PaunPacker - Texture Atlas Generator

author: Patrik Dokoupil | supervisor: Mgr. Pavel Jezek, Ph.D. | bachelor thesis 2019

C A A pplicatic

The GUI of the PaunPacker allows the user to adjust various settings, generate texture atlas, process

Texture packing is a process of joining textures together into a single, larger texture called
individual images of the texture atlas, load images, manipulate loaded images, etc. and it is shown in the

texture atlas. Texture atlases are used in 2D game development to improve rendering performance
by reducing the number of draw calls. The process of creating a texture atlas is illustrated in the

. .
fOllO V v lng p]_Ct ure : @ File Project Plugins Help
@ Target Framework Show bordersl | Select all | | Unselect all el

following picture:

i @ E @ @ @ @ @ @ O UnityMetadataWriter (v 1.0.00) v gE’ii%‘é‘é‘é::’°""""’"g
M ..' | iaiitoAd vvvvv d 7:33‘333;3'3:3
= 7 rvﬁ P ON PN PN ez - & espmeang
E;;?ﬂ <;;)<:>|;;;jﬂ Q) —> AAA AAA AAA AAA “aA O ponesottwe 5 Bitodtor
— — 2|l I'Ad | 4 = @E
@ A @ % w N m M/ ByHeightAndWidthimageSorterDesc (v 1.0.0.0) | pokerSad.png
Iw‘ A
w Ci\samples\textureAtlas1.png — w
o
Texture packing is one of many applications of optimization problems called packing problems
: : .. : : [aee |
which are proved to be NP-hard. However, the goal of this thesis is not to devise new algorithms o e
but to create an extensible application with GUI that will allow users to generate texture atlases. —— v =
This application will be called PaunPacker.
(e o]

The PaunPacker should meet the following goals:

e Free to use

o Extensible (allowing to create and load plugins)

o Offer additional image processing features (padding, trimming, etc.)
o« Have GUI

e Provide a basic toolset for plugin development

e Implement several heuristic algorithms:

Not only the packing algorithms are extensible, but also the GUI of the application is extensible because the
types exported from plugins could have a view associated with them. Such a view is then rendered into a proper
region inside the main window. To simplity working with regions and views they are showing, Prism Framework
is used. Prism is also a second option (besides previously mentioned MEF) for loading of plugins but unlike
MEF it also performs their initialization, loading and then showing their views inside a corresponding region.
When compared to MEF, the Prism offers a more general and powertul approach for plugin development
because it allows creating plugins with views. The picture below shows PaunPacker's main window view and its

. 1(\}/Iax1n€1albrec?n%1es .a]lagorlthm . S}??Otm? algo;‘llthm decomposition into views and regions. Regions determine the place where the view of a particular (selected)
o LEngHE Desee & g(?rlt i > Blyling algottos extensible component is rendered. Notice that the views could be composed of other views recursively.
e Bottom-Left algorithm

° Implemeﬂt alias creation Loaded plugins dialog LoadedImagesTreeView

PluginView .| LoadedPluginsView
= (\e’ﬁa‘\s
(8)

I .
ST Tloaded pluginl's name Gaded imgl mageView
~— | lloaded plugin2's name loaded img?

\\\\\\\ MainWindowView

g g ADDIoOE ANA A s s

In the PaunPacker we have decided to use one of the standard approaches to rectangle packing
which is to decompose the process of finding a "packing" of the input rectangles into three steps:

MetadataWritersRegion

1) Minimum bounding box finding - Finds a minimum bounding box which contains the input = |
rectangles rq, ..., r,. Generally, some sequence of bounding boxes by, ..., b, could be tested. pimRonnGngRoxinderieeon 4 —
2) Place rectangles - Placement of the input rectangles ry, ..., r, into a fixed size bounding box b; ImageSortersRegion B
3) Sort rectangles - Sorting of the rectangles according to some criterion. = |
Place rectangles PlacementAlgoritthRegiOnéﬂﬂ__,,,—-'”””~—
1. Sort ——————|

PlacementImageSortersRegion

S

2. Placement into b; e

Minimum bounding box finding
Sort rectangles

TextureAtlasView

b, < LB Input rectangles

X x X
ImageProcessorsRegion
The main feature of PaunPacker is the ability to parameterize the whole algorithm by the Selccted image processor's view:
individual steps that could be loaded from a plugin. Therefore instead of only dealing with self- TageProcessorTiey
contained algorithms, the algorithms are allowed to consist of three independent parts that are
dealt with separately. \
Transparent layer above
The main parts of the software solution are:
1) PaunPacker.Core library (.NET Standard 2) N
» Contains implementations of packing algorithms together with some packing related types. B C
o Meant to serve as a basic toolset for future plugin development.
o Allows to reuse the algorithms for general rectangle packing, i.e. not dependent on GUI of the
application. In addition to the main application for texture atlas generation, a simple CLI application that allows running
2) PaunPacker.GUI application (NET Core 3) benchmarks of minimum bounding box finders and placement algorithms has been developed. The benchmarks
e The main application with which the user interacts. . measure time and average area of the packing result. The benchmarks are generated at runtime for all the types
o Loads and renders the plugins. -) that were loaded from plugins and that could be easily instantiated (via IoC resolution). These benchmarks are
o Outputs texture atlas and metadata Fanmracker foe N Tocture aies later compiled using Roslyn and passed to BenchmarkDotNet for an execution.
?j;;;ﬁeicffx?Iglﬁz?rgoalﬁggczf I?E%Zig.hms Plugins Y g Currently, there are two simple benchmark scenarios:
3) Plugins (NET Standard 2/.NET Core 3) el I PP ;; %?jcrte;n(;ei?feﬁiﬁsmlziﬁnéﬁsgzév
o Contain implementations of extensible

Metadata

components or exports components
that are implemented in the core library.

The benchmarks are only expected to be used for a comparison of the individual implementations and not for
general comparison of packing algorithms.

Plugins

.dll
Plugins and Extensibilit
g y penluek]
benchmark 3
@%p : Denchmarkn
%d{%e .
The PaunPacker was from the very beginning designed with a strong emphasis on extensibility. el | 2 B4L) CtEEG) Swes)RR
The result is that the application could be extended by plugins that contain implementations of | et
. - - . - | T e nknounSiscbacker | 4 | 94.60 us | 1. 3 | 18585 12 | | Ul St S s benchmark 1
packing algorithms (or any of their three steps), metadata exporters and image processing tools. | TestGeneticMinininBoundingBoxF inder | 4 | 1,935188 Us | BA-F-RRE -h I | benchmarks
: 2.
Individual plugins could also have a view associated with them, that is later rendered in the main TestPoperOf TuoSizePacker | 6 | '279.69 us | 56741 us | 181375 us | _ e
i TestGenet icMinimumBoundingBoxFinder | i i 20.8045 us | 19.461 us | uket pacxage
window at a location decided by the host application based on the type of the component being ' olinensiisisosker | | 2 i | o 5 e BenchmarkDotNet
i estPower0Of TwoSizePacker | i 7. us | .2930 us | .7 us i . us i
. i TestUnknownSizePacker | i 419.02 us | 8.2242 us | 16.613 us | 411.85 us |
eXpOI“ted from a plugln The casiest Way to create pluglns 1S USIIlg the MEF'S EXport attrlbute as TestGenet icMinimamBoundingBosF iader | | 5,300.71 us | 117.8111 us | 343.861 us | 5,186.73 us |
illustrated in the picture below where exporting of a metadata exporter (IMetadataWriter) is TesPousrOf Tuogizepacker | 10 | “"3£3.99 us | 19-5187 us | 28938 u2 | "513.97 e |
i TestGeneticMinimumBoundingBoxFinder | 10 | 8,651.11 us | 219.1280 us | 625.184 us | ,732.35 us |
shown. MEF is used mainly for its simplicity that allows developers to create simple (without a
view) plugins easily.
[PluginMetadata(typeof(LibGDXMetadatalWriter), nameof(LibGDXMetadataWriter), "Plugin containing LibGDX metadata writer implementation”, "PaunPacker"”, "1.0.0.0", typeof(LibGDXMetadatalriter))]
[ExportedTypeMetadata(typeof(LibGDXMetadataWriter), nameof(LibGDXMetadataWriter), "MetadataWriter implementation that targets 1ibGDX library", "PaunPacker", "1.0.8.0")]
[Export(typeof(IMetadataliriter))]
Ltk) v+ THetadatauriter The application that has been developed meets all the goals and it is also easily extensible by plugins containing
/17 <inheritdoc /> - new (parts of) algorithms for packing, tools for image processing and metadata exporters. Also, a simple application
public Task WriteAsync(string path, string textureAtlasPath, MetadataCollection metadata, CancellationToken token = default)
L /e Continues that allows performing benchmarks of the individual packing algorithms in order to compare them has been
developed. Suggestions for future work include the implementation of new features for enhancing the user
experience and optimizing the performance of the implemented packing algorithms.

