A programming language presented in graphics

Roman Sobkuliak

Faculty of Mathematics and Physics, Charles University in Prague

Introduction

We created a programming language with characters and keywords substituted with images and
animations (GIFs). We built a web IDE and a client-side interpreter for this language using
modern web technologies including WebWorkers, TypeScript and React.

The IDE features code-stepping with information about current location in the source code,
environment variables and a call stack. Additionally, there is a support for storing programs on
the server and loading them later.

The purpose of the language is educational, e.g., to be used in creative games at programming
camps for elementary and high schoolers.

Implementation

...

In order to make the IDE highly ac-

HTTP server : . :
cessible we chose to implement it for

A ___ :

Get static resources
(images, JS/HTML/CSS)

?"""""""""""""""""m"""""""""""m"""""""""""m""""""""""m"}(' """"" :

Client (browser)

S A

Load/Save
programs

web rather than as a native OS appli-
cation.

Users can store their programs in the

cloud and share it using a unique
URL. We implemented this feature

WebWorker Main thread , : :
using a proprietary cloud service.
. Print output The HTTP server is very lightweight,

i Get input > serving only static resources.
Q IDE
éf Next code step

X . .

~ The frontend consists of two major
Execute code .

parts, the interpreter and the IDE.

The interpreter performs no optimi-

High-level diagram of the implementation zations — it executes a parsed AST in

a node by node fashion.

For the IDE itself we used the React frontend library. We implemented our own text processor
with characters replaced by images.

IDE

RUN | STOP | SAVE | DEBUG | NEXT

Screenshot of the web IDE

The IDE has a standard layout with source code occupying most of the space. Users can provide input interactively, i.e.,

Letters

Comparisons

EETD

Language
The language we created closely resembles Python. It features:

- Object-Oriented programming contructs — classes, inheritance, polymorphism
- Magic methods for operator overloading
- Functional programming features — anonymous functions and closures

Source code is represented in a textual format where each letter has a one-to-one mapping to a
corresponding image or animation.

1 x=0;
1 x =0 2 C(x<4){
2 while x < 4: 3 A(’HELLO?);
3 print(’HELLO’) 4 X=x+1;
4 X =x +1 5 }

Sample Python source code (left) and the same program written in our language (right)

The example above shows a simple Python program represented in the textual form of our lan-
guage. Variable name x was left unchanged, but the keyword while is replaced with a single
character C. Similarly, print is replaced with A. Below is the same program displayed in its
final graphical form.

Sample program presented in graphics

The fact that every image has a one-to-one mapping to a Unicode character has a nice property
regarding the use of the keywords in a string. We wrote the interpreter in JavaScript where each
element is considered to be a single UTF-16 code unit. This means that if we only use characters
that can be encoded into a single 16-bit code unit, all keywords will take space of a single charac-
ter in a string.

Object model

> 4 Instance of
ObjectClass
Y D G Derives from
’ i
UserClass
MetaClass «€<—— UserClass <— .
instance

Diagram of an object model that we used

To support OOP constructs in our language we used an object model

that resembles Python where everything is an object. As shown on the
diagram above, ObjectClass is an ancestor of all classes. Since classes

Arithmetics
are also objects, they are instances of MetaClass and MetaClass is an
+ . y £ instance of itself.
b MetaClass is also responsible for creating new instances. Its call oper-
_ ator override takes a class as an argument, spawns an instance and
ooleans

calls a constructor of the given class.

Conclusion

N% 1\

We designed a programming language that can be easily represented
using images or animations. We also developed an interpreter and a
web IDE for this language. It is going to be incorporated into games at
programming camps for elemetary and high schoolers.

Acknowledgements

an interpreted program waits for an input. Similar to this, when DEBUG button is pressed the IDE transitions to a

code-stepping mode where the interpreter waits before each step until NEXT button is pressed.

Possible image “characters” are listed on the right panel. Clicking on an image inserts it at the user’s cursor position.

Author: Roman Sobkuliak

Email: r.sobkuliak@gmail.com

Supervisor: RNDr. David Bednarek, Ph.D.

Department: Department of Software Engineering

[would like to give thanks to my supervisor, RNDr. David Bednarek,
Ph.D., for his patience and advice.

Source code: https://github.com/sobkulir/giflang

Submission year: 2020

