State Final Examination (Sample Questions)

2025-06-23

1 Deterministic finite automata (shared topics)

1. Write a definition of the language L(A) accepted by a given deterministic finite automaton A = (Q, %, d, qo, F') including
a definition of its extended transition function §*.

2. Let S C ¥* be a nonempty finite set of words, @ be the set of all prefixes of words in S (including the empty word
¢ and the words from §), and A = (@, X, d,¢,S) be a deterministic finite automaton with the state set Q. Define its
transition function ¢ so that it accepts the language

L(A) = {w € " | w contains some s € S (as a substring)}.

3. Construct a deterministic finite automaton accepting the language

{w € {0,1}* | w contains 010 or ends with 10}.

Solution sketch
1. L(A) :={w € X* | §*(qo,w) € F} where §*: Q x ¥* — @ is defined inductively by

6*(g,€) :==q,
0" (q,wz) := §(6*(q,w), x)

for every g € Q, w € ¥* and z € X.

2. For every w € @ and = € ¥,

w, ifwées,
d(w,z) :=4¢s, ifw¢sS andwr ends with some s € S (take e.g. the shortest),
v, where v is the longest suffix of the word wz that is in @), otherwise.

3. The automaton A = ({e,0,1,01, 10,010}, {0, 1}, 6,¢,{10,010}) is on the figure above.

2 Simple memory manager (shared topics)

Assume throughout the entire question a 32-bit little endian processor, bit 0 is understood to be the LSb.

Our goal is to implement a simple heap for dynamic allocation of sub-blocks of memory within a continuous block of memory
(not to be confused with the heap data structure). The entire heap will have a fixed size given during initialization, and will
not use any optimizations beyond the function described here. We want to organize the memory of our heap as a continuous
sequence of sub-blocks, where each sub-block must always be aligned to 2 bytes. Each sub-block in the heap is either free
or allocated (used).

Free sub-blocks have the following structure:

+0: Size [16-bit] = size of the sub-block including this header. Previous text implies that bit 0 of this field would always
be 0, thus we do not store this zero. Instead, bit 0 of the Size field has a special meaning — it indicates whether the
sub-block is free or allocated. 0 = free, 1 = allocated. Thus, for a free sub-block:

bit 0: 0 = free

+2: Next [16-bit] = offset of the next free sub-block from the start of the entire heap — thus free sub-blocks form a singly
linked list. The last free sub-block has the value -1 in this field.

+4: the rest of the sub-block is unused and filled with zeros.

Allocated sub-blocks have the following structure:

+0: Size [16-bit] = has the same meaning as in a free sub-block, except:

bit 0: 1 = allocated

+2: Payload — the actual data of the sub-block (our allocator returns all these bytes zeroed out).

Note: Allocated sub-blocks do not have a Next field — the memory location that held the Next field in a free block becomes
part of the Payload upon allocation, and must be zeroed out by the heap allocator.

For the whole heap, we remember the offset of the first free sub-block from the start of the heap. Initially, the heap consists of
exactly 1 free sub-block, whose size corresponds to the entire heap size. When a request is made to allocate a new sub-block,
we receive the requested payload size in bytes and find the first large-enough free sub-block with the lowest offset from the
start of the heap (i.e., a first-fit strategy).

Assume the following class skeleton in C#, which you will complete (you may write the required implementation in C#,
Java, or C++ — for Java or C++, assume an equivalent implementation of the skeleton in the given language, and you may
suitably adjust constructor and method parameters according to the conventions of the given language) (ushort is a 16-bit
unsigned integer):
class Heap {

private ushort _firstFreeOffset = 0;

private byte[] _heap;

public Heap(byte[] availableMemory) {
_heap = availableMemory;
// TODO
}
private ushort FindFirstFree(ushort payloadSize) { // TODO }
private void Mark(ushort offset, bool isFree) { // TODO }

public void SetUshort(ushort offset, ushort value) { ... }
public ushort GetUshort(ushort offset) { ... }
public ushort Alloc(ushort payloadSize) { ... }
public void Free(ushort payloadOffset) { ... }

}

You should not implement the SetUshort and GetUshort methods, but instead use them appropriately in your code. The
SetUshort method stores the value at the given offset from the start of the heap in little endian order. The GetUshort
method returns a 16-bit value stored in the heap at the given offset (interpreting bytes in little endian order).

You should also not implement the Alloc and Free methods — these methods will be implemented by someone else using
your methods. For task 4 below, it is useful to know: the A1loc method allocates space in the heap for a payloadSize-sized
payload and returns the offset of the payload; the Free method takes the offset of a payload returned by some call to Alloc
and frees the sub-block to which the payload belongs.

Tasks:
1. Complete the constructor implementation to correctly initialize an empty heap.

2. Write the implementation of the FindFirstFree method, which returns the offset of the first free sub-block of a suitable
size. This method does not modify the state of the sub-block.

3. Write the implementation of the Mark method, which assumes that there is a valid heap sub-block at the given offset,
and changes its state to "allocated" or "free" based on the isFree parameter. The method will not modify the Next
field.

4. Assume that we have been given 22 bytes of memory for our heap — this memory is initially filled with zero bytes.
Assume we then perform the following operations on the heap:

A = Alloc(2)
B = Alloc(4)
C = Alloc(2)
Free(B)

Write a hexdump of the 22 bytes of memory in the final state of the heap after all these operations — fill your solution
into one of the tables below (multiple copies are included redundantly in case you need to revise your answer).

offset +0 +1 +2 +3 +4 +5 +6 +7

0x0000

0x0008

0x0010

offset +0 +1 +2 +3 +4 +5 +6 +7

0x0000

0x0008

0x0010
offset +0 +1 +2 +3 +4 +5 +6 +7
0x0000 05 00 00 00 06 00 0E 00

Solution sketch

0x0008 00 00 05 00 00 00 08 00
0x0010 FF FF 00 00 00 00 = -

3 Inner product (shared topics)

Consider a map of the form (z,y) = 27 Ay, where A € R"*" is a symmetric matrix.
1. Decide whether the following statements are true:
(a) If the map (z,y) = 27 Ay is an inner product on R™, then det(A4) > 0.

(b) If B € R™ " is a symmetric nonsingular matrix, then the expression (r,y) = 7 B%y defines an inner product on
R™.

2. Consider an inner product on R™ given by the expression (x,y) = 7 Ay for a suitable matrix A € R"*". For this
inner product, express the Cauchy—Schwarz inequality using matrix and arithmetic operations instead of the norm and
innner product.

3. Decide whether the following statement is true: For every natural number n > 1, the matrix

1 1
e)
1 2 n

(i.e., A € R™™" has entries a; ; = min(i, j)) is positive definite. Formulate the relevant criterion and verify it, or show
a counterexample.

Solution sketch
1. (a) Yes, the matrix A is positive definite. Therefore, it has positive eigenvalues and consequently also the determinant.
(b) Yes, the matrix B? is symmetric and has positive eigenvalues. Therefore, it is positive definite.

2. Cauchy—Schwarz inequality: For every z,y € V we have

[(z,)| <[l - [lyll-

In our case the inequality takes the form

2T Ay| < VaT Azv/yT Ay.

3. Yes, matrix A is positive definite. Its Cholesky decomposition reads as A = LL”, where

1 0 ... 0
L =

: - 0

1 1

Positive definiteness can also be verified by Gaussian elimination or by Sylvester’s criterion.

4 Central Limit Theorem (shared topics)

1. State the Central Limit Theorem.

2. Assume that a program processes one input in a random amount of time with a mean of 100 ms and a standard
deviation of 20 ms. Use the Central Limit Theorem to estimate the probability that processing one hundred inputs
will take more than 10.3 seconds. Write the exact formula using ® and also compute the value using the table below.

3. Explain the assumptions we made (does it matter what the distribution of the program’s runtime is?) and how realistic
they are.

Solution sketch 1. Statement of the theorem: Let X7, Xs, ... be identically distributed i.i.d.

Rk X1+t X,)—
mean g and variance o2. Define Y,, = W#

Then
Y, 4 N(0,1).

In other words, if F,, is the cummulative distribution function of Y;,, then

lim F,(z) = ®(z) for every z € R.

n—oo

We say that the sequence Y,, converges to N(0,1) in distribution.

random variables with

2. Let X; denote the runtime for the -th input. The event X1 + - - - + X100 > 10.3 is equivalent to Yigo > 10:2=1000.1 _ 7 5

1v/100-0.02

According to the CLT, P(Yipp < 1.5) = ®(1.5). Therefore, the desired probability is approximately 1 — ®(1.5) ~ 1 —0.93 =

0.07, that is, roughly 7%.

3. The CLT does not require any special assumptions about the distribution of the individual X; (as long as the variables are
identically distributed with finite mean and variance). However, we do assume independence — which might be problematic;
for example, if the computer is overloaded, it may run slower on all inputs. We also replace the limit with the value at

n = 100, but this is typically not an issue when applying the CLT.

5 Bellman equation (specialization UI-SU, UI-ZPJ, UI-ROB)

The robot operates within a finite state space S. For each state s € S, we know the set of possible actions A(s) and the
probability P(s'|s,a) that the robot transitions from state s to state s’ € S given the action a € A(s). The robot receives a
reward R(s) when traversing a state s € S, but the total utility from state s’ is discounted by a factor of v = 0.9.

(1) Write the equation for calculating the maximum utility U(s) in state s.

The diagram illustrates the state space, the rewards in each state, and two possible actions from each state, except for the
terminal states F and F'. The probability that the robot transitions to a state indicated by the directed edge of the chosen
action is 0.8, while with the remaining probability of 0.2, it transitions to the state indicated by the second possible action.

(2) Write the system of equations whose solution yields the utilities of the individual states, given the robot’s actions

(policy) B— C,C — D,and D — F.

(3) Which algorithm would we use to solve this system?

(4) How can we determine from the computed utilities whether the specified choice of actions yields the maximum possible

utilities for all states?

(5) How would we proceed to find actions for all states that maximize utility?

Solution sketch

L. U(s) = R(s) +7maXaea(e Syes Ps'ls, 0)U(s')
2. up = =3+ 0.9(0.8u. + 0.2uy)

e =1+ 0.9(0.8ug + 0.2 - 5)

wg =1+ 0.9(0.8 - 6 + 0.2uy)

3. Any appropriate algorithm for solving a system of linear equations: Gaussian elimination, Gauss—Jordan elimination,
approximate value iteration, etc.

4. For every state s, we check whether the maximum in Bellman’s equation is attained for the chosen action.

5. If the condition in (4) is not satisfied, we modify policy by choosing actions maximizing (1) for the current utility. We
repeat steps (2-4) until (4) is satisfied.

6 Linear regression (specialization UI-SU, UI-ZPJ)

1. For training data set Xy,qin and target values tyrq;n describe the linear regression model, and a loss function that is
minimized in the linear regression method.

2. Explain how to explicitly calculate the optimal solution on the training data.
3. Formulate the optimization using the stochastic gradient descent.

4. Comment on advantages and disadvantages of both approaches, especially from the point of view of possible error
checking on a validation data set.

Solution sketch Model definition and detailed expressions are in the slides for first two lectures on NPFL129.

We need to solve the equation where the derivative of the loss is equal to zero. This can be done either using the inverse
matrix, or using the SVD decomposition. The disadvantage of this method is that inverting the matrix is slow and the
matrix is large. Additionally, the solution may overfit the training data.

SGD requires less memory and we can monitor the validation loss and use early stopping to avoid overfitting.

7 Clustering (specialization UI-SU, UI-ZPJ)

1. Describe briefly the k-means algorithm. How are the centroids (cluster centers) initialized? How do their positions
change during the run of the algorithm? When does the algorithm terminate?

2. What objective does the k-means algorithm optimize?

3. We ran the k-means algorithm for k¥ = 3 on data with three clusters shown below. The different markers (x, o, H)
show the clusters found by the algorithm. Why did the algorithm fail to find the optimal clusters according to the
objective above? How can we increase the chance that the algorithm finds the optimal clusters?

Solution sketch

1. The initial centroids can be selected randomly from the data. During the run of the algorithm, each data point is first
assigned to the closest centroid and then the centroid is recomputed as the average of data points assigned to it. These
steps iterate until the algorithm converges (the assignment of points to clusters does not change), or for a specified
number of iterations.

2. The algorithm minimizes

N K
Zzzi,k |z — i,

i=1 k=1

where IV is the number of points, K is the number of clusters, and z; , denotes that the point x; is assigned to cluster
with center py (z; 5 = 1 if the point is assigned to the cluster and 0 otherwise).

] 0o ® xx"

3. The middle cluster that is assigned to the part of the left one is much smaller than the other two clusters. The chance
for a better result can be increased by re-starting the algorithm with different initial centroids and taking the best
found clustering based on the objective above.

8 EM Algorithm (specialization UI-SU)

1. Describe the EM algorithm.

2. Consider the probabilistic model defined by a Bayesian network with a variable Cluster with values from the set {1, 2}
as a parent of variables Color and Holes with domains {blue, green} and {yes,no}, respectively. There is no direct
edge between the variables C'olor and Holes.

Create a list of the model parameters and initialize them by values from the set {0.4,0.6}. The parameters should
form a valid Bayesian network and the conditional probabilities given Cluster = 1 and given Cluster = 2 should not
be identical.

3. Choose one of the parameters in the previous model and perform its EM update from your initial parameters using
the following data. The questionmark “?” denotes missing values.

You may use the following approximations: 0.6° x 0.4% ~ 0.064, 0.6 * 0.4% ~ 0.096, 0.6% % 0.4! ~ 0.144, 0.6 x 0.4° ~ 0.216.

Solution sketch

1. The EM algorithm is used to estimate model parameters from data with missing values or latent variables. It takes

Color Holes | Cluster
blue no ?
blue yes ?
blue no ?

green yes ?

green yes ?

some initial model parameters and iterates steps E and M until convergence.

E Infer the expected values of the hidden variable to "complete" the data.

M Find the maximal likelihood parameter estimate for the full data.

2. The model parameters (with the initial values for the next step):

parameter initial value | denoted by
P(Cluster = 1) 0.6 0
P(Color = blue | Cluster = 1) 0.6 0B1
P(Color = blue | Cluster = 2) 0.4 052
P(Holes = yes | Cluster = 1) 0.6 0
P(Holes = yes | Cluster = 2) 0.4 02

3. The simplest update is for the parameter §. We iterate the data [color;, holes;] rows and sum), P(Cluster =
1|color;, holes;) divided by the number of data rows.

Color Holes P(Cluster = 1|color;, holes;)
0-051-(1—0m1) _ 0.6%0.6%0.4 _ 0.6x0.6x0.4 __

blue o 005 (1=0m1) - (1=0)053-(1=003) — 0.6%0.6:0.440 4504706 — 0.4s0.6 — 0-0

blue es 0-0p1:-01 . 0.6x0.6%0.6 _ 0.216 _ 0 77

! 0-051-0m1+(1—0)-0p2-0m2 0.6%0.6%0.640.4%0.4%0.4 _ 0.216+0.064 _ °°

blue no as above, 0.6
0-(1—051)-0m1 _ 0.6%x0.4x0.6 _

green yes 6-(1—051)-0m1+(1—0)-(1—0p52)-0mz 0.6%0.4%0.6+0.4%0.6%0.4 0.6

green yes as above, 0.6

For our initial parameters, the (rounded) updated value 6 is w = 3—517 = 0.634.

9 Noisy channel and machine translation (specialization UI-ZPJ)

1. Describe how the machine translation task can be transformed to the noisy channel model (in the context of the
traditional statistical machine translation).

2. Explain, how to train parameters of both main components (models) in this approach.

Solution sketch

— The classical statistical machine translation is often formulated as the decoding problem in the noisy channel model,
that searches for the most probable sentence in the target language e that could generate the sentence in the source
language f:

e* = arg méixP(e|f)

Using the Bayes rule, we can rewrite this expression as:

e* = arg méixP(f\e) - P(e)

Where:
— P(f]e) is the translation model — models how the sentence e would be translated to f,
— P(e) is the language model — expresses the probablity and fluency of the sentence in the target language
— The language model is typically trained on large monolingual corpora in the target language. Often, n-gram models

are used, that approximate the probability of a sentence as a product of conditional probabilities:

n

P(e) = HP(€i|6i717 cees€imntl)

i=1
The probability is estimated using relative frequencies of word sequences, typically with additional smoothing.

— The translation model is trained from paralel corpora, that contain corresponding sentences in the source and target
languages. The training consists of:

1. Word alignment, e.g. using IBM models.

2. Phrase extraction based on the alignment.

3. Computation of translation probabilities, e.g.:

_ frequency of pair (f,e)

P(fle) =

frequency of e

	Deterministic finite automata (shared topics)
	Simple memory manager (shared topics)
	Inner product (shared topics)
	Central Limit Theorem (shared topics)
	Bellman equation (specialization UI-SU, UI-ZPJ, UI-ROB)
	Linear regression (specialization UI-SU, UI-ZPJ)
	Clustering (specialization UI-SU, UI-ZPJ)
	EM Algorithm (specialization UI-SU)
	Noisy channel and machine translation (specialization UI-ZPJ)

