State Final Examination (Mathematics Sample Questions)

Fall 2021

1 Continuous functions (3 points)

- 1. Define what it means that a function $f \colon \mathbb{R} \to \mathbb{R}$ is *continuous* at a point $b \in \mathbb{R}$.
- 2. For each of the two functions below, determine (and justify briefly) whether it is continuous in the point 0.

$$f_1(x) = \begin{cases} x & \text{for } x \in \mathbb{Q} \\ -x & \text{for } x \notin \mathbb{Q}. \end{cases}$$
$$f_2(x) = \begin{cases} 0 & \text{for } x = 0 \\ \exp(-1/x) & \text{for } x \neq 0. \end{cases}$$

3. Let $f : \mathbb{R} \to \mathbb{R}$ be a function satisfying $0 \le f(x) \le 1$ for each $x \in \mathbb{R}$. Suppose that f is Riemann-integrable on the interval [0,1], and define the function $g : [0,1] \to \mathbb{R}$ by

$$g(x) = \int_0^x f(t) \, dt$$

Is g continuous on the interval (0,1)? Justify.

2 Limit of a sequence (3 points)

- 1. Define what it means that a real number $L \in \mathbb{R}$ is the *limit* of a sequence of real numbers $(a_n)_{n=0}^{\infty}$.
- 2. Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers with a limit $L \in \mathbb{R}$. Let us define a sequence $(b_n)_{n=0}^{\infty}$ by the formula $b_n = a_n a_{2n}$. Can we deduce from this information whether $(b_n)_{n=0}^{\infty}$ has a limit, and determine the value of the limit if it exists?
- 3. Define a sequence $(c_n)_{n=0}^{\infty}$ by these identities:

$$c_0 = 1$$

$$c_n = \sin(c_{n-1}) \qquad \text{for } n \ge 1$$

Does $(c_n)_{n=0}^{\infty}$ have a limit? If it does, what is the limit's value?

3 Primitive function (3 points)

- 1. Define the notion of primitive function (a.k.a. antiderivative) to a function f on an interval (a, b).
- 2. For each of the next two statements, determine whether it is true or false. Justify briefly your answers.
 - (a) If a function f is nondecreasing on an interval [a, b], then f has a primitive function on (a, b).
 - (b) If a function f has a primitive function F on an interval (a, b), and if F has a local minimum in a point $c \in (a, b)$, then f(c) = 0.
- 3. Compute

$$\int_{\pi/2}^{\pi} \sqrt{\sin x} \cdot \cos x \, dx$$

4 Linear mappings (3 points)

- 1. Define the kernel Ker(f) of a linear map f between vector spaces U and V.
- 2. Prove that the kernel Ker(f) forms a subspace of U.
- 3. Find a basis of the kernel of the linear map that represents the second derivative on the space of real polynomials of degree at most 5.

5 Inner product (3 points)

Consider space \mathbb{R}^3 and two inner products

$$\langle x, y \rangle = x^T y, \langle x, y \rangle_A = x^T A y, A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}.$$

- 1. Prove that $\langle x, y \rangle_A$ indeed forms an inner product (it is sufficient to show the property $\langle x, x \rangle_A > 0$ for each $x \neq 0$).
- 2. Find a linear map $f : \mathbb{R}^3 \to \mathbb{R}^3$ such that for each $x, y \in \mathbb{R}^3$ we have

$$\langle f(x), f(y) \rangle = \langle x, y \rangle_A$$
.

6 Eigenvalues (3 points)

Consider matrices

where

$$A = \begin{pmatrix} 3 & 3 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 3 \end{pmatrix}.$$

- 1. Define matrix similarity.
- 2. Decide whether matrices A, B are similar and justify your answer.
- 3. Prove $\lim_{n\to\infty} (\frac{1}{4}A)^n = \lim_{n\to\infty} (\frac{1}{4}B)^n$.

7 Combinatorial counting (3 points)

How many different square matrices of order 4 that contain 9 zeros, but no row or column is completely filled with zeros, can be found above the field \mathbb{Z}_3 ?

8 Graph connectivity (3 points)

For a simple graph G with at least two vertices define the notion of the vertex connectivity and the edge connectivity.

Decide whether any graphs with the following parameters exist.

- 1. $k_v(G_1) = 2, k_e(G_1) = 3,$
- 2. $k_v(G_2) = 3, k_e(G_2) = 2,$
- 3. $k_v(G_3) = 2, k_e(G_3) = 3$ and G_3 is a cubic graph (i.e. all its vertices are of degree 3).

9 Logic (3 points)

- 1. Give a definition (one of mutually equivalent definitions) when a theory S is a simple extension of a theory T.
- 2. Find an example of propositional theories S, T_1 , T_2 such that S is a simple consistent extension both of T_1 and of T_2 and $T_1 \cup T_2$ is inconsistent (i.e. contradictory), or show why such theories do not exist.
- 3. What is the number of mutually nonequivalent simple extensions S of the propositional theory $T = \{p \to q\}$ over the set of letters $\mathbb{P} = \{p, q, r\}$ in which $q \to r$ does not hold, i.e., $S \not\models q \to r$?