State Final Examination (Mathematics Sample Questions)

Fall 2019

1 Limits of functions (3 points)

- 1. Define the limit of a function at a point.
- 2. Let f be a function defined on R. Consider the following two statements P and Q: P: lim_{x→∞} f(x) = 0
 Q: A sequence (a_n)[∞]_{n=1} defined as a_n = f(n) for every n ∈ N has limit zero.

Q. A sequence $(a_n)_{n=1}$ defined as $a_n = f(n)$ for every $n \in \mathbb{N}$ has mint zer Decide whether P implies Q and whether Q implies P if:

- (a) f is any function,
- (b) f is a monotonic function,
- (c) f is a continuous function.

You do not need to justify your decision.

3. Find the limit

$$\lim_{x \to \pi/2} \frac{1 - \sin x}{1 + \cos 2x}$$

2 Definite integral (3 points)

- 1. State the substitution theorem for definite integral.
- 2. Evaluate the following integral:

$$\int_{1}^{2} \frac{3^{x} + 2}{3^{2x} + 3^{x}} \, dx$$

3. Decide which of the following interval contains the numerical value of the integral: $(-\infty, 0]$, (0, 1/2], (1/2, 1], (1, 3], $(3, \infty]$. (This can be determined without evaluating the integral – errors in the previous calculations are not an excuse for an incorrect answer.)

3 Metric spaces (3 points)

Let (X, d) be a metric space, $|X| \ge 2$.

1. Decide whether (X, d') is a metric space for d' defined as

$$d'(x,y) = \min(d(x,y),1)$$

for all $x, y \in X$. Justify your answer.

2. Distance between two nonempty subsets A and B of the metric space (X, d) is defined as

$$D(A,B) = \inf_{a \in A, b \in B} d(a,b).$$

Show that D is not a metric on $\mathcal{P}(X) \setminus \{\emptyset\}$ (where $\mathcal{P}(X)$ denotes the power set of X).

4 Linear mappings (3 points)

Let $f, g: U \to V$ be linear mappings (homomorphisms) between vector spaces U, V. Decide whether the following statements are true. Explain your answers.

- 1. $Ker(f) \cap Ker(g) \subseteq Ker(f+g)$,
- 2. f(U) + g(U) = (f + g)(U).

5 Cauchy–Schwarz inequality (3 points)

- 1. Define the term "the norm induced by an inner product".
- 2. Formulate the Cauchy–Schwarz inequality.
- 3. Prove that both sides of the Cauchy–Schwarz inequality are equal for linearly dependent vectors.

6 Random graphs (3 points)

Assume a random graph on the vertex set $\{1, 2, \ldots, 100\}$ with edge probability 1/3 independently for each edge.

- 1. What is the probability that a (randomly choosen) 4-tuple of vertices induces a subgraph isomorphic to C_4 ?
- 2. What is the probability that the subgraph induced by vertices $\{10, 20, 30, 40\}$ is isomorphic to C_4 if we know that the pairs of vertices $\{10, 30\}$ and $\{20, 40\}$ do not form edges?
- 3. What is the expected value of the number of induced copies of C_4 ?

It is not necessary to evaluate the answers numerically. Factorials, fractions, binomial coefficients etc. are accepted.

7 Binary relations (3 points)

- 1. For a binary relation $f \subseteq X \times X$ define when f is reflexive, symmetric and transitive.
- 2. Decide which of these properties are satisfied for $f_1 \subseteq \mathbb{N} \times \mathbb{N}$ defined as

 $(a,b) \in f_1 \Leftrightarrow a, b$ are not relative primes.

3. Decide which of these properties are satisfied for $f_2 \subseteq \mathbb{N} \times \mathbb{N}$ defined as

 $(a,b) \in f_2 \Leftrightarrow a \text{ divides } b.$

8 Spanning trees (3 points)

Let G be a graph with the vertex set $\{u_1, \ldots, u_{100}, v_1, \ldots, v_5\}$ such that vertices u_1, \ldots, u_{100} induce a complete graph, vertices v_1, \ldots, v_5 form a cycle (in this order), and u_1, v_1 are joined by an edge. There are no other edges in G.

The weight of any edge $u_i u_j$ is equal to 5 for all $1 \le i < j \le 100$, the weight of any edge $v_i v_j$ is equal to $\max\{i, j\}$ for $j = (i \mod 5) + 1$, and the weight of the edge $u_1 v_1$ is equal to 10.

- 1. Define the spanning tree of a graph and the minimum spanning tree (together with the assumptions for the minimum spanning tree problem).
- 2. Evaluate the weight of the minimum spanning tree of G.
- 3. How many minimum spanning trees of G exist?

9 Logic (3 points)

- 1. Write a definition of a *consistent theory* (in predicate logic).
- 2. Express the following statements as propositional formulas $\varphi_1, \varphi_2, \varphi_3$ over $\mathbb{P} = \{r, s, t\}$ where the letters r, s, t represent (resp.) that "Radka / Sarah / Tom is at school".
 - (a) If Tom is not at school, Sarah is not there either.
 - (b) Radka does not go to school without Sarah.
 - (c) If Radka is not at school, Tom is there.
- 3. Determine whether the theory $T = \{\varphi_1, \varphi_2, \varphi_3\}$ is consistent by using the tableau method, an implication graph, or a resolution closure. That is, it is not enough to only try the individual truth assignments.