
State Final Examination (Computer Science Sample Questions)

Spring 2020

1 Automata and grammars (3 points)
1. Formulate Kleene’s Theorem. Give definitions of all notions used in the formulation.

2. Prove that for any regular language L, the language

L′ = {w | every prefix of w of odd length belongs to L}

is also a regular language. (Hint: Show that the complement of the language L′ is regular.)

2 Flows in networks (3 points)
1. Define the problem of a maximum flow in a network.

2. Define an augmenting path and use it to characterize a maximum flow in a network.

3. Does the selection of (some) shortest augmenting path guarantee that the augmenting path (Ford-Fulkerson) algorithm
terminates and runs in polynomial time in all cases?

4. Assume that we are also given maximum capacities for a flow through each vertex in a network. Reduce the problem of
finding maximum flow in such a network to the standard problem of maximum flow in a network without constraints
for vertices.

3 Databases (3 points)
1. Consider a schedule T12 = X1(A), W1(A), U1(A), X2(A), R2(A), U2(A), S1(B), R1(B), U1(B). The notation uses

Xi and Si exclusive and shared lock requests, respectively, of the i-th transaction, Ui denotes unlocking. Ri and Wi

correspond to reading from and writing to the specified variable in the i-th transaction. Does the schedule T12 satisfy
the requirements of the 2-phase (2PL) locking protocol? If not, fix it. If possible, do not change the global order of all
the read and write operations included in the schedule.

2. Using the table Temperature(Y ear,Month,Day,Degrees) containing data for the years 2010 to 2019, write a query
that enumerates all the months of 2019 that experienced temperatures below zero for at least two days in a row. (Ignore
situations where the temperature dropped below zero the very last day of a month and the very first day of the next
month.)

4 Object oriented programming and threads (3 points)
1. In the context of the C# program below, explain the difference at the machine code level between the call of the

non-virtual method f and the call of the virtual method m, both inside Print. What mechanism is used at runtime to
choose whether to execute the code block B or D during the x.m call in Print?

class X {
public void f() { A }
public virtual void m() { B }

}

class Y : X {

1

public new void f() { C }
public override void m() { D }

}

class Program {
static void Main() {

Print(new Y());
}
static void Print(X x) {

x.f();
x.m();

}
}

(If you prefer the C++ programming language, you can solve this task in an equivalent C++ context.)

2. Write a C++, C# or Java declaration of a function whose task is to sort, in place, an array of objects of some type T
(the array is one of the function parameters) according to some general criterion – callers of the function must be able
to pass an arbitrary sorting criterion as one of its arguments. Also write the declarations of all the necessary types.

Provide a usage example for the function defined above, assuming we want to sort an array of the Person types below.
Provide two different usage scenarios: one sorting the array by Person’s last name, and one sorting the array by
Person’s age.

class Person {
public string FirstName;
public string LastName;
public int Age;

}

3. Write a C++, C# or Java function MergeSort, which will take 3 arguments – an array of objects of some type T, a
description of the sorting criterion (as designed above), and an integer number N that is a power of 2. The function
should execute parallel sorting of the input array in exactly N threads using the merge sort algorithm with the given
sorting criterion (the final phase of merging the remaining N parts of the array may run in less than N threads). You
can use a temporary array in your solution. It is not necessary to process partial results or do other sophisticated
optimizations, nor to address all possible corner cases of the merge sort algorithm – focus on correct evaluation of the
sorting criterion and on conceptually correct creation and coordination of multiple threads.

5 Computer architecture (3 points)
Figure 1 shows the structure of an IP packet header. Each row represents one 32-bit word consisting of four bytes. The
numbers of the left indicate offset in bytes from the start of the packet. Individual bits are numbered from 0 to 31, with
the most significant bit (MSb) being numbered 0 in this case. Multi-byte fields are stored using big endian ordering,
and the numeric fields contain unsigned integers. The Header Length field stores the length of the header in 32-bit words.
The Total Length field stores the total length of the packet (including the header) in bytes. A packet that is too long can
be split into multiple parts—fragments. Fragments are also IP packets (the header is the same), but require interpreting
the Fragment Offset field, which stores the offset of the data part of the fragment in the data part of the original (non-
fragmented) packet. Fragment offset is always aligned to 8 bytes and is stored in the header as a number of 8-byte blocks
from the start of the original data part. The Options part has a variable length and does not have to be present, because it
contains optional fields. The Padding is also a variable-length field and pads the header with zeros so that it always ends
at 32-bit (4 byte) boundary. The Data part contains the packet payload, the format of which depends on the protocol.

Part A

Answer the following questions based on the information about the IP header and its structure:

1. What is the minimal and maximal possible length of a packet header in bytes?

2. What is the minimal and maximal possible length of an entire packet in bytes?

3. What is the maximal possible fragment offset in bytes and which number would represent it in the Fragment Offset
header field?

4. Can a fragment with the maximal possible value in the Fragment Offset field be considered valid? Consider if there
could be a valid non-fragmented packet from which such a fragment would be created. Justify your answer.

2

Version Header Length DSCP ECN Total Length

Identification 0 DF MF Fragment Offset

Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options Padding (0)

Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 B

4 B

8 B

12 B

16 B

20 B

. . .

Figure 1: IP header structure

Part B

Figure 2 shows the contents of a memory area containing
an IP packet (all values shown are hexadecimal). The IP
packet header, the structure of which is shown in Figure 1,
starts at address 0xCAFE0010.

1. At which address starts the data part of the packet
and what is the length of the data part in bytes?

2. Does the packet header contain any optional part
(Options) and padding? If yes, what is the length
of the optional part (including the padding) in bytes?

Address Memory contents
0xCAFE0000 BE EF 7C B2 7D 45 FE 9D
0xCAFE0008 DC 02 8E 30 CA EA 08 00
0xCAFE0010 45 00 00 34 B1 BF 40 00
0xCAFE0018 36 06 06 FA 04 1F C6 3E
0xCAFE0020 C0 A8 01 05 01 BB 9A 6C
0xCAFE0028 82 6A E0 E4 5E 31 44 E4
0xCAFE0030 80 10 00 73 43 2B 00 00
0xCAFE0038 01 01 08 0A F4 DF 51 5B
0xCAFE0040 1C 30 A2 1C FE 31 1F C0

Figure 2: Contents of memory holding an IP packet

3

Part C

Assume that a router uses a simple 32-bit RISC processor with load/store architecture. The processor has 16 general-purpose
32-bit registers named $r0–$r15, with register $r0 always containing the value of 0. The table in Figure 3 provides a brief
overview of basic instructions of the processor. In the description, we use imm32 for 32-bit constants and label for a symbolic
replacement of an address in the code. Memory addressing is byte-oriented, but the processor can only access 32-bit words
at aligned addresses, i.e., addresses divisible by 4. When accessing the memory, the processor uses the little-endian byte
ordering.

Memory access
lw $rd, imm32 ($rs) Load 32-bit word to register R[rd] = Memory[R[rs] + imm32]
sw $rs, imm32 ($rd) Store 32-bit word to memory Memory[R[rd] + imm32] = R[rs]
Arithmetic and logic operations
add/sub $rd, $rs, $rt Add/subtract registers R[rd] = R[rs] ± R[rt]
addi/subi $rd, $rs, imm32 Add/subtract register and immediate R[rd] = R[rs] ± imm32
and/or/xor $rd, $rs, $rt Bitwise and/or/xor with register R[rd] = R[rs] op R[rt]
andi/ori/xori $rd, $rs, imm32 Bitwise and/or/xor with immediate R[rd] = R[rs] op imm32
sll/slr/sra $rd, $rs, $rt Shift logical left/right, right arithmetic R[rd] = R[rs] op (R[rt] mod 32)
slli/slri/srai $rd, $rs, imm32 Shift logical left/right, right arithmetic R[rd] = R[rs] op (imm32 mod 32)
li $rd, imm32 Load immediate to register R[rd] = imm32
move $rd, $rs Move (copy) value between registers R[rd] = R[rs]
Comparison and conditional branches
slt $rd, $rs, $rt Signed set on less than betwen registers if (R[rs] <signed R[rt]) then R[rd] = 1 else R[rd] = 0
sltu $rd, $rs, $rt Unsigned set on less than between registers if (R[rs] <unsigned R[rt]) then R[rd] = 1 else R[rd] = 0
slti $rd, $rs, imm32 Signed set on less than with immediate if (R[rs] <signed imm32) then R[rd] = 1 else R[rd] = 0
sltiu $rd, $rs, imm32 Unsigned set on less than with immediate if (R[rs] <unsigned imm32) then R[rd] = 1 else R[rd] = 0
beq $rs, $rt, label Branch on registers equal if (R[rs] == R[rt]) then PC = label (address)
bne $rs, $rt, label Branch on registers not equal if (R[rs] != R[rt]) then PC = label (address)
Unconditional jumps
j label Jump to address (label) PC = label (address)
jr $rs Jump to address in register PC = R[rs]

Figure 3: Basic instructions of the processor

Given the information about the IP header and its structure (Figure 1), the information about the processor architecture
limitations, and the provided instruction set (Figure 3), write a fragment of code that decrements the value of the Time To
Live (TTL) field by 1, but only if it is non-zero (to prevent underflow). Assume that register $r1 contains the address
of the IP packet, and that the address is aligned (to a 4-byte boundary).

6 TCP/IP architecture (3 points)
Your network traffic monitoring tool captured the following packet:

0000 00 1f 1f c0 ca 33 54 e1 ad 15 39 92 08 00 45 003T...9...E.
0010 00 5c 21 f2 40 00 40 06 df f9 c0 a8 00 10 5f d8 .\!.@.@......._.
0020 18 20 8f e6 00 50 c7 f5 f6 7d f8 77 22 8c 80 18P...}.w"...
0030 01 f6 34 3d 00 00 01 01 08 0a 30 c9 1c 8b 9b 1a ..4=......0.....
0040 19 29 47 45 54 20 2f 20 48 54 54 50 2f 31 2e 30 .)GET / HTTP/1.0
0050 0d 0a 48 6f 73 74 3a 20 77 77 77 2e 61 70 61 63 ..Host: www.apac
0060 68 65 2e 6f 72 67 0d 0a 0d 0a he.org....

1. The captured traffic uses the IP protocol with source address 192.168.0.16 (the IP packet header structure was given
in the previous question). In the dump, delineate the link layer data and the internet layer data. What information is
probably contained in the link layer data ?

2. Based on the packet content, also estimate the location of the transport layer data and the application layer data,
and explain your estimate (an exact answer would require knowing other standard protocol structures, however, an
informed guess can work quite well in this case). What is the size of the data at the individual layers (all four) in
bytes ?

3. Also estimate what applications are communicating with each other using this packet, and what other protocols in
addition to the IP protocol are used. Explain your answer.

4. Assume the communicating applications need to transfer a data block larger than what the network equipment on the
path between the sender and the recipient can transport in one piece (for example the sender would request sending
a 1 MB data block using the write syscall on the corresponding network connection). In this situation, where would
the block be split and recombined ?

4

7 Set theory (specialization question – 3 points)
1. Give the definition of strict well-ordering. It is not necessary to define the notion of ordering itself.

2. Is the set Q ∩ [0,∞) of nonnegative rational numbers strictly well-ordered by the standard relation “<” ? Explain.

3. Give the definition of an ordinal number.

8 Ramsey theory (specialization question – 3 points)
1. State the Ramsey theorem (for finite graphs, with k colors).

2. Prove that there exists an integer n such that the following claim holds. Suppose S is a set of n axis–aligned rectangles
(not necessarily of the same size) in the plane. If every point of the plane is contained in at most two of the rectangles,
then S contains a subset of 100 pairwise disjoint rectangles.

3. Prove that every triangle–free graph with n vertices contains an independent set of size at least
√
n− 1.

9 Perfect codes (specialization question – 3 points)
1. What does it mean that a binary error-correcting code is perfect?

2. Determine the minimum distance of the linear code over Z2 generated by vectors (0, 0, 1, 0, 1, 1), (1, 0, 0, 1, 0, 1), and
(1, 1, 0, 0, 1, 1). Is this code perfect?

5

	Automata and grammars (3 points)
	Flows in networks (3 points)
	Databases (3 points)
	Object oriented programming and threads (3 points)
	Computer architecture (3 points)
	TCP/IP architecture (3 points)
	Set theory (specialization question – 3 points)
	Ramsey theory (specialization question – 3 points)
	Perfect codes (specialization question – 3 points)

