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Introduction

We created a programming language with characters and keywords substituted with images and
animations (GIFs). We built a web IDE and a client-side interpreter for this language using
modern web technologies including WebWorkers, TypeScript and React.

The IDE features code-stepping with information about current location in the source code,
environment variables and a call stack. Additionally, there is a support for storing programs on
the server and loading them later.

The purpose of the language is educational, e.g., to be used in creative games at programming
camps for elementary and high schoolers.
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The interpreter performs no optimi-
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a node by node fashion.

For the IDE itself we used the React frontend library. We implemented our own text processor
with characters replaced by images.

IDE

RUN | STOP | SAVE | DEBUG | NEXT

Screenshot of the web IDE

The IDE has a standard layout with source code occupying most of the space. Users can provide input interactively, i.e.,
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Language
The language we created closely resembles Python. It features:

- Object-Oriented programming contructs — classes, inheritance, polymorphism
- Magic methods for operator overloading
- Functional programming features — anonymous functions and closures

Source code is represented in a textual format where each letter has a one-to-one mapping to a
corresponding image or animation.

1 x=0;
1 x =0 2 C(x<4){
2 while x < 4: 3 A(’HELLO?);
3 print(’HELLO’) 4 X=x+1;
4 X =x +1 5 }

Sample Python source code (left) and the same program written in our language (right)

The example above shows a simple Python program represented in the textual form of our lan-
guage. Variable name x was left unchanged, but the keyword while is replaced with a single
character C. Similarly, print is replaced with A. Below is the same program displayed in its
final graphical form.

Sample program presented in graphics

The fact that every image has a one-to-one mapping to a Unicode character has a nice property
regarding the use of the keywords in a string. We wrote the interpreter in JavaScript where each
element is considered to be a single UTF-16 code unit. This means that if we only use characters
that can be encoded into a single 16-bit code unit, all keywords will take space of a single charac-
ter in a string.
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Diagram of an object model that we used

To support OOP constructs in our language we used an object model

that resembles Python where everything is an object. As shown on the
diagram above, ObjectClass is an ancestor of all classes. Since classes

Arithmetics
are also objects, they are instances of MetaClass and MetaClass is an
+ . y £ instance of itself.
b MetaClass is also responsible for creating new instances. Its call oper-
_ ator override takes a class as an argument, spawns an instance and
ooleans

calls a constructor of the given class.

Conclusion
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We designed a programming language that can be easily represented
using images or animations. We also developed an interpreter and a
web IDE for this language. It is going to be incorporated into games at
programming camps for elemetary and high schoolers.
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