
PaunPacker - Texture Atlas Generator
author: Patrik Dokoupil | supervisor: Mgr. Pavel Ježek, Ph.D. | bachelor thesis 2019

Introduction

Solution Approach and Architecture

Benchmarks

Goals
The PaunPacker should meet the following goals:
- Free to use
- Extensible (allowing to create and load plugins)
- Offer additional image processing features (padding, trimming, etc.)
- Have GUI
- Provide a basic toolset for plugin development
- Implement several heuristic algorithms:
 - Maximal rectangles algorithm - Guillotine algorithm
 - Genetic based algorithm
 - Bottom-Left algorithm
- Implement alias creation

1) Minimum bounding box finding - Finds a minimum bounding box which contains the input
 rectangles r1, ..., rn. Generally, some sequence of bounding boxes b1, ..., bk could be tested.
2) Place rectangles - Placement of the input rectangles r1, ..., rn into a fixed size bounding box bi.

3) Sort rectangles - Sorting of the rectangles according to some criterion.

Sort rectangles

us
es

Place rectangles

1. Sort
2. Placement into bi

uses

Input rectangles

Minimum bounding box finding

...

✘

step 1

b1

✘

step 2

b2

✘

step i-1

bi-1

step i

bi

...r1 r2 rn

input

PaunPacker.GUI

.exe

outputs

Texture atlas

Metadata

PaunPacker.Core

.dll

+

User

Plugins
.dll

.dll
.dll

controls

interacts

loads, renders and controls

The main parts of the software solution are:
1) PaunPacker.Core library (.NET Standard 2)
 - Contains implementations of packing algorithms together with some packing related types.
 - Meant to serve as a basic toolset for future plugin development.
 - Allows to reuse the algorithms for general rectangle packing, i.e. not dependent on GUI of the
 application.
2) PaunPacker.GUI application (.NET Core 3)
 - The main application with which the user interacts.
 - Loads and renders the plugins.
 - Outputs texture atlas and metadata
 obtained from controlling the algorithms
 loaded from plugins and core library.
3) Plugins (.NET Standard 2/.NET Core 3)
 - Contain implementations of extensible
 components or exports components
 that are implemented in the core library.

Currently, there are two simple benchmark scenarios:
 1) Squares of dimensions 1x1, ..., NxN
 2) N rectangles of random dimensions

 The benchmarks are only expected to be used for a comparison of the individual implementations and not for
general comparison of packing algorithms.

Plugins and Extensibility

GUI Application

BenchmarkRunner

.exe

Plugins
.dll

.dll
.dll

Support

.dll

get imported types

import exported types

1.

2.

BenchmarkDotNet

NuGet package

.cs
benchmark 1
benchmark 2
benchmark 3

benchmark n
...

CIL (MSIL)

benchmark 1
benchmark 2
benchmark 3

benchmark n
...

BenchmarkClass

pa
ss
ty
pe
of
(B
en
ch
ma
rk
Cl
as
s)

MetadataWritersRegion

MinimumBoundingBoxFinderRegion

ImageSortersRegion

PlacementAlgorithmsRegion

PlacementImageSortersRegion

LoadedImagesTreeView

loaded img1
loaded img2

...

ImageView

ImageProcessorsRegion

TextureAtlasView

Transparent layer above

Loaded plugins dialog
LoadedPluginsView

MainWindowView

Conclusion

loaded plugin1's name
loaded plugin2's name
...

Show details
PluginView

Selected image processor's view:

ImageProcessorView

 Texture packing is a process of joining textures together into a single, larger texture called
texture atlas. Texture atlases are used in 2D game development to improve rendering performance
by reducing the number of draw calls. The process of creating a texture atlas is illustrated in the
following picture:

 Texture packing is one of many applications of optimization problems called packing problems
which are proved to be NP-hard. However, the goal of this thesis is not to devise new algorithms
but to create an extensible application with GUI that will allow users to generate texture atlases.
This application will be called PaunPacker.

 The application that has been developed meets all the goals and it is also easily extensible by plugins containing
new (parts of) algorithms for packing, tools for image processing and metadata exporters. Also, a simple application
that allows performing benchmarks of the individual packing algorithms in order to compare them has been
developed. Suggestions for future work include the implementation of new features for enhancing the user
experience and optimizing the performance of the implemented packing algorithms.

- Skyline algorithm

 In the PaunPacker we have decided to use one of the standard approaches to rectangle packing
which is to decompose the process of finding a "packing" of the input rectangles into three steps:

 The main feature of PaunPacker is the ability to parameterize the whole algorithm by the
individual steps that could be loaded from a plugin. Therefore instead of only dealing with self-
contained algorithms, the algorithms are allowed to consist of three independent parts that are
dealt with separately.

 The PaunPacker was from the very beginning designed with a strong emphasis on extensibility.
The result is that the application could be extended by plugins that contain implementations of
packing algorithms (or any of their three steps), metadata exporters and image processing tools.
Individual plugins could also have a view associated with them, that is later rendered in the main
window at a location decided by the host application based on the type of the component being
exported from a plugin. The easiest way to create plugins is using the MEF's Export attribute as
illustrated in the picture below where exporting of a metadata exporter (IMetadataWriter) is
shown. MEF is used mainly for its simplicity that allows developers to create simple (without a
view) plugins easily.

 The GUI of the PaunPacker allows the user to adjust various settings, generate texture atlas, process
individual images of the texture atlas, load images, manipulate loaded images, etc. and it is shown in the
following picture:

 Not only the packing algorithms are extensible, but also the GUI of the application is extensible because the
types exported from plugins could have a view associated with them. Such a view is then rendered into a proper
region inside the main window. To simplify working with regions and views they are showing, Prism Framework
is used. Prism is also a second option (besides previously mentioned MEF) for loading of plugins but unlike
MEF it also performs their initialization, loading and then showing their views inside a corresponding region.
When compared to MEF, the Prism offers a more general and powerful approach for plugin development
because it allows creating plugins with views. The picture below shows PaunPacker's main window view and its
decomposition into views and regions. Regions determine the place where the view of a particular (selected)
extensible component is rendered. Notice that the views could be composed of other views recursively.

 In addition to the main application for texture atlas generation, a simple CLI application that allows running
benchmarks of minimum bounding box finders and placement algorithms has been developed. The benchmarks
measure time and average area of the packing result. The benchmarks are generated at runtime for all the types
that were loaded from plugins and that could be easily instantiated (via IoC resolution). These benchmarks are
later compiled using Roslyn and passed to BenchmarkDotNet for an execution.

