální elektroniku</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>EVF010</td>
</tr>
<tr>
<td>Seminář z kvantové teorie</td>
<td>—</td>
<td>0/2 Z</td>
<td>EVF001</td>
</tr>
<tr>
<td>Teorie pevných látek</td>
<td>—</td>
<td>4/0 Zk</td>
<td>FPL063</td>
</tr>
</tbody>
</table>
4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektronika pevných látek</td>
<td>2/0 Zk</td>
<td>—</td>
<td>EVF002</td>
</tr>
<tr>
<td>Vakuová technika</td>
<td>3/0 Zk</td>
<td>—</td>
<td>EVF025</td>
</tr>
<tr>
<td>Kybernetizace experimentu I</td>
<td>2/0 Zk</td>
<td>—</td>
<td>EVF030</td>
</tr>
<tr>
<td>Experimentální metody EVF I</td>
<td>—</td>
<td>0/5 KZ</td>
<td>EVF076</td>
</tr>
<tr>
<td>Počítačová fyzika I</td>
<td>3/0 Zk</td>
<td>2/0 Zk</td>
<td>EVF011</td>
</tr>
<tr>
<td>Diplomový seminář EVF I, II</td>
<td>0/2 Z</td>
<td>0/2 Zk</td>
<td>EVF078</td>
</tr>
<tr>
<td>Odborné soustředění 1</td>
<td>0/0 Zk</td>
<td>—</td>
<td>SZZ003</td>
</tr>
<tr>
<td>Vakuové systémy 2</td>
<td>2/1 Zk, Zk</td>
<td>—</td>
<td>EVF027</td>
</tr>
<tr>
<td>Fyzika plazmatu II 2</td>
<td>2/1 Zk, Zk</td>
<td>—</td>
<td>EVF004</td>
</tr>
<tr>
<td>Fyzika povrchů 2</td>
<td>—</td>
<td>2/1 Zk, Zk</td>
<td>EVF035</td>
</tr>
<tr>
<td>Tenké vrstvy 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>EVF058</td>
</tr>
</tbody>
</table>

1. Lze zapisovat opakovaně.
2. Tyto výběrově povinné předměty jsou doporučeny katedrou k SZZ.
3. Další výběrově povinné předměty si studenti zapíší po dohodě s vedoucím diplomové práce.

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimentální metody EVF II</td>
<td>0/5 KZ</td>
<td>—</td>
<td>EVF077</td>
</tr>
<tr>
<td>Diplomový seminář EVF III, IV</td>
<td>0/2 Z</td>
<td>0/2 Zk</td>
<td>EVF079</td>
</tr>
<tr>
<td>Odborné soustředění 1</td>
<td>0/0 Zk</td>
<td>—</td>
<td>SZZ003</td>
</tr>
</tbody>
</table>

1. Lze zapisovat opakovaně.
2. Další výběrově povinné předměty si studenti zapíší po dohodě s vedoucím diplomové práce.

Další výběrově povinné předměty

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvantová elektronika a optoelektronika</td>
<td>3/0 Zk</td>
<td>—</td>
<td>EVF014</td>
</tr>
<tr>
<td>Statistika a teorie informace</td>
<td>2/0 Zk</td>
<td>—</td>
<td>EVF007</td>
</tr>
<tr>
<td>Vybrané partie z fyzikální chemie</td>
<td>2/0 Zk</td>
<td>—</td>
<td>EVF072</td>
</tr>
<tr>
<td>Elektronová optika</td>
<td>2/0 Zk</td>
<td>—</td>
<td>EVF015</td>
</tr>
<tr>
<td>Vysokofrekvenční elektrotechnika</td>
<td>2/0 Zk</td>
<td>—</td>
<td>EVF024</td>
</tr>
<tr>
<td>Adsorpcie na pevných látkách</td>
<td>—</td>
<td>2/0 Zk</td>
<td>EVF083</td>
</tr>
<tr>
<td>Plazma v kosmickém prostoru</td>
<td>—</td>
<td>2/0 Zk</td>
<td>EVF028</td>
</tr>
<tr>
<td>Elektronová spektroskopie</td>
<td>2/0 Zk</td>
<td>—</td>
<td>EVF020</td>
</tr>
<tr>
<td>Technologie vakuových materiálů</td>
<td>—</td>
<td>2/0 Zk</td>
<td>EVF047</td>
</tr>
<tr>
<td>Počítačová fyzika II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>EVF038</td>
</tr>
<tr>
<td>Požadavky k ústní části státní závěrečné zkoušky</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Společné předměty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Kvantová fyzika</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Termodynamika a statistická fyzika</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Teorie pevných látek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Fyzika plazmatu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Vakuová fyzika</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Fyzika tenkých vrstev a povrchů</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Povrch pevné látky: atomární čistota, krystalická struktura, jevy rekonstrukce a relaxace. Elektronová struktura povrchu, rozdíly mezi kovy a polovodiči, povrchové stavy, ohýb pásů, výstupní práce. Emise nabitých částic: termoe mise, termiontová emise, povrchová ionizace, tunnelová emise, ionizace v silném poli, fotoemise. Interakce elektronů</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Biofyzika a chemická fyzika

a iontů s pevnou látkou: pružný a nepružný rozptyl, sekundární emise. Vytváření definovaných povrchů a tenkých vrstev: základní metody, mechanizmy růstu, relaxační jevy.

B. Požadavky závislé na volbě studijního plánu

1. Fyzika plazmatu a ionizovaných prostředí

2. Fyzika povrchů a rozhraní

C. Požadavky závislé na užším zaměření

Podle zaměření diplomové práce a zvolených metod zpracování si posluchač volí jeden z následujících okruhů:

1. Principy a aplikace počítačů

2. Počítačová fyzika

4.8. Biofyzika a chemická fyzika

Garantující pracoviště: katedra chemické fyziky a optiky

Odpovědný učitel: Prof. RNDr. Lubomír Skála, DrSc.

Studijní obor Biofyzika a chemická fyzika sdružuje dva studijní plány:

- biofyzika,
- chemická fyzika.
Těžiště výuky těchto oborů na rozhraní fyziky, biologie, chemie a medicíny je v předmětech teoretické a experimentální fyziky vhodných k popisu a studiu molekul, biopolymerů, nadmolekulárních soustav a biologických objektů. Součástí výukového programu jsou i předměty z biologie a chemie.

Absolventi nacházejí uplatnění ve výzkumných a průmyslových laboratořích a ústavech fyzikálního, biologického, chemického a lékařského zaměření, při zavádění nových technologií, v hygienické, ekologické a lékařské službě apod.

Podmínky pro přihlášení ke státní závěrečné zkoušce

– absolování povinných předmětů pro přihlášení ke státní závěrečné zkoušce,
– získání alespoň 184 bodů za celé studium,
– pro studenty biofyziky: získání alespoň 8 bodů z 1. skupiny a 1 bodu z 2. skupiny výběrově povinných předmětů,
– pro studenty chemické fyziky: získání alespoň 20 bodů z výběrově povinných předmětů,
– podání diplomové práce v předepsané úpravě.

4.8.1 Studijní plán biofyzika

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce jsou uváděny tučně, výběrově povinné předměty slabě. Další nepovinné předměty si student volí tak, aby získal celkový požadovaný počet bodů.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvantová teorie I</td>
<td>4/2</td>
<td>Z, Zk</td>
<td>BCM110</td>
</tr>
<tr>
<td>Kvantová teorie molekul</td>
<td></td>
<td>3/2 Z, Zk</td>
<td>BCM039</td>
</tr>
<tr>
<td>Numerické metody zpracování experimentálních dat</td>
<td></td>
<td>2/0 Zk</td>
<td>MAF035</td>
</tr>
<tr>
<td>Metody magnetické rezonance v biofyzice</td>
<td></td>
<td>3/0 Zk</td>
<td>BCM112</td>
</tr>
<tr>
<td>Úvod do problémů současné biofyziky</td>
<td></td>
<td>0/2 Z</td>
<td>BCM094</td>
</tr>
<tr>
<td>Obecná chemie</td>
<td></td>
<td>2/1 Z, Zk</td>
<td>BCM035</td>
</tr>
<tr>
<td>Kurz bezpečnosti práce</td>
<td></td>
<td>—</td>
<td>SZZ008</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rentgenová strukturní analýza biomolekul a makromolekul</td>
<td>2/0</td>
<td>Zk</td>
<td>BCM098</td>
</tr>
<tr>
<td>Metody optické spektroskopie v biofyzice</td>
<td>4/0</td>
<td>Zk</td>
<td>BCM113</td>
</tr>
<tr>
<td>Bioorganická chemie</td>
<td>2/1</td>
<td>Z, Zk</td>
<td>BCM010</td>
</tr>
<tr>
<td>Biochemie</td>
<td></td>
<td>1/1 Zk</td>
<td>BCM012</td>
</tr>
<tr>
<td>Praktikum z experimentálních metod biofyziky a chemické fyziky I</td>
<td>0/5</td>
<td>KZ</td>
<td>BCM095</td>
</tr>
<tr>
<td>Praktikum z experimentálních metod biofyziky a chemické fyziky II</td>
<td></td>
<td>0/5 KZ</td>
<td>BCM103</td>
</tr>
</tbody>
</table>
5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molekulární biofyzika</td>
<td>3/0 Zk</td>
<td>—</td>
<td>BCM008</td>
</tr>
<tr>
<td>Seminář z biofyziky</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>BCM006</td>
</tr>
<tr>
<td>Přenos energie v biosystémech</td>
<td>2/0 Zk</td>
<td>—</td>
<td>BCM004</td>
</tr>
<tr>
<td>Struktura, dynamika a funkce biologických membrán</td>
<td>2/0 Zk</td>
<td>—</td>
<td>BCM014</td>
</tr>
<tr>
<td>Význam a funkce kovových iontů v biologických systémech</td>
<td>2/0 Zk</td>
<td>—</td>
<td>BCM023</td>
</tr>
</tbody>
</table>

1 Výběrově povinné předměty 1. skupiny k přihlášení ke státní závěrečné zkoušce.

4.8.2 Studijní plán chemická fyzika

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce jsou uváděny tučně, výběrově povinné předměty slabě. Další nepovinné předměty si student volí tak, aby získal celkový požadovaný počet bodů.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvantová teorie II</td>
<td>—</td>
<td>3/2 Z, Zk</td>
<td>BCM111</td>
</tr>
<tr>
<td>Kvantová teorie molekul</td>
<td>—</td>
<td>3/2 Z, Zk</td>
<td>BCM039</td>
</tr>
<tr>
<td>Numerické metody zpracování experimentálních dat</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MAF035</td>
</tr>
<tr>
<td>Kurz bezpečnosti práce</td>
<td>—</td>
<td>—</td>
<td>SZZ008</td>
</tr>
<tr>
<td>Termodynamika a statistická fyzika II</td>
<td>—</td>
<td>3/2 Z, Zk</td>
<td>TMF044</td>
</tr>
<tr>
<td>Bioinformatika I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>BCM117</td>
</tr>
<tr>
<td>Bioinformatika II — Počítačová biologie</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>BCM118</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molekulární spektroskopie I</td>
<td>2/0 Zk</td>
<td>—</td>
<td>BCM086</td>
</tr>
<tr>
<td>Molekulární spektroskopie II</td>
<td>—</td>
<td>2/0 Zk</td>
<td>BCM087</td>
</tr>
<tr>
<td>Obecná chemie</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>BCM035</td>
</tr>
<tr>
<td>Seminář 1</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>BCM006</td>
</tr>
</tbody>
</table>

1 Výběrově povinné předměty 1. skupiny k přihlášení ke státní závěrečné zkoušce.
Bioorganická chemie 2/1 Z, Zk — BCM010
Rentgenová strukturní analýza biomolekul a makromolekul
Molekulární simulace v chemické fyzice 2/1 Z, Zk 2/1 Z, Zk BCM055
Ab initio výpočty v chemii a biochemii 2/1 Z, Zk 2/1 Z, Zk BCM050
Teoretické základy molekulární spektroskopie 2/0 Zk — BCM031
Praktikum z experimentálních metod biofyziky a chemické fyziky I
Praktikum z experimentálních metod biofyziky a chemické fyziky II
Biofyzika fotosyntézy — 2/0 Zk BCM103
Metody magnetické rezonance v biofyzice — 3/0 Zk BCM112
Symetrie molekul — 2/0 Zk BCM027
Praktická cvičení z kvantové chemie I — 0/3 Z BCM099
Fyzikální principy genomických a proteomických metod.

1 Studenti zapíší libovolný seminář konaný na katedře chemické fyziky a optiky.
2 Doporučuje se zapsat v zimním semestru.
Výběrově povinné předměty zapíši studenti tak, aby získali nejméně 16 bodů.

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminář 1</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>BCM101</td>
</tr>
<tr>
<td>Detekce a spektroskopie jednotlivých molekul</td>
<td>2/0 Zk</td>
<td>—</td>
<td>BCM102</td>
</tr>
<tr>
<td>Základy klasické radiometrie a fotometrie</td>
<td>2/0 Zk</td>
<td>—</td>
<td>BCM051</td>
</tr>
<tr>
<td>Klasická a kvantová molekulová dynamika</td>
<td>2/0 Zk</td>
<td>—</td>
<td>BCM099</td>
</tr>
<tr>
<td>Úvod do nelineární fyziky a synergetiky</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>OOE022</td>
</tr>
</tbody>
</table>

1 Studenti zapíší libovolný seminář konaný na katedře chemické fyziky a optiky.
Výběrově povinné předměty zapíši studenti tak, aby získali nejméně 4 body.

Požadavky k ústní části státní závěrečné zkoušky

Společné předměty
1. Pokročilá kvantová mechanika

2. Kvantová teorie molekul
Typy vazeb. Bornova-Oppeheimerova a adiabatická aproximace. Vibrační a rotační spektra molekul. Atomové a molekulové orbitaly. Metoda LCAO a metoda valenč-
Biofyzika a chemická fyzika

3. *Termodynamika a statistická fyzika molekulárních soustav*

4. *Základy molekulární fyziky*

5. *Experimentální metody*

Předměty studijního plánu biofyzika

1. *Experimentální metody v biofyzice*
 NMR vysokého rozlišení a její aplikace. NMR zobrazování. Optická absorpční a Ramanova spektra biomolekul. Vlastní a nevlastní fluorofory; vlastní luminiscence buněk, fluorescenční sondy a značky. Optická a elektronová mikroskopie.

2. *Molekulární biofyzika*

3. *Bioenergetika*

Předměty studijního plánu chemická fyzika

1. *Struktura kondenzovaných soustav a spektroskopické metody*
2. Molekulární simulace v chemické fyzice
Molekulární mechanika a dynamika. Empirická silová pole. Modelování struktur molekul a krystalů a predikce jejich fyzikálních, chemických a biologických vlastností. Aplikace v materiálovém výzkumu.

3. Ab initio výpočty v chemii a biochemii

4.9. Jaderná a subjaderná fyzika
Garantující pracoviště: Ústav částicové a jaderné fyziky
Odpovědný učitel: Prof. RNDr. Jan Kvasil, DrSc.

Subjaderná fyzika přináší fundamentální poznatky o základní struktuře hmoty a základních interakcích. Jaderná fyzika ji doplňuje výzkumem hmoty na úrovni jaderných systémů a jejich změn. Oba obory nalézají významné použití v přírodních vědách a technice (jaderné zdroje energie, radioanalytické metody, aplikace svazků rychlých částic a značených nuklidů aj.) Základem studia je kurs experimentální jaderné a subjaderné fyziky, opřený o rozsáhlý kurz fyziky teoretické, především kvantové. Důraz je kladen na metody získávání experimentálních dat a na jejich zpracování, včetně zvládnutí nejrůznějšího nasazení výpočetní techniky. Téma diplomové práce si student volí z těchto oblastí:

- subjaderná fyzika,
- jaderná fyzika,
- užitá jaderná fyzika.

Kromě práce v základním výzkumu a na vysokých školách, nacházejí absolventi uplatnění v řadě oborů, jejichž počet neustále roste (medicína, biologie, ochrana životního prostředí, různé fyzikální aspekty jaderné techniky a energetiky aj.).

Podmínky pro přihlášení ke státní závěrečné zkoušce

- absolvování předmětů povinných pro přihlášení ke státní závěrečné zkoušce,
- získání alespoň 184 bodů za celé studium,
- získání alespoň 20 bodů z výběrově povinných předmětů,
- podání diplomové práce v předepsané úpravě.

Doporučený průběh studia
Předměty povinné ke státní závěrečné zkoušce jsou uváděny tučně, výběrově povinné předměty slabě. Další nepovinné předměty si student volí tak, aby získal celkový požadovaný počet bodů.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metody zpracování fyzikálních měření</td>
<td>—</td>
<td>2/0 Zk</td>
<td>OFY034</td>
</tr>
<tr>
<td>Kvantová mechanika I 1</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>OFY045</td>
</tr>
<tr>
<td>Kvantová mechanika II 1</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>OFY046</td>
</tr>
<tr>
<td>Kvantová mechanika I 1</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>JSF094</td>
</tr>
</tbody>
</table>
Jaderná a subjaderná fyzika

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvartová mechanika II<sup>1</sup></td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>JSF095</td>
</tr>
<tr>
<td>Kvartová teorie I<sup>1</sup></td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>JSF060</td>
</tr>
<tr>
<td>Kvartová teorie II<sup>1</sup></td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>JSF061</td>
</tr>
<tr>
<td>Fyzika jádra I</td>
<td>—</td>
<td>3/2 Z, Zk</td>
<td>JSF064</td>
</tr>
<tr>
<td>Fyzika elementárních částic I</td>
<td>—</td>
<td>3/2 Z, Zk</td>
<td>JSF065</td>
</tr>
<tr>
<td>Praktikum jaderné fyziky</td>
<td>—</td>
<td>0/4 KZ</td>
<td>JSF006</td>
</tr>
<tr>
<td>Kurz bezpečnosti práce</td>
<td>—</td>
<td>—</td>
<td>SZZ008</td>
</tr>
</tbody>
</table>

¹ Student zapisuje dvojici předmětů OFY045+OFY046 nebo JSF094+JSF095 nebo JSF060+JSF061.

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teorie jádra a jaderných reakcí I</td>
<td>4/0 Zk</td>
<td>—</td>
<td>JSF037</td>
</tr>
<tr>
<td>Aplikovaná jaderná fyzika</td>
<td>4/0 Zk</td>
<td>—</td>
<td>JSF041</td>
</tr>
<tr>
<td>Úvod do kvantové teorie pole<sup>1</sup></td>
<td>3/1 Z, Zk</td>
<td>—</td>
<td>JSF014</td>
</tr>
<tr>
<td>Kvantová teorie pole I<sup>1</sup></td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>JSF062</td>
</tr>
<tr>
<td>Kvantová teorie pole II</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>JSF068</td>
</tr>
<tr>
<td>Kvantová teorie pole II</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>JSF098</td>
</tr>
<tr>
<td>Experimentální metody jaderné fyziky<sup>2</sup></td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>JSF026</td>
</tr>
<tr>
<td>Experimentální metody subjaderné fyziky<sup>2</sup></td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>JSF066</td>
</tr>
<tr>
<td>Kvarky, partony a kvantová chromodynamika</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>JSF086</td>
</tr>
<tr>
<td>Základy teorie elektroslabých interakcí</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>JSF085</td>
</tr>
<tr>
<td>Seminář částicové a jaderné fyziky I<sup>3</sup></td>
<td>0/2 Z</td>
<td>—</td>
<td>JSF091</td>
</tr>
<tr>
<td>Seminář částicové a jaderné fyziky II<sup>3</sup></td>
<td>—</td>
<td>0/2 Z</td>
<td>JSF092</td>
</tr>
<tr>
<td>Laboratorní práce I</td>
<td>0/3 Z</td>
<td>—</td>
<td>JSF087</td>
</tr>
<tr>
<td>Další výběrově povinné předměty</td>
<td>4 body</td>
<td>4 body</td>
<td></td>
</tr>
</tbody>
</table>

¹ Student zapisuje jeden z těchto předmětů.
² Student zapisuje alespoň jeden z těchto předmětů.
³ Tento předmět je pro splnění požadavků k SZZ nutné zapsat dvakrát, doporučuje se ho zapsat ve 4. a 5. ročníku.

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminář částicové a jaderné fyziky I<sup>1</sup></td>
<td>0/2 Z</td>
<td>—</td>
<td>JSF091</td>
</tr>
<tr>
<td>Seminář částicové a jaderné fyziky II<sup>1</sup></td>
<td>—</td>
<td>0/2 Z</td>
<td>JSF092</td>
</tr>
<tr>
<td>Další výběrově povinné předměty</td>
<td>4 body</td>
<td>4 body</td>
<td></td>
</tr>
</tbody>
</table>

¹ Tento předmět je pro splnění požadavků k SZZ nutné zapsat dvakrát, doporučuje se ho zapsat ve 4. a 5. ročníku.

Další výběrově povinné předměty

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automaticace experimentu</td>
<td>2/0 Zk</td>
<td>—</td>
<td>JSF067</td>
</tr>
<tr>
<td>Biologické účinky ionizujícího záření</td>
<td>2/0 Zk</td>
<td>—</td>
<td>JSF008</td>
</tr>
<tr>
<td>Detektory pro fyziku vysokých energií</td>
<td>2/0 Zk</td>
<td>—</td>
<td>JSF075</td>
</tr>
<tr>
<td>Elektronika pro jaderné fyziky</td>
<td>—</td>
<td>2/1 KZ</td>
<td>JSF025</td>
</tr>
</tbody>
</table>
Požadavky k ústní části státní závěrečné zkoušky

1. **Kvantový obraz světa**
 Popis systému v klasické a kvantové mechanice (KM). Formální schema KM. Popis stavu, kausality a měření v klasické a kvantové mechanice. Fyzikální efekty, které nelze vysvětlit klasicky. Schrödingerova rovnice.

2. **Kvantování fyzikálních veličin**

3. **Moment hybnosti**
 Kvantování a skladání momentu hybnosti. Clebsch-Gordanovy koeficienty.

4. **Rozptylová úloha v kvantové mechanice**
 Diskrétní a spojité spektrum energie. Časový a nečasový popis rozptylu: amplituda rozptylu a účinný průřez, T-matice, S-matice, integrální rovnice rozptylu, Bornova aproximace, metoda parciálních vln.
5. Nestacionární problémy v kvantové mechanice

6. Elektromagnetické pole v kvantové mechanice
Kvantování elektromagnetického pole. Interakce atomu se zářením. Absorpce, emise, přirozená šíře čáry, fotoefekt.

7. Relativistická kvantová mechanika
Klein-Gordonova a Diracova rovnice, jejich řešení pro volné částice a částice v elektromagnetickém poli.

8. Spin v nerelativistické a relativistické kvantové mechanice
Pauliho a Diracova rovnice. Spinový magnetický moment, interakce spinu s vnějším polem. Spin a štěpení hladin. Role spinu při objasnění magnetismu a supravodivosti.

9. Systémy identických částic
Princip nerozlišitelnosti. Symetrie fermionových a bosonových stavů. Reprezentace obsazovacích čísel.

10. Symetrie a jejich projevy
Symetrie a zákony zachování. Energetické hladiny a invariantnost hamiltoniánu. Štěpení hladin při snížení symetrie. Princip totožnosti mikročástic a jeho důsledky.

11. Matematický aparát relativistické kvantové teorie

12. Kvantová teorie pole

13. Fyzika atomového jádra a jaderných reakcí

14. Fyzika elementárních částic
Klasifikace částic (leptony, kvarky, kvanta kalibračních polí, hadrony a jejich multiplety), a měření jejich základních charakteristik. Zákony zachování, CPT teorém, nezachování parity a narušení C a T invariantnosti, problém neutrálních kaonů. Interakce ve fyzice částic. Kvarkový model (reprezentace grupy SU(2) a SU(3), hmotové formule, mixing mezou, evidence pro barvu). Partonový model (hluboce nepružný rozptýl, struktturní funkce, Bjorkenovo škálování, sumační pravidla, evidence pro gluony). Základy

15. Aplikovaná jaderná fyzika

Základy neutronové fyziky a fyziky jaderných reaktorů. Fyzikální principy jaderně analytických metod (metody RBS, PIXE, PIGE, NMR, gama-fluorescence). Dozimetríe ionizujícího záření (měření dozimetrických veličin, účinky záření). Interakce záření s prostředím (ionizace, brzdné záření, Čerenkovovo záření).

16. Základy měřicích metod

Spektrometry jaderného záření: charakteristiky spektrometrů, scintilační, polovodičové a magnetické spektrometry, spektrometrie záření bez náboje (záření gama, neutryny). Urychlovače částic: lineární a cyklické urychlovače, urychlovače se vstřícnými svazky. Zdroje neutronů, detekce a spektrometrie neutronů.

4.10. Matematické a počítačové modelování ve fyzice a technice

Garantující pracoviště: Ústav teoretické fyziky
Odpovědný učitel: Doc. RNDr. Jiří Langer, CSc.

Podrobnosti o studiu lze také získat od doc. RNDr. J. Málka, CSc., odpovědného učitele oboru Matematické a počítačové modelování ve fyzice a technice studijního programu Matematika.

Studijní obor Matematické a počítačové modelování ve fyzice a technice je mezioborovým studiem, které spojuje matematiku, fyziku a částečně i informatiku. Posluchači získají znalosti v moderních partiích matematiky a v základních oblastech teoretické fyziky a seznámi se s použitím počítačů ve fyzice a některých technických aplikacích.

Studijní plán oboru je ve vyšších ročnících velmi blízký stejnojmeněmu oboru studijního programu Matematika.

Podmínky pro přihlášení ke státní závěrečné zkoušce

– získání alespoň 184 bodů za celé studium,
– absolvování povinných předmětů,
– získání alespoň 20 bodů z výběrově povinných předmětů,
– podání diplomové práce v předepsané úpravě.

Doporučený průběh studia

Předměty povinné ke státní závěrečné zkoušce jsou uváděny tučně, výběrově povinné předměty slabě. Další nepovinné předměty si student volí tak, aby získal celkový požadovaný počet bodů.

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzika V (jaderná a subjaderná fyzika)</td>
<td>3/1 Z, Zk</td>
<td>—</td>
<td>OFY029</td>
</tr>
<tr>
<td>Fyzikální praktikum IV</td>
<td>0/3 KZ</td>
<td>—</td>
<td>OFY030</td>
</tr>
<tr>
<td>Název</td>
<td>ZS</td>
<td>LS</td>
<td>Kód</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Matematické a počítačové modelování</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obyčejné diferenciální rovnice</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>DIR001</td>
</tr>
<tr>
<td>Mechanika kontinua</td>
<td>3/2 Z, Zk</td>
<td>—</td>
<td>MOD001</td>
</tr>
<tr>
<td>Matematické modelování ve fyzice</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>MOD012</td>
</tr>
<tr>
<td>Základy numerické matematiky 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>NUM004</td>
</tr>
<tr>
<td>Základy numerické matematiky 2</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>NUM005</td>
</tr>
<tr>
<td>Úvod do funkcionální analýzy 1</td>
<td>2/2 Z, Zk</td>
<td>2/2 Z, Zk</td>
<td>RFA006</td>
</tr>
<tr>
<td>Funkcionální analýza I</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>RFA005</td>
</tr>
<tr>
<td>Klasická teorie parciálních diferenciálních rovnic</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>DIR005</td>
</tr>
<tr>
<td>Moderní teorie parciálních diferenciálních rovnic</td>
<td>—</td>
<td>2/0 Zk</td>
<td>DIR005</td>
</tr>
<tr>
<td>Termodynamika kontinua</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MOD004</td>
</tr>
</tbody>
</table>

1Doporučuje se zapsat v zimním semestru.

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvantová teorie I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>BCM110</td>
</tr>
<tr>
<td>Kvantová teorie II</td>
<td>—</td>
<td>3/2 Z, Zk</td>
<td>BCM111</td>
</tr>
<tr>
<td>Termodynamika a statistická fyzika</td>
<td>—</td>
<td>3/1 Z, Zk</td>
<td>OFY036</td>
</tr>
<tr>
<td>Přibližné a numerické metody 1</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>NUM001</td>
</tr>
<tr>
<td>Přibližné a numerické metody 2</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>NUM002</td>
</tr>
<tr>
<td>Matematické metody v klasické a kvantové mechanice 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MOD032</td>
</tr>
<tr>
<td>Matematické metody v klasické a kvantové mechanice 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MOD033</td>
</tr>
<tr>
<td>Úvod do fyziky plazmatu a počítačové fyziky</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>FYM012</td>
</tr>
<tr>
<td>Matematická teorie pružnosti 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MOD017</td>
</tr>
<tr>
<td>Matematická teorie pružnosti 2</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MOD018</td>
</tr>
<tr>
<td>Nelineární diferenciální rovnice a nerovnice I</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>DIR042</td>
</tr>
<tr>
<td>Nelineární diferenciální rovnice a nerovnice II</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>DIR043</td>
</tr>
<tr>
<td>Biotermodynamika</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>MOD036</td>
</tr>
<tr>
<td>Výběrová přednáška</td>
<td>—</td>
<td>2/0 Zk</td>
<td>MOD033</td>
</tr>
<tr>
<td>Seminář z mechaniky kontinua</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>MOD013</td>
</tr>
<tr>
<td>Vybrané problémy matematického modelování</td>
<td>—</td>
<td>0/2 Z</td>
<td>MOD015</td>
</tr>
</tbody>
</table>

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminář z mechaniky kontinua</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>MOD013</td>
</tr>
<tr>
<td>Vybrané problémy matematického modelování</td>
<td>—</td>
<td>0/2 Z</td>
<td>MOD015</td>
</tr>
<tr>
<td>Další výběrově povinné předměty</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Další výběrově povinné předměty

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelineární diferenciální rovnice a nerovnice I</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>DIR042</td>
</tr>
<tr>
<td>Název</td>
<td>ZS</td>
<td>LS</td>
<td>Kód</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---------</td>
</tr>
<tr>
<td>Nelineární diferenciálim rovnice a nerovnice II</td>
<td></td>
<td></td>
<td>DIR043</td>
</tr>
<tr>
<td>Vybrané kapitoly z nelineárních diferenciálních rovnic</td>
<td>2/0</td>
<td>2/0</td>
<td>DIR036</td>
</tr>
<tr>
<td>Vybrané kapitoly z teorie optimalizace</td>
<td>2/0</td>
<td>2/0</td>
<td>MOD014</td>
</tr>
<tr>
<td>Nelineární funkcionální analýza</td>
<td>2/0</td>
<td></td>
<td>RFA018</td>
</tr>
</tbody>
</table>

Matematická teorie mechaniky kontinua

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická teorie pružnosti 1</td>
<td>2/0</td>
<td></td>
<td>MOD017</td>
</tr>
<tr>
<td>Matematická teorie pružnosti 2</td>
<td></td>
<td>2/0</td>
<td>MOD018</td>
</tr>
<tr>
<td>Matematické metody v klasické a kvantové mechanice 1</td>
<td>2/0</td>
<td></td>
<td>MOD032</td>
</tr>
<tr>
<td>Matematické metody v klasické a kvantové mechanice 2</td>
<td></td>
<td>2/0</td>
<td>MOD033</td>
</tr>
<tr>
<td>Matematické metody v mechanice tekutin</td>
<td>2/0</td>
<td>2/0</td>
<td>MOD001</td>
</tr>
<tr>
<td>Seminář z mechaniky kontinua</td>
<td>0/2</td>
<td>0/2</td>
<td>MOD013</td>
</tr>
<tr>
<td>Vybrané problémy matematického modelování</td>
<td></td>
<td>0/2</td>
<td>MOD015</td>
</tr>
</tbody>
</table>

Numerické metody

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerický software 1</td>
<td>2/2</td>
<td></td>
<td>NUM018</td>
</tr>
<tr>
<td>Numerický software 2</td>
<td></td>
<td>2/2</td>
<td>NUM019</td>
</tr>
<tr>
<td>Víceúrovňové metody</td>
<td>2/0</td>
<td>2/0</td>
<td>NUM013</td>
</tr>
<tr>
<td>Matematické modely přenosu částic</td>
<td>2/0</td>
<td>2/0</td>
<td>MOD016</td>
</tr>
<tr>
<td>Tvarová a materiálová optimalizace</td>
<td>2/0</td>
<td>2/0</td>
<td>MOD005</td>
</tr>
<tr>
<td>Numerické modelování problémů</td>
<td>2/0</td>
<td></td>
<td>MOD023</td>
</tr>
<tr>
<td>Numerické modelování problémů elektrotechniky 1</td>
<td></td>
<td>2/0</td>
<td>MOD024</td>
</tr>
</tbody>
</table>

Vybrané matematické předměty

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometrická teorie míry</td>
<td></td>
<td>2/0</td>
<td>MAT010</td>
</tr>
<tr>
<td>Geometrické metody teoretické fyziky I</td>
<td></td>
<td>2/1</td>
<td>TMF059</td>
</tr>
<tr>
<td>Úvod do analýzy na varietách</td>
<td>2/2</td>
<td></td>
<td>GEM002</td>
</tr>
<tr>
<td>Kalibrační pole a nekomutativní geometrie</td>
<td>2/0</td>
<td></td>
<td>GEM030</td>
</tr>
<tr>
<td>Pravděpodobnost a matematická statistika</td>
<td></td>
<td>4/2</td>
<td>STP022</td>
</tr>
</tbody>
</table>

Vybrané předměty fyziky

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvod do fyziky plazmatu a počítačové fyziky</td>
<td>2/0</td>
<td>2/0</td>
<td>FYM012</td>
</tr>
<tr>
<td>Pravděpodobnost a matematika fázových přechodů I</td>
<td></td>
<td>2/0</td>
<td>TMF027</td>
</tr>
<tr>
<td>Pravděpodobnost a matematika fázových přechodů II</td>
<td>2/0</td>
<td></td>
<td>TMF047</td>
</tr>
</tbody>
</table>

170
Deterministický chaos, nelineární oscilace a vlny
Kvantová teorie I 4/2 Z, Zk — FPL010
Kvantová teorie II — 3/2 Z, Zk FPL011
Biotermodynamika 2/2 Z, Zk — MOD036

Vybrané předměty informatiky

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vybrané aspekty operačního systému UNIX 2/0 Z — PRM031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pokročilé metody programování — 1/1 Z PRF006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programování II pro neinformatiky — 2/2 Z, Zk PRM002</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Požadavky k ústní části státní závěrečné zkoušky

1. **Klasická a moderní analýza**

 Teorie funkcí reálné proměnné

 Základy diferenciálního a integrálního počtu funkcí jedné a více reálných proměnných, teorie míry a integrálu, Fourierovy řady, věta o implicitních funkcích.

 Teorie funkcí komplexní proměnné

 Derivace, holomorfní funkce, Cauchyova věta a Cauchyův vzorec, izolované singularity, reziduová věta, meromorfní funkce, konformní zobrazení, Riemannova věta.

2. **Matematické modelování a numerické metody**

 Obyčejné diferenciální rovnice

 Lokální existence řešení obyčejných diferenciálních rovnic prvního řádu (klasická a zobecněná teorie), jednoznačnost, maximální řešení, lineární rovnice vyšších řádů, soustavy lineárních rovnic prvního řádu a jejich řešení.

 Parciální diferenciální rovnice

 Lineární rovnice 1. řádu, metoda charakteristik, klasifikace rovnic 2. řádu, formulace základních úloh pro jednotlivé typy vlastností harmonických funkcí, slabá řešení eliptických úloh, metoda monotonních operátorů, zobecněná řešení pro parabolickou a hyperbolickou rovnici, integrální transformace.

 Numerické metody řešení diferenciálních rovnic

 Diskrétní metody řešení obyčejných diferenciálních rovnic; metoda sítí pro řešení eliptických, parabolických a hyperbolických úloh; konvergence, stabilita, iterální metody pro řešení velkých Metoda konečných prvků pro řešení eliptických rovnic: triangulace oblastí, po částech polynomiální aproximace, interpolace v Sobolevových prostorech, odhad chyby, příklady konečných prvků.

 Základní matematické modely mechaniky kontinua tuhé a kapalné fáze

 Formulace zákonů zachování ve tvaru diferenciálních rovnic, Eulerovy a Navierovy-Stokesovy rovnice, nevazké nevěřivé proudění — formulace pomocí potenciálu rychlosti
a proudové funkce, úloha pro vazké nestlačitelné proudění. Základní pojmy z teorie pružnosti, tenzor napětí, tenzor napětí, tenzor deformace, Hookův zákon, Lamého rov-nice.

3. Základy fyziky

Mechanika kontinua
Tenzorová algebra a analýza, tenzory velké deformace, infinitezimální deformace. Bilační rovnice, Cauchyho věta, tenzor napětí, konstituční vztahy, princíp objektivity, symetrie. Tekutiny, pevné látky, elastické látky, ideální, newtonovské a nenewtonovské tekutiny, elastické pevné látky. Formulace okrajových úloh a jejich řešení.

Termodynamika

Statistická fyzika
Soubory ve statistické fyzice, Liouvilleova rovnice, mikrokanonický, kanonický a velký kanonický soubor, Maxwellovo-Boltzmannovo, Fermiho-Diracovo a Boseovo-Einsteínovo rozdělení, záření černého tělesa, stavová rovnice plynů.

Kvantová mechanika

4.11. Učitelství fyziky pro střední školy v kombinaci s odbornou fyzikou

Garantující pracoviště: Katedra didaktiky fyziky

Odpovědný učitel: Doc. RNDr. Ivana Stulíková, CSc.

Studijní plány oboru Učitelství fyziky v kombinaci s odbornou fyzikou se skládají ze studijních plánů

- fyziky, které jsou uvedeny mezi studijními plány studijního programu Fyzika (studijní obory 4.1-4.9) a
- předmětů povinných k získání učitelské aprobace podle následujících tabulek:

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum školních pokusů I</td>
<td>—</td>
<td>0/3 Z</td>
<td>DFY014</td>
</tr>
<tr>
<td>Pedagogická praxe z fyziky I</td>
<td>—</td>
<td>0/0 Z</td>
<td>DFY031</td>
</tr>
</tbody>
</table>

172
Státní zkouška z tohoto oboru zahrnuje kromě otázek z fyziky odpovídajících zvolenému oboru fyziky 4.1-4.9 ještě didaktická témata uvedená v požadavcích ke státní závěrečné zkoušce v odstavci 2.2 Učitelské studium fyziky pro střední školy.

4.12. Učitelství fyziky v kombinaci s druhým aprobačním oborem pro SŠ

Garantující pracoviště: Katedra didaktiky fyziky
Odpovědný učitel: Doc. RNDr. Ivana Stulíková, CSc.

Studijní plány oboru Učitelství fyziky v kombinaci s druhým aprobačním oborem pro SŠ se skládají ze studijních plánů fyziky, které jsou uvedeny v odstavci 2.2 Učitelské studium fyziky pro střední školy a matematiky resp. informatiky, které jsou uvedeny v odstavcích 2.1 Učitelské studium matematiky pro střední školy resp. 2.3 Učitelské studium informatiky pro střední školy.

B. Bakalářské studium
1. Základní informace

Podle těchto studijních plánů studují posluchači, kteří nastoupili studium ve školním roce 2002/2003 nebo dříve.

1.1. Průběh studia

Na druhém stupni studia (tj. od 2. ročníku) posluchač studuje podle zvolené oboru tak, aby průběžně plnil bodové hranice pro zápis do dalšího roku studia a aby splnil podmínky pro přihlášení k závěrečné zkoušce. Bakalářské studium trvá standardně 3 roky, maximálně 6 let.

Obory bakalářského studia studijního programu Fyzika (garantující pracoviště, odpovědný učitel):

<table>
<thead>
<tr>
<th>Obor</th>
<th>Učitel</th>
<th>Srovn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obecná fyzika (KVOF, doc. RNDr. Jan Nedbal, CSc.)</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>*)Vakuová a kryogenní technika (KEVF, doc. RNDr. Petr Řepa, CSc.)</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>*)Fyzika v medicíně (doc. RNDr. Otakar Jelínek, CSc.)</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>*)Bezpečnost jaderných zařízení (ÚČJF, doc. ing. Petr Otčenášek, CSc.)</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Užitá meteorologie (KMOP, doc. RNDr. Michal Bařka, DrSc.)</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

Studenti všech oborů získají znalosti z matematiky zaměřené především na kalkulus, široký přehled fyziky, naučí se zpracovávat experimentální data. Získají speciální znalosti a dovednosti v plánování, připravě a provádění měření, ve kterých se aplikují přístupy moderní fyziky za podpory výpočetní techniky. Dále si osvojí základní poznatky z řízení (ekonomické a manažerské minimum). Náplň jednotlivých oborů vyplývá z jejich studijních plánů, které jsou koncipovány tak, aby se absolventi uplatnili v meteorologické a klimatologické službě, v laboratořích sledování biosféry, jaderné bezpečnosti, hygienické službě, v normalizaci a zkušebníctví, v medicíně, v materiálovém a technickém výzkumu. Díky experimentalně orientované výuce práce s PC se uplatní i v řadě dalších oborů. Podrobnější informace o charakteru a možnostech uplatnění podají garantující pracoviště.

Podmínkou pro samostatnou práci v laboratoři (zahájení praktik a experimentálního praktického projektu) je získání zápočtu z kursu bezpečnosti práce (SZZ008), který je organizován pro všechny studenty fyziky kabinettém výuky obecné fyziky.

1.2. Ukončení studia

Bakalářské studium ve studijním programu fyzika je zakončeno státní závěrečnou zkouškou, která má dvě části: obhajobu závěrečné práce (praktického projektu) a ústní zkoušku. Informace o požadavcích ke státní závěrečné zkoušce podají pracoviště garantující jednotlivé obory.

Všechny termíny určuje garantující pracoviště. Ke zkoušce se posluchač hlásí na příslušném pracovišti a na studijním oddělení; je povinen se přihlásit zároveň k oběma částem, pokud už jednu nevykonal.
2. Studijní plány jednotlivých oborů

2.1. Obecná fyzika
Garantující pracoviště: Kabinet výuky obecné fyziky (KVOF)
Odpovědný učitel: Doc. RNDr. Jan Nedbal, CSc.

Podmínky pro přihlášení ke státní závěrečné zkoušce

– absolvování 1. ročníku
– absolvování předmětů povinných pro přihlášení ke státní závěrečné zkoušce,
– získání alespoň 114 bodů za celé studium,
– složení zkoušky z cizího jazyka,
– podání závěrečné práce (projektu).

Doporučený průběh studia
Předměty povinné ke státní závěrečné zkoušce jsou uváděny tučně, výběrově povinné předměty slabě. Další nepovinné předměty si student volí tak, aby získal celkový požadovaný počet bodů.

Povinné předměty v 1. ročníku

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza I</td>
<td>4/2 Z, Zk—</td>
<td>MAF033</td>
<td></td>
</tr>
<tr>
<td>Matematická analýza II</td>
<td>—</td>
<td>4/2 Z, Zk—</td>
<td>MAF034</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>2/2 Z, Zk—</td>
<td>MAF027</td>
<td></td>
</tr>
<tr>
<td>Lineární algebra II</td>
<td>—</td>
<td>2/2 Z, Zk—</td>
<td>MAF028</td>
</tr>
<tr>
<td>Programování 1</td>
<td>2/2 Z, 2/2 Z, Zk</td>
<td>PRF033</td>
<td></td>
</tr>
<tr>
<td>Fyzika I (mechanika a molekulová fyzika)</td>
<td>4/2 Z, Zk—</td>
<td>OFY021</td>
<td></td>
</tr>
<tr>
<td>Fyzika II (elektřina a magnetismus)</td>
<td>—</td>
<td>4/2 Z, Zk—</td>
<td>OFY018</td>
</tr>
<tr>
<td>Fyzikální praktikum I</td>
<td>—</td>
<td>0/4 KZ—</td>
<td>OFY019</td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>TVY001</td>
</tr>
<tr>
<td>Cizí jazyk</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>Kurz bezpečnosti práce</td>
<td>—</td>
<td>—</td>
<td>SZZ008</td>
</tr>
</tbody>
</table>

1 Získání zápočtu za letní semestr není podmínkou připožitění ke zkoušce.

2. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematika pro fyziky I</td>
<td>4/3 Z, Zk—</td>
<td>MAF003</td>
<td></td>
</tr>
<tr>
<td>Matematika pro fyziky II</td>
<td>—</td>
<td>4/3 Z, Zk—</td>
<td>MAF004</td>
</tr>
<tr>
<td>Fyzika III (optika)</td>
<td>3/2 Z, Zk—</td>
<td>OFY022</td>
<td></td>
</tr>
<tr>
<td>Teoretická mechanika</td>
<td>3/2 Z, Zk—</td>
<td>OFY003</td>
<td></td>
</tr>
<tr>
<td>Fyzikální praktikum II</td>
<td>0/3 KZ—</td>
<td>OFY024</td>
<td></td>
</tr>
<tr>
<td>Fyzikální praktikum III</td>
<td>—</td>
<td>0/4 KZ—</td>
<td>OFY028</td>
</tr>
<tr>
<td>Fyzika IV (atomová fyzika a elektronová struktura látek)</td>
<td>—</td>
<td>3/1 Z, Zk—</td>
<td>OFY025</td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>TVY001</td>
</tr>
</tbody>
</table>
3. rok studia

| Název ZS LS Kód |
|---|---|---|
| Fyzika V (jaderná a subjaderná fyzika) | 3/1 Z, Zk — | OFY029 |
| Klasická elektrodynamika | — | 2/2 Z, Zk | OFY026 |
| Úvod do kvantové mechaniky | — | 2/2 Z, Zk | OFY027 |
| Termodynamika a statistická fyzika | 3/2 Z, Zk — | OFY031 |
| Metody zpracování fyzikálních měření | — | 2/0 Zk | OFY034 |
| Měřicí technika ve fyzice | 0/3 Z | — | OFY052 |
| Práce v laboratoři | — | 0/5 Z | OFY053 |

Požadavky k ústní části státní závěrečné zkoušky

Převážná část těchto požadavků platí i pro obor Užitá meteorologie (viz dále).

Mechanika

Molekulová fyzika a termodynamika

Elektrodynamika a optika

Měřicí technika ve fyzice

Kvantová fyzika

Jaderná a subjaderná fyzika

Atomové jádro, radioaktivita. Základní skupiny částic. Interakce částic s prostředím. Detekce záření. (Tyto požadavky neplatí pro posluchače oboru Užitá meteorologie.)

2.5. Užitá meteorologie

Garantující pracoviště: katedra meteorologie a ochrany prostředí
Odpovědný učitel: Doc. RNDr. Michal Baťka, DrSc.

Podmínky pro přihlášení ke státní závěrečné zkoušce

- absolvování 1. ročníku,
- absolvování předmětů povinných pro přihlášení ke státní závěrečné zkoušce,
- získání alespoň 114 bodů za celé studium,
- získání alespoň 4 bodů z výběrově povinných předmětů,
- složení zkoušky z cizího jazyka,
- podání závěrečné práce (projektu).

Povinné předměty v 1. ročníku

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematika I</td>
<td>3/2 Z, Zk</td>
<td></td>
<td>MAF009</td>
</tr>
<tr>
<td>Matematika II</td>
<td></td>
<td>3/2 Z, Zk</td>
<td>MAA008</td>
</tr>
<tr>
<td>Statistika pro fyziky</td>
<td></td>
<td>2/1 Z, Zk</td>
<td>MAF024</td>
</tr>
<tr>
<td>Fyzika I</td>
<td>4/2 Z, Zk</td>
<td></td>
<td>OFY037</td>
</tr>
<tr>
<td>Fyzika II</td>
<td></td>
<td>4/2 Z, Zk</td>
<td>OFY038</td>
</tr>
<tr>
<td>Programování pro bakaláře fyziky I ¹</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>PRF040</td>
</tr>
<tr>
<td>Práce s PC I</td>
<td>0/2 KZ</td>
<td></td>
<td>PRF010</td>
</tr>
<tr>
<td>Práce s PC II</td>
<td></td>
<td>0/2 KZ</td>
<td>PRF042</td>
</tr>
<tr>
<td>Meteorologické přístroje a pozorovací metody</td>
<td></td>
<td>3/0 Zk</td>
<td>MET021</td>
</tr>
<tr>
<td>Úvod do praktické fyziky</td>
<td>0/2 Z</td>
<td></td>
<td>OFY051</td>
</tr>
<tr>
<td>Výběrové předměty</td>
<td></td>
<td>6 bodů</td>
<td></td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>TVY001</td>
</tr>
<tr>
<td>Cizí jazyk</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>Kurz bezpečnosti práce</td>
<td></td>
<td></td>
<td>SZZ008</td>
</tr>
</tbody>
</table>

¹ Získání zápočtu není podmínkou připuštění ke zkoušce.

2. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematika III</td>
<td>3/2 Z, Zk</td>
<td></td>
<td>MAF011</td>
</tr>
<tr>
<td>Fyzika III (optika)</td>
<td>3/2 Z, Zk</td>
<td></td>
<td>OFY022</td>
</tr>
<tr>
<td>Úvod do meteorologie</td>
<td>2/1 Z, Zk</td>
<td></td>
<td>MET051</td>
</tr>
<tr>
<td>Termodynamika atmosféry</td>
<td>1/1 Z, Zk</td>
<td></td>
<td>MET052</td>
</tr>
<tr>
<td>Metody numerické matematiky I</td>
<td>2/0 Zk</td>
<td></td>
<td>MAF013</td>
</tr>
<tr>
<td>Synoptická meteorologie I</td>
<td>3/0 Zk</td>
<td></td>
<td>MET035</td>
</tr>
<tr>
<td>Všeobecná klimatologie</td>
<td>4/0 Zk</td>
<td></td>
<td>MET012</td>
</tr>
<tr>
<td>Vybrané kapitoly z dynamické meteorologie</td>
<td>2/1 Z, Zk</td>
<td></td>
<td>MET053</td>
</tr>
<tr>
<td>Metody zpracování fyzikálních měření</td>
<td>2/0 Zk</td>
<td></td>
<td>MET050</td>
</tr>
<tr>
<td>Seminář zpracování fyzikálních měření</td>
<td>0/1 Z</td>
<td></td>
<td>MET049</td>
</tr>
<tr>
<td>Aplikace distančních pozorování a detekční metod v meteorologii</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>MET020</td>
</tr>
<tr>
<td>Vybrané partie z fyziky atmosféry</td>
<td>3/0 Zk</td>
<td></td>
<td>MET026</td>
</tr>
<tr>
<td>Meteorologické praktikum</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>MET029</td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>TVY001</td>
</tr>
</tbody>
</table>
3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regionální klimatologie a klimatografie ČR</td>
<td>4/0 Zk</td>
<td>—</td>
<td>MET009</td>
</tr>
<tr>
<td>Speciální klimatologický seminář</td>
<td>—</td>
<td>0/3 Z</td>
<td>MET010</td>
</tr>
<tr>
<td>Fyzika mezní vrstvy</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MET002</td>
</tr>
<tr>
<td>Šíření exhalací v atmosféře</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MET005</td>
</tr>
<tr>
<td>Analýza povětrnostní mapy I</td>
<td>1/3 KZ</td>
<td>—</td>
<td>MET013</td>
</tr>
<tr>
<td>Analýza povětrnostní mapy II</td>
<td>—</td>
<td>1/3 KZ</td>
<td>MET014</td>
</tr>
<tr>
<td>Meteorologický seminář</td>
<td>—</td>
<td>0/2 Z</td>
<td>MET027</td>
</tr>
<tr>
<td>Meteorologické praktikum</td>
<td>0/2 Z</td>
<td>—</td>
<td>MET029</td>
</tr>
<tr>
<td>Synoptická meteorologie II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>MET036</td>
</tr>
<tr>
<td>Statistické metody v meteorologii a klimatologii</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>MET011</td>
</tr>
</tbody>
</table>

Výběrově povinné předměty v rozsahu 4 bodů

Výběrově povinné předměty: Nutno zapsat po dohodě s katedrou v rozsahu alespoň 4 bodů z nabídky povinných nebo výběrově povinných předmětů magisterského studijního oboru Meteorologie a klimatologie. K získání zbývajících bodů se doporučuje zapsat další předměty (hydrologie, agrometeorologie, chemie, geografie, ekologie apod.) na MFF UK i mimo ni.

Požadavky k ústní části státní závěrečné zkoušky

Otázky z obecného základu

Viz otázky z mechaniky, molekulové fyziky, termodynamiky, elektrodynamiky a optiky uvedené u oboru 2.1. Obecná fyzika.

Otázky z předmětů studijního oboru

Meteorologická měření

Fyzikální principy meteorologických měření. Měření hlavních meteorologických prvků (teplota, tlak, vlhkost vzduchu, vítr, záření, sluneční svit a vertikální sondáže atmosféry).

Dynamická meteorologie

Základy termodynamiky a statiky atmosféry, adiabatické a pseudoadiabatické děje, rovnice hydrostatické rovnováhy, geopotenciál, stabilita v atmosféře. Geostrofické a gradientové proudění, divergence proudění, vorticita, cirkulace v atmosféře, základní rovnice dynamiky atmosféry, struktura mezní vrstvy atmosféry.

Synoptická meteorologie

Vlastnosti vzduchových hmot, atmosférické fronty, struktura a vývoj tlakových útvarů, principy meteorologických předpovědí.

Fyzika atmosféry

Sluneční a dlouhovlnné záření v atmosféře, radiační a tepelná bilance zemského povrchu a atmosféry, optické a akustické jevy v atmosféře, mikrostruktura a makrostruktura oblaků, vznik a druhy srážek, oblačná elektřina.

Šíření znečišťujících příměsí v atmosféře

Znečišťující příměsí v atmosféře, suchá a mokrá depozice, znečištění srážek, vlivy meteorologických faktorů na životní prostředí.
Klimatologie

Denní a roční chody meteorologických prvků, geografická rozložení teploty, srážek a tlaku, extrémní hodnoty. Klima ČR. Všeobecná cirkulace atmosféry, místní cirkulační systémy. Vodní bilance atmosféry a zemského povrchu. Antropogenní vlivy na klima, skleníkový efekt, vlivy znečištění ovzduší na změny stratosférického ozónu.
Studijní plány studijního programu
INFORMATIKA

Podle těchto studijních plánů studují posluchači, kteří se na fakultě zapsali ke studiu v akademickém roce 2002/2003 nebo dříve.

A. Magisterské studium

1. Základní informace

Absolvent magisterského studijního programu Informatika získává titul magistr (Mgr.). Magisterské studium trvá standardně 5 let, maximálně 10 let.

Studijní obory magisterského studijního programu Informatika:

- Teoretická informatika
- Diskrétní matematika a optimalizace
- Datové inženýrství
- Softwarové systémy
- Distribuované systémy
- Počítačová a formální lingvistika
- Učitelství informatiky pro střední školy v kombinaci
- s odbornou informatikou
- Učitelství informatiky v kombinaci s druhým aprobačním předmětem pro střední školy

Studium oboru Učitelství informatiky v kombinaci s druhým aprobačním předmětem pro střední školy se řídí studijními plány uvedenými v kapitole 2.3. Učitelské studium informatiky pro střední školy (viz též 4.8).

Veškeré další informace uvedené zde v oddílu Studijní plány studijního oboru Informatika se týkají pouze odborného studia informatiky (studijní obory 4.1 až 4.6) a jednooborového učitelství v kombinaci s odbornou informatikou (4.7). Studenti oboru Učitelství informatiky pro střední školy se v kombinaci s odbornou informatikou studují v rámci zvoleného oboru odborného studia (4.1 až 4.6). Současně mají povinnost absolvovat během studia i výuku vztahující se k učitelské disciplíně (viz 4.7).

Náplň I. stupně studia (1. ročníku) je společná pro celý program Informatika a její plnění je kontrolováno po každém semestru (kap. 2). Na II. stupně studia si student volí složení výuky tak, aby průběžně splňoval bodové hranice pro zápis do dalšího roku a aby splnil podmínky pro přihlášení k souborné zkoušce (viz 3.1), pro zadání diplomové práce (viz 3.4) a pro přihlášení ke státní závěrečné zkoušce (viz 3.5).

Při volbě a organizaci specializovaného závěru studia a výběru předmětů se student řídí doporučením vedoucího diplomové práce.
2. První stupeň studia

Povinná výuka v 1. ročníku

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza Ia</td>
<td>4/2 Z, Zk</td>
<td></td>
<td>MAI008</td>
</tr>
<tr>
<td>Matematická analýza Ib</td>
<td></td>
<td>4/2 Z, Zk</td>
<td>MAI009</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>MAI043</td>
</tr>
<tr>
<td>Lineární algebra II</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>MAI044</td>
</tr>
<tr>
<td>Proseminář z logiky</td>
<td>0/2 Z</td>
<td></td>
<td>AIL012</td>
</tr>
<tr>
<td>Diskrétní matematika</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>DMI002</td>
</tr>
<tr>
<td>Programování I</td>
<td>2/2 Z</td>
<td>3/2 Z, Zk</td>
<td>PRG004</td>
</tr>
<tr>
<td>Ročníkový projekt I</td>
<td></td>
<td>0/2 KZ</td>
<td>PRG018</td>
</tr>
<tr>
<td>Úvod do teoretické informatiky</td>
<td></td>
<td>2/0 Zk</td>
<td>TIN001</td>
</tr>
<tr>
<td>Úvod do UNIXu</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>SWI048</td>
</tr>
<tr>
<td>Principy počítačů I</td>
<td></td>
<td>2/0 Zk</td>
<td>SWI065</td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>TVY001</td>
</tr>
<tr>
<td>Cizí jazyk</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td></td>
</tr>
</tbody>
</table>

1 Získání zápočtu za letní semestr není podmínkou připuštění ke zkoušce.

3. Druhý stupeň studia

3.1. Souborná zkouška
Souborná zkouška zavře první, přípravnou fázi studia a je jednotná a povinná pro všechny studenty. Skládá se obvykle během 3. roku, nejpozději však do konce 4. roku studia. Souborná zkouška se nedělí na více částí (tj. skládá se z jediné části); to znamená, že posluchač se hlásí k souborné zkoušce jako celku, je z ní hodnocen jednou známkou a v případě neúspěchu ji také celou opakuje.

Podmínky pro přihlášení k souborné zkoušce

- absolvování 1. ročníku,
- absolvování předmětů povinných pro přihlášení k souborné zkoušce (viz níže),
- získání alespoň 96 bodů.

Požadavky k souborné zkoušce
Souborná zkouška je ústní zkouškou ze dvou okruhů – ze Základů matematiky a Základů informatiky.

Požadavky zkoušky pokrývá výuka 1. ročníku a povinná a doporučená výuka k souborné zkoušce (viz doporučený průběh studia).

Základy matematiky
1. Teorie množin
2. Teorie grafů

3. Vektorové, normované a metrické prostory
Vektorové prostory, prostory se skalárním součinem, normované a metrické prostory – základní pojmy a vlastnosti, příklady, lineární zobrazení. Hilbertův prostor. Pojem úplného a kompaktního prostoru. Věty o pevném bodě, aplikace.

4. Matice a lineární soustavy

5. Algebraické struktury, polynomická algebra

6. Posloupnosti a řady čísel a funkcí

7. Diferenciální a integrální počet

8. Obyčejné diferenciální rovnice
Věty o existenci a jednoznačnosti počáteční úlohy pro systémy lineárních a ne-lineárních rovnic. Vlastnosti řešení. Analytické a numerické metody řešení. Systémy lineárních diferenciálních rovnic 1. řádu s konstantními koeficienty.

Základy informatiky
1. Počítače a operační systémy
2. **Programovací jazyky**

3. **Překladače**

Struktura kompilátoru, fáze překladu, front-end a back-end. Lexikální, syntaktická a sémantická analýza. Konstrukce SLR(1) automatu, operátory First a Follow, funkce SLR(1) parseru. Překlad do vnitřní formy, optimalizace nad vnitřní formou, generování kódu. Druhy chyb při překladu a zotavení z nich.

4. **Databázové systémy**

5. **Výroková a predikátová logika**

6. **Automaty a jazyky**

Chomského hierarchie, charakterizace jednotlivých tříd jazyků prostředky gramatik a automatů, (ne-)determinismus. Uzávěrové vlastnosti. NEROZHODNUTELNÉ PROBLÉMY TEORIE JAZYKŮ.

7. **Algoritmy a jejich složitost**

Doporučený průběh studia k souborné zkoušce

Předměty povinné pro přihlášení k souborné zkoušce jsou v tabulce vyznačeny tučně.

2. **rok studia**

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza IIa</td>
<td>2/2</td>
<td>Zk</td>
<td>MAI049</td>
</tr>
<tr>
<td>Matematická analýza IIb</td>
<td>—</td>
<td>2/2</td>
<td>MAI050</td>
</tr>
<tr>
<td>Algebra</td>
<td>2/0</td>
<td>2/2</td>
<td>MAI019</td>
</tr>
<tr>
<td>Kombinatorika a grafy I</td>
<td>2/2</td>
<td>Zk</td>
<td>DMI011</td>
</tr>
<tr>
<td>Algoritmy</td>
<td>2/1</td>
<td>Zk</td>
<td>DMI026</td>
</tr>
<tr>
<td>Neprocedurální programování</td>
<td>2/2</td>
<td>Zk</td>
<td>PRG005</td>
</tr>
<tr>
<td>Programování v C/C++</td>
<td>2/2</td>
<td>Zk</td>
<td>PRG012</td>
</tr>
</tbody>
</table>
Studenti, kteří uvažují o studijním oboru Diskrétní matematika a optimalizace, by si měli zařadit předmět OPT032 Lineární programování již ve druhém roce studia (předpokládají se pouze znalosti z prvního ročníku).

Ve třetím roce studia doporučujeme vedle předmětů povinných a doporučených k souborné zkoušce navštěvovat také přednášky SWI015 Unix a TIN062 Složitost I – tyto předměty jsou povinné nebo doporučené ke státní závěrečné zkoušce. Dále doporučujeme navštěovat některou z přednášek vedlejšího oboru (viz. 3.2) a zahájit práci na týmovém softwarovém projektu PRG023 Softwarový projekt (viz. 3.3).

Důležité upozornění

Naposledy vyučované předměty

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza IIa</td>
<td>2/2</td>
<td></td>
<td>MAI049</td>
</tr>
<tr>
<td>Matematická analýza IIb</td>
<td>—</td>
<td>2/2</td>
<td>MAI050</td>
</tr>
<tr>
<td>Algebra</td>
<td>2/0</td>
<td>2/2</td>
<td>MAI019</td>
</tr>
<tr>
<td>Algoritmy</td>
<td>2/1</td>
<td></td>
<td>DMI026</td>
</tr>
<tr>
<td>Programování v C/C++</td>
<td>2/2</td>
<td></td>
<td>PRG012</td>
</tr>
<tr>
<td>Výroková a predikátová logika</td>
<td>—</td>
<td>3/1</td>
<td>AIL023</td>
</tr>
<tr>
<td>Automaty a gramatiky</td>
<td>—</td>
<td>3/2</td>
<td>TIN013</td>
</tr>
</tbody>
</table>

1 Podrobnější vysvětlení viz odst. 3.3.
3.2. Vedlejší obor

Předmášky z vedlejšího oboru (s výjimkou předmáštu SWI065 Principy počítačů I, který je pevně zařazen do prvního ročníku) si lze zapsat kdykoliv během studia, nebo navazují pouze na znalosti z prvního ročníku. Z hlediska vzorových průchodů je nejvhodnější dobou pro jejich absolvování 3. a 4. rok studia.

Vedlejší obor Fyzika

Předmášky vedlejšího oboru Fyzika prezentují fyzikální poznatky blízkké informatice a některé z nich pojednávají o fyzikálních aspektech informatiky a počítačů, čímž přirozeným způsobem doplňují a rozšiřují informatické vzdělání. Další předmášky, které představují obecný fyzikální pohled na svět, jsou pojeté takovým způsobem, který nevyžaduje hlubší předchozí znalosti fyziky nad rámec středoškolské výuky. Jsou proto vhodné pro posluchače, kteří se nezaměřují na odborné studium fyziky.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principy počítačů I</td>
<td>—</td>
<td>2/0 Zk</td>
<td>SWI065</td>
</tr>
<tr>
<td>Principy počítačů II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>SWI076</td>
</tr>
<tr>
<td>Vybrané kapitoly z architektury počítačů</td>
<td>2/0 Zk</td>
<td>—</td>
<td>SWI061</td>
</tr>
<tr>
<td>Fyzika pro nefyziky I - Svět kolem nás</td>
<td>2/0 Zk</td>
<td>—</td>
<td>OFY016</td>
</tr>
<tr>
<td>Fyzika pro nefyziky II — Modely a realita</td>
<td>—</td>
<td>2/0 Zk</td>
<td>OFY017</td>
</tr>
<tr>
<td>Kvantová fyzika pro nefyziky</td>
<td>2/0 Zk</td>
<td>—</td>
<td>JSF059</td>
</tr>
<tr>
<td>Elektronika v laboratoři</td>
<td>—</td>
<td>2/0 Zk</td>
<td>EVF070</td>
</tr>
<tr>
<td>Astronomická pozorování, modely a zpracování</td>
<td>—</td>
<td>2/0 Zk</td>
<td>OFY020</td>
</tr>
<tr>
<td>obrazových informací</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytická mechanika</td>
<td>2/1 Zk</td>
<td>—</td>
<td>OFY032</td>
</tr>
<tr>
<td>Fyzika v experimentech</td>
<td>1/0</td>
<td>1/0 Z</td>
<td>OFY008</td>
</tr>
</tbody>
</table>

Vedlejší obor Biologie

Předmášety vedlejšího oboru Biologie rozšiřují vzdělání studentů informatiky v přírodních vědách. Jsou vhodné zejména pro ty studenty, kteří chtějí své budoucí profesionální zaměření orientovat na aplikace informatiky v biomedicínském výzkumu. Výuka biologie probíhá na Přírodovědecké fakultě UK. Doporučené předmášety jsou určeny pro studenty 1. a 2. ročníku studia odborné biologie nebo učitelství biologie a nevyžadují
proto žádné speciální znalosti nad rámec středoškolské výuky. (S výjimkou "Základů molekulární biologie a genetiky" se učitelské alternativy od odborných zřetelně liší menším týdenním počtem hodin přednášek.)

Povinné předměty vedlejšího oboru Biologie

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologie buňky</td>
<td>4/0</td>
<td>Zk</td>
<td>—</td>
</tr>
<tr>
<td>Biologie buňky</td>
<td>2/0</td>
<td>Zk</td>
<td>—</td>
</tr>
<tr>
<td>Biochemie</td>
<td></td>
<td>3/0</td>
<td>Zk</td>
</tr>
<tr>
<td>Biochemie</td>
<td></td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>Základy molekulární biologie a genetiky</td>
<td></td>
<td>3/0</td>
<td>Zk</td>
</tr>
<tr>
<td>Základy molekulární biologie a genetiky</td>
<td></td>
<td>3/0</td>
<td>Zk</td>
</tr>
</tbody>
</table>

Volitelné předměty vedlejšího oboru Biologie

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obecná chemie</td>
<td>3/0</td>
<td>Zk</td>
<td>—</td>
</tr>
<tr>
<td>Ekologie speciální</td>
<td></td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>Mikrobiologie</td>
<td></td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>Antropologie</td>
<td></td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>Evoluční biologie</td>
<td></td>
<td>3/0</td>
<td>Zk</td>
</tr>
<tr>
<td>Fyziologie živočíchů</td>
<td>2/0</td>
<td>Zk</td>
<td>—</td>
</tr>
<tr>
<td>Buněčná biologie a biotechnologie</td>
<td>2/0</td>
<td>Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

1 V případě dvou alternativ jednoho předmětu si studenti zapisují pouze jednu z nich.
2 Doporučuje se absolvovat tuto přednášku (i bez zkoušky) před studiem biochemie.
3 Není vhodné zapsat si tuto přednášku bez absolvování kurzů B150P04 a B140P67.

Vedlejší obor Ekonomie

Předměty vedlejšího oboru Ekonomie rozšiřují vzdělání studentů informatiky ve společensko-ekonomických vědách. Jsou vhodné zejména pro ty studenty, kteří se chtějí zabývat aplikacemi informatiky v ekonomii. Výuka probíhá na MFF UK. Některé přednášky jsou zajišťovány přednášejícími z FSV UK. Nabídka doporučených ekonomicky zaměřených přednášek se bude postupně rozšiřovat.

Povinný předmět vedlejšího oboru Ekonomie

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekonomie I (úvodní přednáška)</td>
<td>2/2</td>
<td>Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

Volitelné předměty vedlejšího oboru Ekonomie

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekonomie II (úvodní přednáška)</td>
<td></td>
<td>2/2</td>
<td>Zk</td>
</tr>
<tr>
<td>Úvod do financí</td>
<td></td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>Matematické metody ve financích</td>
<td>2/0</td>
<td>Zk</td>
<td>—</td>
</tr>
<tr>
<td>Finanční management</td>
<td></td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>Matematická ekonomie</td>
<td></td>
<td>4/0</td>
<td>Zk</td>
</tr>
</tbody>
</table>

1 Předpokladem pro zápis předmětu FAP022 Matematické metody ve financích je složení zkoušky z předmětu FAP009 Úvod do financí.
3.3. Softwarový projekt

Jednou ze studijních povinností požadovaných pro přihlášení ke státní závěrečné zkoušce je účast v některém týmovém softwarovém projektu zakončeném jeho úspěšnou obhajobou. O zadávání témat, sledování průběžné práce na projektech i hodnocení závěrečných veřejných obhajob se stará Komise pro softwarové projekty tvořená zástupci jednotlivých informatických pracovišť. Za úspěšně obhájený projekt se přiděluje celkem 12 bodů, z nichž 6 bodů může komise udělit na žádost posluchače zálohové předem po prvním semestru práce na projektu na základě doložených průběžných výsledků. Pro započítání zálohových 6 bodů si posluchač zapíše předmět PRG027 Zápočet k projektu, zbývajících 6 bodů získá po úspěšně obhájeném projektu se zápočtem z předmětu PRG023 Softwarový projekt. Pokud posluchač o zálohové body předem nežádá, zapíše si oba výše uvedené předměty zároveň při obhajobě. Na návrh posluchače může být po úspěšné obhájení nejlepším řešitelům projektu celková dotace přidělených bodů ještě zvýšena, a to maximálně o 4 body. Pro započítání těchto zbývajících bodů si posluchač zapíše předmět PRG028 Mimořádné ohodnocení projektu.

Předměty PRG027 Zápočet k projektu, PRG023 Softwarový projekt a PRG028 Mimořádné ohodnocení projektu si lze zapsat kdykoliv podle potřeby, nikoli pouze v době zápisu vymezeném v harmonogramu akademického roku, jako je tomu u většiny ostatních předmětů.

3.4. Diplomová práce

Téma diplomové práce si student vybírá obvykle na počátku 4. roku studia z nabídky příslušné katedry. Může také požádat o zvážení možnosti rozšířit tuto nabídku o další téma.

Podmínka pro zadání diplomové práce

– složení zkoušky z cizího jazyka.

3.5. Státní závěrečná zkouška

Státní závěrečná zkouška zavře druhou fázi studia, zaměřenou na specializaci studenta v oboru a ukončí studium. Státní závěrečná zkouška ve studijním programu Informatika se skládá ze dvou částí, kterými jsou obhajoba diplomové práce a ústní zkouška. Každá část je hodnocena známkou, ze kterých se pak stanoví celková známka státní závěrečné zkoušky; při netrpělivé opakuje posluchač nejvýše dvakrát ty části, ze kterých neprospěl. Posluchač se přihlašuje současně na všechny části státní závěrečné zkoušky, které dosud nesložil.

Ústní část zkoušky obsahuje jednak společné požadavky povinné pro všechny studenty magisterského studijního programu Informatika, jednak požadavky užšího zaměření jednotlivých studentů podle studijních oborů. Toto užší zaměření si každý student sestaví výběrem tří zkušebních okruhů ze studijního oboru, který si zvolil, případně výběrem dvou zkušebních okruhů ze zvoleného studijního oboru a jednoho okruhu z požadavků libovolného jiného studijního oboru programu Informatika. Svoji volbu oznámí při podání přihlášky ke státní závěrečné zkoušce.
Důležité upozornění

Podmínky pro přihlášení ke státní závěrečné zkoušce

– složení souborné zkoušky,
– úspěšné absolvování všech předmětů povinných pro přihlášení ke státní závěrečné zkoušce,
– získání alespoň 134 bodů za předměty programu Informatika (tzn. za předměty, jejichž kód začíná písmeny AIL, DBI, DMI, INF, LTM, MAI, OPT, PFL, PGR, PRG, SWI, TIN),
– získání alespoň 10 bodů za předměty zvoleného vedlejšího oboru (viz odst. 3.2 – platí pro studenty, kteří zahájili studium na fakultě v letech 1999, 2000 a 2001),
– získání celkem alespoň 174 bodů (do toho se započítává nejvýše 5 bodů z předmětu UAS001 Praktikum z aplikačního software),
– podání diplomové práce.

Společné požadavky ústní části státní závěrečné zkoušky

1. Složitost

2. Vyčíslitelnost

3. Datové struktury
 Základní datové typy: hashování (řešení kolizi a jejich porovnávání), trie (komprese), uspořádané seznamy, binární vyhledávací stromy (optimální binární vyhledávací
4. Předměty povinné pro přihlášení ke státní závěrečné zkoušce

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unix</td>
<td>2/1 Z, Zk</td>
<td></td>
<td>SWI015</td>
</tr>
<tr>
<td>Softwarový projekt 1</td>
<td></td>
<td>0/6 Z</td>
<td>PRG023</td>
</tr>
</tbody>
</table>

1 Podrobnější vysvětlení viz odst. 3.3.

Předměty doporučené pro společné požadavky ústní části státní závěrečné zkoušky

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Složitost I</td>
<td>2/1 Z, Zk</td>
<td></td>
<td>TIN062</td>
</tr>
<tr>
<td>Složitost II</td>
<td></td>
<td>2/1 Z, Zk</td>
<td>TIN063</td>
</tr>
<tr>
<td>Vyčísilitelnost I</td>
<td>2/0 Zk</td>
<td></td>
<td>TIN064</td>
</tr>
<tr>
<td>Vyčísilitelnost II</td>
<td></td>
<td>2/0 Zk</td>
<td>TIN065</td>
</tr>
<tr>
<td>Datové struktury I</td>
<td>2/0 Zk</td>
<td></td>
<td>TIN066</td>
</tr>
<tr>
<td>Datové struktury II</td>
<td></td>
<td>2/1 Zk</td>
<td>TIN067</td>
</tr>
<tr>
<td>Organizace a zpracování dat I</td>
<td>2/1 Z, Zk</td>
<td></td>
<td>DBI007</td>
</tr>
<tr>
<td>Úvod do teorie pravděpodobnosti</td>
<td>3/1 Z, Zk</td>
<td></td>
<td>MAI016</td>
</tr>
<tr>
<td>Metody matematické statistiky</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>MAI010</td>
</tr>
<tr>
<td>Odborné vyjadřování a styl</td>
<td></td>
<td>0/2 Z</td>
<td>POZ009</td>
</tr>
</tbody>
</table>

4. Studijní obory

U každého studijního oboru jsou uvedeny zkušební požadavky a doporučené předměty k jednotlivým zkušebním okruhům. Tyto předměty pokrývají v návaznosti na povinné a doporučené předměty k souborné zkoušce a povinné a doporučené předměty, vztahující se ke společným požadavkům státní závěrečné zkoušky, zkušební požadavky těchto okruhů. Předměty označené "" nejsou vyučovány každý rok.
Důležité upozornění

4.1. Teoretická informatika

Garantující pracoviště: katedra teoretické informatiky a matematické logiky
Odpovědný učitel: Prof. RNDr. Petr Štěpánek, DrSc.

a) studijní plán Algoritmy a složitost

Zkušební okruhy:

1. Rekurse a strukturální složitost.
2. Analýza složitosti algoritmů.

Zkušební požadavky:

1. Rekurse a strukturální složitost

2. Analýza složitosti algoritmů

3. Konkrétní algoritmy

Algebraické algoritmy: rychlé násobení matic a čísel (Strassenův algoritmus), úlohy ekvivalentní s násobením matic. Rychlá Fourierova transformace. Testy prvočíslnosti. Identifikační algoritmy.

Paralelní grafové algoritmy: metoda Eulerových cyklů pro stromy a grafy, souvislost a bisouvislost, kostra. Třídění.

Dynamické datové struktury: klastrovací technika, sparsifikace, reprezentace stromů umožňující rychlou změnu kořene, techniky vhodné pro backtracking.

<table>
<thead>
<tr>
<th>Název (okruh)</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rekurze (1)</td>
<td>2/1 Z</td>
<td>2/1 Z, Zk</td>
<td>TIN012</td>
</tr>
<tr>
<td>Strukturální složitost (1)</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>TIN007</td>
</tr>
<tr>
<td>Booleovské funkce a jejich aplikace (1)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>AIL021</td>
</tr>
<tr>
<td>Reprezentace booleovských funkcí (1,2)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>AIL031</td>
</tr>
<tr>
<td>Paralelní algoritmy (2,3)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>TIN017</td>
</tr>
<tr>
<td>Sekvenční a paralelní počítací modely a výpočetní složitost (2)</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>TIN024</td>
</tr>
<tr>
<td>Pravděpodobnostní analýza algoritmů (2)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>TIN018</td>
</tr>
<tr>
<td>Experimentální analýza algoritmů (2)</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>TIN033</td>
</tr>
<tr>
<td>Algebraické algoritmy * (3)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>TIN006</td>
</tr>
<tr>
<td>Grafové algoritmy * (3)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>DMI010</td>
</tr>
<tr>
<td>Datové struktury a on-line algoritmy (3)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>TIN023</td>
</tr>
</tbody>
</table>

b) studijní plán **Neprocedurální programování a umělá inteligence**

Zkušební okruhy:

1. Logika, kombinatorika a výpočtová složitost.
2. Umělá inteligence.
3. Neprocedurální programování.

Zkušební požadavky:

1. **Logika, kombinatorika a výpočtová složitost**
 Formální systémy, logika 1. řádu, jazyk, axiomy, odvozovací pravidla. Výroková logika, sémantika výrokové logiky, tautologie a splnitelnost, dokazatelnost, věta o dedukci, věta o kompaktnosti a věty o úplnosti. Konjunktivně-disjunktivní a disjunktivně-konjunktivní tvary formulí.
 Rozhodnutelné a nerozhodnutelné teorie, nerozhodnutelnost predikátové logiky, nerozhodnutelnost aritmetiky, neúplnost aritmetiky a nedefinovatelnost pravdy v aritmetice. Výpočtová složitost rozhodnutelných teorií (Presburgerova aritmetika, teorie druhého řádu u jedním nebo se dvěma následníky).
 Míry výpočtové složitosti, třídy složitostí (P, NP, PSPACE, NPSPACE, LOGSPACE), NP-těžké a NP-úplné úlohy. Složitost algoritmů v umělé inteligenci, prohledávání, rezoluční odvozování.
2. Umělá inteligence

3. Neprocedurální programování

4. Neuronové sítě

<table>
<thead>
<tr>
<th>Název (okruh)</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda-kalkulus a funkcionální programování (1,3)</td>
<td>2/1 Z</td>
<td>2/1 Z, Zk</td>
<td>AIL007</td>
</tr>
<tr>
<td>Kombinatorické algoritmy (1)</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>DMI007</td>
</tr>
<tr>
<td>Umělá inteligence (2)</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>AIL033</td>
</tr>
<tr>
<td>Seminář z umělé inteligence I (2)</td>
<td>0/2 Z</td>
<td>—</td>
<td>AIL004</td>
</tr>
<tr>
<td>Seminář z umělé inteligence II (2)</td>
<td>—</td>
<td>0/2 Z</td>
<td>AIL052</td>
</tr>
<tr>
<td>Strojové učení (2)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>AIL029</td>
</tr>
<tr>
<td>Logické programování (3)</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>AIL005</td>
</tr>
<tr>
<td>Seminář z logického programování I (2,3)</td>
<td>0/2 Z</td>
<td>—</td>
<td>AIL006</td>
</tr>
</tbody>
</table>
4.2. Diskrétní matematika a optimalizace

Garantující pracoviště: katedra aplikované matematiky
Odpovědný učitel: Prof. RNDr. Aleš Pultr, DrSc.

a) studijní plán Diskrétní matematika

Zkušební okruhy:

1. Kombinatorika a teorie grafů
 - Barevnost grafů, regulární grafy, souvislost grafů, speciální vlastnosti orientová-
 ných grafů, algebraické vlastnosti grafů, teorie párování, Ramseyova teorie, nekonečná
 kombinatorika, strukturální vlastnosti množinových systémů.

2. Pravděpodobnostní metody a algoritmy
 - Kombinatorické počítání, vytvářející funkce, rekurence, základní pravděpodob-
 nostní modely, linearita střední hodnoty, použití variace, aplikace na konkrétní příklady,
 asymptotické odhady funkcí, pravděpodobnostní konstrukce a algoritmy.

3. Kombinatorická optimalizace
 - Grafové algoritmy, algebraické a aritmetické algoritmy, teorie mnohostěnů, problém
 obchodního cestujícího, speciální matice, celočíselnost, párování a toky v sítích, teorie
 matroidů, elipsoidová metoda.

4. Kombinatorická a výpočetní geometrie
 - Geometrické úlohy v prostorách konečné dimenze, kombinatorické vlastnosti geo-
 metrických konfigurací, algoritmické aplikace, návrh geometrických algoritmů, geomet-
 rické reprezentace grafů.

<table>
<thead>
<tr>
<th>Název (okruh)</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kombinatorika a grafy II (1)</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>DMI012</td>
</tr>
<tr>
<td>Teorie rozkladů (1)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>DMI021</td>
</tr>
<tr>
<td>Kombinatorický seminář (1)</td>
<td>—</td>
<td>0/2 Z</td>
<td>DMI022</td>
</tr>
</tbody>
</table>
Pravděpodobnostní metoda (2)
Pravděpodobnostní algoritmy (2)
Úvod do matematického programování a polyedrální kombinatoriky (3)
Matematické programování a polyedrální kombinatorika (3)
Kombinatorické algoritmy (3)
Kombinatorická a výpočetní geometrie I (4)
Kombinatorická a výpočetní geometrie II (4)
Průnikové grafy * (4)

2/2 Z, Zk — TIN022
— 2/0 Zk DMI025
2/1 Z, Zk — OPT041
— 2/1 Z, Zk OPT034
2/2 Z, Zk — DMI007
2/2 Z, Zk — DMI009
— 2/1 Z, Zk DMI013
2/0 2/0 Zk DMI035

b) studijní plán **Optimalizace**

Zkušební okruhy:

1. Nelineární programování.
2. Optimalizační procesy.
3. Parametrické, vícekriteriální a celočíselné programování.
4. Nehladká optimalizace a pravděpodobnostní dynamické modely.

Zkušební požadavky:

1. **Nelineární programování**

2. **Optimalizační procesy**
 a) Spojité:
 Princip maxima pro nelineární úlohy různých typů. Podmínky optimality pro základní úlohy variičního počtu. Lineární úlohy na minimalizaci času.
 b) Diskrétní:
 Klasifikace úloh a jejich vztah k úloze nelineárního programování. Lineární a kvadratické úlohy. Základy řízení markovských systémů. Diskrétní dynamické programování – optimalizace vzhledem k počátečnímu stavu, koncovému stavu a počátečnímu a koncovému stavu.

3. **Parametrické, vícekriteriální a celočíselné programování**
 Obory stability řešení. Obory řešitelnosti. Funkce řešitelnosti pro jednoparametrické a vícepametrické programování. Různé přístupy k řešení úloh s více kritérii. Funkcionál přiřazený k dané úloze vektorového programování. Eficientní body. Úlohy lineární a nelineární vektorové optimalizace. Metody pro získání eficientních bodů. Úlohy lineárního programování s podmínkami celočíselnosti, resp. s bivalentními proměnnými. Nelineární optimalizační problémy s podmínkami celočíselnosti.

4. **Nehladká optimalizace a pravděpodobnostní dynamické modely**
 Clarkeův kalkulus a základy nehladké analýzy. Podmínky optimality. Numerické metody nehladké optimalizace. Modely s diskrétními stavy (Poissonův proces, modely
hromadné obsluhy, Markovovy procesy a řetězce). Porovnání pravděpodobnostních a deterministických modelů. Modely se spojitými stavy (stochastický integrál a diferenciál, lineární stochastické diferenciální rovnice).

<table>
<thead>
<tr>
<th>Název (okruh)</th>
<th>dop. rok studia</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Základy nelineární optimalizace (1)</td>
<td>3</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>OPT018</td>
</tr>
<tr>
<td>Algoritmy nelineární optimalizace (1)</td>
<td>3</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>OPT008</td>
</tr>
<tr>
<td>Optimalizační procesy I (2)</td>
<td>4</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>OPT004</td>
</tr>
<tr>
<td>Optimalizační procesy II (2)</td>
<td>4</td>
<td>—</td>
<td>2/0 Zk</td>
<td>OPT005</td>
</tr>
<tr>
<td>Dynamické programování (2)</td>
<td>5</td>
<td>2/0 Zk</td>
<td>—</td>
<td>OPT001</td>
</tr>
<tr>
<td>Parametrická optimalizace (3)</td>
<td>3</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>OPT015</td>
</tr>
<tr>
<td>Vícekriteriální optimalizace (3)</td>
<td>4</td>
<td>2/0 Zk</td>
<td>—</td>
<td>OPT017</td>
</tr>
<tr>
<td>Celočíselné programování (3)</td>
<td>3</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>OPT016</td>
</tr>
<tr>
<td>Moderní teorie optimalizace (4)</td>
<td>5</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>MAT055</td>
</tr>
</tbody>
</table>

(c) studijní plán **Matematická ekonomie**

Zkušební okruhy:

1. Rozvrhování a modely konfliktních situací.
2. Základy mikroekonomie.
4. Základy obecné ekonomie.

Zkušební požadavky:

1. **Rozvrhování a modely konfliktních situací**

2. **Základy mikroekonomie**

3. **Základy makroekonomie**

4. **Základy obecné ekonomie**
 Základy ekonomie zhruba v rozsahu Samuelsonovy učebnice.

<table>
<thead>
<tr>
<th>Název (okruh)</th>
<th>dop. rok studia</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teorie her</td>
<td>5</td>
<td>2/0 Zk</td>
<td>—</td>
<td>OPT021</td>
</tr>
</tbody>
</table>
4.3. Datové inženýrství

Garantující pracoviště: katedra softwarového inženýrství
Odpovědný učitel: Prof. RNDr. Jaroslav Pokorný, CSc.

Zkušební okruhy:

1. Formální základy relační technologie.
2. Vyhodnocování a optimalizace dotazů.
3. Implementační techniky databázových systémů.

Zkušební požadavky:

1. **Formální základy relační technologie**

2. **Vyhodnocování a optimalizace dotazů**

3. **Implementační techniky databázových systémů**

<table>
<thead>
<tr>
<th>Název (okruh)</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Současné databázové modely (1,2)</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>DBI005</td>
</tr>
<tr>
<td>Datalog — logické programování a databáze (1)</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>DBI014</td>
</tr>
<tr>
<td>Syntéza a dokazování programů (1)</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>PRG011</td>
</tr>
</tbody>
</table>
4.4. Softwarové systémy

Garantující pracoviště: katedra softwarového inženýrství
Odpovědný učitel: Prof. RNDr. Jaroslav Pokorný, CSc.

a) studijní plán Počítačové systémy

Zkušební okruhy:

1. Operační systémy.
2. Překladače.

Zkušební požadavky:

1. Operační systémy

2. Překladače

<table>
<thead>
<tr>
<th>Název (okruh)</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operační systémy II (1)</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>SWI004</td>
</tr>
<tr>
<td>Programování v asembleru (&1)</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>PRG017</td>
</tr>
<tr>
<td>Konstrukce překladačů (2)</td>
<td>2/2 Z</td>
<td>2/0 Zk</td>
<td>SWI002</td>
</tr>
<tr>
<td>Sémantika programovacích jazyků (&2)</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>TIN044</td>
</tr>
</tbody>
</table>

b) studijní plán Počítačová grafika

198
Zkušební okruhy:

1. Geometrické modelování a výpočetní geometrie.
2. 2D grafika.
3. 3D grafika.
4. Analýza a zpracování obrazu.

Zkušební požadavky:

1. Geometrické modelování a výpočetní geometrie

2. 2D grafika

3. 3D grafika
 Metody reprezentace 3D scén a algoritmy práce s nimi. Zobrazovací algoritmy, výpočet viditelnosti, světelné modely, spojité stínování, výpočet vržených stínů. Realistická syntéza obrazu: rekursivní sledování paprsku, stochastické metody, textury, anti-aliasing, urychlovací techniky, radiační metoda výpočtu osvětlení, hierarchické radiační metody, obecná zobrazovací rovince, dualita, Monte Carlo metody v syntéze obrazu, hybridní (vícekrokové) zobrazovací algoritmy. Vizualizace objemových dat.

4. Analýza a zpracování obrazu

<table>
<thead>
<tr>
<th>Název (okruh)</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počítačová grafika I (2,3)</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>PGR003</td>
</tr>
<tr>
<td>Počítačová grafika II (2,3)</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>PGR004</td>
</tr>
<tr>
<td>Počítačová grafika III (3)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>PGR010</td>
</tr>
<tr>
<td>Pokročilá 2D počítačová grafika (1,2)</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>PGR007</td>
</tr>
<tr>
<td>Virtuální realita</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>PGR012</td>
</tr>
<tr>
<td>Speciální seminář z počítačové grafiky (3,8&2)</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>PGR005</td>
</tr>
<tr>
<td>Kombinatorická a výpočetní geometrie I (1)</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>DMI009</td>
</tr>
<tr>
<td>Geometrie pro informatiky (1)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>PGR014</td>
</tr>
<tr>
<td>Počítačová geometrie (1)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>PGR015</td>
</tr>
</tbody>
</table>
c) studijní plán **Softwarevé inženýrství**

Zkušební okruhy:

1. **Formální metody analýzy a návrhu**

2. **Strukturované a objektové metody analýzy a návrhu informačních systémů**
 - Vyjadřovací prostředky a metody (datové modelování, procesní modelování – funkční a dynamické) strukturované analýzy a návrhu informačních systémů. Konceptuální modelování, databázové modelování, implementace. E-R schématy a jejich transformace do relačního modelu. Integrální omezení a referenční integrita, funkční závislosti. Návrh relačních schémat v 3NF. Vyjadřovací prostředky a metody objektové analýzy a návrhu, včetně srovnání strukturovaného a objektového přístupu. Typické funkce nástrojů CASE podporujících strukturované a objektové metody, charakteristika produktů UpperCASE a LowerCASE. Kritéria formální správnosti modelů, metody verifikace a validace analýzy a návrhu. Principy objektového programování (zapouzdření, dědičnost a delegování, polymorfismus), návrh objektových knihoven.

3. **Technologické a manažerské aspekty informačních systémů**
 - Modely životního cyklu softwarevých systémů: přednosti a rizika jednotlivých modelů (vodopád, inkrementální model, spirálový model), charakteristika jednotlivých etap a informační vazby mezi etapami, úloha prototypů, údržba systému, řízení konfigurací. Standardy a systémová integrace: přednosti a nevýhody různých architektur informačních systémů (host/terminál, workstation/file server, klient/server, distribuované systémy, třívrstvá architektura). Úloha a příklady standardů (jazyky, operační systémy, komunikační protokoly – student by měl být schopen uvést příklady standardů z uvedených kategorií a vysvětlit jejich obsah), aplikacní balíky a jejich parametrizace (opět na základě příkladu z vlastního výběru). Plánování a řízení projektů: struktura rozkladu prací, organizační struktury, metody sestavování a údržby harmonogramů (PERT, Ganttovy diagramy), alokace zdrojů, použití metrik, řízení kvality, stupně zralosti softwarevých týmů a jejich charakteristika.
4.5. Distribuované systémy

Garantující pracoviště: katedra softwarového inženýrství
Odpovědný učitel: Prof. Ing. František Plášil, CSc.

Zkušební okruhy:

1. Architektura počítačů a sítí.
2. Distribuované systémy.
3. Objektově orientované systémy.
4. Architektura komponentových systémů.

Zkušební požadavky:

1. Architektura počítačů a sítí

2. Distribuované systémy

3. Objektově orientované systémy

Objekty a třídy, dědičnost a subtyping, subsumption a dynamický dispatch, kovariance, kontravariance a invariance, prototypy a klonování. Příklady OO jazyků (Small-
talk, Java, C++). Objekty v distribuovaném prostředí (objektový model, identita, typování), komunikační model (messages, RPC, streams, statická a dynamická volání, reflection), paralelismus. Architektura (klient-server, multitier), mobilní objekty, replikace, uváhledávání prostředk, trading. Scalability (load balancing, garbage collection), system evolution (updating, versioning), interoperabila v heterogenních prostředích. CORBA, organizace standardu, objektový a komponentový model, architektura, služby (messaging, security, transactions), přenosový protokol (GIOP, IIOP). Java RMI, objektový a komponentový model, architektura, přenosový protokol. Další systémy (DCE, DCOM).

4. Architektura komponentových systémů

<table>
<thead>
<tr>
<th>Název (okruh)</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počítačové sítě I (1)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>SWI090</td>
</tr>
<tr>
<td>Počítačové sítě II (1)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>SWI021</td>
</tr>
<tr>
<td>Rodina protokolů TCP/IP (1)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>SWI045</td>
</tr>
<tr>
<td>Lokální komunikační technologie (&1)</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>SWI064</td>
</tr>
<tr>
<td>Principy distribuovaných systémů (2)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>SWI035</td>
</tr>
<tr>
<td>Objektové orientované systémy (2,3,4)</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>SWI068</td>
</tr>
<tr>
<td>Výběrový seminář z operačních systémů a paralelismu I (3,4)</td>
<td>0/4 Z</td>
<td>—</td>
<td>SWI057</td>
</tr>
<tr>
<td>Výběrový seminář z operačních systémů a paralelismu II (3,4)</td>
<td>—</td>
<td>0/4 Z</td>
<td>SWI058</td>
</tr>
<tr>
<td>Java (&4)</td>
<td>—</td>
<td>0/2 Z</td>
<td>PRG013</td>
</tr>
<tr>
<td>Výběrový seminář Java (&4)</td>
<td>—</td>
<td>0/1 Z</td>
<td>PRG021</td>
</tr>
</tbody>
</table>

4.6. Počítačová a formální lingvistika

Garantující pracoviště: Ústav formální a aplikované lingvistiky
Odpovědný učitel: RNDr. Jan Hajič, Dr.

Zkušební okruhy:

1. Formální popis přirozeného jazyka.
2. Gramatiky a automaty v lingvistice.
3. Metody umělé inteligence v lingvistice.

Zkušební požadavky:

1. Formální popis přirozeného jazyka

Závislostí syntax, užití grafů, vlastností závislostních stromů. Syntax bezprostředních složek, frázová gramatika. Projektivita. Řešení obtížně popsatelných konstrukcí

2. Gramatiky a automaty v lingvistice

3. Metody umělé inteligence v lingvistice

4. Metody automatického zpracování přirozeného jazyka

<table>
<thead>
<tr>
<th>Název (okruh)</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvod do obecné lingvistiky (1)</td>
<td>2/0</td>
<td>0/1 Z, Zk</td>
<td>PFL005</td>
</tr>
<tr>
<td>Formální popis přirozeného jazyka (1,2)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>PFL006</td>
</tr>
<tr>
<td>Úvod do teoretické sémantiky (1,2)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>PFL026</td>
</tr>
<tr>
<td>Formální závislostní syntax (1,2)</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>TIN030</td>
</tr>
<tr>
<td>Úvod do počítačové lingvistiky (2,3)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>PFL012</td>
</tr>
<tr>
<td>Umělá inteligence (3)</td>
<td>2/0</td>
<td>2/0 Zk</td>
<td>AIL033</td>
</tr>
<tr>
<td>Seminář z umělé inteligence I (3)</td>
<td>0/2 Z</td>
<td>—</td>
<td>AIL004</td>
</tr>
<tr>
<td>Seminář z umělé inteligence II (3)</td>
<td>—</td>
<td>0/2 Z</td>
<td>AIL052</td>
</tr>
<tr>
<td>Lingvistické aspekty umělé inteligence (3)</td>
<td>—</td>
<td>2/0 Zk</td>
<td>PFL001</td>
</tr>
<tr>
<td>Počítačové zpracování přirozeného jazyka I (4)</td>
<td>2/0 Zk</td>
<td>—</td>
<td>PFL007</td>
</tr>
<tr>
<td>Vybrané problémy z lingvistiky (4)</td>
<td>0/2 Z</td>
<td>—</td>
<td>PFL048</td>
</tr>
<tr>
<td>Statistické metody zpracování přirozeného jazyka (4)</td>
<td>2/2 Z</td>
<td>2/2 Z, Zk</td>
<td>PFL043</td>
</tr>
<tr>
<td>Základy rozpoznávání mluvené řeči (4)</td>
<td>0/2 Z</td>
<td>—</td>
<td>PFL038</td>
</tr>
<tr>
<td>Automatické rozpoznávání mluvené řeči (4)</td>
<td>3/1 Z, Zk</td>
<td>—</td>
<td>PFL044</td>
</tr>
</tbody>
</table>

4.7. Učitelství informatiky pro střední školy v kombinaci s odbornou informatikou

Garantující pracoviště: kabinet software a výuky informatiky
Odpovědný učitel: RNDr. Rudolf Kryl
Informatika Bc.

Studijní plány oboru Učitelství informatiky pro střední školy v kombinaci s odbornou informatikou se skládají ze studijních plánů některého z oborů odborné informatiky (4.1 až 4.6) a předmětů povinných k získání učitelské aprobace uvedených v následující tabulce.

Doporučený průběh studia

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminář z programování a jeho didaktiky</td>
<td>—</td>
<td>0/2</td>
<td>KZ DIN003</td>
</tr>
<tr>
<td>Psychologie I</td>
<td>—</td>
<td>0/2</td>
<td>PED008</td>
</tr>
<tr>
<td>Pedagogická praxe z informatiky I</td>
<td>—</td>
<td>0/0</td>
<td>Z DIN006</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Didaktika informatiky</td>
<td>—</td>
<td>1/2</td>
<td>KZ DIN002</td>
</tr>
<tr>
<td>Psychologie II</td>
<td>2/0</td>
<td>Zk</td>
<td>PED009</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/0</td>
<td>0/2</td>
<td>Z, Zk PED012</td>
</tr>
<tr>
<td>Pedagogická praxe z informatiky II</td>
<td>—</td>
<td>0/0</td>
<td>Z DIN007</td>
</tr>
</tbody>
</table>

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedagogická praxe z informatiky III</td>
<td>0/0</td>
<td>Z</td>
<td>DIN008</td>
</tr>
</tbody>
</table>

Státní zkouška z tohoto oboru se řídí pravidly uvedenými v bodě 3.5. Ústní část státní závěrečné zkoušky obsahuje společné požadavky povinné pro všechny studenty magisterského studijního programu Informatika, požadavky užšího zaměření podle zvoleného studijního oboru (obory 4.1 až 4.6) a navíc ještě didaktická témata uvedená v požadavcích ke státní závěrečné zkoušce učitelského studia informatiky v odst. 2.3 Učitelské studium informatiky pro střední školy.

4.8. Učitelství informatiky v kombinaci s druhým aprobačním předmětem pro střední školy

Garantující pracoviště: kabinet software a výuky informatiky
Odpovědný učitel: RNDr. Rudolf Kryl

Studijní plány oboru Učitelství informatiky v kombinaci s druhým aprobačním předmětem pro střední školy se skládají ze studijních plánů informatiky, které jsou uvedeny v odst. 2.3. Učitelské studium informatiky pro střední školy, a ze studijních plánů druhého učitelského aprobačního oboru. Na tyto studenty se vztahují základní informace o studiu učitelství uvedené v oddíle Studium učitelství všeobecné vzdělávacích předmětů. Na MFF jsou vyučovány dvě standardní kombinace aprobačních předmětů s informatikou, a to matematika-informatika a fyzika-informatika. Studijní plány aprobačního předmětu matematika jsou uvedeny v odst. 2.1. Učitelské studium matematiky pro střední školy. Studenti učitelské kombinace matematika-informatika jsou formálně zařazeni do studijního programu matematika. Studijní plány aprobačního předmětu fyzika jsou uvedeny v odst. 2.2. Učitelské studium fyziky pro střední školy. Studenti
učitelské kombinace fyzika-informatika jsou formálně zařazeni do studijního programu fyzika.

B. Bakalářské studium

1. Základní informace

První stupeň studia (1. ročník) probíhá podle společného studijního plánu, jehož plnění je kontrolováno po každém semestru. Na II. stupni studia si studenti volí složení výuky (včetně povinných předmětů) tak, aby splnili bodové hranice pro zápis do dalšího roku studia a aby splnili podmínky pro přihlášení ke státní závěrečné zkoušce. Bakalářské studium trvá standardně 3 roky, maximálně 6 let.

Bakalářský studijní program Informatika má jediný studijní obor Aplikovaná informatika. Užší specializace studenti dosahují vhodnou volbou výběrových přednášek a seminářů.

2. První stupeň studia

S výjimkou předmětů Matematická analýza, Lineární algebrawa Aplikační software na PC je výuka totožná s výukou na magisterském studijním programu Informatika.

Povinná výuka v 1. ročníku

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza I</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>MAI046</td>
</tr>
<tr>
<td>Matematická analýza II</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>MAI047</td>
</tr>
<tr>
<td>Lineární algebra</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>MAI045</td>
</tr>
<tr>
<td>Diskrétní matematika</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>DMI002</td>
</tr>
<tr>
<td>Programování I 1</td>
<td>2/2 Z</td>
<td>3/2 Z, Zk</td>
<td>PRG004</td>
</tr>
<tr>
<td>Ročníkový projekt I</td>
<td>—</td>
<td>0/2 KZ</td>
<td>PRG018</td>
</tr>
<tr>
<td>Úvod do teoretické informatiky</td>
<td>—</td>
<td>2/0 Zk</td>
<td>TIN001</td>
</tr>
<tr>
<td>Úvod do UNIXu</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>SWI048</td>
</tr>
<tr>
<td>Principy počítačů I</td>
<td>—</td>
<td>2/0 Zk</td>
<td>SWI065</td>
</tr>
<tr>
<td>Aplikační software na PC</td>
<td>—</td>
<td>2/2 KZ</td>
<td>UOS003</td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>TVY001</td>
</tr>
<tr>
<td>Cizí jazyk</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td></td>
</tr>
</tbody>
</table>

1 Získání zápočtu za letní semestr není podmínkou připuštění ke zkoušce.
3. Druhý stupeň studia

Aplikovaná informatika

Garantující pracoviště: katedra softwarového inženýrství
Odpovědný učitel: RNDr. Filip Zavoral, Ph.D.

Studium bakalářského studijního programu Informatika je ukončeno státní závěrečnou zkouškou, která má dvě části: obhajobu projektu (závěrečné práce) a ústní zkoušku. Každá část je hodnocena známkou (ze kterých se pak stanoví celková známka státní závěrečné zkoušky); při neúspěchu opakuje posluchač nejvýše dvakrát ty části, ze kterých neuspěl. Posluchač se přihlašuje současně na všechny části státní závěrečné zkoušky, které dosud nesložil.

Garantem bakalářského studia je katedra softwarového inženýrství. Tato katedra zajišťuje zadávání a schvalování témat projektů a organizaci státní závěrečné zkoušky. Podrobné informace lze získat na nástěnkách katedry a u tajemníka katedry softwarového inženýrství. Téma závěrečného projektu bakalářského studia bývá obvykle odvoleno od Ročníkového projektu II (PRG019), není to však pravidlem a student si může zvolit téma odlišné. O téma bakalářského projektu se musí student posledního ročníku bakalářského studia přihlásit na KSI nejpozději ve stejném termínu, jaký harmonogram školního roku určuje pro zadání diplomových prací magisterského studia (tzn. kolem poloviny listopadu).

Podmínky pro přihlášení ke státní závěrečné zkoušce

– absolování 1. ročníku,
– absolování předmětů povinných pro přihlášení ke státní závěrečné zkoušce,
– složení zkoušky z cizího jazyka,
– získání celkem alespoň 114 bodů (do toho se započítává nejvýše 5 bodů z Praktik z aplikačního software (UAS001),
– podání individuálního projektu.

Požadavky ke státní závěrečné zkoušce

Ústní část státní závěrečné zkoušky je zkouškou ze zkušebního okruhu Základy informatiky ve stejné podobě, jako u souborné zkoušky magisterského studia (viz zkušební požadavky uvedené v odst. 3.1 magisterského studia Informatiky). Požadavky zkoušky pokrývá výuka 1. ročníku a povinná a doporučená výuka ke státní závěrečné zkoušce (viz níže).

Doporučený průběh studia

Předměty povinné pro přihlášení ke státní závěrečné zkoušce jsou v tabulce vyznačeny tučně.

2. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neprocedurální programování</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>PRG005</td>
</tr>
<tr>
<td>Programování v C/C++</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>PRG012</td>
</tr>
<tr>
<td>Základy operačních systémů a překladačů</td>
<td>—</td>
<td>2/0 Zk</td>
<td>SWI003</td>
</tr>
</tbody>
</table>

206
Informatika Bc.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum z informatiky</td>
<td>—</td>
<td>0/2 KZ</td>
<td>PRG022</td>
</tr>
<tr>
<td>Ročníkový projekt II</td>
<td>—</td>
<td>0/2 KZ</td>
<td>PRG019</td>
</tr>
<tr>
<td>Teorie automatů</td>
<td>2/2 Z</td>
<td>2/1 Z, Zk</td>
<td>UIN002</td>
</tr>
<tr>
<td>Počítačové sítě I</td>
<td>2/0 Zk</td>
<td>—</td>
<td>SWI000</td>
</tr>
<tr>
<td>Počítačové sítě II</td>
<td>—</td>
<td>2/0 Zk</td>
<td>SWI021</td>
</tr>
<tr>
<td>Organizace a zpracování dat I</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>DBI007</td>
</tr>
<tr>
<td>Úvod do teorie pravděpodobnosti</td>
<td>3/1 Z, Zk</td>
<td>—</td>
<td>MAI016</td>
</tr>
<tr>
<td>Metody matematické statistiky</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MAI010</td>
</tr>
<tr>
<td>Numerická matematika</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MAI042</td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>TVY001</td>
</tr>
<tr>
<td>3. rok studia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unix</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>SWI015</td>
</tr>
<tr>
<td>Metody návrhu efektivních algoritmů,</td>
<td>2/2 Z</td>
<td>2/1 Z, Zk</td>
<td>UIN009</td>
</tr>
<tr>
<td>složitost algoritmů</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logika</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UIN006</td>
</tr>
<tr>
<td>Databázové systémy</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>DBI002</td>
</tr>
<tr>
<td>Počítačová grafika I</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>PGR003</td>
</tr>
<tr>
<td>Lineární programování</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>OPT032</td>
</tr>
<tr>
<td>Zpracování textů</td>
<td>2/1 KZ</td>
<td>—</td>
<td>UOS004</td>
</tr>
</tbody>
</table>

Důležité upozornění

Naposlady vyučované předměty

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programování v C/C++</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>PRG012</td>
</tr>
<tr>
<td>Základy operačních systémů</td>
<td>—</td>
<td>2/0 Zk</td>
<td>SWI003</td>
</tr>
<tr>
<td>a překladacích</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teorie automatů</td>
<td>2/2 Z</td>
<td>2/1 Z, Zk</td>
<td>UIN002</td>
</tr>
<tr>
<td>Zpracování textů</td>
<td>2/1 KZ</td>
<td>—</td>
<td>UOS004</td>
</tr>
</tbody>
</table>
Studium učitelství

A. Studium učitelství pro střední školy

1. Základní informace

1.1. Průběh studia

Aprobační předměty (obory) studia učitelství pro střední školy na MFF:

<table>
<thead>
<tr>
<th>Matematika</th>
<th>Fyzika</th>
<th>Informatika</th>
<th>Deskriptivní geometrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Studenti učitelství plní požadavky studijních plánů dvou aprobačních předmětů. Pedagogiku, psychologii, cizí jazyk, tělesnou výchovu a další předměty, které jsou ob-saženy ve studijních plánech obou aprobačních předmětů si zapisují ovšem jen jednou. Standardní kombinace aprobačních předmětů jsou:

- matematika — fyzika,
- matematika — deskriptivní geometrie,
- matematika — informatika,
- fyzika — informatika.

A priori se však nevylučují ani jiné kombinace. V takovém případě může studijní plán každého aprobačního předmětu obsahovat zvláštní podmínky, které musí student splnit. Studenti jiných fakult, kteří studují na MFF jeden aprobační předmět, plní požadavky studijního plánu tohoto předmětu.

Studijní plán I. stupně studia (1. ročníku) každého aprobačního předmětu je pevně dán a jeho plnění je kontrolováno po každém semestru. Pro přehlednost bude v kapitole 2 povinná výuka v 1. ročníku uvedena pro oba aprobační předměty standardních kombinací současně.

Ve II. stupni studia si student volí složení výuky tak, aby průběžně plnil bodové hranice pro zápis do dalšího roku a aby splnil podmínky pro přihlášení k souborné zkoušce a státní závěrečné zkoušce z obou aprobačních předmětů a pro zadání diplomové práce z diplomního aprobačního předmětu. Studium trvá standardně 5 let, maximálně 10 let.

Studijní plány II. stupně učitelského studia pro střední školy obsahují pro každou aprobační tři skupiny předmětů:

- **Blok A** — předměty povinné pro přihlášení k souborné zkoušce
- **Blok B** — předměty povinné pro přihlášení ke státní závěrečné zkoušce
Blok C — doporučené (výběrové) předměty

Student může splnit studijní povinnosti náhradním způsobem, například absolvoval obdobném předmětu na neučitelském studiu. Pokud není u příslušného učitelského předmětu uvedena záměnnost, musí náhradní způsob splnění studijní povinnosti schválit odpovědný učitel příslušného aprobacního předmětu.

Informace o návaznosti jednotlivých předmětů nalezne student v „Seznamu předmětů.“ Doporučené průběhy studia uváděné dále jsou sestaveny tak, aby tyto návaznosti respektovaly.

1.2. Souborná zkouška

Z každého aprobacního předmětu se skládá povinně souborná zkouška, zpravidla po druhém, nejpozději však do konce čtvrtého roku studia. Za složení jedné souborné zkoušky získá student 4 body. Souborná zkouška se nedělí na části.

Podmínky pro přihlášení k souborné zkoušce

- absolování 1. ročníku příslušného aprobacního předmětu,
- absolování předmětů povinných pro přihlášení k souborné zkoušce (bloku A) z příslušného aprobacního předmětu.

1.3. Diplomová práce

Diplomovou práci student píše z jednoho z aprobacních předmětů. Na ten se pak odkazuje jako na diplomní. Kromě aprobacního předmětu fyzika (viz 2.2), jsou podmínky pro zadání diplomové práce následující:

- složení souborné zkoušky z diplomního aprobacního předmětu,
- složení zkoušky z cizího jazyka.

1.4. Státní závěrečná zkouška

Státní závěrečná zkouška na oboru učitelství pro střední školy se skládá ze tří částí, kterými jsou obhajoba diplomové práce, ústní zkouška z diplomního předmětu a jeho didaktiky, ústní zkouška z nediplomního předmětu a jeho didaktiky. Každá část je hodnocena známkou (ze kterých se pak stanoví celková známka státní závěrečné zkoušky); při neúspěchu opakuje posluchač nejvýše dvakrát ty části, ze kterých neuspěl. Posluchač se přihlašuje současně k obhajobě diplomové práce a ústní zkoušce z diplomního předmětu a jeho didaktiky.

Podmínky pro přihlášení ke státní závěrečné zkoušce z diplomního aprobacního předmětu

- absolování 1. ročníku diplomního aprobacního předmětu,
- složení souborné zkoušky z diplomního aprobacního předmětu,
- absolování předmětů povinných pro přihlášení ke státní závěrečné zkoušce (bloku B) z diplomního aprobacního předmětu,
- získání alespoň 140 bodů za celé studium podle povinného rozložení (viz níže), u předmětu informatika z toho alespoň 6 bodů z bloku C.1 (viz 2.3),
- podání diplomové práce.
Povinné rozložení minimálního počtu bodů, které musí student získat k ukončení studia

1. (diplomní) aprobační předmět 55
2. aprobační předmět 50
Pedagogika, psychologie 8
Souborné zkoušky z obou aprobačních předmětů 8
Volně volitelné předměty 19
1. ročník 44
Celkový počet bodů 184

Podmínky pro přihlášení ke státní závěrečné zkoušce z nediplomního aprobačního předmětu

– absolvování 1. ročníku nediplomního aprobačního předmětu,
– složení souborné zkoušky z nediplomního aprobačního předmětu,
– absolvování předmětů povinných pro přihlášení ke státní závěrečné zkoušce (bloku B) z nediplomního aprobačního předmětu,
– získání alespoň 50 bodů z nediplomního aprobačního předmětu (mimo body za soubornou zkoušku), u předmětu informatika z toho alespoň 6 bodů z bloku C.1 (viz 2.3).

2. Studijní plány jednotlivých aprobačních předmětů

2.1. Učitelské studium matematiky pro střední školy

Garantující pracoviště: katedra didaktiky matematiky
Odpovědný učitel: Prof. RNDr. Adolf Karger, DrSc.

Povinná výuka v 1. ročníku pro kombinaci s fyzikou

<table>
<thead>
<tr>
<th>Název výuka v 1. ročníku</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza Ia</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UMP001</td>
</tr>
<tr>
<td>Matematická analýza Ib</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>UMP002</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMP003</td>
</tr>
<tr>
<td>Lineární algebra II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMP004</td>
</tr>
<tr>
<td>Úvod do programování a práce s počítačem 1</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>PRF026</td>
</tr>
<tr>
<td>Základy algoritmizace a programování 1</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>PRF027</td>
</tr>
<tr>
<td>Fyzika I (1. část)</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UFY063</td>
</tr>
<tr>
<td>Fyzika I (2. část)</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>UFY025</td>
</tr>
<tr>
<td>Fyzika II (1.část)</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>UFY007</td>
</tr>
<tr>
<td>Úvod do fyzikálních měření</td>
<td>—</td>
<td>0/1 Z</td>
<td>UFY057</td>
</tr>
<tr>
<td>Cizí jazyk</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>TVY001</td>
</tr>
</tbody>
</table>

1Místo takto označených předmětů mohou studenti zapsat ekvivalentní předmět (PRM001).

Nepovinné volitelné předměty pro 1. ročník

<table>
<thead>
<tr>
<th>Název v experimentech</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzika v experimentech</td>
<td>1/0 Z</td>
<td>1/0 Z</td>
<td>UFY024</td>
</tr>
</tbody>
</table>
Studium učitelství

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematické metody ve fyzice</td>
<td>2/2 Z</td>
<td>2/2 Z</td>
<td>UFY027</td>
</tr>
<tr>
<td>Fyzika I prakticky</td>
<td>0/1 Z</td>
<td>—</td>
<td>UFY070</td>
</tr>
<tr>
<td>Elektrina a magnetizmus krok za krokem</td>
<td>—</td>
<td>0/2 Z</td>
<td>UFY075</td>
</tr>
<tr>
<td>Elektrina kolem nás</td>
<td>—</td>
<td>0/2 Z</td>
<td>UFY054</td>
</tr>
</tbody>
</table>

Povinná výuka v 1. ročníku pro kombinaci s informatikou

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza Ia</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UMP001</td>
</tr>
<tr>
<td>Matematická analýza Ib</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>UMP002</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMP003</td>
</tr>
<tr>
<td>Lineární algebra II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMP004</td>
</tr>
<tr>
<td>Proseminář z logiky</td>
<td>0/2 Z</td>
<td>—</td>
<td>AIL012</td>
</tr>
<tr>
<td>Diskrétlní matematika</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>DMI002</td>
</tr>
<tr>
<td>Programování I</td>
<td>2/2 Z</td>
<td>3/2 Z, Zk</td>
<td>PRG004</td>
</tr>
<tr>
<td>Ročníkový projekt I</td>
<td>—</td>
<td>0/2 KZ</td>
<td>PRG018</td>
</tr>
<tr>
<td>Úvod do teoretické informatiky</td>
<td>—</td>
<td>2/0 Zk</td>
<td>TIN001</td>
</tr>
<tr>
<td>Úvod do UNIXu</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>SWI048</td>
</tr>
<tr>
<td>Principy počítačů I</td>
<td>—</td>
<td>2/0 Zk</td>
<td>SWI065</td>
</tr>
<tr>
<td>Cizí jazyk</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>TVY001</td>
</tr>
</tbody>
</table>

1Získání zápočtu za letní semestr není podmínkou přípustění ke zkoušce.

Povinná výuka v 1. ročníku pro kombinaci s deskriptivní geometrií

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza Ia</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UMP001</td>
</tr>
<tr>
<td>Matematická analýza Ib</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>UMP002</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMP003</td>
</tr>
<tr>
<td>Lineární algebra II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMP004</td>
</tr>
<tr>
<td>Úvod do programování a práce s počítačem</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>PRF026</td>
</tr>
<tr>
<td>Základy algoritmizace a programování</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>PRF027</td>
</tr>
<tr>
<td>Deskriptivní geometrie Ia</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>DGE001</td>
</tr>
<tr>
<td>Deskriptivní geometrie Ib</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>DGE002</td>
</tr>
<tr>
<td>Projektivní geometrie I</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>DGE003</td>
</tr>
<tr>
<td>Eukleidovská geometrie</td>
<td>0/2 Z</td>
<td>—</td>
<td>DGE004</td>
</tr>
<tr>
<td>Cizí jazyk</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>TVY001</td>
</tr>
</tbody>
</table>

1Místo takto označených předmětů mohou studenti zapsat ekvivalentní předmět (PRM001).

Doporučený průběh studia učitelství matematiky

<table>
<thead>
<tr>
<th>2. rok studia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Název</td>
</tr>
<tr>
<td>Matematická analýza IIa</td>
</tr>
<tr>
<td>Matematická analýza IIb</td>
</tr>
<tr>
<td>Algebra</td>
</tr>
<tr>
<td>Kombinatorika</td>
</tr>
<tr>
<td>Název ZS LS Kód</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Základy zobrazovacích metod</td>
</tr>
<tr>
<td>Geometrie I</td>
</tr>
</tbody>
</table>

3. rok studia

<table>
<thead>
<tr>
<th>Název ZS LS Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometrie II</td>
</tr>
<tr>
<td>Matematická analýza III</td>
</tr>
<tr>
<td>Pravděpodobnost a statistika</td>
</tr>
<tr>
<td>Diferenciální geometrie I</td>
</tr>
<tr>
<td>Psychologie I</td>
</tr>
<tr>
<td>Pedagogická praxe z matematiky I</td>
</tr>
<tr>
<td>Souborná zkouška</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název ZS LS Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedagogika</td>
</tr>
<tr>
<td>Didaktika matematiky</td>
</tr>
<tr>
<td>Metody řešení matematických úloh</td>
</tr>
<tr>
<td>Dějiny matematiky I</td>
</tr>
<tr>
<td>Psychologie II</td>
</tr>
<tr>
<td>Logika a teorie množin</td>
</tr>
<tr>
<td>Pedagogická praxe z matematiky II</td>
</tr>
</tbody>
</table>

5. rok studia

<table>
<thead>
<tr>
<th>Název ZS LS Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometrie III</td>
</tr>
<tr>
<td>Pedagogická praxe z matematiky III</td>
</tr>
<tr>
<td>Státní závěrečná zkouška</td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení k souborné zkoušce

Viz 1.2.

Požadavky k souborné zkoušce

1. *Relace, zobrazení a jejich základní vlastnosti.*

2. *Vybudování a vlastnosti číselných oborů.*
 Přirozená čísla, matematická indukce. Přirozená čísla jako algebraická struktura, konstrukce oboru celých čísel, konstrukce tělesa racionálních čísel.

3. *Grupy a jejich homomorfismy.*
4. Okruh, obor integrity, tělesa a jejich základní vlastnosti.

Oboustranný ideál okruhu, faktorový okruh okruhu podle oboustranného ideálu. Homomorfsmy okruhů, věta o homomorfismu pro okruhy. Těleso, obor integrity a jejich příklady.

5. Vektorový prostor, báze, dimenze, lineární zobrazení. Vektorový porostor se skalárním součinem, orientace, vektorový součin.

Příklady vektorových prostorů, lineární závislost a nezávislost vektorů, báze v konečně generovanych vektorových prostoroch, dimenze konečně generovaného vektorového prostoru. Vlastnosti lineárních zobrazení. Skalární součin na reálném vektorovém prostoru, ortonormální báze, ortogonální doplňek podprostoru. Gramův-Schmidtův ortogonalizační proces; orientace, základní vlastnosti vektorového součinu.

6. Matice a jejich vlastnosti, užití k řešení soustav lineárních rovnic.

7. Determinanty a jejich vlastnosti, Cramerovo pravidlo.

Definice determinantu, Sarrusovo pravidlo, věta o rozvoji determinantu, charakterizace regulárních matic pomocí determinantů. Věta o násobení determinantů. Řešení soustav lineárních rovnic pomocí Cramerova pravidla.

8. Základní pojmy dělitelnosti v komutativním oboru integrity.

Relace dělitelnosti a asociovanosti v oboru integrity, Eukleidův algoritmus. Příklady eukleidovských oborů integrity a příklady na užití Eukleidova algoritmu. Ireducibilní prvek, prvočinitel.

10. Elementární funkce a jejich zavedení.

11. Primitivní funkce. Metoda per partes a metoda substituční.

12. Riemannův integrál, nevlastní integrály.

Dělení intervalu, horní a dolní součty, horní a dolní integrál, Riemannův integrál, geometrická interpretace. Riemannův integrál jako funkce horní meze. Existenční

13. Posloupnosti reálných čísel, limity.

Limity posloupností (vlastní a nevlastní), Bolzano-Cauchyova podmínka. Omezené (shora, zdola) posloupnosti, limita monotonní posloupnosti. Vybrané posloupnosti.

Částečný součet, součet řady, konvergenční a divergentní řady, Bolzano-Cauchyova podmínka, nutná podmínka konvergence. Řady s nezápornými členy; srovnávací, zobecněné srovnávací, odmocninové, podílové a integrální kritérium, limitní tvary kritérií. Řady se střídavými znaménky, Leibnizovo kritérium. Absolutně a neabsolutně konvergentní řady.

15. Diferenciální rovnice, elementární metody jejich řešení.

Věty o existenci a jednoznačnosti řešení úlohy \(y = f(x, y), \ y(x_0) = y_0 \). Metody řešení diferenciálních rovnic: rovnice se separovanými proměnnými, rovnice s homogenní pravou stranou, rovnice ve tvaru totálního diferenciálu, metoda integračního faktoru, lineární rovnice 1. řádu, variace konstant, rovnice s konstantními koeficienty, speciální tvary pravé strany, Eulerova rovnice.

16. Afinní a eukleidovský prostor.

17. Grupy geometrických zobrazení.

Blok A – Předměty povinné pro přihlášení k souborné zkoušce

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza IIa</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMP005</td>
</tr>
<tr>
<td>Matematická analýza IIb</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMP006</td>
</tr>
<tr>
<td>Algebra</td>
<td>2/0</td>
<td>2/2 Z, Zk</td>
<td>UMP007</td>
</tr>
<tr>
<td>Kombinatorika ^1</td>
<td>2/0 KZ</td>
<td>—</td>
<td>UMP008</td>
</tr>
<tr>
<td>Základy zobrazovacích metod ^2</td>
<td>0/2 Z</td>
<td>—</td>
<td>UMP009</td>
</tr>
<tr>
<td>Geometrie I</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMP010</td>
</tr>
<tr>
<td>Geometrie II</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMP011</td>
</tr>
</tbody>
</table>

^1Studentům kombinace M-I lze jako absolvování tohoto předmětu uznat složenou zkoušku z Diskrétní matematiky (DM002). Za uznaný předmět se neudělují body.

^2Studentům kombinace M-Dg lze jako absolvování tohoto předmětu uznat složenou zkoušku z Deskriptivní geometrie I (DGE001), (DGE002). Za uznaný předmět se neudělují body.

Podmínky pro zadání diplomové práce

Viz 1.3.

Podmínky pro přihlášení ke státní závěrečné zkoušce

Viz 1.4.
Požadavky ke státní závěrečné zkoušce

I. Odborná témata

1. Kardinální čísla, spočetné a nespočetné množiny.
 Vlastnosti injektivních zobrazení, bijektivní zobrazení, věta Schroederova-Bernsteinova. Mohutnost množiny, spočetné množiny, spočetnost množiny racionálních čísel, nespočetné množiny, nespočetnost množiny reálných čísel.

2. Podílové těleso oboru integrity, konstrukce tělesa racionálních čísel.
 Obor integrity, konstrukce podílového tělesa, konstrukce tělesa racionálních čísel.

3. Základní věta algebry, kořenové a rozkladové těleso polynomu.
 Formulace základní věty algebry (bez důkazu), její důsledky. Konstrukce kořenového nadtělesa pro irreducibilní polynom. Konstrukce tělesa komplexních čísel jako kořenového nadtělesa polynomu \(x^2 + 1\) nad \(\mathbb{R}\).

4. Kořenové vlastnosti polynomů, rozklad na kořenové činitele, souvislost násobnosti a derivace.
 Věta o dělení polynomů se zbytkem. Rozklady polynomů s reálnými a komplexními koeficienty. Derivace polynomů a její souvislost s násobností kořenů. Definice n-té odmocniny z jedné. Ilustrace těchto pojmů v případě tělesa komplexních čísel.

5. Konstrukce tělesa reálných čísel.
 Konstrukce množiny reálných čísel pomocí desetinných rozvojů. Axiomatický popis tělesa reálných čísel.

 Okolí bodů v \(\mathbb{R}^n\), otevřené a uzavřené množiny, hranice, vnitřek a uzávěr množiny. Spojitá zobrazení z \(\mathbb{R}^n\) do \(\mathbb{R}^k\). Omezené množiny, kompaktní množiny, vlastnosti spojitých zobrazení na kompaktních množinách.

7. Diferenciální počet funkcí více proměnných.
 Derivace ve směru, parcíální derivace, totální diferenciál složeného zobrazení. Lokální extrémy. Věta o implicitních funkcích a její důsledky.

8. Lineární diferenciální rovnice.
 Lineární diferenciální rovnice n-tého řádu, homogenní a nehomogenní rovnice, fundamentální systém řešení, particulární řešení. Metoda variace konstant, Wronského determinant. Rovnice s konstantními koeficienty, charakteristický polynom, vicenásobné a komplexní kořeny charakteristického polynomu, speciální pravé strany.

9. Dvojný a trojný integrál.
 Riemannův vícezměrný integrál. Fubiniho věta, věta o substituci. Horní a dolní obvaz, měřitelné množiny. Užití dvojných a trojných integrálů v geometrii a ve fyzice, výpočet objemů a povrchů těles.

10. Křivkový integrál prvního a druhého druhu, Greenova věta.
 Křivkový integrál prvního a druhého druhu, délka křivky, potenciál vektorového pole. Greenova věta.

11. Funkce komplexní proměnné.
 Derivace a spojitost funkce komplexní proměnné. Cauchy-Riemannovy podmínky, holomorfní funkce. Elementární funkce komplexní proměnné, lineární lomená funkce, exponenciela, goniometrické funkce. Křivkový integrál, nezávislost křivkového integrálu
na cestě, primitivní funkce, Cauchyova věta. Cauchyův vzorec a jeho důsledky: rozvíjnutelnost holomorfní funkce v mocninou řadu, Liouvilleova věta, základní věta algebry.

12. Posloupnosti a řady funkcí.
Bodová a stejnoměrná konvergence posloupnosti funkcí. Spojitost limitní funkce.
Derivování a integrování člen po členu. Mocniné řady, poloměr konvergence, chování řady na konvergenční kružnici. Mocniné řady elementárních funkcí.

15. Plochy v E^3.

16. Vlastní čísla a vlastní vektory, matice lineárního zobrazení, Jordanův kanonický tvar.

17. Fourierovy řady.
Trigonometrické polynomy, reálný a komplexní tvar. Besselova nerovnost. Fourierova řada po částech hladké funkce, bodová a stejnoměrná konvergence.

II. Didaktická témata

1. Čísla a číselné obory

2. Funkce a posloupnosti

3. Rovnice, nerovnice a jejich soustavy

4. Planimetrie a stereometrie
5. **Analytická geometrie**

Vektor, operace s vektory, skalární a vektorový součin; rovnice přímky a roviny, vzájemné polohy přímek a rovin, odchyly, vzdálenosti; rovnice kružnice, elipsy, paraboly a hyperboly, tečny ke kuželosečkám, rovnice kvadrik v základním tvaru.

6. **Kombinatorika, pravděpodobnost, statistika**

Kombinace, variace, permutace (bez opakování, s opakováním) a jejich užití při řešení úloh, princip inkluze a exkluze; binomická věta. Náhodný jev a jeho pravděpodobnost, pravděpodobnost sjednocení náhodných jevů, nezávislé jevy a jejich pravděpodobnost. Základní pojmy deskriptivní statistiky (statistický soubor, absolutní a relativní četnost, aritmetický průměr, modus, medián, směrodatná odchylka, rozptyl).

7. **Metody středoškolské matematiky**

Vytváření představ a pojmů, klasifikace pojmů, definice; tvorba hypotéz (s užitím neúplné indukce a analogie), věty a jejích důkazy (důkaz přímý, nepřímý, sporem, matematickou indukci); axiomatická metoda ve středoškolské matematice. Příklady aplikací matematiky.

Blok B — Předměty povinné pro přihlášení ke státní závěrečné zkoušce

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza III</td>
<td>2/0</td>
<td>Zk</td>
<td>—</td>
</tr>
<tr>
<td>Pravděpodobnost a statistika</td>
<td>2/0</td>
<td>—</td>
<td>UMP012</td>
</tr>
<tr>
<td>Diferenciální geometrie I</td>
<td>2/2</td>
<td>Z, Zk</td>
<td>UMP013</td>
</tr>
<tr>
<td>Dějiny matematiky I</td>
<td>2/0</td>
<td>2/0 ZK</td>
<td>UMP014</td>
</tr>
<tr>
<td>Logika a teorie množin 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UMP015</td>
</tr>
<tr>
<td>Didaktika matematiky</td>
<td>2/0</td>
<td>0/2 Z, Zk</td>
<td>DIM001</td>
</tr>
<tr>
<td>Geometrie III</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UMP016</td>
</tr>
<tr>
<td>Metody řešení matematických úloh</td>
<td>0/2 Z</td>
<td>—</td>
<td>UMV017</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/0</td>
<td>0/2 Z, Zk</td>
<td>PED012</td>
</tr>
<tr>
<td>Psychologie I</td>
<td>—</td>
<td>0/2 Z</td>
<td>PED008</td>
</tr>
<tr>
<td>Psychologie II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>PED009</td>
</tr>
<tr>
<td>Pedagogická praxe z matematiky I</td>
<td>Z</td>
<td>—</td>
<td>DIM005</td>
</tr>
<tr>
<td>Pedagogická praxe z matematiky II</td>
<td>Z</td>
<td>—</td>
<td>DIM006</td>
</tr>
<tr>
<td>Pedagogická praxe z matematiky III</td>
<td>Z</td>
<td>—</td>
<td>DIM007</td>
</tr>
</tbody>
</table>

1Studentům kombinace M-I lze jako absolvování tohoto předmětu uznat složené zkoušky z předmětů Úvod do teorie množin (AIL003) a Logika (UIN006). Za uznané předměty se neudělují body.

Blok C — Doporučené (výběrové) předměty

V závorce je uveden nejnižší ročník, pro který je předmět vhodný.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dějiny matematiky II</td>
<td>2/0 ZK</td>
<td>—</td>
<td>UMV001</td>
</tr>
<tr>
<td>Úlohy matematické olympiády I (5. r.)</td>
<td>0/2 Z</td>
<td>—</td>
<td>UMV002</td>
</tr>
<tr>
<td>Úlohy matematické olympiády II</td>
<td>—</td>
<td>0/2 Z</td>
<td>UMV003</td>
</tr>
<tr>
<td>Kombinatorický seminář I (3. r.)</td>
<td>0/2 Z</td>
<td>—</td>
<td>UMV019</td>
</tr>
<tr>
<td>Kombinatorický seminář II</td>
<td>—</td>
<td>0/2 Z</td>
<td>UMV020</td>
</tr>
<tr>
<td>Deskriptivní geometrie pro nedeskriptiváře I 1</td>
<td>0/2 Z</td>
<td>—</td>
<td>UMV005</td>
</tr>
<tr>
<td>Deskriptivní geometrie pro nedeskriptiváře II</td>
<td>—</td>
<td>0/2 Z</td>
<td>UMV006</td>
</tr>
<tr>
<td>Homogenní prostory a klasická geometrie</td>
<td>—</td>
<td>2/0 Zk</td>
<td>GEM006</td>
</tr>
</tbody>
</table>
2.2. Učitelské studium fyziky pro střední školy

Garantující pracoviště: katedra didaktiky fyziky
Odpovědný učitel: Doc. RNDr. Ivana Stulíková, CSc.

Výuka v 1.ročníku pro kombinaci s matematikou

Tučně je označena povinná výuka.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza Ia</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UMP001</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMP003</td>
</tr>
<tr>
<td>Úvod do programování a práce</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>PRF026</td>
</tr>
<tr>
<td>s počítačem ¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fyzika I (1. část)</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UFY063</td>
</tr>
<tr>
<td>Fyzika I praktický</td>
<td>0/1 Z</td>
<td>—</td>
<td>UFY070</td>
</tr>
<tr>
<td>Fyzika v experimentech</td>
<td>1/0 Z</td>
<td>1/0 Z</td>
<td>UFY024</td>
</tr>
<tr>
<td>Matematické metody ve fyzice</td>
<td>2/2 Z</td>
<td>2/2 Z</td>
<td>UFY027</td>
</tr>
<tr>
<td>Cizí jazyk</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>Matematická analýza Ib</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>UMP002</td>
</tr>
<tr>
<td>Lineární algebra II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMP004</td>
</tr>
</tbody>
</table>

¹Seminář nezapisují studenti kombinace M-Dg.
Studium učitelství

<table>
<thead>
<tr>
<th>Název ZS LS Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Základy algoritmizace a programování</td>
</tr>
<tr>
<td>Fyzika I (2. část)</td>
</tr>
<tr>
<td>Fyzika II (1.část)</td>
</tr>
<tr>
<td>Úvod do fyzikálních měření</td>
</tr>
<tr>
<td>Elektřina a magnetizmus krok za krokem</td>
</tr>
<tr>
<td>Elektřina kolem nás</td>
</tr>
<tr>
<td>Tělesná výchova</td>
</tr>
</tbody>
</table>

1Místo takto označených předmětů mohou studenti zapsat ekvivaletní předmět PRM001.

Doporučený průběh studia učitelství fyziky pro kombinaci s matematikou

2. rok studia

Tučně s doplněním znaku (s) je označena výuka povinná k souborné zkoušce (Blok A). Výuka povinná ke státní závěrečné zkoušce (SZZ) je označena tučně bez doplňku (s) (Blok B).

<table>
<thead>
<tr>
<th>Název ZS LS Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzika II (2.část) (s)</td>
</tr>
<tr>
<td>Fyzikální praktikum I (s)</td>
</tr>
<tr>
<td>Teoretická mechanika</td>
</tr>
<tr>
<td>Teoretická mechanika</td>
</tr>
<tr>
<td>Praktikum didaktické techniky</td>
</tr>
<tr>
<td>Vlnění a akustika</td>
</tr>
<tr>
<td>Vybrané pokusy pro budoucí učitele fyziky I</td>
</tr>
<tr>
<td>Vybrané pokusy pro budoucí učitele fyziky II</td>
</tr>
<tr>
<td>Fyzika III (s)</td>
</tr>
<tr>
<td>Kvantová mechanika I</td>
</tr>
<tr>
<td>Fyzikální praktikum II</td>
</tr>
<tr>
<td>Souborná zkouška</td>
</tr>
</tbody>
</table>

3. rok studia

Výuka povinná ke státní závěrečné zkoušce (SZZ) je označena tučně (Blok B).

<table>
<thead>
<tr>
<th>Název ZS LS Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzikální praktikum III</td>
</tr>
<tr>
<td>Kvantová mechanika II 1</td>
</tr>
<tr>
<td>Kvantová mechanika</td>
</tr>
<tr>
<td>Termodynamika a statistická fyzika I</td>
</tr>
<tr>
<td>Fyzikální panorama I</td>
</tr>
<tr>
<td>Fyzikální panorama II</td>
</tr>
<tr>
<td>Kurs praktické elektroniky</td>
</tr>
<tr>
<td>Měřicí technika ve fyzice</td>
</tr>
<tr>
<td>Termodynamika a statistická fyzika II</td>
</tr>
<tr>
<td>Klasická elektrodynamika</td>
</tr>
<tr>
<td>Praktikum školních pokusů I</td>
</tr>
<tr>
<td>Pedagogická praxe z fyziky I</td>
</tr>
<tr>
<td>Psychologie I</td>
</tr>
</tbody>
</table>

220
U takto označených přednášek je zkouška z látky obou semestrů. U předmětů UFY031 a PED009 je tedy nutné nejprve absolvovat výuku v LS.

4. rok studia
Tučně je označena výuka povinná ke státní závěrečné zkoušce (SZZ) (Blok B).

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relativita</td>
<td>2/0 Zk</td>
<td></td>
<td>UFY062</td>
</tr>
<tr>
<td>Praktikum školních pokusů II</td>
<td>0/3 Z</td>
<td></td>
<td>DFY003</td>
</tr>
<tr>
<td>Psychologie II ¹</td>
<td>2/0 Zk</td>
<td></td>
<td>PED009</td>
</tr>
<tr>
<td>Pedagogický seminář I</td>
<td>0/2 Z</td>
<td></td>
<td>PED015</td>
</tr>
<tr>
<td>Elektronika</td>
<td>2/0 Zk</td>
<td></td>
<td>UFY010</td>
</tr>
<tr>
<td>Kurs bezpečnosti práce ²</td>
<td>- Z</td>
<td></td>
<td>SZZ008</td>
</tr>
<tr>
<td>Didaktika fyziky ¹</td>
<td>2/1 Z 0/2 Z, Zk</td>
<td></td>
<td>DFY001</td>
</tr>
<tr>
<td>Pedagogika ¹</td>
<td>2/0 Z</td>
<td>0/2 Z, Zk</td>
<td>PED012</td>
</tr>
<tr>
<td>Problémy fyzikálního vzdělávání</td>
<td>-</td>
<td>0/2 Z</td>
<td>DFY029</td>
</tr>
<tr>
<td>Heuristické metody ve výuce fyziky</td>
<td>0/2 0/2 Z</td>
<td></td>
<td>DFY041</td>
</tr>
<tr>
<td>Vývoj fyzikálních experimentů</td>
<td>0/2 Z</td>
<td></td>
<td>DFY042</td>
</tr>
<tr>
<td>Fyzikální obraz světa</td>
<td>2/0 Zk</td>
<td></td>
<td>UFY023</td>
</tr>
<tr>
<td>Obecná relativita</td>
<td>-</td>
<td>3/0 Zk</td>
<td>TMF111</td>
</tr>
<tr>
<td>Jaderná fyzika</td>
<td>-</td>
<td>2/0 Z</td>
<td>UFY018</td>
</tr>
<tr>
<td>Jaderná fyzika</td>
<td>-</td>
<td>0/2 Z</td>
<td>UFY045</td>
</tr>
<tr>
<td>Fyzika kondenzovaného stavu</td>
<td>-</td>
<td>2/0 Zk</td>
<td>UFY046</td>
</tr>
<tr>
<td>Praktikum školních pokusů III</td>
<td>-</td>
<td>0/3 Z</td>
<td>DFY004</td>
</tr>
<tr>
<td>Pedagogická praxe z fyziky II</td>
<td>Z</td>
<td></td>
<td>DFY032</td>
</tr>
<tr>
<td>Pedagogický seminář II</td>
<td>-</td>
<td>0/2 Z</td>
<td>PED016</td>
</tr>
</tbody>
</table>

¹ U takto označených přednášek je zkouška z látky obou semestrů. U předmětů UFY031 a PED009 je tedy nutné nejprve absolvovat výuku v LS.

² Nutnou podmínkou pro práci ve fyzikálních praktikách a laboratořích je školení z bezpečnosti práce konané v rámci UFY057. Jeho platnost je 2 roky. Po uplynutí této doby je nutnou podmínkou pro práci v laboratořích a kurzech speciálních fyzikálních praktik získání zápočtu z předmětu SZZ008. Platnost tohoto zápočtu je 3 roky. Kurs se koná na začátku 4.roku studia.

5. rok studia
Tučně je označena výuka povinná ke státní závěrečné zkoušce (SZZ) (Blok B).

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedagogická praxe z fyziky III</td>
<td>Z</td>
<td></td>
<td>DFY033</td>
</tr>
<tr>
<td>Praktikum školních pokusů IV</td>
<td>0/3 Z</td>
<td></td>
<td>DFY005</td>
</tr>
<tr>
<td>Didaktika fyziky</td>
<td>2/0 KZ</td>
<td></td>
<td>DFY025</td>
</tr>
<tr>
<td>Astronomie a astrofyzika</td>
<td>2/0 Zk</td>
<td></td>
<td>UFY020</td>
</tr>
<tr>
<td>Meteorologie a geofyzika</td>
<td>2/0 Zk</td>
<td></td>
<td>UFY053</td>
</tr>
<tr>
<td>Problémy fyzikálního vzdělávání (opak.)</td>
<td>-</td>
<td>0/2 Z</td>
<td>DFY029</td>
</tr>
<tr>
<td>Dějiny fyziky I</td>
<td>2/0 Zk</td>
<td></td>
<td>DFY036</td>
</tr>
<tr>
<td>Dějiny fyziky II</td>
<td>-</td>
<td>2/0 Zk</td>
<td>DFY037</td>
</tr>
<tr>
<td>Státní závěrečná zkouška</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Výuka v 1.ročníku pro kombinaci s informatikou
Tučně je označena povinná výuka.
<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza Ia</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UMP001</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMP003</td>
</tr>
<tr>
<td>Diskrétní matematika</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>DMI002</td>
</tr>
<tr>
<td>Fyzika I (1. část)</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UFY063</td>
</tr>
<tr>
<td>Fyzika I prakticky</td>
<td>0/1 Z</td>
<td>—</td>
<td>UFY070</td>
</tr>
<tr>
<td>Fyzika v experimentech</td>
<td>1/0 Z</td>
<td>1/0 Z</td>
<td>UFY024</td>
</tr>
<tr>
<td>Matematické metody ve fyzice</td>
<td>2/2 Z</td>
<td>2/2 Z</td>
<td>UFY027</td>
</tr>
<tr>
<td>Programování I 1</td>
<td>2/2 Z</td>
<td>3/2 Z, Zk</td>
<td>PRG004</td>
</tr>
<tr>
<td>Cizí jazyk</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>Úvod do fyzikálních měření</td>
<td>—</td>
<td>0/1 Z</td>
<td>UFY057</td>
</tr>
<tr>
<td>Matematická analýza Ib</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>UMP002</td>
</tr>
<tr>
<td>Lineární algebra II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMP004</td>
</tr>
<tr>
<td>Ročníkový projekt I</td>
<td>—</td>
<td>0/1 KZ</td>
<td>UIN011</td>
</tr>
<tr>
<td>Úvod do teoretické informatiky</td>
<td>—</td>
<td>2/0 Zk</td>
<td>TIN001</td>
</tr>
<tr>
<td>Principy počítačů I</td>
<td>—</td>
<td>2/0 Z</td>
<td>SWI065</td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>TVY001</td>
</tr>
</tbody>
</table>

1Získání zápočtu za letní semestr není podmínkou připuštění ke zkoušce

Doporučený průběh studia učitelství fyziky pro kombinaci s informatikou

2. rok studia

Tučně s doplněním znaku (s) je označena výuka povinná k souborné zkoušce (Blok A). Výuka povinná ke státní závěrečné zkoušce (SZZ) je označena tučně bez doplňku (s) (Blok B).

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematika II (s)</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UMP018</td>
</tr>
<tr>
<td>Teoretická mechanika</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UFY028</td>
</tr>
<tr>
<td>Teoretická mechanika</td>
<td>0/2 Z</td>
<td>—</td>
<td>UFY029</td>
</tr>
<tr>
<td>Praktikum didaktické techniky</td>
<td>0/2 Z</td>
<td>—</td>
<td>DFY009</td>
</tr>
<tr>
<td>Vybrané pokusy pro budoucí učitele fyziky I</td>
<td>0/1 Z</td>
<td>—</td>
<td>DFY021</td>
</tr>
<tr>
<td>Vybrané pokusy pro budoucí učitele fyziky II</td>
<td>—</td>
<td>0/1 Z</td>
<td>DFY028</td>
</tr>
<tr>
<td>Fyzika I (2. část) (s)</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>UFY025</td>
</tr>
<tr>
<td>Fyzikální praktikum I</td>
<td>0/3 KZ</td>
<td>—</td>
<td>UFY021</td>
</tr>
<tr>
<td>Fyzika II (1.část) (s)</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>UFY007</td>
</tr>
<tr>
<td>Elektrina a magnetizmus krok za krokem</td>
<td>—</td>
<td>0/2 Z</td>
<td>UFY075</td>
</tr>
<tr>
<td>Elektrina kolem nás</td>
<td>—</td>
<td>0/2 Z</td>
<td>UFY054</td>
</tr>
</tbody>
</table>

3. rok studia

Tučně s doplněním znaku (s) je označena výuka povinná k souborné zkoušce. (Blok A) Výuka povinná ke státní závěrečné zkoušce (SZZ) je označena tučně bez doplňku (s) (Blok B).

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzika II (2.část) (s)</td>
<td>3/2 Z, Zk</td>
<td>—</td>
<td>UFY008</td>
</tr>
<tr>
<td>Termodynamika a statistická fyzika I</td>
<td>2/1 Z</td>
<td>—</td>
<td>UFY047</td>
</tr>
<tr>
<td>Relativita</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UFY062</td>
</tr>
</tbody>
</table>
Fyzika pro střední školy

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzikální praktikum II</td>
<td>0/3 KZ</td>
<td>—</td>
<td>UFY066</td>
</tr>
<tr>
<td>Fyzika III (s)</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>UFY013</td>
</tr>
<tr>
<td>Fyzikální praktikum III</td>
<td>0/3 KZ</td>
<td>—</td>
<td>UFY009</td>
</tr>
<tr>
<td>Termodynamika a statistická fyzika II</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>UFY048</td>
</tr>
<tr>
<td>Kvantová mechanika I</td>
<td>—</td>
<td>3/1 Z</td>
<td>UFY030</td>
</tr>
<tr>
<td>Praktikum školních pokusů I</td>
<td>—</td>
<td>0/3 Z</td>
<td>DFY014</td>
</tr>
<tr>
<td>Psychologie I</td>
<td>—</td>
<td>0/2 Z</td>
<td>PED008</td>
</tr>
<tr>
<td>Obecná relativity</td>
<td>—</td>
<td>3/0 Zk</td>
<td>TMF111</td>
</tr>
<tr>
<td>Vlnění a akustika</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UFY077</td>
</tr>
<tr>
<td>Kurs praktické elektroniky</td>
<td>—</td>
<td>0/2 Z</td>
<td>UFY074</td>
</tr>
<tr>
<td>Měřicí technika ve fyzice</td>
<td>0/3 Z</td>
<td>—</td>
<td>UFY078</td>
</tr>
<tr>
<td>Pedagogická praxe z fyziky I</td>
<td>Z</td>
<td>—</td>
<td>DFY031</td>
</tr>
</tbody>
</table>

Souborná zkouška

4. rok studia

Tučně je označena výuka povinná ke státní závěrečné zkoušce (SZZ) (Blok B).

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvantová mechanika II ¹</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UFY031</td>
</tr>
<tr>
<td>Kvantová mechanika</td>
<td>0/2 Z</td>
<td>—</td>
<td>UFY050</td>
</tr>
<tr>
<td>Praktikum školních pokusů II</td>
<td>0/3 Z</td>
<td>—</td>
<td>DFY003</td>
</tr>
<tr>
<td>Psychologie II ¹</td>
<td>2/0 Zk</td>
<td>—</td>
<td>PED009</td>
</tr>
<tr>
<td>Pedagogický seminář I</td>
<td>0/2 Z</td>
<td>—</td>
<td>PED015</td>
</tr>
<tr>
<td>Elektronika</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UFY010</td>
</tr>
<tr>
<td>Kurz bezpečnosti práce ²</td>
<td>—</td>
<td>—</td>
<td>SZZ008</td>
</tr>
<tr>
<td>Didaktika fyziky ¹</td>
<td>2/1 Z</td>
<td>0/2 Z, Zk</td>
<td>DFY001</td>
</tr>
<tr>
<td>Pedagogika ¹</td>
<td>2/0 Zk</td>
<td>0/2 Z, Zk</td>
<td>PED012</td>
</tr>
<tr>
<td>Fyzikální obraz světa</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UFY023</td>
</tr>
<tr>
<td>Problémy fyzikálního vzdělávání</td>
<td>—</td>
<td>0/2 Z</td>
<td>DFY029</td>
</tr>
<tr>
<td>Klasická elektrodynamika</td>
<td>—</td>
<td>2/0 Zk</td>
<td>UFY049</td>
</tr>
<tr>
<td>Jaderná fyzika</td>
<td>—</td>
<td>2/0 Zk</td>
<td>UFY018</td>
</tr>
<tr>
<td>Jaderná fyzika</td>
<td>—</td>
<td>0/2 Z</td>
<td>UFY045</td>
</tr>
<tr>
<td>Fyzika kondenzovaného stavu</td>
<td>—</td>
<td>2/0 Zk</td>
<td>UFY046</td>
</tr>
<tr>
<td>Praktikum školních pokusů III</td>
<td>—</td>
<td>0/3 Z</td>
<td>DFY004</td>
</tr>
<tr>
<td>Pedagogický seminář II</td>
<td>—</td>
<td>0/2 Z</td>
<td>PED016</td>
</tr>
<tr>
<td>Pedagogická praxe z fyziky II</td>
<td>Z</td>
<td>—</td>
<td>DFY032</td>
</tr>
</tbody>
</table>

¹ U takto označených přednášíek je zkouška z látky obou semestrů. U předmětů UFY031 a PED009 je tedy nutné nejprve absolvovat výuku v LS.
² Nutnou podmínkou pro práci ve fyzikálních praktikách a laboratořích je školení z bezpečnosti práce konané v rámci UFY057. Jeho platnost je 2 roky. Po uplynutí této doby je nutnou podmínkou pro práci v laboratořích a kurzech speciálních fyzikálních praktik získání zápočtu z předmětu SZZ008. Platnost tohoto zápočtu je 3 roky. Kurs se koná na začátku 4.roku studia.

5. rok studia

Tučně je označena výuka povinná ke státní závěrečné zkoušce (SZZ) (Blok B).

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedagogická praxe z fyziky III</td>
<td>Z</td>
<td>—</td>
<td>DFY033</td>
</tr>
</tbody>
</table>
Podmínky pro přihlášení k souborné zkoušce

Viz 1.2.

Požadavky k souborné zkoušce

Student musí prokázat znalost základních veličin, jejich souvislosti, metod měření, fyzikálních zákonů a jejich důsledků a vztahu experimentálních a teoretických výsledků. Musí též prokázat schopnost aplikovat tyto znalosti na řešení příkladů minimálně na úrovni fyzikální olympiády a na vysvětlení jevů z běžného života i technické praxe.

1. Mechanika

2. Molekulová fyzika a termodynamika

3. Elektřina a magnetismus

4. Optika

Rovinná elektromagnetickávlána. Vlastnosti optického záření: spektrální složení, mohutnost, polarizace, coherence, šíření ve vakuu. Interference. Průchod izotropním,

5. Atomová fyzika

Podmínky pro zadání diplomové práce
- složení souborné zkoušky,
- absolvování Fyzikálního praktika II a III,
- složení zkoušky z cizího jazyka.

Podmínky pro přihlášení ke státní závěrečné zkoušce
Viz 1.4.

Požadavky ke státní závěrečné zkoušce

I. Odborná témata

Student musí prokázat znalost základních fyzikálních teorií a jejich souvislostí s nejdůležitějšími experimentálními poznatky a zákonitostmi v příslušných oblastech. Musí umět vysvětlit význam a úlohu základních fyzikálních veličin, zákonů a jejich důsledků, včetně experimentálního ověřování a aplikací. K tomu patří pochopení pojmů a zákonů pronikajících celou fyzikou (energie, hybnost, zákony zachování, rovnice kontinuity, potenciály, pohybové rovnice, oscilace, vlny, postuláty základních teorií), vztahů jednotlivých partií a mezí jejich platnosti a znalost jednotek veličin a hodnot základních fyzikálních konstant.

1. **Klasická mechanika**

2. **Elektrodynamika**

3. **Termodynamika a statistická fyzika**

4. **Kvantová fyzika**

Vývoj názorů na mikročástice i na podstatu světla. Základní postuláty kvantové mechaniky. Stavba a metody studia elektronového obalu atomu. Schrödingerova bezča-
sová rovnice a vlastnosti jejího řešení (ilustrace na jednoduchých jednorozměrných pří-

5. **Fyzika kondenzovaného stavu**

6. **Teorie relativity**

Pokusy vedoucí k STR. Základní postuláty. Lorentzova transformace, kinematické důsledky. Kauzalita a STR. Hybnost a energie v STR, relativistická pohybová rovnice. Vztah klasické mechaniky a STR. Vývoj názorů na prostor a čas.

7. **Jaderná a subjaderná fyzika**

Atomové jádro (složení, charakteristiky). Vazebná energie jádra, vazebné síly. Mo-
dely jader. Radioaktivita. Jaderné reakce (s využitím v energetice). Klasifikace elemen-
tárních částic, jejich vlastnosti a interakce.

II. Didaktická témata

Student musí prakticky prokázat schopnost samostatně vyložit zadané téma z níže uvedených okruhů zahrnující demonstrační pokus ze středoškolské fyziky. Musí umět vy-
vstřílat souvislost pokročilejších partií s příslušnými částmi látky probíranými na střední
škole a bez nepřípustného zkreslení objasnit danou problematici na úrovni přístupné
středoškolákům. Musí prokázat znalost zásad, cílů a obsahu fyzikálního vzdělávání
a schopnost navrhovat alternativní způsoby projekce fyzikálních poznatků do učiva
střední školy. Předmětem diskuse může být i struktura učiva fyziky na SŠ, fyzikální
veličiny, zákony a teorie v učivu SŠ, elementarizace, vyvozování pojmů, vyučovací me-
tody a prostředky ve fyzice na SŠ, formy práce středoškolského učitele fyziky (fyzikální
úlohy a pokusy, diagnostické metody, modely, technické vyučovací prostředky, učební
pomůcky, literární výukové prostředky). Student musí také prokázat při mikrovýstupu
znalost obsluhy a fyzikálního principu činností níže uvedených přístrojů.

Okruhy učiva

1. Rovnoměrně zrychlený přímočarý pohyb.
2. Rovnoměrný pohyb po kružnici.
3. Newtonovy zákony.
4. Skládání sil.
5. Mechanická práce a mechanická energie.
6. Archimédův zákon.
7. Proudění tekutin.
8. Mechanické kmity a vlny.
9. Tepelné děje s plynem.
10. Elektrostatické pole.
11. Vedení elektrického proudu v látkách.
12. Magnetické pole.
15. Elektrické stroje.
16. Elektrické kmity a vlny.
17. Odraz a lom světla.
18. Interference a ohyb světla.

Přístroje

Osciloskop, Rhumkorfův transformátor, indukční elektrika, Van de Graaffův generátor, elektroskop, měřič náboje, elektrostatický voltmeter, rozkladný transformátor s příslušenstvím, WSP 220, polydigit, pVT přístroj, RC generátor, vývěva, manometr, ampméter, voltmetr, wattmetr, ohmmetř, měřič magnetické indukce, kmitočtomér, rotační odporový měnič, univerzální zdroj Tesla, školní transformátor, reostat, potenciometr, vzdoušaná dráha, souprava pro pokusy s mikrovlnami, difuzní mělčná komora, souprava GAMABETA.

Blok C - Doporučené (výběrové) předměty

Kromě předmětů netučně psaných v doporučeném průběhu od 2. roku studia lze volit:

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedagogický seminář II</td>
<td></td>
<td>0/2 Z</td>
<td>PED016</td>
</tr>
<tr>
<td>Mechanika kontinua</td>
<td>2/0 Zk</td>
<td>—</td>
<td>OFY032</td>
</tr>
<tr>
<td>Výběrové praktikum z elektroniky a počítačové techniky</td>
<td></td>
<td>0/3 KZ</td>
<td>OFY004</td>
</tr>
<tr>
<td>Molekulární simulace</td>
<td></td>
<td>1/1 Zk</td>
<td>UFY068</td>
</tr>
<tr>
<td>Kurz praktické chemie</td>
<td>0/2 KZ</td>
<td>—</td>
<td>UFY069</td>
</tr>
</tbody>
</table>

1Student zapisuje tento předmět pouze v jednom semestru.

2.3. Učitelské studium informatiky pro střední školy

Garantující pracoviště: kabinet software a výuky informatiky

Odpovědný učitel: RNDr. Rudolf Kryl

Studenti učitelského studia informatiky v prvním ročníku navštěvují informatické předměty společně se studenty odborného studia informatiky, matematické resp. fyzikální předměty navštěvují společně se studenty učitelské kombinace MF.

Povinná výuka v 1. ročníku pro kombinaci s matematikou

Viz 2.1.

Povinná výuka v 1. ročníku pro kombinaci s fyzikou

Viz 2.2.
Doporučený průběh studia učitelství informatiky

U předmětů označených doporučujeme dodržet popsaný průběh, jinak si poslu-chač studium neúměrně zkomplikuje. Předměty povinné k souborné nebo ke státní závěrečné zkoušce jsou v tabulkách vyznačeny tučně.

2. rok studia pro kombinaci s matematikou

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neprocedurální programování †</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>PRG005</td>
</tr>
<tr>
<td>Seminář z programování a jeho didaktiky †</td>
<td>—</td>
<td>0/2 KZ</td>
<td>DIN003</td>
</tr>
<tr>
<td>Teorie automatů †</td>
<td>2/2 Z</td>
<td>2/1 Z, Zk</td>
<td>UIN002</td>
</tr>
<tr>
<td>Programování III †</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UIN003</td>
</tr>
<tr>
<td>Seminář ze systémového programování †</td>
<td>—</td>
<td>0/2 Z</td>
<td>UIN004</td>
</tr>
<tr>
<td>Praktikum z aplikačního software</td>
<td>1 bod</td>
<td></td>
<td>UAS001</td>
</tr>
<tr>
<td>Souborná zkouška — UI</td>
<td>—</td>
<td>0/4 Zk</td>
<td>SZZ014</td>
</tr>
</tbody>
</table>

2. rok studia pro kombinaci s fyzikou

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neprocedurální programování †</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>PRG005</td>
</tr>
<tr>
<td>Seminář z programování a jeho didaktiky †</td>
<td>—</td>
<td>0/2 KZ</td>
<td>DIN003</td>
</tr>
<tr>
<td>Teorie automatů †</td>
<td>2/2 Z</td>
<td>2/1 Z, Zk</td>
<td>UIN002</td>
</tr>
<tr>
<td>Programování III †</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UIN003</td>
</tr>
<tr>
<td>Úvod do UNIXu</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>SWI048</td>
</tr>
<tr>
<td>Seminář ze systémového programování †</td>
<td>—</td>
<td>0/2 Z</td>
<td>UIN004</td>
</tr>
<tr>
<td>Praktikum z aplikačního software</td>
<td>1 bod</td>
<td></td>
<td>UAS001</td>
</tr>
<tr>
<td>Souborná zkouška — UI</td>
<td>—</td>
<td>0/4 Zk</td>
<td>SZZ014</td>
</tr>
</tbody>
</table>

Důležité upozornění

Naposledy vyučované předměty

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminář z programování a jeho didaktiky</td>
<td>—</td>
<td>0/2 KZ</td>
<td>DIN003</td>
</tr>
<tr>
<td>Teorie automatů</td>
<td>2/2 Z</td>
<td>2/1 Z, Zk</td>
<td>UIN002</td>
</tr>
<tr>
<td>Programování III</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UIN003</td>
</tr>
<tr>
<td>Seminář ze systémového programování</td>
<td>—</td>
<td>0/2 Z</td>
<td>UIN004</td>
</tr>
</tbody>
</table>
Další průběh studia se může u jednotlivých studentů značně lišit. Uvádíme dva příklady.

Příklad 1

(s projektem ve 3. roce studia)

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operační systémy a systémový software 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UIN005</td>
</tr>
<tr>
<td>Logika 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UIN006</td>
</tr>
<tr>
<td>Vyčíslitelnost 1</td>
<td>—</td>
<td>2/0 Zk</td>
<td>UIN007</td>
</tr>
<tr>
<td>Didaktika informatiky 1</td>
<td>—</td>
<td>1/2 KZ</td>
<td>DIN002</td>
</tr>
<tr>
<td>Pedagogická praxe z informatiky I 1</td>
<td>—</td>
<td>0/0 Z</td>
<td>DIN006</td>
</tr>
<tr>
<td>Základní kurs numerické matematiky</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MAI042</td>
</tr>
<tr>
<td>Metodika programování a filozofie programovacích jazyků</td>
<td>—</td>
<td>2/0 Zk</td>
<td>PRG003</td>
</tr>
<tr>
<td>Zápočet k projektu</td>
<td>0/2 Z</td>
<td>—</td>
<td>UIN012</td>
</tr>
<tr>
<td>Projekt</td>
<td>—</td>
<td>0/2 Z</td>
<td>UIN008</td>
</tr>
<tr>
<td>Psychologie I</td>
<td>—</td>
<td>0/2 Z</td>
<td>PED008</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metody návrhu efektivních algoritmů, složitost algoritmů 1</td>
<td>2/2 Z</td>
<td>2/1 Z, Zk</td>
<td>UIN009</td>
</tr>
<tr>
<td>Pedagogická praxe z informatiky II 1</td>
<td>—</td>
<td>0/0 Z</td>
<td>DIN007</td>
</tr>
<tr>
<td>Počítačová grafika I</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>PGR003</td>
</tr>
<tr>
<td>Seminář z počítačových aplikací</td>
<td>—</td>
<td>0/2 Z</td>
<td>UOS008</td>
</tr>
<tr>
<td>Praktikum z aplikačního software</td>
<td>1 bod</td>
<td>—</td>
<td>UAS001</td>
</tr>
<tr>
<td>Psychologie II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>PED009</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/0</td>
<td>0/2 Z, Zk</td>
<td>PED012</td>
</tr>
<tr>
<td>Databázové systémy</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>UIN010</td>
</tr>
</tbody>
</table>

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speciální oborový seminář</td>
<td>0/3 Z</td>
<td>—</td>
<td>UIN001</td>
</tr>
<tr>
<td>Pedagogická praxe z informatiky III 1</td>
<td>0/0 Z</td>
<td>—</td>
<td>DIN008</td>
</tr>
<tr>
<td>Praktikum z aplikačního software</td>
<td>1 bod</td>
<td>—</td>
<td>UAS001</td>
</tr>
</tbody>
</table>

Příklad 2

(s projektem ve 4. roce studia)

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operační systémy a systémový software 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UIN005</td>
</tr>
<tr>
<td>Logika 1</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UIN006</td>
</tr>
<tr>
<td>Vyčíslitelnost 1</td>
<td>—</td>
<td>2/0 Zk</td>
<td>UIN007</td>
</tr>
</tbody>
</table>
Studium učitelství

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Didaktika informatiky †</td>
<td></td>
<td>1/2 KZ</td>
<td>DIN002</td>
</tr>
<tr>
<td>Pedagogická praxe z informatiky I †</td>
<td></td>
<td>0/0 Z</td>
<td>DIN006</td>
</tr>
<tr>
<td>Počítačová grafika I</td>
<td>2/1 Z, Zk</td>
<td></td>
<td>PGR003</td>
</tr>
<tr>
<td>Praktikum z aplikačního software</td>
<td>1 bod</td>
<td></td>
<td>UAS001</td>
</tr>
<tr>
<td>Psychologie I</td>
<td></td>
<td>0/2 Z</td>
<td>PED008</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metody návrhu efektivních algoritmů, složitost algoritmů †</td>
<td>2/2 Z</td>
<td>2/1 Z, Zk</td>
<td>UIN009</td>
</tr>
<tr>
<td>Pedagogická praxe z informatiky II †</td>
<td></td>
<td>0/0 Z</td>
<td>DIN007</td>
</tr>
<tr>
<td>Zápočet k projektu</td>
<td>0/2 Z</td>
<td></td>
<td>UIN012</td>
</tr>
<tr>
<td>Projekt</td>
<td></td>
<td>0/2 Z</td>
<td>UIN008</td>
</tr>
<tr>
<td>Umělá inteligence</td>
<td>2/0 Zk</td>
<td></td>
<td>AIL034</td>
</tr>
<tr>
<td>Seminář z počítačových aplikací</td>
<td>0/0 Z</td>
<td>0/2 Z</td>
<td>UOS008</td>
</tr>
<tr>
<td>Psychologie II</td>
<td>2/0 Zk</td>
<td></td>
<td>PED009</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/0 Zk</td>
<td></td>
<td>PED012</td>
</tr>
<tr>
<td>Databázové systémy</td>
<td>0/2 Zk</td>
<td>2/1 Z, Zk</td>
<td>UIN010</td>
</tr>
</tbody>
</table>

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speciální oborový seminář</td>
<td>0/3 Z</td>
<td></td>
<td>UIN001</td>
</tr>
<tr>
<td>Pedagogická praxe z informatiky III †</td>
<td>0/0 Z</td>
<td></td>
<td>DIN008</td>
</tr>
<tr>
<td>Praktikum z aplikačního software</td>
<td>1 bod</td>
<td></td>
<td>UAS001</td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení k souborné zkoušce

Viz 1.2.

Požadavky k souborné zkoušce

1. **Zobrazení dat v počítači**
 Zobrazení celých a reálných čísel v počítači, algoritmy základních početních operací. Reprezentace znaků a řetězců. Implementace datových struktur (pole, záznamy, záznamy s variantními částmi, množiny).

2. **Datové a řídicí struktury jazyka Pascal (programátorský a implementační pohled).**
 Prostředky pro modulární a objektové programování v Pascalu

3. **Složitost algoritmů**

4. **Základní programovací techniky a návrh datových struktur**
 Jednosměrné a obousměrné lineární seznamy, uspořádané seznamy, stromy, struktury s více spoji. Různé reprezentace abstraktních datových typů (množiny, fronty, prioritní fronty, ...).

230
Složitost vyhledávání, vkládání a vypouštění prvků, hledání minimálního a k-tého největšího, průchod všemi prvků. Reprezentace faktorové množiny. Hashování.

5. Algoritmy vnitřního a vnějšího třídění

6. Metodika programování

7. Principy počítačů

8. Teorie automatů a jazyků

9. Kombinatorika a teorie grafů

Blok A – Předměty povinné pro přihlášení k souborné zkoušce

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diskrétní matematika</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>DMI002</td>
</tr>
<tr>
<td>Programování I</td>
<td>2/2 Z</td>
<td>3/2 Z, Zk</td>
<td>PRG004</td>
</tr>
<tr>
<td>Ročníkový projekt I</td>
<td>—</td>
<td>0/2 KZ</td>
<td>PRG018</td>
</tr>
<tr>
<td>Úvod do teoretické informatiky</td>
<td>—</td>
<td>2/0 Zk</td>
<td>TIN001</td>
</tr>
<tr>
<td>Úvod do UNIXu</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>SWI048</td>
</tr>
<tr>
<td>Principy počítačů I</td>
<td>—</td>
<td>2/0 Zk</td>
<td>SWI065</td>
</tr>
<tr>
<td>Neprocedurální programování</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>PRG005</td>
</tr>
<tr>
<td>Seminář z programování a jeho didaktiky</td>
<td>—</td>
<td>0/2 KZ</td>
<td>DIN003</td>
</tr>
<tr>
<td>Teorie automatů</td>
<td>2/2 Z</td>
<td>2/1 Z, Zk</td>
<td>UIN002</td>
</tr>
<tr>
<td>Praktikum z aplikačního software</td>
<td>1 bod</td>
<td></td>
<td>UAS001</td>
</tr>
</tbody>
</table>

1Předmět (PRG018) je pro posluchače kombinace s fyzikou nahrazen předmětem (UIN011).
2V praktiku se studenti seznamují s aktuálním softwarovým produktem obvykle v úvodním kurzu doplněném o studium dokumentace a o samostatnou práci v laboratoři. Studenti si volí tato praktika kdykoliv během studia a za jeden zápočet získají 1 bod. Celkem musí do konce studia získat minimálně 3 body (jeden do souborné zkoušky!), maximálně mohou získat a započítat si 5 bodů. Uvedený kód se týká "blíže nespecifikovaného" praktika, studenti si zapisují jednotlivá praktika pod kódy, které mají přidělena v seznamu předmětů pro příslušný akademický rok.
Podmínky pro zadání diplomové práce

Viz 1.3.

Podmínky pro přihlášení ke státní závěrečné zkoušce

Viz 1.4.
Za předměty aprobačního předmětu informatiky se pro tento účel považují kromě předmětů explicitně uvedených v učebním plánu učitelského studia informatiky i všechny předměty studijních plánů odborného studia informatiky.

Požadavky ke státní závěrečné zkoušce

I. Odborná téma

1. Výčíslitelnost

2. Složitost algoritmů a problémů
 Časová a prostorová složitost, vztah determinismu a nedeterminismu, věty o hierarchii. Polynomíální převeditelnost, P- a NP- problémy, NP-úplnost, příklady NP-úplných problémů a jejich řešení (aproximativní a heuristické algoritmy).

3. Metody návrhu efektivních algoritmů, vybrané konkrétní algoritmy

4. Programovací jazyky a metodika programování

5. Informační systémy

6. Základní numerické algoritmy
 Řešení soustav lineárních rovnic — metody přímé a iterační, metody řešení nelineárních rovnic. Interpolace funkcí polynomy, jiné metody aproximace funkcí. Numerická integrace.
7. Počítačová geometrie a grafika
Základy diferenciální geometrie, Bézierovy křivky a plochy, Coonsovy křivky a plochy, B-spline aproximace. Algoritmy 2D grafiky: kreslení čar, vyplňování, půltónování a rozptylování barev. Barevné systémy, zobrazování barev na počítači. Transformace a projekce. 3D grafika: metody reprezentace 3D scén, zobrazovací algoritmy, výpočet viditelnosti.

8. Umělá inteligence

9. Operační systémy

10. Překladače
Základní výsledky teorie jazyků a automatů relevantní pro konstrukci překladače. Formální popisy syntaxe programovacích jazyků, Backusova normální forma, syntaktické diagramy. Formální popis bezkontextových jazyků a principy jejich analýzy metodou shora dolů a zdola nahoru, činnost LL(1) analyzátoru. Struktura kompilátoru a funkce jeho jednotlivých částí. Separátní kompilace modulů.

11. Výroková a predikátová logika

12. Předmět diplomové práce
Zkouší se porozumění oblasti, z níž student obhajobuje diplomovou práci. Týká se pouze studentů, kteří píší diplomovou práci z informatiky.

II. Didaktická témata
Metodicky zajímavý krátký výklad jednoho z předem známých témat. Hodnotí se především metodický přístup k výkladu a vystízení podstaty problematiky.

1. Jednoduchý třídící algoritmus.
2. Quicksort.
3. Heapsort.
4. Vnější třídění.
5. Recursivní podp. programy.
6. Typy předávání parametrů v Pascalu.
7. Reflexivní, symetrický a tranzitivní uzávěr.
8. Dynamicky a staticky alokované proměnné v Pascalu.
10. Vyhledávání v poli (např. binární, užití zarážky).
11. Průchod stromem do hloubky a do šířky (zásobník, fronta).
12. Vyhledávání, vkládání a vypouštění v binárním vyhledávacím stromu.

233
13. Problém stabilních manželství.
14. Prohledávání s návratem (backtracking).
15. Srovnání programovacích jazyků Pascal a C.
17. Seznamy v Prologu a jednoduché predikáty pro práci s nimi.
18. Algoritmus minimaxu.
19. Algoritmy vyčíslení hodnoty aritmetického výrazu.
20. Výpočet hodnoty polynomu Hornerovým schématem.
22. Dijkstraův algoritmus.
23. Algoritmus kontroly správného uzávorkování výrazu.
25. Statické a virtuální metody a jejich srovnání.

Blok B — Předměty povinné pro přihlášení ke státní závěrečné zkoušce

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programování III *</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>UIN003</td>
</tr>
<tr>
<td>Seminář ze systémového programování</td>
<td></td>
<td>0/2 Z</td>
<td>UIN004</td>
</tr>
<tr>
<td>Operační systémy a systémový software *</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UIN005</td>
</tr>
<tr>
<td>Logika</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UIN006</td>
</tr>
<tr>
<td>Vyčíslitelnost</td>
<td></td>
<td>2/0 Zk</td>
<td>UIN007</td>
</tr>
<tr>
<td>Metody návrhu efektivních algoritmů, složitost algoritmů</td>
<td>2/2 Z</td>
<td>2/1 Z, Zk</td>
<td>UIN009</td>
</tr>
<tr>
<td>Didaktika informatiky</td>
<td></td>
<td>1/2 Z</td>
<td>DIN002</td>
</tr>
<tr>
<td>Projekt 1</td>
<td></td>
<td>0/2 Z</td>
<td>UIN008</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/0</td>
<td>0/2 Z, Zk</td>
<td>PED012</td>
</tr>
<tr>
<td>Psychologie I</td>
<td></td>
<td>0/2 Z</td>
<td>PED008</td>
</tr>
<tr>
<td>Psychologie II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>PED009</td>
</tr>
<tr>
<td>Pedagogická praxe z informatiky I</td>
<td></td>
<td>0/0 Z</td>
<td>DIN006</td>
</tr>
<tr>
<td>Pedagogická praxe z informatiky II</td>
<td></td>
<td>0/0 Z</td>
<td>DIN007</td>
</tr>
<tr>
<td>Pedagogická praxe z informatiky III</td>
<td>0/0 Z</td>
<td>—</td>
<td>DIN008</td>
</tr>
<tr>
<td>Další dva zápočty z praktik z aplikačního software</td>
<td>2 body</td>
<td>—</td>
<td>UAS001</td>
</tr>
</tbody>
</table>

* Takto označené předměty nejsou vypisovány každý rok.

1 Podrobnější vysvětlení následuje.

Projekt

Jednou ze studijních povinností požadovaných pro přihlášení ke státní závěrečné zkoušce je účast v některém týmovém softwarovém projektu založeném jeho úspěšnou obhajobou. O zadávání témat, sledování průběžné práce na projektech i hodnocení závěrečných veřejných obhajob se stará Komise pro softwarové projekty tvořená zástupci jednotlivých informatických pracovišť. Za úspěšně obhájený učitelský projekt se přiděluje celkem 4 body, z nichž 2 body může komise udělit na žádost posluchačům obhájení poslušně předem po prvním semestru práce na projektu na základě doložených průběžných výsledků. Pro započítání zálohových 2 bodů si posluchač zapisí předmět UIN012 Zápočet k projektu, zbývající 2 body získá po úspěšné obhajobě projektu se zápočtem.
z předmětu UIN008 Projekt. Pokud posluchač o zálohové body nežádá, zapíše si oba výše uvedené předměty zároveň při obhajobě. Na návrh komise pro softwarové projekty může být po úspěšné obhajobě nejlepším řešitelům projektu celková dotace přidělených bodů ještě zvýšena, a to maximálně o 8 bodů. Pro započítání těchto dalších přidělených bodů si posluchač zapíše předmět UIN013 Mimořádné ohodnocení projektu.

Předměty UIN012 Zápočet k projektu, UIN008 Projekt a UIN013 Mimořádné ohodnocení projektu si lze zapsat kdykoliv podle potřeby, nikoli pouze v období zápisu vymezeném v harmonogramu akademického roku, jako je tomu u většiny ostatních předmětů.

Namísto učitelského projektu UIN008 mohou posluchači učitelského studia absolvovat náročnější a rozsáhlejší softwarový projekt PRG023 (za 12 bodů) společně s posluchači odborného studia informatiky.

Blok C — Doporučené (výběrové) předměty

C.1 Volitelný blok předmětů z informatiky

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metodika programování a filozofie programovacích jazyků *</td>
<td>—</td>
<td>2/0 Zk</td>
<td>PRG003</td>
</tr>
<tr>
<td>Databázové systémy *</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>UIN010</td>
</tr>
<tr>
<td>Počítačová grafika I</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>PGR003</td>
</tr>
<tr>
<td>Základní kurs numerické matematiky</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>MAI042</td>
</tr>
<tr>
<td>Umělá inteligence</td>
<td>2/0 Zk</td>
<td>—</td>
<td>AIL034</td>
</tr>
<tr>
<td>Seminář z počítačových aplikací *</td>
<td>—</td>
<td>0/2 Z</td>
<td>UOS008</td>
</tr>
</tbody>
</table>

* Takto označené předměty nejsou vypisovány každý rok.

C.2 Další doporučený předmět z informatiky

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speciální oborový seminář</td>
<td>0/3 Z</td>
<td>—</td>
<td>UIN001</td>
</tr>
</tbody>
</table>

2.4. Učitelské studium deskriptivní geometrie pro střední školy

Garantující pracoviště: katedra didaktiky matematiky

Odpovědný učitel: Prof. RNDr. Adolf Karger, DrSc.

Povinná výuka v 1. ročníku pro kombinaci s matematikou

Viz 2.1.

Doporučený průběh studia učitelství deskriptivní geometrie

2. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deskriptivní geometrie IIa</td>
<td>2/4 Z, Zk</td>
<td>—</td>
<td>DGE005</td>
</tr>
<tr>
<td>Deskriptivní geometrie IIb</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>DGE006</td>
</tr>
<tr>
<td>Neeuklidovská geometrie *</td>
<td>2/2 Z</td>
<td>2/2 Z, Zk</td>
<td>DGE007</td>
</tr>
</tbody>
</table>
3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektní geometrie II</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>DGE008</td>
</tr>
<tr>
<td>Počítačová geometrie *</td>
<td>2/2 Z</td>
<td>2/2 Z, Zk</td>
<td>DGE009</td>
</tr>
<tr>
<td>Grafický projekt *</td>
<td>0/4 Z</td>
<td>—</td>
<td>DGE010</td>
</tr>
<tr>
<td>Psychologie I</td>
<td></td>
<td>0/2 Z</td>
<td>PED008</td>
</tr>
<tr>
<td>Pedagogická praxe z deskriptivní geometrie I</td>
<td></td>
<td>Z</td>
<td>DGE016</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebraická geometrie</td>
<td>2/0 Zk</td>
<td>—</td>
<td>DGE011</td>
</tr>
<tr>
<td>Diferenciální geometrie II</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>DGE012</td>
</tr>
<tr>
<td>Didaktika deskriptivní geometrie *</td>
<td>2/0</td>
<td>0/2 Z, Zk</td>
<td>DGE013</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/0</td>
<td>0/2 Z, Zk</td>
<td>PED009</td>
</tr>
<tr>
<td>Psychologie II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>PED012</td>
</tr>
<tr>
<td>Deskriptivní geometrie III</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>DGE014</td>
</tr>
<tr>
<td>Pedagogická praxe z deskriptivní geometrie II</td>
<td>—</td>
<td>Z</td>
<td>DGE017</td>
</tr>
</tbody>
</table>

5. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedagogická praxe z deskriptivní geometrie III</td>
<td>Z</td>
<td>—</td>
<td>DGE018</td>
</tr>
</tbody>
</table>

Státní závěrečná zkouška

Podmínky pro přihlášení k souborné zkoušce

Viz 1.2.

Požadavky k souborné zkoušce

1. Planimetrie a stereometrie

 Shodnosti v rovině a jejich užití; mocnost bodu ke kružnici, chordála. Vzájemná poloha přímek a rovin v prostoru. Prostorové řešení úloh a vlastností základních geometrických ploch a těles.

2. Osová afinita, středová kolineace

 Středová kolineace mezi dvěma rovinami, v rovině, v prostoru; vlastnosti a užití v deskriptivní geometrii. Osová afinita jako speciální případ středové kolineace.

3. Základní vlastnosti rovnoběžného a středového promítání

 Porovnání, přehled užívaných druhů promítání.

4. Zavedení a užití těchto zobrazovacích metod

 Kótované promítání, Mongeovo promítání, kosoúhlé promítání, pravoúhlá axonometrie, kosoúhlá axonometrie, středové promítání.

5. Plochy druhého stupně

 Vlastnosti ploch 2. stupně. Rotační plochy 2. stupně a jejich obrazy v prostorové afinitě a kolineaci. Užití ploch 2. stupně v praxi.
6. Zobrazování ploch druhého stupně a jednoduchých těles
 Řezy rovinami, průniky a osvětlení.
7. Aplikace deskriptivní geometrie v praxi
 Lineární perspektiva, perspektivní relief, topografické plochy, jednoduché plochy
 stavební praxe.
8. Projektivní rozšíření roviny, projektivita, zejména involuce
9. Projektivní vytvoření kuželoseček, polární vlastnosti
10. Věta Pascalova a Brianchonova
11. Svazek kuželoseček
12. Ohniskové vlastnosti kuželoseček, konstrukce kuželoseček
13. Využití afinit a kolineace při konstrukci kuželoseček
14. Kruhová inverze, Möbiova rovina
15. Modely Lobačevského geometrie
16. Axiomatická výstavba geometrie

Bloková užívání pro přihlášení

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deskriptivní geometrie IIa</td>
<td>2/4 Z, Zk</td>
<td>—</td>
<td>DGE005</td>
</tr>
<tr>
<td>Deskriptivní geometrie IIb</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>DGE006</td>
</tr>
<tr>
<td>Neeuklidovská geometrie</td>
<td>2/2 Z</td>
<td>2/2 Z, Zk</td>
<td>DGE007</td>
</tr>
</tbody>
</table>

Podmínky pro zadání diplomové práce

Viz 1.3.

Podmínky pro přihlášení ke státní závěrečné zkoušce

Viz 1.4.

Požadavky ke státní závěrečné zkoušce

I. Odborná tématata

1. Porovnání jednotlivých promítacích metod
 Zavedení, konstrukční postupy, názornost, užití v praxi
2. Užití středové kolineace v deskriptivní geometrii
 Typy a specifikace středových kolineací v rovině a v prostoru. Užití kolineace při
 konstrukci průmětů těles, rovinných řezů, perspektivních obrazů a perspektivního reli-
 éfu. Užití kolineace k odvození některých ploch a jejich vlastností (obrazy kulové plochy,
 jednodílného hyperboloidu).
3. Přímkové plochy
 Určení přímkových ploch, plochy 2. stupně, ukázky ploch 3. a 4. stupně. Chaslesova
 věta a její užití. Konoidy.
4. Obecné vlastnosti rotačních ploch
 Zavádění, významné čáry na ploše. Konstrukce průmětů ploch. Tečné roviny a řezy
 vybraných ploch (amuloid, plochy 2. stupně atp.) rovinami.
5. Základy kinematické geometrie v rovině
 Základní pojmy, určení pohybu v rovině. Významné typy pohybů (eliptický, kar-
 dioidický, cykloidální, evolventní).
6. Šroubovice, šroubový pohyb, šroubové plochy
Vlastnosti šroubovice. Třídění šroubových ploch a jejich užití v praxi.

7. Užití deskriptivní geometrie v praxi
Geometrický podklad diagnostických přístrojů (rentgen, tomograf) a kartografických metod. Užití ploch ve strojí cnictví a stavebnictví. Technické kreslení.

8. Parametrické vyjádření křivky
Oblouk jako parametr, Frenetovy vzorce. Výpočet křivosti a torze při obecném parametru. Oskulační kružnice.

9. Parametrické vyjádření plochy
První a druhá základní forma plochy.

10. Křivka na ploše
Hlavní směry a hlavní křivky. Gaussova křivost plochy.

11. Asymptotické a geodetické křivky na ploše

12. Geometrické základy kartografie

II. Didaktická témata

1. Rozvíjení prostorové představivosti
Modely, prostorová řešení úloh, rysy, obrazy, náčrty.

2. Metody výuky rýsování a technického kreslení
Přehled o učivu na ZŠ, gymnáziích a průmyslových školách. Metodické zpracování tematických celků.

3. Mezipředmětové vztahy a jejich využití

Blok B — Předměty povinné pro přihlášení ke státní závěrečné zkoušce

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počítačová geometrie</td>
<td>2/2</td>
<td>Z</td>
<td>2/2 Z, Zk</td>
</tr>
<tr>
<td>Didaktika deskriptivní geometrie</td>
<td>2/0</td>
<td>Z</td>
<td>2/0 Z, Zk</td>
</tr>
<tr>
<td>Diferenciální geometrie II</td>
<td>2/2</td>
<td>Z, Zk</td>
<td></td>
</tr>
<tr>
<td>Projektivní geometrie II</td>
<td>—</td>
<td>2/2 Z</td>
<td>DGE008</td>
</tr>
<tr>
<td>Algebraická geometrie</td>
<td>2/0</td>
<td>Zk</td>
<td></td>
</tr>
<tr>
<td>Grafický projekt</td>
<td>0/4</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/0</td>
<td>Z</td>
<td>0/2 Z, Zk</td>
</tr>
<tr>
<td>Psychologie I</td>
<td>—</td>
<td>Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>Psychologie II</td>
<td>2/0</td>
<td>Zk</td>
<td></td>
</tr>
<tr>
<td>Deskriptivní geometrie III</td>
<td>—</td>
<td>2/2 Z</td>
<td>DGE014</td>
</tr>
<tr>
<td>Pedagogická praxe z deskriptivní geometrie I</td>
<td>Z</td>
<td>DGE016</td>
<td></td>
</tr>
<tr>
<td>Pedagogická praxe z deskriptivní geometrie II</td>
<td>Z</td>
<td>DGE017</td>
<td></td>
</tr>
<tr>
<td>Pedagogická praxe z deskriptivní geometrie III</td>
<td>Z</td>
<td>DGE018</td>
<td></td>
</tr>
</tbody>
</table>

Blok C — Doporučené (výběrové) předměty
Jsou stejné jako u učitelského studia matematiky pro střední školy (viz 2.1).
B. Studium učitelství pro základní školy

1. Základní informace

1.1. Průběh studia

Na MFF lze v učitelském studiu pro 2. stupeň základních škol studovat kombinaci aprobačních předmětů matematika-fyzika. Studenti plní požadavky studijních plánů obouaprobačních předmětů. Pedagogiku, psychologii, cizí jazyk a tělesnou výchovu zapisují ovšem jen jednou, i když jsou tyto předměty obsaženy ve studijních plánech obou aprobačních předmětů.

Studijní plán I. stupně studia (1. ročníku) obou aprobačních předmětů je pevně daný a jeho plnění je kontrolováno po každém semestru. Pro přehlednost bude v kapitole 2 povinná výuka v prvním ročníku uvedena pro oba aprobační předměty současně. Na II. stupni studia si student volí výuku tak, aby průběžně plnil bodové hranice pro zápis do dalšího ročníku a aby splnil podmínky pro přihlášení ke státní závěrečné zkoušce z obou aprobačních předmětů a podmínky pro zadání diplomové práce z diplomníhoaprobačního předmětu. Studium trvá standardně 5 let, maximálně 10 let. Studenti však mají typicky možnost studium absolvovat již během 4 let.

Studijní plány II. stupně učitelského studia pro základní školy obsahují pro každou aprobační tři skupiny předmětů:

Blok A — předměty povinné pro přihlášení k 1. části státní závěrečné zkoušky

Blok B — předměty povinné pro přihlášení ke 2. části státní závěrečné zkoušky

Blok C — doporučené (výběrové) předměty

Informace o návaznosti jednotlivých předmětů nalezne student v „Seznamu předmětů“ Doporučené průběhy studia uváděné dále jsou sestaveny tak, aby tyto návaznosti respektovaly.

1.2. První část státní závěrečné zkoušky

Z každéhoaprobačního předmětu se skládá povinně 1. část státní závěrečné zkoušky, a to z matematiky zpravidla po druhém, z fyziky po třetím roce studia. Za složení jedné 1. části státní závěrečné zkoušky získá student 4 body.

Podmínky pro přihlášení k 1. části státní závěrečné zkoušky

– absolvování 1. ročníku danéhoaprobačního předmětu,
– absolvování předmětů povinných pro přihlášení k 1. části státní závěrečné zkoušky (bloku A) danéhoaprobačního předmětu.

1.3. Diplomová práce

Diplomovou práci student píše z jednoho zaprobačních předmětů. Na ten se pak odkazuje jako na diplomní.

Podmínky pro zadání diplomové práce

– složení 1. části státní závěrečné zkoušky z diplomníhoaprobačního předmětu,
– složení zkoušky z cizího jazyka.

239
1.4. Druhá část státní závěrečné zkoušky

Podmínky pro přihlášení ke 2. části státní závěrečné zkoušky z diplomního aprobačního předmětu

– absolvování 1. ročníku diplomního aprobačního předmětu,
– složení 1. části státní závěrečné zkoušky z diplomního aprobačního předmětu,
– absolvování předmětů povinných pro přihlášení ke 2. části státní závěrečné zkoušky (bloku B) z diplomního aprobačního předmětu,
– získání minimálně 105 bodů podle povinného rozložení (viz níže),
– podání diplomové práce.

Povinné rozložení minimálního počtu bodů, které musí student získat k ukončení studia

1. (diplomní) aprobační předmět 45
2. aprobační předmět 40
Pedagogika, psychologie 12
1. části státní závěrečné zkoušky z obou aprobcích 8
1. ročník 44
Celkový počet bodů 149

Podmínky pro přihlášení ke 2. části státní závěrečné zkoušky z nediplomního aprobačního předmětu

– absolvování 1. ročníku nediplomního aprobačního předmětu,
– složení 1. části státní závěrečné zkoušky z nediplomního aprobačního předmětu,
– absolvování předmětů povinných pro přihlášení ke 2. části státní závěrečné zkoušky (bloku B) z nediplomního aprobačního předmětu,
– získání minimálně 40 bodů z nediplomního aprobačního předmětu (mimo body za složení 1. části státní závěrečné zkoušky).

2. Studijní plány

2.1. Učitelské studium matematiky pro základní školy

Garantující pracoviště: katedra didaktiky matematiky
Odpovědný učitel: Prof. RNDr. Adolf Karger, DrSc.

Povinná výuka v 1. ročníku pro kombinaci s fyzikou

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza Ia</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UMP001</td>
</tr>
<tr>
<td>Matematická analýza Ib</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>UMP002</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMP003</td>
</tr>
<tr>
<td>Lineární algebra II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMP004</td>
</tr>
<tr>
<td>Fyzika I 1</td>
<td>5/3 Z, Zk</td>
<td>—</td>
<td>UFY011</td>
</tr>
<tr>
<td>Fyzika II 1</td>
<td>—</td>
<td>4/3 Z, Zk</td>
<td>UFY012</td>
</tr>
<tr>
<td>Výpočetní technika (uživatelský kurs)</td>
<td>0/3 Z</td>
<td>0/3 Z</td>
<td>PRF028</td>
</tr>
<tr>
<td>Praktikum didaktické techniky</td>
<td>0/2 Z</td>
<td>—</td>
<td>DFY009</td>
</tr>
</tbody>
</table>
1Integrovaná výuka — přednáška a cvičení se vzájemně prolínají

Nepovinné volitelné předměty pro 1. ročník

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematické metody ve fyzice</td>
<td>2/2 Z</td>
<td>2/2 Z</td>
<td>UFY051</td>
</tr>
<tr>
<td>Fyzika v experimentech</td>
<td>1/0 Z</td>
<td>1/0 Z</td>
<td>UFY024</td>
</tr>
</tbody>
</table>

Doporučený průběh studia učitelství matematiky

2. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza II</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>UMZ003</td>
</tr>
<tr>
<td>Algebra a teoretická aritmetika</td>
<td>2/0</td>
<td>2/2 Z, Zk</td>
<td>UMZ004</td>
</tr>
<tr>
<td>Úvod do geometrie</td>
<td>0/2 Z</td>
<td>0/2 KZ</td>
<td>UMZ005</td>
</tr>
<tr>
<td>Psychologie</td>
<td>0/2 Z</td>
<td>2/2 Z, Zk</td>
<td>PED010</td>
</tr>
<tr>
<td>Metody řešení matematických úloh I</td>
<td>0/2 Z</td>
<td>—</td>
<td>UMZ001</td>
</tr>
<tr>
<td>Metody řešení matematických úloh II</td>
<td>—</td>
<td>0/2 Z</td>
<td>UMZ002</td>
</tr>
</tbody>
</table>

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometrie I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMZ006</td>
</tr>
<tr>
<td>Geometrie II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMZ007</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/2 Z</td>
<td>0/2 Z, Zk</td>
<td>PED006</td>
</tr>
<tr>
<td>Kombinatorika, pravděpodobnost a statistika</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMZ008</td>
</tr>
<tr>
<td>Didaktika matematiky I</td>
<td>0/2 Z</td>
<td>2/2 Z</td>
<td>DIM002</td>
</tr>
<tr>
<td>Pedagogická praxe z matematiky I</td>
<td>Z</td>
<td></td>
<td>DIM008</td>
</tr>
</tbody>
</table>

4. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dějiny matematiky I</td>
<td>—</td>
<td>2/0 KZ</td>
<td>UMP015</td>
</tr>
<tr>
<td>Didaktika matematiky II</td>
<td>0/2 Z, Zk</td>
<td>—</td>
<td>DIM003</td>
</tr>
<tr>
<td>Pedagogická praxe z matematiky II</td>
<td>Z</td>
<td></td>
<td>DIM009</td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení k 1. části státní závěrečné zkoušky

Viz 1.2.

Požadavky k 1. části státní závěrečné zkoušky

1. **Relace, zobrazení a jejich základní vlastnosti.**

Studium učitelství

2. Vybudování a vlastnosti číselných oborů.
 Přirozená čísla, matematická indukce. Přirozená čísla jako algebraická struktura, konstrukce oboru celých čísel, konstrukce tělesa racionálních čísel.

3. Grupy a jejich homomorfismy.

4. Okruh, obor integrity, tělesa a jejich základní vlastnosti.
 Oboustranný ideál okruhu. Homomorfismy okruhů. Těleso, obor integrity a jejich příklady.

5. Vektorový prostor, báze, dimenze, lineární zobrazení. Vektorový porostor se skalárním součinem, orientace, vektorový součin.

6. Matice a jejich vlastnosti, užití k řešení soustav lineárních rovnic.

7. Determinanty a jejich vlastnosti, Cramerovo pravidlo.
 Definice determinantu, Sarrusovo pravidlo, věta o rozvoji determinantu, charakterizace regulárních matic pomocí determinantů. Věta o násobení determinantů. Řešení soustav lineárních rovnic pomocí Cramerova pravidla.

8. Základní pojmy dělitelnosti v komutativním oboru integrity.
 Relace dělitelnosti a asociovanosti v oboru integrity, Eukleidův algoritmus. Příklady eukleidovských oborů integrity a příklady na užití Eukleidova algoritmu. Irreduzibilní prvek, prvočinitel.

10. Elementární funkce a jejich zavedení.
11. Primitivní funkce. Metoda per partes a metoda substituční.

12. Riemannův integrál.

13. Posloupnosti reálných čísel, limity.
Limity posloupností (vlastní a nevlastní), Bolzano-Cauchyova podmínka. Omezené (shora, zdola) posloupnosti, limita monotonní posloupnosti. Vybrané posloupnosti.

Částečný součet, součet řady, konvergentní a divergentní řady, Bolzano-Cauchyova podmínka, nutná podmínka konvergence. Řady s nezápornými členy; srovnávací, zobecněné srovnávací, odmocninové, podílové a integrální kritérium, limitní tvary kritérií. Řady se střídavými známkami, Leibnizovo kritérium.

15. Diferenciální rovnice, elementární metody jejich řešení.
Věty o existenci a jednoznačnosti řešení úlohy \(y = f(x, y) \), \(y(x_0) = y_0 \). Metody řešení diferenciálních rovnic: rovnice se separovanými proměnnými, rovnice s homogenní pravou stranou, rovnice ve tvaru totálního diferenciálu, metoda integrálního faktoru, lineární rovnice 1. řádu, variace konstant, rovnice s konstantními koeficienty, speciální tvary pravé strany.

16. Planimetrie a stereometrie.
Konstrukční úlohy v rovině a způsoby jejich řešení. Prostorové úlohy.

17. Rovnoběžné promítání.
Vlastnosti rovnoběžného promítání. Základní zobrazovací metody.

18. Osová afinita.
Užití osové afinity k řešení konstrukčních úloh. Afinita mezi kružnicí a elipsou.

19. Axiomatika geometrie.
Axiomatická výstavba geometrie. Hlavní myšlenky axiomatického zavedení eukleidovské geometrie (přehledně, bez výčtu axiomů).

Blok A – Předměty povinné pro přihlášení k 1. části státní závěrečné zkoušky

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra a teoretická aritmetika</td>
<td>2/0</td>
<td>2/2 Z, Zk</td>
<td>UMZ004</td>
</tr>
<tr>
<td>Úvod do geometrie</td>
<td>0/2 Z</td>
<td>0/2 KZ</td>
<td>UMZ005</td>
</tr>
</tbody>
</table>

Podmínky pro zadání diplomové práce
Viz 1.3.

Podmínky pro přihlášení ke 2. části státní závěrečné zkoušky
Viz 1.4.
Požadavky ke 2. části státní závěrečné zkoušky

I. Odborná část

1. Kardinální čísla, spočetné a nespočetné množiny.
 Vlastnosti injektivních zobrazení, bijektivní zobrazení, věta Schroederova-Bernsteinova (bez důkazu). Mohutnost množiny, spočetné množiny, spočetnost množiny racionálních čísel, nespočetné množiny, nespočetnost množiny reálných čísel.

2. Konstrukce tělesa racionálních čísel.

3. Základní věta algebry, kořenové a rozkladové těleso polynomu.
 Formulace základní věty algebry (bez důkazu), její důsledky. Konstrukce tělesa komplexních čísel jako kořenového nadtělesa polynomu $x^2 + 1_{\mathbb{R}}$.

4. Kořenové vlastnosti polynomů, rozklad na kořenové činitele, souvislosti násobnosti a derivace.
 Věta o dělení polynomů se zbytkem. Rozklady polynomů s reálnými a komplexními koeficienty. Derivace polynomů a její souvislost s násobností kořenů. Definice n-té odmocniny z jedné.

5. Konstrukce tělesa reálných čísel.
 Konstrukce množiny reálných čísel pomocí desetinných rozvojů. Axiomatický popis tělesa reálných čísel.

6. Diferenciální počet funkcí více proměnných.

7. Výpočet obsahů a objemů jednoduchých ploch a těles.
 Užití Riemannova integrálu k výpočtu obsahů a objemů.

8. Afinní a eukleidovský prostor.

 Afinity, shodnosti, podobnosti v rovině a jejich analytické vyjádření, vlastnosti. Příklady v rovině, zejména osová afinity, shodnosti a stejnoúhlosti. Samodružné prvky, kruhová inverze.

II. Didaktická část

1. Čísla a číselné obory
 Čísla přirozená, celá, desetinná, zlomky a racionální čísla, reálná čísla (motivace, způsoby zavedení; absolutní hodnota, operace a jejich vlastnosti); délitelnost přirozených čísel, společný délitel a násobek; mocniny s přirozeným exponentem, druhá a třetí odmocnina.

2. Procenta, poměr, úměra
 Procenta a jejich užití při řešení úloh (speciálně jednoduché a složené úrokování), promile; poměr, postupný poměr, úměra, trojčlenka, užití při řešení slovních úloh.
3. **Rovnice, nerovnice a jejich soustavy**
Metody řešení lineárních rovnic, nerovnic a jejich soustav, kvadratických rovnic a jednoduchých goniometrických rovnic; vyjádření neznámé ze vzorce.

4. **Funkce**
Propedeutika a zavedení pojmů zobrazení a funkce; graf funkce, způsoby zadání funkce; přímá úměrnost, nepřímá úměrnost, lineární funkce, kvadratická funkce, goniometrické funkce.

5. **Planimetrie**
Základní geometrické útvary v rovině: úsečka, úhel, trojúhelník, čtyřúhelník, mnohoúhelník, kružnice a kruh (způsoby zavedení, klasifikace; velikosti, obvody, obsahy). Pythagorova věta (a věta k ní obrácená), Eukleidovy věty, Thaletova věta. Obvodový a středový úhel. Konstrukční úlohy; množiny všech bodů daných vlastností.

6. **Stereometrie**
Základní geometrické útvary v prostoru: krychle, kvádr, hranol, válec, jehlan, kužel, kulová plocha a koule (sitě, povrchy a objemy). Prostorové řešení stereometrických úloh.

7. **Geometrická zobrazení**
Shodná a podobná zobrazení v rovině: středová souměrnost, otočení, identita, posunutí; podobnost, stejnohelník (trojúhelníků, kruh). Zobrazení prostoru na rovinu (volné rovnoběžné promítání, pravoúhlé promítání, promítání na dvě průměry).

8. **Metody školské matematiky**
Vytváření představ a pojmů, klasifikace pojmů; tvorba hypotéz (neúplná indukce, analogie), definice a věty ve školské matematice, důkazy vět (důkaz přímý, nepřímý, sporem). Aplikace teoretických poznatků, matematizace reálných situací.

Blok B — Předměty povinné pro přihlášení ke 2. části státní závěrečné zkoušky

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza II</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>UMZ003</td>
</tr>
<tr>
<td>Metody řešení matematických úloh I</td>
<td>0/2 Z</td>
<td>—</td>
<td>UMZ001</td>
</tr>
<tr>
<td>Metody řešení matematických úloh II</td>
<td>—</td>
<td>0/2 Z</td>
<td>UMZ002</td>
</tr>
<tr>
<td>Didaktika matematiky I</td>
<td>0/2 Z</td>
<td>2/2 Z</td>
<td>DIM002</td>
</tr>
<tr>
<td>Didaktika matematiky II</td>
<td>0/2 Z, Zk</td>
<td>—</td>
<td>DIM003</td>
</tr>
<tr>
<td>Kombinatorika, pravděpodobnost a statistika</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMZ008</td>
</tr>
<tr>
<td>Geometrie I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMZ006</td>
</tr>
<tr>
<td>Geometrie II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMZ007</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/2 Z</td>
<td>0/2 Z, Zk</td>
<td>PED006</td>
</tr>
<tr>
<td>Psychologie</td>
<td>0/2 Z</td>
<td>2/2 Z, Zk</td>
<td>PED010</td>
</tr>
<tr>
<td>Dějiny matematiky I</td>
<td>—</td>
<td>2/0 KZ</td>
<td>UMP015</td>
</tr>
<tr>
<td>Pedagogická praxe z matematiky I</td>
<td>—</td>
<td>Z</td>
<td>DIM008</td>
</tr>
<tr>
<td>Pedagogická praxe z matematiky II</td>
<td>Z</td>
<td>—</td>
<td>DIM009</td>
</tr>
</tbody>
</table>

Blok C — Doporučené (výběrové) předměty

Doporučené předměty jsou stejné jako pro učitelské studium matematiky pro střední školy (viz 2.1). Doporučujieme absolvovat zejména přednášku Přibližné metody ve středoškolských úlohách (UMV038), která navazuje na Matematickou analýzu I a II.
2.2. Učitelské studium fyziky pro základní školy

Garantující pracoviště: katedra didaktiky fyziky
Odpovědný učitel: Doc. RNDr. Ivana Stulíková, CSc.

Výuka v 1.ročníku pro kombinaci s matematikou

Tučně je vyznačena povinná výuka.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza Ia</td>
<td>4/2 Z</td>
<td>Zk</td>
<td>UMP001</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>2/2 Z</td>
<td>Zk</td>
<td>UMP003</td>
</tr>
<tr>
<td>Fyzika I</td>
<td>5/3 Z</td>
<td>Zk</td>
<td>UFY011</td>
</tr>
<tr>
<td>Praktikum didaktické techniky</td>
<td>0/2 Z</td>
<td>—</td>
<td>DFY009</td>
</tr>
<tr>
<td>Propedeutika fyzikálních pokusů I</td>
<td>0/1 Z</td>
<td>—</td>
<td>UFY071</td>
</tr>
<tr>
<td>Výpočetní technika (uživatelský kurs)</td>
<td>0/3 Z</td>
<td>0/3 Z</td>
<td>PRF028</td>
</tr>
<tr>
<td>Matematické metody ve fyzice</td>
<td>2/2 Z</td>
<td>2/2 Z</td>
<td>UFY051</td>
</tr>
<tr>
<td>Fyzika v experimentech</td>
<td>1/0 Z</td>
<td>1/0 Z</td>
<td>UFY024</td>
</tr>
<tr>
<td>Cizí jazyk</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>Matematická analýza Ib</td>
<td>—</td>
<td>4/2 Z</td>
<td>Zk</td>
</tr>
<tr>
<td>Lineární algebra II</td>
<td>—</td>
<td>2/2 Z</td>
<td>Zk</td>
</tr>
<tr>
<td>Fyzika II</td>
<td>—</td>
<td>4/3 Z</td>
<td>Zk</td>
</tr>
<tr>
<td>Úvod do fyzikálních měření</td>
<td>—</td>
<td>0/1 Z</td>
<td></td>
</tr>
<tr>
<td>Propedeutika fyzikálních pokusů II</td>
<td>—</td>
<td>0/1 Z</td>
<td></td>
</tr>
<tr>
<td>Tělesná výchova</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>TVY001</td>
</tr>
</tbody>
</table>

1 Integrovaná výuka - přednáška a cvičení se vzájemně prolínají

2. rok studia

Tučně s doplněním znaku (s) je označena výuka povinná k 1. části státní závěrečné zkoušky (Blok A). Výuka povinná ke 2. části státní závěrečné zkoušky je označena tučně bez doplňku (s) (Blok B).

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzika III (s)</td>
<td>3/1 Z</td>
<td>—</td>
<td>UFY014</td>
</tr>
<tr>
<td>Seminář z Fyziky III</td>
<td>0/2 KZ</td>
<td>—</td>
<td>UFY038</td>
</tr>
<tr>
<td>Fyzikální praktikum I</td>
<td>0/3 KZ</td>
<td>—</td>
<td>UFY021</td>
</tr>
<tr>
<td>Vybrané pokusy pro budoucí učitele fyziky I</td>
<td>0/1 Z</td>
<td>—</td>
<td>DFY021</td>
</tr>
<tr>
<td>Psychologie</td>
<td>0/2 Z</td>
<td>2/2 Z</td>
<td>Zk</td>
</tr>
<tr>
<td>Vybrané pokusy pro budoucí učitele fyziky II</td>
<td>—</td>
<td>0/1 Z</td>
<td></td>
</tr>
<tr>
<td>Fyzika IV (s)</td>
<td>—</td>
<td>3/1 Z</td>
<td>Zk</td>
</tr>
<tr>
<td>Seminář z Fyziky IV</td>
<td>—</td>
<td>0/2 KZ</td>
<td></td>
</tr>
<tr>
<td>Fyzikální praktikum II (s)</td>
<td>—</td>
<td>0/2 KZ</td>
<td></td>
</tr>
</tbody>
</table>

1 Integrovaná výuka - přednáška a cvičení se vzájemně prolínají

3. rok studia

Tučně s doplněním znaku (s) je označena výuka povinná k 1. části státní závěrečné zkoušky (Blok A). Výuka povinná ke 2. části státní závěrečné zkoušky je označena tučně bez doplňku (s) (Blok B).
<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzika V (s)</td>
<td>3/1 Zk</td>
<td>—</td>
<td>UFY016</td>
</tr>
<tr>
<td>Seminář z Fyziky V</td>
<td>0/2 KZ</td>
<td>—</td>
<td>UFY040</td>
</tr>
<tr>
<td>Fyzikální praktikum III (s)</td>
<td>0/2 KZ</td>
<td>—</td>
<td>UFY043</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/2 Z</td>
<td>0/2 Z, Zk</td>
<td>PED006</td>
</tr>
<tr>
<td>Heuristické metody ve výuce fyziky</td>
<td>0/2</td>
<td>0/2 Z</td>
<td>DFY041</td>
</tr>
<tr>
<td>Vývoj fyzikálních experimentů</td>
<td>0/2</td>
<td>—</td>
<td>DFY042</td>
</tr>
<tr>
<td>Fyzikální panorama I</td>
<td>0/2</td>
<td>—</td>
<td>UFY095</td>
</tr>
<tr>
<td>Fyzikální panorama II</td>
<td>—</td>
<td>0/2 Z</td>
<td>UFY088</td>
</tr>
<tr>
<td>Problémy fyzikálního vzdělávání</td>
<td>—</td>
<td>0/2 Z</td>
<td>DFY029</td>
</tr>
<tr>
<td>Fyzika VI (s)</td>
<td>—</td>
<td>3/1 Zk</td>
<td>UFY017</td>
</tr>
<tr>
<td>Seminář z fyziky VI</td>
<td>—</td>
<td>0/2 KZ</td>
<td>UFY041</td>
</tr>
<tr>
<td>Vybrané partie z fyziky I</td>
<td>—</td>
<td>2/0 Zk</td>
<td>UFY036</td>
</tr>
<tr>
<td>Praktikum školních pokusů I</td>
<td>—</td>
<td>0/2 Z</td>
<td>DFY002</td>
</tr>
<tr>
<td>Didaktika fyziky I</td>
<td>—</td>
<td>2/2 Z</td>
<td>DFY010</td>
</tr>
<tr>
<td>Pedagogická praxe z fyziky I</td>
<td>—</td>
<td>Z</td>
<td>DFY034</td>
</tr>
</tbody>
</table>

1. část státní závěrečné zkoušky

1 Integrovaná výuka - předměta a cvičení se vzájemně prolínají.
2 Student si u takto označených předmětů zapisuje buď cyklus vypsaný pro učitelské studium fyziky nebo předměty, semináře či laboratorní práce s fyziky jiných oborů se stejnou nebo vyšší bodovou dotací.

4. rok studia

Předměty povinné pro přihlášení k 2. části státní závěrečné zkoušky jsou vyznačeny tučně (Blok B).

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedagogická praxe z fyziky II</td>
<td>Z</td>
<td>—</td>
<td>DFY035</td>
</tr>
<tr>
<td>Kurz bezpečnosti práce</td>
<td>—</td>
<td>—</td>
<td>SZZ008</td>
</tr>
<tr>
<td>Didaktika fyziky II</td>
<td>1/2 Z, Zk</td>
<td>—</td>
<td>DFY011</td>
</tr>
<tr>
<td>Praktikum školních pokusů II</td>
<td>0/2 Z</td>
<td>—</td>
<td>DFY012</td>
</tr>
<tr>
<td>Vybrané partie z fyziky II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UFY037</td>
</tr>
<tr>
<td>Astronomie a astrofyzika</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UFY020</td>
</tr>
<tr>
<td>Dějiny fyziky I</td>
<td>2/0 Zk</td>
<td>—</td>
<td>DFY036</td>
</tr>
<tr>
<td>Dějiny fyziky II</td>
<td>2/0 Zk</td>
<td>2/0 Zk</td>
<td>DFY037</td>
</tr>
<tr>
<td>Fyzikální obraz světa</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UFY023</td>
</tr>
<tr>
<td>Problémy fyzikálního vzdělávání</td>
<td>—</td>
<td>0/2 Z</td>
<td>DFY029</td>
</tr>
<tr>
<td>Praktikum školních pokusů III</td>
<td>—</td>
<td>0/2 Z</td>
<td>DFY013</td>
</tr>
<tr>
<td>Vybrané partie z fyziky III</td>
<td>—</td>
<td>0/1 Z</td>
<td>UFY055</td>
</tr>
</tbody>
</table>

1 Nutnou podmínkou pro práci ve fyzikálních praktikách a laboratořích je školení z bezpečnosti práce konané v rámci UFY057. Jeho platnost je 2 roky. Po uplynutí této doby je nutnou podmínkou pro práci v laboratořích a kurzech speciálních fyzikálních praktik získání zápočtu z předmětu SZZ008. Platnost tohoto zápočtu je 3 roky. Kurs se koná na začátku 4.roku studia.
2 Student si u takto označených předmětů zapisuje buď cyklus vypsaný pro učitelské studium fyziky nebo předměty, semináře či laboratorní práce s fyziky jiných oborů se stejnou nebo vyšší bodovou dotací.
Podmínky pro přihlášení k 1. části státní závěrečné zkoušky
Viz 1.2.

Požadavky k 1. části státní závěrečné zkoušky z fyziky
1. Kinematika hmotného bodu
 Popis pohybu (poloha, rychlost, zrychlení, dráha, trajektorie), tabulka, graf, analytické vyjádření průběhu veličin ve skalárním resp. vektorovém tvaru.
2. Newtonovy zákony dynamiky
3. Interakce a síly
 Základní fyzikální interakce. Síly technické praxe (tření, pružnosti apod.).
4. Práce, výkon a energie
5. Klasický popis fyzikálních dějů z hlediska různých vztazných soustav
 Inerciální a neinerciální soustavy. Rovnoměrně zrychlená translace, rovnoměrná rotace. Setrvačné síly.
6. Soustava hmotných bodů, tuhé těleso
7. Gravitační pole
8. Speciální teorie relativity
9. Molekulová stavba látek
10. Plyny
11. Záklnady rovnovážné termodynamiky
12. Kapaliny
 Brownův pohyb. Struktura kapalin. Transportní jevy v kapalinách. Molekulární
 jevy v kapalinách.

13. Pevné látky
 Vazby v pevných látkách. Struktura krystalů a metody jejího určování (difrakce rtg
 záření, difrakce neutronů, elektronový a tunelový mikroskop). Polymorfismus. Mřížky
 Bravaise, operace symetrie. Bodové a čarové poruchy krystalové mřížky, mechanické
 vlastnosti pevných látek.

14. Pružnost a pevnost pevných těles
 Druhy deformací a jejich popis. Hookův zákon. Deformace elastická a plastická.
 Deformační energie. Experimentální metody zkoumání mechanických vlastností mate-
 riálů.

15. Mechanika tekutin
 Hydrostatika. Archimedův zákon. Hydrodynamika ideální kapaliny, rovnice kon-
 tinuity, Bernoullího rovnice. Hydrostatické a hydrodynamické paradoxon. Hydrodyna-
 mika reálných kapalin, viskozita a její měření.

16. Mechanika plynů

17. Harmonický oscilátor
 Pohybová rovnice harmonického oscilátoru a její řešení. Thumené a vynucené
 kmity, rezonance. Skládání kmítní, princip superpozice. Harmonická analýza periodic-
 kého kmítu. Vázané oscilátor.

18. Mechanické vlnění
 Podstata vlnění, příčné a podélné vlnění, vlnění postupné a stojaté. Dopplerův jev.
 Vlny v pevných látkách. Povrchové vlny. Lom, odraz a interference vln.

19. Zvuk
 Šíření zvuku v plynech, kapalinách a pevných látkách. Měření rychlosti zvuku.
 Vnímání zvuku. Hudební nástroje. Hluk a jeho působení na člověka. Přenos, záznam
 a reprodukce zvuku.

20. Elektrostatika
 Elektrostatické pole a jeho charakteristiky. Coulombův zákon, Gaussův zákon.
 Energie elektrostatického pole. Kondenzátory. Elektřina v atmosféře. Vodiče a dielek-
 trika v elektrostatickém poli.

21. Magnetostatika
 Magnetické pole a jeho charakteristiky. Magnetická síla působící na částice s nábo-
 jem a vodiče s proudem, Hallův jev. Magnetické pole stacionárného proudu. Ampérův
 a Biot-Savartův zákon a jejich užití.

22. Elektrický proud
 Elektrický proud v kovových vodičích, kapalinách, plynech a polovodičích (p-n pře-
 chod, tranzistorový efekt). Ohmův zákon a Kirchhoffovy zákony a jejich užití. Supra-
 vodivost. Lineární pasivní prvky ve stejnosměrných a střídavých obvodech.

23. Elektromagnetická indukce
 Faradayův zákon elektromagnetické indukce, vlastní a vzájemná indukčnost. Sily
 působící na vodiče s indukovanými proudy. Transformátory. Generátory elektrického
 proudu a elektromotory.
24. **Měření elektrických veličin**
 Metody měření, principy a konstrukce přístrojů (náboj, elektrický proud, elektrické napětí, kapacita, odpor, indukčnost, výkon, energie).

25. **Elektrické kmity a vlny**
 Generování elektromagnetických kmitů a vln, principy radiového a televizního přenosu. Principy záznamu obrazu.

26. **Geometrická optika**

27. **Vlnová optika**

28. **Vidění**
 Stavba oka a jeho funkce. Prostorové a barevné vidění. Poruchy zraku a zrakové klamy.

29. **Základy kvantové mechaniky**

30. **Elektronový obal atomu**

31. **Atomové jádro**

32. **Subnukleární fyzika**
 Urychlovače a detektory. Základní skupiny částic a jejich vlastností, antičástice. Veličiny charakterizující částice.

Podmínky pro zadání diplomové práce
Viz 1.3.

Podmínky pro přihlášení ke 2. části státní závěrečné zkoušky
Viz 1.4.

Požadavky ke 2. části státní závěrečné zkoušky
Student musí bez nepřípustného zkreslení objasnit příslušné partie látky na úrovni přístupné žákům ZŠ. Navrhně postup výkladu zadaného tématu pro ZŠ a předvede praktický výstup včetně příslušných pokusů. Při této příležitosti prokáže znalost příslušných partií fyziky, přístrojů a pomůcek, principů jejich činností a didaktického využití ve výuce na ZŠ.
Na zadané fyzikální úloze student prokáže, že jí dokáže vzorově vyřešit a didakticky vhodně žákům postup řešení vysvětlit. V průběhu diskuse prokáže znalost zásad
vyučování fyzice na ZŠ a schopnost je prakticky aplikovat. Posluchač má rovněž prokázat, že zná úkoly, cíle a obsah výuky fyziky na ZŠ a že si osvojil organizaci vyučování fyzice, charakteristické metody a formu práce učitele fyziky, že ovládá metodiku pokusů a řešení fyzikálních úloh a umí pracovat s učebními pomůckami. Předmětem diskuse může být i struktura učiva fyziky na ZŠ, fyzikální veličiny, elementarizace fyzikálních zákonů a vyvozování pojmů.

Blok C - Doporučené (výběrové předměty)

Tento blok tvoří předměty netučně psané v doporučeném průběhu od 2. roku studia.

C. Rozšiřující a doplňující studium

Rozšiřující studium je určeno absolventům učitelského vysokoškolského studia s titulem Mgr. nebo s titulem ekvivalentním. Doplňující studium je určeno absolventům neučitelského vysokoškolského studia s titulem Mgr. nebo s titulem ekvivalentním.

Cílem rozšiřujícího, resp. doplňujícího studia je rozšíření, resp. doplnění kvalifikace o učitelskou aprobaci z jednoho nebo více předmětů buď pro druhý stupeň základních škol (z nabídky: matematika, fyzika), nebo pro střední školy (z nabídky: matematika, fyzika, informatika, deskriptivní geometrie). Rozšiřující i doplňující studium trvá obvykle 3 roky.

Požadavky souborné a státní závěrečné zkoušky rozšiřujícího i doplňujícího studia jsou stejné jako při studiu příslušného aprobačního předmětu (M, F, I, Dg) v prezenčním studiu učitelství. Podmínky pro přihlášení k souborné zkoušce jsou stejné jako v prezenčním studiu. Podmínky pro přihlášení ke státní závěrečné zkoušce jsou stejné jako u části státní závěrečné zkoušky z nediplomního předmětu v prezenčním studiu. Student volí složení výuky tak, aby splnil podmínky pro přihlášení k souborné zkoušce a ke státní závěrečné zkoušce.

Následné informace této kapitoly platí pro rozšiřující i doplňující studium. Proto zde není třeba již oba typy studia rozlišovat a v textu použijeme z důvodu stručnosti jedno společné zástupné označení „rozšiřující studium.“

1. Rozšiřující studium učitelství pro střední školy

1.1. Doporučený průběh rozšiřujícího studia učitelství matematiky pro střední školy

Garantující pracoviště: katedra didaktiky matematiky
Odpovědný učitel: Prof. RNDr. Adolf Karger, DrSc.

1. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza Ia</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UMP001</td>
</tr>
<tr>
<td>Matematická analýza Ib</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>UMP002</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMP003</td>
</tr>
</tbody>
</table>

251
Rozšiřující a doplňující studium učitelství

1. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineární algebra II</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>UMP004</td>
</tr>
<tr>
<td>Úvod do programování a práce s počítačem 1</td>
<td>2/2 Z, Zk</td>
<td>2/2 Z, Zk</td>
<td>PRF026</td>
</tr>
<tr>
<td>Základy algoritmizace a programování 1</td>
<td>2/2 Z, Zk</td>
<td>2/2 Z, Zk</td>
<td>PRF027</td>
</tr>
<tr>
<td>Kombinatorika</td>
<td>2/0 KZ</td>
<td></td>
<td>UMP008</td>
</tr>
<tr>
<td>Základy zobrazovacích metod</td>
<td>0/2 Z</td>
<td></td>
<td>UMP009</td>
</tr>
<tr>
<td>Geometrie I</td>
<td>2/2 Z, Zk</td>
<td>2/2 Z, Zk</td>
<td>UMP010</td>
</tr>
</tbody>
</table>

1 Místo takto označených předmětů mohou studenti zapsat ekvivalentní předmět (PRM001).

2. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza IIa</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMP005</td>
</tr>
<tr>
<td>Matematická analýza IIb</td>
<td>2/2 Z, Zk</td>
<td>2/2 Z, Zk</td>
<td>UMP006</td>
</tr>
<tr>
<td>Algebra</td>
<td>2/0</td>
<td>2/2 Z, Zk</td>
<td>UMP007</td>
</tr>
<tr>
<td>Geometrie II</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMP011</td>
</tr>
<tr>
<td>Pravděpodobnost a statistika</td>
<td>2/0</td>
<td>2/2 Z, Zk</td>
<td>UMP013</td>
</tr>
<tr>
<td>Diferenciální geometrie I</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMP014</td>
</tr>
<tr>
<td>Psychologie I</td>
<td>—</td>
<td>0/2 Z</td>
<td>PED008</td>
</tr>
<tr>
<td>Souborná zkouška</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza III</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UMP012</td>
</tr>
<tr>
<td>Psychologie II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>PED009</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/0</td>
<td>0/2 Z, Zk</td>
<td>PED012</td>
</tr>
<tr>
<td>Didaktika matematiky</td>
<td>2/0</td>
<td>0/2 Z, Zk</td>
<td>DIM001</td>
</tr>
<tr>
<td>Metody řešení matematických úloh</td>
<td>0/2 Z</td>
<td>—</td>
<td>UMV043</td>
</tr>
<tr>
<td>Logika a teorie množin</td>
<td>2/0</td>
<td>0/2 Z, Zk</td>
<td>UMP016</td>
</tr>
<tr>
<td>Geometrie III</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UMP017</td>
</tr>
<tr>
<td>Dějiny matematiky I</td>
<td>—</td>
<td>2/0 KZ</td>
<td>UMP015</td>
</tr>
<tr>
<td>Pedagogická praxe z matematiky</td>
<td>Z</td>
<td>Z</td>
<td>DIM010</td>
</tr>
<tr>
<td>Státní závěrečná zkouška</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2. Doporučený průběh rozšiřujícího studia učitelství fyziky pro střední školy

Garantující pracoviště: katedra didaktiky fyziky
Odpovědný učitel: Doc. RNDr. Ivana Stulíková, CSc.

1. rok studia

Tučně je vyznačena povinná výuka.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzika I (1. část)</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UFY063</td>
</tr>
<tr>
<td>Fyzika I (2. část)</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>UFY025</td>
</tr>
<tr>
<td>Fyzika II (1.část)</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>UFY007</td>
</tr>
<tr>
<td>Fyzika II (2.část)</td>
<td>3/2 Z, Zk</td>
<td>—</td>
<td>UFY008</td>
</tr>
<tr>
<td>Název</td>
<td>ZS</td>
<td>LS</td>
<td>Kód</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Fyzika pro střední školy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fyzika III</td>
<td></td>
<td></td>
<td>UFY013</td>
</tr>
<tr>
<td>Úvod do fyzikálních měření</td>
<td></td>
<td></td>
<td>UFY057</td>
</tr>
<tr>
<td>Fyzikální praktikum I</td>
<td>0/3 KZ</td>
<td></td>
<td>UFY021</td>
</tr>
<tr>
<td>Fyzikální praktikum II</td>
<td></td>
<td>0/3 KZ</td>
<td>UFY066</td>
</tr>
<tr>
<td>Úvod do programování a práce s počítačem</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>PRF026</td>
</tr>
<tr>
<td>Základy algoritmizace a programování</td>
<td></td>
<td>2/2 Z, Zk</td>
<td>PRF027</td>
</tr>
<tr>
<td>Matematické metody ve fyzice</td>
<td>2/2 Z</td>
<td>2/2 Z</td>
<td>UFY027</td>
</tr>
</tbody>
</table>

1Místo takto označených předmětů mohou studenti zapsat ekvivalentní předmět PRM001.

2. **rok studia**

Netučně jsou vyznačeny doporučené (výběrové) předměty.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teoretická mechanika</td>
<td>2/0 Zk</td>
<td></td>
<td>UFY028</td>
</tr>
<tr>
<td>Relativita</td>
<td>2/0 Zk</td>
<td></td>
<td>UFY062</td>
</tr>
<tr>
<td>Termodynamika a statistická fyzika I</td>
<td>2/1 Z</td>
<td></td>
<td>UFY047</td>
</tr>
<tr>
<td>Fyzikální praktikum III</td>
<td>0/3 KZ</td>
<td></td>
<td>UFY009</td>
</tr>
<tr>
<td>Termodynamika a statistická fyzika II</td>
<td></td>
<td>2/1 Z, Zk</td>
<td>UFY048</td>
</tr>
<tr>
<td>Kvantová mechanika I</td>
<td></td>
<td>3/1 Z</td>
<td>UFY030</td>
</tr>
<tr>
<td>Klasická elektrodynamika</td>
<td></td>
<td>2/0 Zk</td>
<td>UFY049</td>
</tr>
<tr>
<td>Jaderná fyzika</td>
<td></td>
<td>2/0 Zk</td>
<td>UFY018</td>
</tr>
<tr>
<td>Fyzika kondenzovaného stavu</td>
<td></td>
<td>2/0 Zk</td>
<td>UFY046</td>
</tr>
<tr>
<td>Psychologie I</td>
<td></td>
<td>0/2 Z</td>
<td>PED008</td>
</tr>
<tr>
<td>Mechanika kontinua</td>
<td>2/0 Zk</td>
<td></td>
<td>UFY032</td>
</tr>
<tr>
<td>Elektronika</td>
<td>2/0 Zk</td>
<td></td>
<td>UFY010</td>
</tr>
<tr>
<td>Teoretická mechanika</td>
<td>0/2 Z</td>
<td></td>
<td>UFY029</td>
</tr>
<tr>
<td>Meteorologie a geofyzika</td>
<td>2/0 Zk</td>
<td></td>
<td>UFY053</td>
</tr>
<tr>
<td>Astronomie a astrofyzika</td>
<td>2/0 Zk</td>
<td></td>
<td>UFY020</td>
</tr>
<tr>
<td>Jaderná fyzika</td>
<td></td>
<td>0/2 Z</td>
<td>UFY045</td>
</tr>
<tr>
<td>Výběrové praktikum z elektroniky a počítačové techniky</td>
<td></td>
<td>0/3 KZ</td>
<td>OFY004</td>
</tr>
</tbody>
</table>

Souborná zkouška

1Student zapisuje tento předmět pouze v zimním semestru.

3. **rok studia**

Netučně jsou vyznačeny doporučené (výběrové) předměty.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvantová mechanika II</td>
<td>2/0 Zk</td>
<td></td>
<td>UFY031</td>
</tr>
<tr>
<td>Kvantová mechanika</td>
<td>0/2 Z</td>
<td></td>
<td>UFY050</td>
</tr>
<tr>
<td>Didaktika fyziky</td>
<td>2/1 Z</td>
<td>0/2 Z, Zk</td>
<td>DFY001</td>
</tr>
<tr>
<td>Didaktika fyziky</td>
<td>2/0 KZ</td>
<td></td>
<td>DFY025</td>
</tr>
<tr>
<td>Praktikum školních pokusů I</td>
<td></td>
<td>0/3 Z</td>
<td>DFY014</td>
</tr>
<tr>
<td>Praktikum školních pokusů II</td>
<td>0/3 Z</td>
<td></td>
<td>DFY003</td>
</tr>
<tr>
<td>Praktikum školních pokusů IV</td>
<td>0/3 Z</td>
<td></td>
<td>DFY005</td>
</tr>
<tr>
<td>Praktikum školních pokusů III</td>
<td></td>
<td>0/3 Z</td>
<td>DFY004</td>
</tr>
</tbody>
</table>

253
1.3. Doporučený průběh rozšiřujícího studia učitelství informatiky pro střední školy

Garantující pracoviště: Kabinet software a výuky informatiky
Odpovědný učitel: RNDr. Rudolf Kryl

Vzhledem k povaze rozšiřujícího studia není náplní předmětu Projekt (UIN008) kolektivní práce, ale každý student vytváří svůj individuální projekt. I tyto projekty končí obhajobou.

Příklad 1

Absolvent vysokoškolského studia matematického směru

Předměty prvního ročníku denního studia učitelství informatiky, které by mohly být uznány absolventům vysokoškolského studia matematického směru:

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza Ia</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UMP001</td>
</tr>
<tr>
<td>Matematická analýza Ib</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>UMP002</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMP003</td>
</tr>
<tr>
<td>Lineární algebra II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMP004</td>
</tr>
<tr>
<td>Diskrétní matematika</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>DMI002</td>
</tr>
</tbody>
</table>

1. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programování I ¹</td>
<td>2/2 Z</td>
<td>3/2 Z, Zk</td>
<td>PRG004</td>
</tr>
<tr>
<td>Ročníkový projekt I</td>
<td>—</td>
<td>0/2 KZ</td>
<td>PRG018</td>
</tr>
<tr>
<td>Úvod do teoretické informatiky</td>
<td>—</td>
<td>2/0 Zk</td>
<td>TIN001</td>
</tr>
<tr>
<td>Úvod do UNIXu</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>SWI048</td>
</tr>
<tr>
<td>Seminář z programování a jeho didaktiky</td>
<td>—</td>
<td>0/2 KZ</td>
<td>DIN003</td>
</tr>
<tr>
<td>Principy počítačů I</td>
<td>—</td>
<td>2/0 Zk</td>
<td>SWI065</td>
</tr>
<tr>
<td>Teorie automatů</td>
<td>2/2 Z</td>
<td>2/1 Z, Zk</td>
<td>UIN002</td>
</tr>
<tr>
<td>Seminář ze systémového programování</td>
<td>—</td>
<td>0/2 Z</td>
<td>UIN004</td>
</tr>
<tr>
<td>Logika</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UIN006</td>
</tr>
<tr>
<td>Praktikum z aplikačního software</td>
<td>1 bod</td>
<td>UAS001</td>
<td></td>
</tr>
<tr>
<td>Psychologie I</td>
<td>—</td>
<td>0/2 Z</td>
<td>PED008</td>
</tr>
</tbody>
</table>
1 Získání zápočtu za letní semestr není podmínkou připuštění ke zkoušce.

2. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neprocedurální programování</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>PRG005</td>
</tr>
<tr>
<td>Programování III</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UIN003</td>
</tr>
<tr>
<td>Operační systémy a systémový software</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UIN005</td>
</tr>
<tr>
<td>Vyčíslitelnost</td>
<td>—</td>
<td>2/0 Zk</td>
<td>UIN007</td>
</tr>
<tr>
<td>Metody návrhu efektivních algoritmů, složitost algoritmů</td>
<td>2/2 Z</td>
<td>2/1 Z, Zk</td>
<td>UIN009</td>
</tr>
<tr>
<td>Didaktika informatiky</td>
<td>—</td>
<td>1/2 KZ</td>
<td>DIN002</td>
</tr>
<tr>
<td>Počítačová grafika I</td>
<td>2/1 Z, Zk</td>
<td>—</td>
<td>PGR003</td>
</tr>
<tr>
<td>Umělá inteligence</td>
<td>2/0 Zk</td>
<td>—</td>
<td>AIL034</td>
</tr>
<tr>
<td>Seminář z počítačových aplikací</td>
<td>—</td>
<td>0/2 Zk</td>
<td>UOS008</td>
</tr>
<tr>
<td>Praktikum z aplikačního software</td>
<td>—</td>
<td>1 bod</td>
<td>UAS001</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/0</td>
<td>0/2 Z, Zk</td>
<td>PED012</td>
</tr>
<tr>
<td>Psychologie II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>PED009</td>
</tr>
<tr>
<td>Souborná zkouška — UI</td>
<td>—</td>
<td>0/4 Zk</td>
<td>SZZ014</td>
</tr>
</tbody>
</table>

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zápočet k projektu</td>
<td>0/2 Z</td>
<td>—</td>
<td>UIN012</td>
</tr>
<tr>
<td>Projekt</td>
<td>—</td>
<td>0/2 Z</td>
<td>UIN008</td>
</tr>
<tr>
<td>Databázové systémy</td>
<td>—</td>
<td>2/1 Z, Zk</td>
<td>UIN010</td>
</tr>
<tr>
<td>Praktikum z aplikačního software</td>
<td>1 bod</td>
<td>—</td>
<td>UAS001</td>
</tr>
<tr>
<td>Praxe z vyučování informatiky</td>
<td>0/0 Z</td>
<td>—</td>
<td>DIN009</td>
</tr>
<tr>
<td>Státní závěrečná zkouška</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Příklad 2

Tento průběh je vhodný pro ty studenty, kteří nestudovali matematiku na vysoké škole.

1. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza Ia</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UMP001</td>
</tr>
<tr>
<td>Matematická analýza Ib</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>UMP002</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMP003</td>
</tr>
<tr>
<td>Lineární algebra II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMP004</td>
</tr>
<tr>
<td>Programování I ¹</td>
<td>2/2 Z</td>
<td>3/2 Z, Zk</td>
<td>PRG004</td>
</tr>
<tr>
<td>Ročníkový projekt I</td>
<td>—</td>
<td>0/2 KZ</td>
<td>PRG018</td>
</tr>
<tr>
<td>Diskrétní matematika</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>DMI002</td>
</tr>
<tr>
<td>Úvod do teoretické informatiky</td>
<td>—</td>
<td>2/0 Zk</td>
<td>TIN001</td>
</tr>
<tr>
<td>Úvod do UNIXu</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>SWI048</td>
</tr>
<tr>
<td>Teorie automatů</td>
<td>2/2 Z</td>
<td>2/1 Z, Zk</td>
<td>UIN002</td>
</tr>
<tr>
<td>Praktikum z aplikačního software</td>
<td>—</td>
<td>1 bod</td>
<td>UAS001</td>
</tr>
<tr>
<td>Psychologie I</td>
<td>—</td>
<td>0/2 Z</td>
<td>PED008</td>
</tr>
</tbody>
</table>
Rozšiřující a doplňující studium učitelství

1. Získání zápočtu za letní semestr není podmínkou připušťení ke zkoušce.

2. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neprocedurální programování</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>PRG005</td>
</tr>
<tr>
<td>Seminář z programování a jeho didaktiky</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>DIN003</td>
</tr>
<tr>
<td>Principy počítačů</td>
<td>2/0 Zk</td>
<td></td>
<td>SWI087</td>
</tr>
<tr>
<td>Seminář ze systémového programování</td>
<td>0/2 Z</td>
<td></td>
<td>UIN004</td>
</tr>
<tr>
<td>Programování III</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>UIN003</td>
</tr>
<tr>
<td>Logika</td>
<td>2/0 Zk</td>
<td></td>
<td>UIN006</td>
</tr>
<tr>
<td>Vyčíslitelnost</td>
<td>2/0 Zk</td>
<td></td>
<td>UIN007</td>
</tr>
<tr>
<td>Didaktika informatiky</td>
<td>1/2 KZ</td>
<td></td>
<td>DIN002</td>
</tr>
<tr>
<td>Praktikum z aplikačního software</td>
<td>1 bod</td>
<td></td>
<td>UAS001</td>
</tr>
<tr>
<td>Souborná zkouška — UI</td>
<td>0/4 Zk</td>
<td></td>
<td>SZZ014</td>
</tr>
</tbody>
</table>

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operační systémy a systémový software</td>
<td>2/0 Zk</td>
<td></td>
<td>UIN005</td>
</tr>
<tr>
<td>Metody návrhu efektivních algoritmů,</td>
<td>2/2 Z</td>
<td>2/1 Z, Zk</td>
<td>UIN009</td>
</tr>
<tr>
<td>složitost algoritmů</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zápočet k projektu</td>
<td>0/2 Z</td>
<td></td>
<td>UIN012</td>
</tr>
<tr>
<td>Projekt</td>
<td>0/2 Z</td>
<td></td>
<td>UIN008</td>
</tr>
<tr>
<td>Databázové systémy</td>
<td>2/1 Z, Zk</td>
<td></td>
<td>UIN010</td>
</tr>
<tr>
<td>Počítačová grafika I</td>
<td>2/1 Z, Zk</td>
<td></td>
<td>PGR003</td>
</tr>
<tr>
<td>Seminář z počítačových aplikací</td>
<td>0/2 Z</td>
<td></td>
<td>UOS008</td>
</tr>
<tr>
<td>Praktikum z aplikačního software</td>
<td>1 bod</td>
<td></td>
<td>UAS001</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/0 Z</td>
<td>0/2 Z, Zk</td>
<td>PED012</td>
</tr>
<tr>
<td>Psychologie II</td>
<td>2/0 Zk</td>
<td></td>
<td>PED009</td>
</tr>
<tr>
<td>Praxe z vyučování informatiky</td>
<td>0/0 Z</td>
<td></td>
<td>DIN009</td>
</tr>
<tr>
<td>Státní závěrečná zkouška</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.4. Doporučený průběh rozšiřujícího studia učitelství
deskriptivní geometrie pro střední školy

Garantující pracoviště: katedra didaktiky matematiky
Odpovědný učitel: Prof. RNDr. Adolf Karger, DrSc.

1. ročník

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deskriptivní geometrie Ia</td>
<td>4/2 Z, Zk</td>
<td></td>
<td>DGE001</td>
</tr>
<tr>
<td>Deskriptivní geometrie Ib</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>DGE002</td>
</tr>
<tr>
<td>Projektivní geometrie I</td>
<td>2/2 Z, Zk</td>
<td></td>
<td>DGE003</td>
</tr>
<tr>
<td>Neeuklidovská geometrie</td>
<td>2/2 Z</td>
<td>2/2 Z, Zk</td>
<td>DGE007</td>
</tr>
<tr>
<td>Projektivní geometrie II</td>
<td>2/2 Z</td>
<td>2/2 Z, Zk</td>
<td>DGE008</td>
</tr>
</tbody>
</table>

256
2. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počítačová geometrie</td>
<td>2/2 Z</td>
<td>2/2 Z, Zk</td>
<td>DGE009</td>
</tr>
<tr>
<td>Deskriptivní geometrie IIa</td>
<td>2/4 Z, Zk</td>
<td>—</td>
<td>DGE005</td>
</tr>
<tr>
<td>Deskriptivní geometrie IIb</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>DGE006</td>
</tr>
<tr>
<td>Grafický projekt</td>
<td>0/4 Z</td>
<td>—</td>
<td>DGE010</td>
</tr>
<tr>
<td>Psychologie I</td>
<td>—</td>
<td>0/2 Z</td>
<td>PED008</td>
</tr>
<tr>
<td>Algebraická geometrie</td>
<td>2/0 Zk</td>
<td>—</td>
<td>DGE011</td>
</tr>
<tr>
<td>Souborná zkouška</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Didaktika deskriptivní geometrie</td>
<td>2/0</td>
<td>0/2 Z, Zk</td>
<td>DGE013</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/0</td>
<td>0/2 Z, Zk</td>
<td>PED012</td>
</tr>
<tr>
<td>Psychologie II</td>
<td>2/0 Zk</td>
<td>—</td>
<td>PED009</td>
</tr>
<tr>
<td>Diferenciální geometrie II</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>DGE012</td>
</tr>
<tr>
<td>Deskriptivní geometrie III</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>DGE014</td>
</tr>
<tr>
<td>Pedagogická praxe z deskriptivní geometrie</td>
<td>Z</td>
<td>Z</td>
<td>DGE019</td>
</tr>
<tr>
<td>Státní závěrečná zkouška</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Rozšiřující studium učitelství pro základní školy

Úvodní text kapitoly C. Rozšiřující a doplňující studium platí i pro rozšiřující studium učitelství pro 2. stupeň základních škol s tím, že termíny „souborná zkouška“ resp. „státní závěrečná zkouška“ je v něm třeba nahradit termíny „1. část státní závěrečné zkoušky“ resp. „2. část státní závěrečné zkoušky.“

2.1. Doporučený průběh rozšiřujícího studia učitelství matematiky pro základní školy

Garantující pracoviště: katedra didaktiky matematiky
Odpovědný učitel: Prof. RNDr. Adolf Karger, DrSc.

1. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza Ia</td>
<td>4/2 Z, Zk</td>
<td>—</td>
<td>UMP001</td>
</tr>
<tr>
<td>Matematická analýza Ib</td>
<td>—</td>
<td>4/2 Z, Zk</td>
<td>UMP002</td>
</tr>
<tr>
<td>Lineární algebra I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMP003</td>
</tr>
<tr>
<td>Lineární algebra II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMP004</td>
</tr>
<tr>
<td>Algebra a teoretická aritmetika</td>
<td>2/0</td>
<td>2/2 Z, Zk</td>
<td>UMZ004</td>
</tr>
<tr>
<td>Úvod do geometrie</td>
<td>0/2 Z</td>
<td>0/2 KZ</td>
<td>UMZ005</td>
</tr>
</tbody>
</table>

2. rok studia

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematická analýza II</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
<td>UMZ003</td>
</tr>
</tbody>
</table>

257
Rozšiřující a doplňující studium učitelství

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metody řešení matematických úloh I</td>
<td>0/2 Z</td>
<td>—</td>
<td>UMZ001</td>
</tr>
<tr>
<td>Kombinatorika, pravděpodobnost a statistika</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMZ008</td>
</tr>
<tr>
<td>Geometrie I</td>
<td>2/2 Z, Zk</td>
<td>—</td>
<td>UMZ006</td>
</tr>
<tr>
<td>Geometrie II</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>UMZ007</td>
</tr>
<tr>
<td>Didaktika matematiky I</td>
<td>0/2 Z</td>
<td>2/2 Z</td>
<td>DIM002</td>
</tr>
<tr>
<td>Základy algoritmizace a programování</td>
<td>—</td>
<td>2/2 Z, Zk</td>
<td>PRF027</td>
</tr>
</tbody>
</table>

1. část státní závěrečné zkoušky

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metody řešení matematických úloh II</td>
<td>—</td>
<td>0/2 Z</td>
<td>UMZ002</td>
</tr>
<tr>
<td>Didaktika matematiky II</td>
<td>0/2 Z, Zk</td>
<td>—</td>
<td>DIM003</td>
</tr>
<tr>
<td>Dějiny matematiky I</td>
<td>—</td>
<td>2/0 KZ</td>
<td>UMP015</td>
</tr>
<tr>
<td>Psychologie</td>
<td>0/2 Z</td>
<td>2/2 Z, Zk</td>
<td>PED010</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/2 Z</td>
<td>0/2 Z, Zk</td>
<td>PED006</td>
</tr>
<tr>
<td>Pedagogická praxe z matematiky</td>
<td>Z</td>
<td>Z</td>
<td>DIM011</td>
</tr>
</tbody>
</table>

Státní závěrečná zkouška

2.2. Doporučený průběh rozšiřujícího studia učitelství fyziky pro základní školy

Garantující pracoviště: katedra didaktiky fyziky
Odpovědný učitel: Doc. RNDr. Ivana Stulíková, CSc.

1. rok studia

Tučně je vyznačena povinná výuka.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzika I 1</td>
<td>5/3 Z, Zk</td>
<td>—</td>
<td>UFY011</td>
</tr>
<tr>
<td>Fyzika II 1</td>
<td>—</td>
<td>4/3 Z, Zk</td>
<td>UFY012</td>
</tr>
<tr>
<td>Fyzika III 1</td>
<td>3/1 Zk</td>
<td>—</td>
<td>UFY014</td>
</tr>
<tr>
<td>Fyzika IV 1</td>
<td>—</td>
<td>3/1 Zk</td>
<td>UFY015</td>
</tr>
<tr>
<td>Úvod do fyzikálních měření</td>
<td>—</td>
<td>0/1 Z</td>
<td>UFY057</td>
</tr>
<tr>
<td>Výpočetní technika (uživatelský kurs)</td>
<td>0/3 Z</td>
<td>0/3 Z</td>
<td>PRF028</td>
</tr>
<tr>
<td>Seminář z Fyziky III</td>
<td>0/2 KZ</td>
<td>—</td>
<td>UFY038</td>
</tr>
<tr>
<td>Seminář z Fyziky IV</td>
<td>—</td>
<td>0/2 KZ</td>
<td>UFY039</td>
</tr>
<tr>
<td>Praktikum didaktické techniky</td>
<td>0/2 Z</td>
<td>—</td>
<td>DFY009</td>
</tr>
</tbody>
</table>

1Integrovaná výuka - přednáška a cvičení se vzájemně prolínají

2. rok studia

Netučně jsou vyznačeny doporučené (výběrové) předměty.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzika V 1</td>
<td>3/1 Zk</td>
<td>—</td>
<td>UFY016</td>
</tr>
<tr>
<td>Fyzika VI 1</td>
<td>—</td>
<td>3/1 Zk</td>
<td>UFY017</td>
</tr>
<tr>
<td>Seminář z Fyziky V</td>
<td>0/2 KZ</td>
<td>—</td>
<td>UFY040</td>
</tr>
<tr>
<td>Seminář z fyziky VI</td>
<td>—</td>
<td>0/2 KZ</td>
<td>UFY041</td>
</tr>
</tbody>
</table>
Fyzika pro základní školy

Vybrané partie z fyziky I ²
— 2/0 Zk UFY036

Vybrané partie z fyziky II ²
2/0 Zk — UFY037

Vybrané partie z fyziky III ²
— 0/1 Z UFY055

Fyzikální praktikum I
0/3 KZ — UFY021

Fyzikální praktikum II
— 0/2 KZ UFY042

Didaktika fyziky I
— 2/2 Z DFY010

1. část státní závěrečné zkoušky

1. Integrovaná výuka - přednáška a cvičení se vzájemně prolínají.

2. Student si u takto označených předmětů zapisuje buď cyklus vypsaný pro učitelské studium fyziky nebo předměty, semináře či laboratorní práce z fyziky jiných oborů se stejnou nebo vyšší bodovou dotací.

3. rok studia

Netučně jsou vyznačeny doporučené (výběrové) předměty.

<table>
<thead>
<tr>
<th>Název</th>
<th>ZS</th>
<th>LS</th>
<th>Kód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychologie</td>
<td>0/2 Z</td>
<td>2/2 Z, Zk</td>
<td>PED010</td>
</tr>
<tr>
<td>Pedagogika</td>
<td>2/2 Z</td>
<td>0/2 Z, Zk</td>
<td>PED006</td>
</tr>
<tr>
<td>Didaktika fyziky II</td>
<td>1/2 Z, Zk</td>
<td>—</td>
<td>DFY011</td>
</tr>
<tr>
<td>Fyzikální praktikum III</td>
<td>0/2 KZ</td>
<td>—</td>
<td>UFY043</td>
</tr>
<tr>
<td>Praktikum školních pokusů I</td>
<td>—</td>
<td>0/2 Z</td>
<td>DFY002</td>
</tr>
<tr>
<td>Praktikum školních pokusů II</td>
<td>0/2 Z</td>
<td>—</td>
<td>DFY012</td>
</tr>
<tr>
<td>Praktikum školních pokusů III</td>
<td>—</td>
<td>0/2 Z</td>
<td>DFY013</td>
</tr>
<tr>
<td>Pedagogická praxe z fyziky</td>
<td>Z</td>
<td>Z</td>
<td>DFY039</td>
</tr>
<tr>
<td>Dějiny fyziky I</td>
<td>2/0 Zk</td>
<td>—</td>
<td>DFY036</td>
</tr>
<tr>
<td>Dějiny fyziky II</td>
<td>—</td>
<td>2/0 Zk</td>
<td>DFY037</td>
</tr>
<tr>
<td>Fyzikální obraz světa</td>
<td>2/0 Zk</td>
<td>—</td>
<td>UFY023</td>
</tr>
</tbody>
</table>

2. část státní závěrečné zkoušky
Rozšiřující a doplňující studium učitelství
Z historie Univerzity Karlovy

řádným osobnostem té doby patřil matematik, fyzik, astronom a inženýr František Josef Gerstner (1756–1832), který působil na stolici vyšší matematiky a astronomie v letech 1789–1820. Své matematické znalosti dokázal aplikovat v technické praxi, zasloužil se o založení Českého stavovského polytechnického institutu v roce 1803.

Na základě školských reforem z konce čtyřicátých let 19. století filozofická fakulta pozbyla svého propedeutického charakteru a získala rovnocenné postavení s ostatními fakultami. Mohla se tak zaměřit na rozvoj jednotlivých oborů a na výchovu středoškolních profesorů. Vznikem nových kateder, zavedením docentur na univerzitě a zvýšením váhy středoškolského studia se rozšířil počet učitelských míst v oblasti přírodních věd.

Vzrůstající intenzita národního obrozeneckého hnutí ve druhé polovině 19. století se začala projevovat i ve vědeckém životě. Vznikala česká odborná literatura, ve které se konstituovala česká přírodovědecká terminologie, na univerzitě se objevily první přednášky v české jazyce. Po pádu Bachova absolutismu se obnovil spolkový život a začaly vznikat i první studentské spolky. Jako první se v roce 1862 zformoval Špolský spolek pro volné přednášky z mathematiky a fysiky, předchůdce pozdější Jednoty českých matematiků (od roku 1872 Jednoty českých matematiků a fyziků). Jednota zprostředkovávala kontakt středoškolních učitelů a jiných zájemců s fakultní vědou a vydávala prostřednictvím vlastního nakladatelství odborné časopisy a publikace.

Předválečný rozmach fyziky se projevil i na německé univerzitě, kde v roce 1911 vznikl ústav teoretické fyziky, který v letech 1911–1912 vedl Albert Einstein.

Roku 1920 bylo univerzitě vráceno jméno Univerzita Karlova. Téhož roku se z filozofické fakulty vyčlenily přírodovědné obory a začaly se vyučovat na nově vytvořené přírodovědecké fakultě.

Dnešní Matematicko-fyzikální fakulta vznikla roku 1952 vyčleněním z fakulty přírodovědecké. S postupujícím rozvojem věd a s rostoucemi požadavky praxe rostl na jedné straně počet studentů matematiky a fyziky i počet zaměstnanců fakulty, na druhé straně docházelo k postupné diferenciaci a ke vzniku specializovaných kateder a vědeckých ústavů. Fakulta za dobu své existence vychovač štědreg vědce a vysokoškolských i středoškolských učitelů.
Z historie Univerzity Karlovy

264
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11 (2)</td>
<td>39 (305)</td>
<td>12 (4)</td>
<td>Anděl Jiří</td>
<td>15 (5)</td>
<td>Calda Jiří</td>
<td>34 (206)</td>
</tr>
<tr>
<td>11 (2)</td>
<td>39 (305)</td>
<td></td>
<td>Antoch Jaromír</td>
<td></td>
<td>Caletka Antonín</td>
<td>17 (103)</td>
</tr>
<tr>
<td>24 (110)</td>
<td></td>
<td></td>
<td>Aulická Anna</td>
<td>22 (107)</td>
<td>Caspar Ernst-Georg</td>
<td></td>
</tr>
<tr>
<td>19 (105)</td>
<td></td>
<td></td>
<td>Báno Gregor</td>
<td>27 (114)</td>
<td>Čejnar Pavel</td>
<td></td>
</tr>
<tr>
<td>34 (205)</td>
<td></td>
<td></td>
<td>Barták Roman</td>
<td></td>
<td>Cibulková Radana</td>
<td>42 (511)</td>
</tr>
<tr>
<td>10 (1), 15 (102)</td>
<td></td>
<td></td>
<td>Barvík Ivan</td>
<td>21 (106)</td>
<td>Cieslar Miroslav</td>
<td></td>
</tr>
<tr>
<td>29 (115)</td>
<td></td>
<td></td>
<td>Baťka Michal</td>
<td>39 (305)</td>
<td>Cipra Tomáš</td>
<td></td>
</tr>
<tr>
<td>15 (102)</td>
<td></td>
<td></td>
<td>Baumruk Vladimír</td>
<td></td>
<td>Čísařová Hana</td>
<td>26 (113)</td>
</tr>
<tr>
<td>21 (107)</td>
<td></td>
<td></td>
<td>Bečvář František</td>
<td>25 (111)</td>
<td>Čadek Ondřej</td>
<td></td>
</tr>
<tr>
<td>40 (306)</td>
<td></td>
<td></td>
<td>Bečvář Jindřich</td>
<td>26 (113)</td>
<td>Čapková Pavla</td>
<td></td>
</tr>
<tr>
<td>33 (204), 14 (5)</td>
<td></td>
<td></td>
<td>Bednárek David</td>
<td>31 (202)</td>
<td>Čánská Hana</td>
<td></td>
</tr>
<tr>
<td>29 (115), 11 (3)</td>
<td></td>
<td></td>
<td>Bednář Jan</td>
<td>17 (103)</td>
<td>Čech Stanislav</td>
<td></td>
</tr>
<tr>
<td>16 (102)</td>
<td></td>
<td></td>
<td>Belas Eduard</td>
<td>10 (1), 34 (205)</td>
<td>Čepko Ondřej</td>
<td></td>
</tr>
<tr>
<td>35 (207)</td>
<td></td>
<td></td>
<td>Bémová Alevtina</td>
<td>21 (106)</td>
<td>Čepová Marta</td>
<td></td>
</tr>
<tr>
<td>33 (204)</td>
<td></td>
<td></td>
<td>Beneš Antonín</td>
<td>21 (106)</td>
<td>Černá Regina</td>
<td></td>
</tr>
<tr>
<td>29 (115)</td>
<td></td>
<td></td>
<td>Beneš Luděk</td>
<td>28 (114)</td>
<td>Černý Jaroslav</td>
<td></td>
</tr>
<tr>
<td>39 (305)</td>
<td></td>
<td></td>
<td>Beneš Viktor</td>
<td>16 (102)</td>
<td>Černý Miloš</td>
<td></td>
</tr>
<tr>
<td>36 (301)</td>
<td></td>
<td></td>
<td>Beran Ladislav</td>
<td>25 (111), 12 (3)</td>
<td>Červený Vlastislav</td>
<td></td>
</tr>
<tr>
<td>34 (206)</td>
<td></td>
<td></td>
<td>Beran Martin</td>
<td>38 (303)</td>
<td>Červy Jan</td>
<td></td>
</tr>
<tr>
<td>11 (3), 36 (301)</td>
<td></td>
<td></td>
<td>Bican Ladislav</td>
<td>28 (114)</td>
<td>Čéovská Jana</td>
<td></td>
</tr>
<tr>
<td>29 (116), 11 (3)</td>
<td></td>
<td></td>
<td>Bíčák Jiří</td>
<td>22 (107)</td>
<td>Čížek Jakub</td>
<td></td>
</tr>
<tr>
<td>24 (110)</td>
<td></td>
<td></td>
<td>Biederman Hynek</td>
<td>26 (113)</td>
<td>Čížek Jiří</td>
<td></td>
</tr>
<tr>
<td>10 (1), 26 (113)</td>
<td></td>
<td></td>
<td>Bílek Oldřich</td>
<td>29 (116)</td>
<td>Čížek Martin</td>
<td></td>
</tr>
<tr>
<td>43 (513)</td>
<td></td>
<td></td>
<td>Blahušová Eva</td>
<td>25 (111)</td>
<td>Čížková Hana</td>
<td></td>
</tr>
<tr>
<td>37 (302)</td>
<td></td>
<td></td>
<td>Boček Leo</td>
<td>27 (113)</td>
<td>Čtyroký Jiří</td>
<td></td>
</tr>
<tr>
<td>15 (102)</td>
<td></td>
<td></td>
<td>Bok Jiří</td>
<td>23 (109)</td>
<td>Daniš Stanislav</td>
<td></td>
</tr>
<tr>
<td>43 (513)</td>
<td></td>
<td></td>
<td>Bolchová Hana</td>
<td>28 (114)</td>
<td>Davídek Tomáš</td>
<td></td>
</tr>
<tr>
<td>34 (205)</td>
<td></td>
<td></td>
<td>Boubliková Libuše</td>
<td>26 (113)</td>
<td>Dědic Roman</td>
<td></td>
</tr>
<tr>
<td>33 (204)</td>
<td></td>
<td></td>
<td>Božovský Petr</td>
<td>32 (204)</td>
<td>Dejmková Jana</td>
<td></td>
</tr>
<tr>
<td>35 (207)</td>
<td></td>
<td></td>
<td>Brdičková Libuše</td>
<td>26 (113)</td>
<td>Dian Juraj</td>
<td></td>
</tr>
<tr>
<td>29 (115)</td>
<td></td>
<td></td>
<td>Brechler Josef</td>
<td>43 (513)</td>
<td>Dibliková Petra</td>
<td></td>
</tr>
<tr>
<td>25 (111)</td>
<td></td>
<td></td>
<td>Brokešová Johana</td>
<td>26 (113)</td>
<td>Dienstbier Miroslav</td>
<td></td>
</tr>
<tr>
<td>28 (114)</td>
<td></td>
<td></td>
<td>Brož Jan</td>
<td>43 (513)</td>
<td>Díšťová Eva</td>
<td></td>
</tr>
<tr>
<td>43 (512)</td>
<td></td>
<td></td>
<td>Bubeníková Miluša</td>
<td>23 (109)</td>
<td>Diviš Martin</td>
<td></td>
</tr>
<tr>
<td>26 (111)</td>
<td></td>
<td></td>
<td>Bucha Václav</td>
<td>34 (206)</td>
<td>Dobnerová Ivana</td>
<td></td>
</tr>
<tr>
<td>25 (111)</td>
<td></td>
<td></td>
<td>Bulant Petr</td>
<td>21 (106)</td>
<td>Dobroň Patrik</td>
<td></td>
</tr>
<tr>
<td>26 (113)</td>
<td></td>
<td></td>
<td>Burda Jaroslav</td>
<td>28 (114)</td>
<td>Doležal Jiří</td>
<td></td>
</tr>
<tr>
<td>40 (306)</td>
<td></td>
<td></td>
<td>Bureš Jarolím</td>
<td>38 (304)</td>
<td>Doležal Vít</td>
<td></td>
</tr>
<tr>
<td>21 (106)</td>
<td></td>
<td></td>
<td>Buriánek Jaromír</td>
<td>22 (107)</td>
<td>Doležal Ladislav</td>
<td></td>
</tr>
<tr>
<td>37 (302)</td>
<td></td>
<td></td>
<td>Calda Emil</td>
<td>27 (114)</td>
<td>Doležal Zdeněk</td>
<td></td>
</tr>
</tbody>
</table>
Seznam zaměstnanců MFF

Doležalová Drahomíra 35 (207) Glosík Juraj 19 (105)
Doležalová Marie 43 (512) Goldová Kamila 18 (104)
Domalípová Šárka 14 (5), 43 (513) Golková Jaroslava 39 (305)
Dos Reis Eva 43 (512) Gordeev Alexey 22 (107)
Drahánová Dagmar 17 (103) Grill Roman 15 (102)
Drahová Jaroslav 38 (303) Gronych Tomáš 19 (105)
Drahotová Eva 26 (111) Grgarová Libuše 31 (202)
Drápal Aleš 36 (301), 13 (5) Hadrava Petr 30 (116)
Drbohlav Tomáš 46 (728) Hájek Leoš 47 (733)
Drozd Zdeněk 18 (104) Hájek Michal 21 (106)
Dupač Václav 12 (3), 39 (305) Hájek Petr 34 (205)
Dupačová Jitka 39 (305) Hajíč Jan 35 (207)
Dúšek Miroslav 26 (113) Hájíčková Eva 35 (207), 11 (3)
Dusík Štefan 19 (105) Hala Jan 26 (113)
Dušková-Smrčková Miroslav 24 (110) Halenka Tomáš 29 (115)
Dvořák Jakub 31 (201) Hankeová Jitka 21 (107), 43 (512)
Dvořák Leoš 18 (104), 29 (116) Hanyk Ladislav 26 (111)
Dvořák Tomáš 31 (201) Hanyková Lenka 24 (110)
El Bashir Robert 36 (301) Hanzal Vojtěch 17 (103)
Emmer Ivan 19 (105) Hanzlíček Petr 39 (305)
Emmerová Eva 43 (512) Harmanec Petr 15 (101)
Englich Jiří 21 (107) Haslinger Jaroslav 21 (106)
Exner Pavel 30 (116) Havela Ladislav 23 (109)
Fabian František 39 (305) Havlíček Miloslav 11 (3)
Fabian Václav 39 (305) Havlíčková Alena 13 (5), 46 (725)
Fabík Stanislav 19 (105) Havlíková Božena 18 (104)
Fähnrich Jaromír 24 (110) Havránek Antonín 24 (110)
Fašangová Eva 37 (303) Hedbávný Pavel 19 (105)
Feistauer Miloslav 11 (3), 38 (304) Hedrlín Zdeněk 32 (202)
Felcman Jiří 38 (304) Hejbalová Bohuslava 45 (722)
Fesh Roman 16 (102) Hejda Jindřich 19 (105)
Fiala Jiří 26 (113), 32 (202), 13 (5) Héman Petr 15 (102)
Finger Miloslav 21 (107) Hlaváčková Jaroslava 35 (207)
Fischer Jan 30 (116) Hlidek Pavel 16 (102)
Fišer Jiří 44 (721) Hliněný Petr 32 (202)
Fišer Kurt 29 (116) Hlubínka Daniel 39 (305), 13 (5)
Foniok Jan 12 (4) Hodinová Jana 47 (731)
Formánek Jiří 27 (114) Holan Tomáš 31 (201)
Formánková Jana 45 (723) Holicky Petr 37 (303)
Forst Libor 34 (206), 14 (5) Holub Štěpán 36 (301)
Franc Jan 15 (102) Honda Fuminori 23 (109)
Fryštacký Jiří 16 (102) Horáček Jiří 29 (116)
Fuchsová Miloslava 14 (5), 44 (722) Horodchuk Oleh 16 (102)
Gabriel Petr 26 (113) Horodyský Petr 16 (102)
Garai Csaba 31 (201) Horčej Jiří 27 (114)
Gärtnerová Viera 21 (106) Horák Zuzana 43 (512)
Gášková Dana 15 (102) Höschl Pavel 15 (102), 11 (3)

266
<table>
<thead>
<tr>
<th>meno</th>
<th>číslo</th>
<th>adresa</th>
<th>telefon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houřek Karel</td>
<td>29 (116), 42 (511)</td>
<td>Javorský Pavel</td>
<td>23 (109)</td>
</tr>
<tr>
<td>Houšková Marie</td>
<td>43 (512)</td>
<td>Jelinek Frederick</td>
<td>35 (207)</td>
</tr>
<tr>
<td>Hrach Karel</td>
<td>39 (305)</td>
<td>Jelinek Jakub</td>
<td>34 (206)</td>
</tr>
<tr>
<td>Hrach Rudolf</td>
<td>19 (105)</td>
<td>Jelinek Jiří</td>
<td>38 (303)</td>
</tr>
<tr>
<td>Hrachová Věra</td>
<td>19 (105)</td>
<td>Jermář Jakub</td>
<td>18 (104)</td>
</tr>
<tr>
<td>Hříček Jan</td>
<td>34 (205)</td>
<td>Ježek Jaroslav</td>
<td>36 (301)</td>
</tr>
<tr>
<td>Hrnčíř Tomáš</td>
<td>19 (105)</td>
<td>Ježilová Jana</td>
<td>44 (721), 46 (725)</td>
</tr>
<tr>
<td>Hruška Petr</td>
<td>31 (201)</td>
<td>Jílek Miroslav</td>
<td>18 (104)</td>
</tr>
<tr>
<td>Hrušková Marie</td>
<td>13 (5), 42 (511)</td>
<td>Jiráček Matouš</td>
<td>46 (725)</td>
</tr>
<tr>
<td>Hruža Jan</td>
<td>34 (205)</td>
<td>Jirovský Václav</td>
<td>33 (204)</td>
</tr>
<tr>
<td>Hurt Jan</td>
<td>39 (305)</td>
<td>Jiřičková Markéta</td>
<td>42 (511)</td>
</tr>
<tr>
<td>Hušek Miroslav</td>
<td>37 (303)</td>
<td>John Oldřich</td>
<td>37 (303)</td>
</tr>
<tr>
<td>Hušková Marie</td>
<td>12 (3), 39 (305)</td>
<td>Jungwirth Karel</td>
<td>12 (3)</td>
</tr>
<tr>
<td>Hyková Gabriela</td>
<td>18 (104)</td>
<td>Jungwirth Pavel</td>
<td>27 (113)</td>
</tr>
<tr>
<td>Chábere Tomáš</td>
<td>28 (114)</td>
<td>Jureček Jaromír</td>
<td>44 (721)</td>
</tr>
<tr>
<td>Chaloupka Roman</td>
<td>16 (102)</td>
<td>Jurečková Jana</td>
<td>39 (305)</td>
</tr>
<tr>
<td>Chalupa Bohumil</td>
<td>21 (106), 46 (728)</td>
<td>Kadlec Jiří</td>
<td>37 (302), 14 (5)</td>
</tr>
<tr>
<td>Charamza Pavel</td>
<td>39 (305)</td>
<td>Kahounová Marcela</td>
<td>42 (511)</td>
</tr>
<tr>
<td>Cherkaska Viktoriya</td>
<td>23 (109)</td>
<td>Kalenda Ondřej</td>
<td>37 (303)</td>
</tr>
<tr>
<td>Chleboun Jan</td>
<td>39 (304)</td>
<td>Kalíšová Emília</td>
<td>46 (727)</td>
</tr>
<tr>
<td>Chmelík František</td>
<td>21 (106)</td>
<td>Kalvová Jaroslava</td>
<td>29 (115)</td>
</tr>
<tr>
<td>Chovanec Petr</td>
<td>13 (5)</td>
<td>Kampf Karol</td>
<td>28 (114)</td>
</tr>
<tr>
<td>Chvál Martin</td>
<td>18 (104)</td>
<td>Kaňka Adolf</td>
<td>19 (105)</td>
</tr>
<tr>
<td>Chválkovská Marcela</td>
<td>19 (105)</td>
<td>Kaňkovský Pavel</td>
<td>19 (105), 33 (204)</td>
</tr>
<tr>
<td>Chvosta Petr</td>
<td>24 (110)</td>
<td>Kaplický Petr</td>
<td>37 (303)</td>
</tr>
<tr>
<td>Chýla Jiří</td>
<td>12 (3)</td>
<td>Kapsa Vojtěch</td>
<td>26 (113)</td>
</tr>
<tr>
<td>Chytíl Michal</td>
<td>34 (205)</td>
<td>Karas Petr</td>
<td>11 (2), 44 (721)</td>
</tr>
<tr>
<td>Ilavský Michal</td>
<td>24 (110), 12 (3)</td>
<td>Karas Vladimír</td>
<td>15 (101)</td>
</tr>
<tr>
<td>Ivanov Mikhail</td>
<td>28 (114)</td>
<td>Karger Adolf</td>
<td>37 (302), 41 (306)</td>
</tr>
<tr>
<td>Jáček Josef</td>
<td>17 (103)</td>
<td>Kárník Jiří</td>
<td>35 (207)</td>
</tr>
<tr>
<td>Jäger Aleš</td>
<td>21 (106)</td>
<td>Karnoltová Jana</td>
<td>29 (115)</td>
</tr>
<tr>
<td>Jágrová Jana</td>
<td>45 (724)</td>
<td>Kashdan Jay Michael</td>
<td>43 (512)</td>
</tr>
<tr>
<td>Jákl Vojtěch</td>
<td>34 (206)</td>
<td>Kašpar Jan</td>
<td>37 (302)</td>
</tr>
<tr>
<td>Jakubková Zdeňka</td>
<td>10 (1)</td>
<td>Kašparová Zlatuše</td>
<td>45 (722)</td>
</tr>
<tr>
<td>Janáčková Alena</td>
<td>26 (111)</td>
<td>Kebortová Lenka</td>
<td>31 (201)</td>
</tr>
<tr>
<td>Jančák Tomáš</td>
<td>46 (726)</td>
<td>Kečlber Marian</td>
<td>36 (301)</td>
</tr>
<tr>
<td>Janda Petr</td>
<td>26 (113)</td>
<td>Kepka Tomáš</td>
<td>10 (1), 36 (301)</td>
</tr>
<tr>
<td>Jandová Hana</td>
<td>39 (305)</td>
<td>Kindl Dobroslav</td>
<td>24 (110)</td>
</tr>
<tr>
<td>Janeček Jan</td>
<td>33 (204)</td>
<td>Kindler Evžen</td>
<td>33 (204)</td>
</tr>
<tr>
<td>Janeček Miloš</td>
<td>21 (106)</td>
<td>Kisvetrová Helena</td>
<td>45 (724)</td>
</tr>
<tr>
<td>Janíš Václav</td>
<td>30 (116)</td>
<td>Klasnová Soňa</td>
<td>43 (512)</td>
</tr>
<tr>
<td>Janotová Jana</td>
<td>22 (107)</td>
<td>Klazar Antonín</td>
<td>43 (513)</td>
</tr>
<tr>
<td>Janoušová Blanka</td>
<td>23 (109)</td>
<td>Klazar Martin</td>
<td>32 (202), 13 (5)</td>
</tr>
<tr>
<td>Janovský Vladimír</td>
<td>38 (304)</td>
<td>Klebanov Lev</td>
<td>39 (305)</td>
</tr>
<tr>
<td>Janský Jaromír</td>
<td>26 (111)</td>
<td>Kleger Jan</td>
<td>23 (109)</td>
</tr>
<tr>
<td>Janů Zdeněk</td>
<td>22 (107)</td>
<td>Klíma Jan</td>
<td>23 (109)</td>
</tr>
<tr>
<td>Jaroš Tomáš</td>
<td>43 (513)</td>
<td>Klimeš Luděk</td>
<td>26 (111)</td>
</tr>
<tr>
<td>Klimovič Josef</td>
<td>24 (110)</td>
<td>Krýsl Svatopluk</td>
<td>10 (1)</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>Knapp František</td>
<td>28 (114)</td>
<td>Křepinská Alexandra</td>
<td>43 (512)</td>
</tr>
<tr>
<td>Knobloch Petr</td>
<td>38 (304)</td>
<td>Křivánek Mirko</td>
<td>34 (205)</td>
</tr>
<tr>
<td>Kočandrle Milan</td>
<td>37 (302)</td>
<td>Křivka Ivo</td>
<td>17 (103), 25 (110)</td>
</tr>
<tr>
<td>Kočišová Eva</td>
<td>16 (102)</td>
<td>Křížek Michal</td>
<td>39 (304)</td>
</tr>
<tr>
<td>Kodyš Peter</td>
<td>27 (114)</td>
<td>Kubát Václav</td>
<td>37 (302), 14 (5)</td>
</tr>
<tr>
<td>Kofroň Josef</td>
<td>38 (304)</td>
<td>Kubík Petr</td>
<td>28 (114)</td>
</tr>
<tr>
<td>Kohlová Věra</td>
<td>10 (1), 17 (103)</td>
<td>Kubínová Ivana</td>
<td>44 (611), 45 (722)</td>
</tr>
<tr>
<td>Kohout Jaroslav</td>
<td>22 (107)</td>
<td>Kuboň Vladislav</td>
<td>35 (207)</td>
</tr>
<tr>
<td>Koláč Miroslav</td>
<td>22 (107)</td>
<td>Kucková Stanislava</td>
<td>10 (1), 12 (4), 13 (5)</td>
</tr>
<tr>
<td>Kolář Jan</td>
<td>38 (303)</td>
<td>Kuča Jiří</td>
<td>26 (111), 42 (511)</td>
</tr>
<tr>
<td>Kolářová Růžena</td>
<td>18 (104)</td>
<td>Kučera Antonín</td>
<td>11 (2), 34 (205), 12 (4), 14 (5)</td>
</tr>
<tr>
<td>Kolesár Marian</td>
<td>28 (114)</td>
<td>Kučera Luděk</td>
<td>31 (202)</td>
</tr>
<tr>
<td>Kolomiyets Aleksandr</td>
<td>23 (109)</td>
<td>Kulis Michal</td>
<td>39 (305)</td>
</tr>
<tr>
<td>Kopáček Jaroslav</td>
<td>29 (115)</td>
<td>Kupková Kristýna</td>
<td>31 (201)</td>
</tr>
<tr>
<td>Kopáček Jiří</td>
<td>37 (303)</td>
<td>Kucerová Hana</td>
<td>16 (102)</td>
</tr>
<tr>
<td>Kopecký Michal</td>
<td>33 (204)</td>
<td>Kucerová Lenka</td>
<td>46 (731)</td>
</tr>
<tr>
<td>Kopecký Vladimír</td>
<td>16 (102)</td>
<td>Kucová Milena</td>
<td>42 (511)</td>
</tr>
<tr>
<td>Kořínkova Miloslav</td>
<td>26 (113)</td>
<td>Kudrna Pavel</td>
<td>19 (105)</td>
</tr>
<tr>
<td>Kos Petr</td>
<td>34 (206)</td>
<td>Kukalová Dagmar</td>
<td>44 (721)</td>
</tr>
<tr>
<td>Kosík Antonín</td>
<td>33 (204)</td>
<td>Kulíč Michal</td>
<td>39 (305)</td>
</tr>
<tr>
<td>Kotalíková Eva</td>
<td>29 (116)</td>
<td>Kupková Kristýna</td>
<td>31 (201)</td>
</tr>
<tr>
<td>Kotecký Roman</td>
<td>30 (116)</td>
<td>Kuriplach Jan</td>
<td>22 (107)</td>
</tr>
<tr>
<td>Kotrla Miroslav</td>
<td>30 (116)</td>
<td>Kurka Bohumil</td>
<td>17 (103)</td>
</tr>
<tr>
<td>Koubek Václav</td>
<td>34 (205)</td>
<td>Kůrka Petr</td>
<td>34 (205)</td>
</tr>
<tr>
<td>Koubková Alena</td>
<td>33 (204)</td>
<td>Kurucová Jana</td>
<td>39 (305)</td>
</tr>
<tr>
<td>Koudelková Irena</td>
<td>18 (104)</td>
<td>Kurzweil Jaroslav</td>
<td>12 (3)</td>
</tr>
<tr>
<td>Kouřimský Jiří</td>
<td>47 (731)</td>
<td>Kutinová Zdeňka</td>
<td>45 (724)</td>
</tr>
<tr>
<td>Kovář Petr</td>
<td>43 (513)</td>
<td>Küzel Radomír</td>
<td>23 (109)</td>
</tr>
<tr>
<td>Kovaříková Eva</td>
<td>37 (302)</td>
<td>Kvasil Jan</td>
<td>27 (114)</td>
</tr>
<tr>
<td>Kowalski Oldřich</td>
<td>12 (3), 40 (306)</td>
<td>Kybal Martin</td>
<td>42 (511)</td>
</tr>
<tr>
<td>Krajíček Jan</td>
<td>32 (202)</td>
<td>Lachout Petr</td>
<td>39 (305)</td>
</tr>
<tr>
<td>Krakovský Ivan</td>
<td>24 (110)</td>
<td>Lančok Adriana</td>
<td>22 (107)</td>
</tr>
<tr>
<td>Král Jaroslav</td>
<td>32 (204)</td>
<td>Lang Jan</td>
<td>22 (107)</td>
</tr>
<tr>
<td>Králiková Květoslava</td>
<td>35 (207)</td>
<td>Langer Jiří</td>
<td>29 (116), 12 (4), 13 (5)</td>
</tr>
<tr>
<td>Králková Marcela</td>
<td>19 (105)</td>
<td>Lašťovická Tomáš</td>
<td>28 (114)</td>
</tr>
<tr>
<td>Kratochvíl Jan</td>
<td>31 (202), 41 (306)</td>
<td>Lávička Roman</td>
<td>41 (306)</td>
</tr>
<tr>
<td>Kratochvíl Petr</td>
<td>21 (106)</td>
<td>Ledvinka Tomáš</td>
<td>29 (116)</td>
</tr>
<tr>
<td>Krejčík Stanislav</td>
<td>28 (114)</td>
<td>Leitner Rupert</td>
<td>28 (114)</td>
</tr>
<tr>
<td>Kreuziger Filip</td>
<td>44 (612)</td>
<td>Lipavský Pavel</td>
<td>16 (102)</td>
</tr>
<tr>
<td>Krliň Ladislav</td>
<td>30 (116)</td>
<td>Loebischer Martin</td>
<td>32 (202)</td>
</tr>
<tr>
<td>Krníčka Milan</td>
<td>27 (114)</td>
<td>Lukáč Pavel</td>
<td>21 (106)</td>
</tr>
<tr>
<td>Krtouš Pavel</td>
<td>29 (116), 13 (5)</td>
<td>Lukeš Dan</td>
<td>34 (206)</td>
</tr>
<tr>
<td>Krump Lukáš</td>
<td>41 (306)</td>
<td>Lukeš Jaroslav</td>
<td>12 (3), 37 (303)</td>
</tr>
<tr>
<td>Krumpňanský Pavel</td>
<td>28 (114)</td>
<td>Lustig František</td>
<td>18 (104), 14 (5)</td>
</tr>
<tr>
<td>Kryl Rudolf</td>
<td>10 (1), 31 (201)</td>
<td>Lustigová Zdena</td>
<td>18 (104)</td>
</tr>
<tr>
<td>Krylová Naděžda</td>
<td>32 (202)</td>
<td>Macl Jiří</td>
<td>20 (105), 21 (106)</td>
</tr>
<tr>
<td>Ime</td>
<td>Číslo</td>
<td>Telefon</td>
<td>Ime</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Mádlík Martin</td>
<td>10 (1)</td>
<td></td>
<td>Mojzeš Peter</td>
</tr>
<tr>
<td>Macharová Dana</td>
<td>14 (5), 45 (724)</td>
<td></td>
<td>Moody Daniel Laurence</td>
</tr>
<tr>
<td>Machek Josef</td>
<td>39 (305)</td>
<td></td>
<td>Moravec Pavel</td>
</tr>
<tr>
<td>Majerech Vladan</td>
<td>34 (205), 13 (5)</td>
<td></td>
<td>Mošnová Hana</td>
</tr>
<tr>
<td>Malá Martina</td>
<td>42 (511)</td>
<td></td>
<td>Motyčka Václav</td>
</tr>
<tr>
<td>Málek Josef</td>
<td>40 (306)</td>
<td></td>
<td>Mráčková Jana</td>
</tr>
<tr>
<td>Málek Přemysl</td>
<td>21 (106)</td>
<td></td>
<td>Mráz František</td>
</tr>
<tr>
<td>Malinský Michal</td>
<td>28 (114)</td>
<td></td>
<td>Mrázek Václav</td>
</tr>
<tr>
<td>Malý Jan</td>
<td>37 (303)</td>
<td></td>
<td>Mrázová Iveta</td>
</tr>
<tr>
<td>Malý Petr</td>
<td>26 (113), 13 (5)</td>
<td></td>
<td>Murtinová Eva</td>
</tr>
<tr>
<td>Maňásek Martin</td>
<td>33 (204)</td>
<td></td>
<td>Myroslavchenko Viktor</td>
</tr>
<tr>
<td>Mandíková Dana</td>
<td>18 (104)</td>
<td></td>
<td>Mysliveček Josef</td>
</tr>
<tr>
<td>Mandl Petr</td>
<td>39 (305)</td>
<td></td>
<td>Nábělek František</td>
</tr>
<tr>
<td>Marek Ivo</td>
<td>12 (3), 38 (304)</td>
<td></td>
<td>Najmanová Anna</td>
</tr>
<tr>
<td>Marek Luděk</td>
<td>33 (204)</td>
<td></td>
<td>Najzar Karel</td>
</tr>
<tr>
<td>Mareš Milan</td>
<td>12 (3)</td>
<td>Navrátilová Marie</td>
<td>28 (114)</td>
</tr>
<tr>
<td>Marsík František</td>
<td>40 (306)</td>
<td></td>
<td>Nedbal Jan</td>
</tr>
<tr>
<td>Marsík Jan</td>
<td>43 (513)</td>
<td></td>
<td>Nehasil Václav</td>
</tr>
<tr>
<td>Martinec Zdeněk</td>
<td>25 (111)</td>
<td></td>
<td>Nekvasil Vladimír</td>
</tr>
<tr>
<td>Marvan Milan</td>
<td>24 (110)</td>
<td></td>
<td>Němek Petr</td>
</tr>
<tr>
<td>Mašek Karel</td>
<td>19 (105)</td>
<td></td>
<td>Němeček Zdeněk</td>
</tr>
<tr>
<td>Matas Jiří</td>
<td>17 (103)</td>
<td></td>
<td>Neruda Roman</td>
</tr>
<tr>
<td>Máthys Kristián</td>
<td>21 (106)</td>
<td></td>
<td>Nešetřil Jaroslav</td>
</tr>
<tr>
<td>Matlák Jan</td>
<td>24 (109)</td>
<td></td>
<td>Nešpůrek Stanislav</td>
</tr>
<tr>
<td>Matolín Vladimír</td>
<td>19 (105)</td>
<td>Netuka Ivan</td>
<td>11 (2), 11 (3), 40 (306)</td>
</tr>
<tr>
<td>Matolínová Iva</td>
<td>19 (105)</td>
<td></td>
<td>Nevrý František</td>
</tr>
<tr>
<td>Matouš Ondřej</td>
<td>34 (206)</td>
<td></td>
<td>Nezbeda Ivo</td>
</tr>
<tr>
<td>Matoušek Jiří</td>
<td>31 (202)</td>
<td></td>
<td>Niederle Jiří</td>
</tr>
<tr>
<td>Matoušek Tomáš</td>
<td>46 (725)</td>
<td></td>
<td>Nižňanský Daniel</td>
</tr>
<tr>
<td>Matyska Ctirad</td>
<td>25 (111)</td>
<td></td>
<td>Nosek Dalibor</td>
</tr>
<tr>
<td>Maurová-Menzelová Monika</td>
<td>44 (612)</td>
<td></td>
<td>Nová Vladislava</td>
</tr>
<tr>
<td>Mayer Pavel</td>
<td>15 (101)</td>
<td></td>
<td>Novák Břetislav</td>
</tr>
<tr>
<td>Mayer Petr</td>
<td>38 (304), 14 (5)</td>
<td></td>
<td>Novák Mioslav</td>
</tr>
<tr>
<td>Mazurová Lucie</td>
<td>39 (305)</td>
<td></td>
<td>Nováková Eliška</td>
</tr>
<tr>
<td>Melichar Bořivoj</td>
<td>12 (3)</td>
<td>Nováková Eva</td>
<td>36 (301)</td>
</tr>
<tr>
<td>Měrka Jan</td>
<td>20 (105)</td>
<td></td>
<td>Nováková Marcela</td>
</tr>
<tr>
<td>Mészáros Attila</td>
<td>15 (101)</td>
<td></td>
<td>Novotná Petra</td>
</tr>
<tr>
<td>Míková Hana</td>
<td>15 (101)</td>
<td></td>
<td>Novotný Jiří</td>
</tr>
<tr>
<td>Mihalík Matuš</td>
<td>23 (109)</td>
<td></td>
<td>Novotný Oldřich</td>
</tr>
<tr>
<td>Mihovič Jiří</td>
<td>18 (104)</td>
<td></td>
<td>Novotný Tomáš</td>
</tr>
<tr>
<td>Michálková Věra</td>
<td>45 (724)</td>
<td></td>
<td>Nožička František</td>
</tr>
<tr>
<td>Míklejovský Milan</td>
<td>25 (110), 14 (5)</td>
<td></td>
<td>Nožička Miroslav</td>
</tr>
<tr>
<td>Miler Miroslav</td>
<td>27 (113)</td>
<td></td>
<td>Nožičková Marcela</td>
</tr>
<tr>
<td>Miliyanchuk Khrystyna</td>
<td>23 (109)</td>
<td></td>
<td>Nývlt Miroslav</td>
</tr>
<tr>
<td>Mílota Jaroslav</td>
<td>37 (303)</td>
<td></td>
<td>Obrázalek David</td>
</tr>
<tr>
<td>Mišina Martin</td>
<td>25 (110)</td>
<td></td>
<td>Obrázalek Jan</td>
</tr>
<tr>
<td>Mlček Josef</td>
<td>34 (205)</td>
<td></td>
<td>Odvárko Oldřich</td>
</tr>
<tr>
<td>Seznam zaměstnanců MFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olmer Petr 13 (4), 13 (5)</td>
<td>Prášková Zuzana 10 (1), 39 (305)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opršal Ivo 26 (111)</td>
<td>Praus Petr 16 (102)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orlita Milan 16 (102)</td>
<td>Pražák Dalibor 38 (303)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oštádal Ivan 19 (105)</td>
<td>Prchal Jiří 24 (109)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palacký Jiří 19 (105)</td>
<td>Procházkova Ivan 22 (107)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palata Jan 31 (202)</td>
<td>Procházkova Ladislav 12 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pančoška Petr 26 (113), 32 (202)</td>
<td>Procházka Marek 16 (102)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panevová Jarmila 10 (1), 35 (207)</td>
<td>Prokeš Jan 24 (110)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pantoflíček Jaroslav 26 (113)</td>
<td>Prokeš Karel 23 (109)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paška Přemysl 10 (1)</td>
<td>Přech Lubomír 19 (105)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pauer Martin 46 (725)</td>
<td>Pěščík Jakub 26 (113)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavelka Jan 33 (204)</td>
<td>Pudlák Pavel 32 (202)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pávková Terezie 44 (721)</td>
<td>Puklová Petra 42 (511)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavlík Roman 34 (206)</td>
<td>Pultr Aleš 31 (202), 12 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavluch Jiří 19 (105)</td>
<td>Pýřich Pavel 37 (303)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peksa Ladislav 19 (105)</td>
<td>Rafaja David 23 (109)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelant Ivan 27 (113)</td>
<td>Raidl Aleš 29 (115)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelcová Jitka 17 (103)</td>
<td>Raměšová Eva 36 (301)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelikán Josef 31 (201)</td>
<td>Rašková Hana 42 (511)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelikánová Lucie 31 (201)</td>
<td>Ratay Jan 39 (305), 41 (306)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pešička Josef 10 (1), 21 (106)</td>
<td>RauchJan 33 (204)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peterka Jiří 33 (204)</td>
<td>Reissigová Jindra 39 (305)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petránková Helena 44 (612)</td>
<td>Rexová Patřícia 13 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pfeffer Miloš 22 (107), 14 (5)</td>
<td>Rezná Milena 43 (512)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick Luboš 38 (303)</td>
<td>Richta Karel 33 (204)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pišťeková Helena 38 (303)</td>
<td>Richter Jaroslav 41 (306)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plandorová Eva 38 (304)</td>
<td>Richter Miloš 16 (102)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plášek Jaromír 16 (102), 11 (2), 12 (3)</td>
<td>Rob Ladislav 28 (114)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plašil Radek 19 (105)</td>
<td>Robová Jarmila 37 (302)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plášil František 33 (204)</td>
<td>Rohn Jiří 32 (202)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plátek Martin 34 (205)</td>
<td>Rojko Milan 18 (104)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plicka Vladimír 26 (111)</td>
<td>Rokyta Mirko 37 (303), 41 (306), 15 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluhář Zdeněk 27 (114)</td>
<td>Rotter Miloš 10 (1), 21 (107)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poddaný Miroslav 43 (513)</td>
<td>Roubíček Tomáš 41 (306)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podolská Hana 45 (722), 46 (727)</td>
<td>Rubač Tomáš 33 (204)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podolský Jiří 29 (116)</td>
<td>Rudajevová Alexandra 21 (106)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podzimek Oldřich 16 (102)</td>
<td>Rusz Ján 23 (109)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pokorný Jaroslav 33 (204), 12 (3), 13 (5)</td>
<td>Ruszová Kateřina 16 (102)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pokorný Milan 41 (306)</td>
<td>Růžička Pavel 36 (301)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pořácková Marianna 10 (1)</td>
<td>Řepa Petr 19 (105)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poláková Věra 16 (102)</td>
<td>Řezaninová Jitka 46 (726)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polišenská Hana 32 (202)</td>
<td>Řezníček Josef 44 (611)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polívka Tomáš 26 (113)</td>
<td>Říha Antonín 33 (204)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porubský Jindřich 46 (731)</td>
<td>Santolík Ondřej 19 (105)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possíšil Miroslav 26 (113)</td>
<td>Saxl Ivan 39 (305)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potočnák Marian 21 (106)</td>
<td>Sedláčková Jitka 20 (105)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prágerová Miloslava 45 (722)</td>
<td>Sedlák Bedřich 21 (107), 11 (2), 12 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Number of ID</td>
<td>Other Information</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Sezeth Karel</td>
<td>12 (3), 39 (304)</td>
<td>Sýkora Radek 10 (1)</td>
<td></td>
</tr>
<tr>
<td>Segethová Jitka</td>
<td>38 (304)</td>
<td>Sýkora Tomáš 28 (114)</td>
<td></td>
</tr>
<tr>
<td>Sechovský Štěpán</td>
<td>24 (109)</td>
<td>Šafránková Jana 19 (105)</td>
<td></td>
</tr>
<tr>
<td>Sechovský Vladimír</td>
<td>23 (109), 12 (3)</td>
<td>Šanda František 16 (102)</td>
<td></td>
</tr>
<tr>
<td>Semerád Pavel</td>
<td>34 (206)</td>
<td>Šarounová Alena 37 (302)</td>
<td></td>
</tr>
<tr>
<td>Semerák Oldřich</td>
<td>29 (116)</td>
<td>Šebek František 34 (206), 14 (5)</td>
<td></td>
</tr>
<tr>
<td>Seresinac Ljupka</td>
<td>43 (512)</td>
<td>Šestáková Vlasta 47 (731)</td>
<td></td>
</tr>
<tr>
<td>Sgall Jiří</td>
<td>32 (202)</td>
<td>Šícha Miloš 19 (105)</td>
<td></td>
</tr>
<tr>
<td>Shumylyak Mykhaylo</td>
<td>16 (102)</td>
<td>Šichová Hana 24 (109)</td>
<td></td>
</tr>
<tr>
<td>Simon Petr</td>
<td>34 (205)</td>
<td>Šilha Roman 16 (102)</td>
<td></td>
</tr>
<tr>
<td>Skála Lubomír</td>
<td>26 (113), 12 (3)</td>
<td>Šíma Jiří 33 (204)</td>
<td></td>
</tr>
<tr>
<td>Skrbek Ladislav</td>
<td>21 (107)</td>
<td>Šíma Vladimír 21 (106)</td>
<td></td>
</tr>
<tr>
<td>Sladký Petr</td>
<td>26 (113)</td>
<td>Šimůnek Josef 34 (206)</td>
<td></td>
</tr>
<tr>
<td>Slanina František</td>
<td>30 (116)</td>
<td>Šimůnková Lucie 45 (722)</td>
<td></td>
</tr>
<tr>
<td>Slavínská Danka</td>
<td>24 (110), 13 (4)</td>
<td>Šindelárová Anna 45 (724)</td>
<td></td>
</tr>
<tr>
<td>Slunečka Miloslav</td>
<td>22 (107)</td>
<td>Šír Zbyněk 37 (302)</td>
<td></td>
</tr>
<tr>
<td>Slunečková Viera</td>
<td>22 (107)</td>
<td>Škorová Věra 39 (305)</td>
<td></td>
</tr>
<tr>
<td>Smola Bolumil</td>
<td>21 (106)</td>
<td>Škovroň Petr 12 (4)</td>
<td></td>
</tr>
<tr>
<td>Smolák Petr</td>
<td>47 (731)</td>
<td>Šlapalová Michala 28 (114)</td>
<td></td>
</tr>
<tr>
<td>Sobota Karel</td>
<td>47 (731)</td>
<td>Šmíd Miloš 31 (201)</td>
<td></td>
</tr>
<tr>
<td>Sobotík Pavel</td>
<td>19 (105)</td>
<td>Šmídová Libuše 45 (722)</td>
<td></td>
</tr>
<tr>
<td>Sokolowsky Peter</td>
<td>33 (204)</td>
<td>Šmídrová Milena 26 (113)</td>
<td></td>
</tr>
<tr>
<td>Somberg Petr</td>
<td>41 (306)</td>
<td>Šolc Martin 15 (101)</td>
<td></td>
</tr>
<tr>
<td>Souček Jiří</td>
<td>41 (306)</td>
<td>Špitová Ladislava 45 (724)</td>
<td></td>
</tr>
<tr>
<td>Souček Otakar</td>
<td>22 (107)</td>
<td>Šťastná Jana 41 (306)</td>
<td></td>
</tr>
<tr>
<td>Souček Vladimír</td>
<td>11 (2), 40 (306)</td>
<td>Štepán Josef 12 (3), 39 (305)</td>
<td></td>
</tr>
<tr>
<td>Soukup František</td>
<td>22 (107)</td>
<td>Štepánková Josef 22 (3), 15 (102), 15 (5)</td>
<td></td>
</tr>
<tr>
<td>Soustružník Karel</td>
<td>28 (114)</td>
<td>Štepánková Petr 33 (205)</td>
<td></td>
</tr>
<tr>
<td>Spěváček Jiří</td>
<td>22 (107)</td>
<td>Štepáneková Helena 21 (107)</td>
<td></td>
</tr>
<tr>
<td>Spurný Jiří</td>
<td>38 (303)</td>
<td>Šubr Ladislav 15 (101)</td>
<td></td>
</tr>
<tr>
<td>Stará Jana</td>
<td>37 (303)</td>
<td>Šubrtová Pavlína 43 (512)</td>
<td></td>
</tr>
<tr>
<td>Štěhno Stanislav</td>
<td>43 (513)</td>
<td>Šutarová František 19 (105)</td>
<td></td>
</tr>
<tr>
<td>Stiborová Milena</td>
<td>14 (5), 45 (723)</td>
<td>Švečová Helena 18 (104), 15 (5)</td>
<td></td>
</tr>
<tr>
<td>Strečko Karol</td>
<td>16 (102), 14 (5), 44 (721), 45 (722)</td>
<td>Švečová Jaroslava 42 (511), Švečová 28 (114)</td>
<td></td>
</tr>
<tr>
<td>Stulíková Ivana</td>
<td>17 (103), 22 (107), 13 (5)</td>
<td>Tahalová Lenka 34 (206)</td>
<td></td>
</tr>
<tr>
<td>Suk Michal</td>
<td>28 (114), 12 (3)</td>
<td>Tas Petr 28 (114)</td>
<td></td>
</tr>
<tr>
<td>Suryňková Renata</td>
<td>42 (511)</td>
<td>Tegze Miron 39 (305)</td>
<td></td>
</tr>
<tr>
<td>Svirsky Karen</td>
<td>43 (512)</td>
<td>Thér Pavel 47 (732)</td>
<td></td>
</tr>
<tr>
<td>Svirsky Vladimír</td>
<td>43 (512)</td>
<td>Tichý Milan 10 (1), 19 (105)</td>
<td></td>
</tr>
<tr>
<td>Svoboda Antonín</td>
<td>26 (113)</td>
<td>Tichý Rudolf 22 (107)</td>
<td></td>
</tr>
<tr>
<td>Svoboda Emanuel</td>
<td>18 (104)</td>
<td>Tobolková Eva 25 (110)</td>
<td></td>
</tr>
<tr>
<td>Svoboda Martin</td>
<td>18 (104)</td>
<td>Tomášková Marcela 14 (5), 45 (722)</td>
<td></td>
</tr>
<tr>
<td>Svoboda Miroslav</td>
<td>18 (104)</td>
<td>Töpfer Pavel 31 (201), 13 (5)</td>
<td></td>
</tr>
<tr>
<td>Svoboda Pavel</td>
<td>23 (109)</td>
<td>Tosoř Zdeněk 22 (107)</td>
<td></td>
</tr>
<tr>
<td>Svobodová Jitka</td>
<td>45 (722)</td>
<td>Toušek Jiří 24 (110)</td>
<td></td>
</tr>
<tr>
<td>Sychra Dominik</td>
<td>44 (612)</td>
<td>Toušková Jana 24 (110)</td>
<td></td>
</tr>
<tr>
<td>Umení MFF</td>
<td>Číslo</td>
<td>MFF</td>
<td>Číslo</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Trchova Miroslava</td>
<td>24</td>
<td>(110)</td>
<td>Vocu Michal</td>
</tr>
<tr>
<td>Trka Zbysek</td>
<td>27</td>
<td>(114)</td>
<td>Vojtiskova Alena</td>
</tr>
<tr>
<td>Trlafaj Jan</td>
<td>36</td>
<td>(301)</td>
<td>Vokrulhicky David</td>
</tr>
<tr>
<td>Trmac Miloslav</td>
<td>31</td>
<td>(201)</td>
<td>Vlenev David</td>
</tr>
<tr>
<td>Trnkova Vera</td>
<td>40</td>
<td>(306)</td>
<td>Vof Karel</td>
</tr>
<tr>
<td>Trojanek Frantisek</td>
<td>26</td>
<td>(113)</td>
<td>Vomlelova Marta</td>
</tr>
<tr>
<td>Trojanova Zuzanka</td>
<td>21</td>
<td>(106)</td>
<td>Vopenka Petr</td>
</tr>
<tr>
<td>Tsvetkov Alexei</td>
<td>28</td>
<td>(114)</td>
<td>Vorobel Vit</td>
</tr>
<tr>
<td>Tuva Jiri</td>
<td>36</td>
<td>(301)</td>
<td>Vrzel Jan</td>
</tr>
<tr>
<td>Tuva Petr</td>
<td>33</td>
<td>(204)</td>
<td>Vbecovska Marcela</td>
</tr>
<tr>
<td>Tumova Ivanka</td>
<td>42</td>
<td>(511)</td>
<td>Walder Jan</td>
</tr>
<tr>
<td>Turek Ilja</td>
<td>23</td>
<td>(109)</td>
<td>Wiedermann Jiri</td>
</tr>
<tr>
<td>Turek Oldrich</td>
<td>25</td>
<td>(110)</td>
<td>Wild Jan</td>
</tr>
<tr>
<td>Turkeych Ivan</td>
<td>16</td>
<td>(102)</td>
<td>Wilhelm Ivan</td>
</tr>
<tr>
<td>Turzik Daniel</td>
<td>32</td>
<td>(202)</td>
<td>Wof Marek</td>
</tr>
<tr>
<td>Ublanska Marcela</td>
<td>25</td>
<td>(110)</td>
<td>Yaghob Jakub</td>
</tr>
<tr>
<td>Uhlirova Eva</td>
<td>26</td>
<td>(113)</td>
<td>Zadrapova Dagmar</td>
</tr>
<tr>
<td>Ulrych Jan</td>
<td>44</td>
<td>(611)</td>
<td>Zahradnik Jiri</td>
</tr>
<tr>
<td>Ulrych Oldrich</td>
<td>41</td>
<td>(306), 14</td>
<td>(5)</td>
</tr>
<tr>
<td>Urban Josef</td>
<td>34</td>
<td>(205)</td>
<td>Zajac Stefan</td>
</tr>
<tr>
<td>Urban Ludvik</td>
<td>20</td>
<td>(105), 14</td>
<td>(5)</td>
</tr>
<tr>
<td>Urbanova Michaela</td>
<td>28</td>
<td>(114)</td>
<td>Zakouril Pavel</td>
</tr>
<tr>
<td>Vacek Jaronlav</td>
<td>32</td>
<td>(202)</td>
<td>Zamastil Jaronlav</td>
</tr>
<tr>
<td>Vacek Karel</td>
<td>27</td>
<td>(113)</td>
<td>Zaveta Karel</td>
</tr>
<tr>
<td>Vachalovska Lenka</td>
<td>43</td>
<td>(512)</td>
<td>Zavoral Filip</td>
</tr>
<tr>
<td>Valenta Jan</td>
<td>26</td>
<td>(113)</td>
<td>Zelenda Stanislav</td>
</tr>
<tr>
<td>Valentova Helena</td>
<td>17</td>
<td>(103), 25</td>
<td>(110), 13</td>
</tr>
<tr>
<td>Valkar Stefan</td>
<td>28</td>
<td>(114)</td>
<td>Zelieniecov Pavla</td>
</tr>
<tr>
<td>Valkarovska Alice</td>
<td>28</td>
<td>(114)</td>
<td>Zichova Jitka</td>
</tr>
<tr>
<td>Valtr Pavel</td>
<td>32</td>
<td>(202)</td>
<td>Zikmanda Otakar</td>
</tr>
<tr>
<td>Valvoda Valclav</td>
<td>23</td>
<td>(109)</td>
<td>Zimmermann Karel</td>
</tr>
<tr>
<td>Vanickova Zuzana</td>
<td>43</td>
<td>(513)</td>
<td></td>
</tr>
<tr>
<td>Vavrikova Ivana</td>
<td>27</td>
<td>(114)</td>
<td>Zinburg Petr</td>
</tr>
<tr>
<td>Vece Jaroslav</td>
<td>16</td>
<td>(102)</td>
<td>Zitko Jan</td>
</tr>
<tr>
<td>Velicky Bedrich</td>
<td>23</td>
<td>(109)</td>
<td>Zvare Karel</td>
</tr>
<tr>
<td>Veltruskova Katefoyna</td>
<td>19</td>
<td>(105)</td>
<td>Zvare Milan</td>
</tr>
<tr>
<td>Velyhan Andriy</td>
<td>20</td>
<td>(105)</td>
<td>Zvarova Jana</td>
</tr>
<tr>
<td>Vesely Jiri</td>
<td>10</td>
<td>(1), 40</td>
<td>(306), 13</td>
</tr>
<tr>
<td>Vicher Miroslav</td>
<td>19</td>
<td>(105)</td>
<td>Zara Jiri</td>
</tr>
<tr>
<td>Vilim Petr</td>
<td>13</td>
<td>(4)</td>
<td>Zemlicka Jan</td>
</tr>
<tr>
<td>Visek Jan Amos</td>
<td>40</td>
<td>(305)</td>
<td>Zemlicka Michal</td>
</tr>
<tr>
<td>Viskovsky Stefan</td>
<td>15</td>
<td>(102)</td>
<td>Zeniskyova Bohena</td>
</tr>
<tr>
<td>Vitek Milan</td>
<td>40</td>
<td>(305)</td>
<td>Zilavny Peter</td>
</tr>
<tr>
<td>Vlach Milan</td>
<td>34</td>
<td>(205)</td>
<td>Zizkova Blanka</td>
</tr>
<tr>
<td>Vlashek Petr</td>
<td>14</td>
<td>(5), 46</td>
<td>(728)</td>
</tr>
<tr>
<td>Vlashek Zdenek</td>
<td>37</td>
<td>(303)</td>
<td></td>
</tr>
</tbody>
</table>