
State Final Examination (Sample Questions)

Fall 2018

1 Automata (3 points)

1. Give a definition for a (generative) grammar, the language generated by a grammar and Chomsky hierarchy of gram-
mars.

2. Construct a grammar generating the following language

L = {uvuR | u ∈ {a, b}∗, v ∈ {a}∗},

where uR denotes the mirror image of the word u.

3. Show where in Chomsky hierarchy is the language L. That is, determine the weakest class of Chomsky hierarchy
containing the language L and show that no grammar from a weaker class of Chomsky hierarchy can generate L.

2 Algorithms and Data Structures (3 points)

1. Define AVL trees and their basic properties (invariants).

2. Describe how to insert an element with value 3 to the following AVL tree (preserving all the invariants). Explain each
step.

3. Discuss the time complexity of (1) the search for a value and (2) the insert operation, especially compared to the basic
variant of a binary search tree.

6

1 8

0 4 7 9

2 5

3 Databases (3 points)

1. Consider the following relational schema: AUTHOR(ID, Name, DateOfBirth), BOOK(Title, NumberOfPages, Au-
thorID).

Explain the term “integrity constraint”. Add the missing integrity constraints to the presented schema.

Write the following query using SQL: return the names of authors who wrote at least ten books with at least one
hundred pages.

2. Explain the term “functional dependency between attributes”. Extend one of the tables in the presented schema such
that the table is not in the third normal form.

1

4 Programming Languages (3 points)

Choose an arbitrary mainstream, object-oriented, statically typed programming language (C++, C#, or Java), denote your
selection in your answer. Then:

1. Implement/declare a suitable object-oriented interface (using interfaces or abstract classes) for non-oriented graphs
G = (V,E) in their most common form (each edge is between exactly two vertices, there is at most one edge between
each pair of vertices). The main motivation is to define a common grounds for different graph implementations
(representing the graph as list of neighbours, as matrix of incidence, ...), so that a programmer of graph algorithms (e.g.,
BFS, minimal spanning tree, ...) can write the code only once and it will still work with various graph representations.

The interface should cover 3 basic entities (vertex, edge, and graph). The vertex provides access to all adjacent edges,
the edge provides access to its two adjacent vertices, the graph provides access to the list of all vertices and list of all
edges. The interface provides read-only access to this data – i.e., the graph structure is immutable.

Each vertex and each edge has a tag. Vertex tag may indicate whether the vertex has been visited, for instance. Edge tag
may indicate its weight. In general, different tag types may be suitable for different applications, however, a particular
graph instance has fixed data types for vertex tags and for edge tags. The interface should be sufficiently generic so
that the programmer may choose an arbitrary vertex tag and edge tag types for the graph instance. Furthermore, the
interface will provide means to read and write the tag of each vertex and edge.

2. Consider an implementation of your interfaces where vertex tags indicate the membership of the vertex in a particular
connected component of the graph ((type int, zero-based index) and edge tags represent their lengths (type float, or
similar type in your language of choice). The edge tags are initially set, the vertex tags must be computed by you.

Write the body of a function, using your interface, which will receive a graph and a real number r as arguments. Your
code will compute the connected components of the graph and set the vertex membership information in each vertex
tag (actual values in the tags are not important, the important thing is that vertices in the same component have the
same tag). Edges which are longer than r are ignored when computing the components (i.e., as if they were not present
in the graph at all).

5 Locks (3 points)

For you convenience, we start with a simplified overview of the C# language parallelism concepts sufficient to solve this
question (however, if you are an experienced C# programmer and understand the C# language concepts more accurately
than presented here, you can rely on your understanding instead):

Every object class instance contains exactly one unique lock instance. This lock primitive can be locked using the lock
statement (see line 13 in the code below) – it is a typical lock implementation with support for recursive locking and with
passive waiting for lock release. Note the opening curly brace immediately following the lock command is the actual lock
request (to acquire the lock – see line 13), while the closing pair curly brace of the same block is the lock release (unlock)
operation (see line 18).

The Parallel.For(int fromInclusive, int toExclusive, Action<int> body) method creates several new threads –
the number of the new threads equals the number of logical processors on the target system. These worker threads then call
the method passed as the body argument of Parallel.For (in the code below the worker threads call the ProcessFilename
method) so that for every i from the <fromInclusive, toExclusive) interval, the body method is called exactly once.
Which of the worker threads will call the body method for a specific value of i is not defined, the order in which the specific
i values are used is not defined either. The Parallel.For method will return to the calling thread after all worker threads
have finished all calls to the body method for all values of i from the defined interval.

Assume the following class written in the C# language:

1 class JpegCounter {
2 public JpegCounter(string[] filenames) { _filenames = filenames; }
3
4 string[] _filenames;
5 int _count;
6 object _globalLock = new object();
7
8 public int CountJpegs() {
9 _count = 0; Parallel.For(0, _filenames.Length, ProcessFilename); return _count;

2

10 }
11
12 void ProcessFilename(int i) {
13 lock (_globalLock) {
14 string ext = Path.GetExtension(_filenames[i]).ToUpper();
15 if (ext == ".JPG" || ext == ".JPEG") {
16 _count++;
17 }
18 }
19 }
20 }

1. In a multithreaded program context, briefly explain what a race condition is.

2. Decide and explain whether the use of the _globalLock variable in the code above is necessary for the correctness,
or, if omitting may enable a race condition during the execution of the code. Is it possible that the ProcessFilename
method without using locks (i.e. after deletion of lines 6, 13, and 18) would return a different value than the version
of the method shown here above even if we provide the same input to the JpegCounter class?

3. Assume you are developing a program that will create a new JpegCounter class instance, and will provide it with
10,000,000 (ten million) file names, where roughly 10 percent of the names have the .jpg or .jpeg extension. Further
assume a typical dual core processor used to execute our program. Estimate how many times the provided CountJpegs
method implementation will be faster (or slower) than its sequential equivalent (i.e. a variant of the method with a
simple for cycle and just sequentially doing all the calls of the ProcessFilename method in the for cycle directly in
the context of the calling thread). Explain if, or ideally how, it is possible to modify the ProcessFilename method so
that its parallel version is faster than the one provided in the code above.

6 Networking (3 points)

1. Describe (briefly) the purpose of IP protocol from the perspective of layered architecture. Which services it offers to
the layer(s) above and which services it requires from the layer(s) below?

2. IPv4 protocol natively supports datagram fragmentation. Explain when such fragmentation may occur and how it can
be prevented.

3. Consider application of IP over Ethernet line (1000BASE-T). Explain the principles being used to translate IPv4 and
IPv6 addresses to MAC addresses for local datagram delivery.

7 Duality of LP (3 body)

1. State the strong duality theorem for linear programming.

2. We are given an undirected graph G = (V,E) and its vertices s1, s2, t1, t2 ∈ V . For i = 1, 2, let Pi be the set of all
paths between vertices si and ti in G, and let P = P1 ∪ P2. Consider the following linear program LP1 (there is a
variable xp for every p ∈ P):

max
∑
p∈P

xp

s.t.
∑
p:e∈p

xp ≤ 1 for ∀e ∈ E

xp ≥ 0 for ∀p ∈ P .

Formulate the dual program (use y for the vector of dual variables).

3. Consider the graph G = (V,E) with V = {s1, s2, t1, t2, a, b, c, d} and

E = {(s1, a), (s2, a), (s1, b), (s2, b), (a, c), (b, d), (t1, c), (t2, c), (t1, d), (t2, d)}.

If it exists, find an optimal solution of the (primal) linear program LP1 above, and, using the strong duality theorem,
prove that the solution is optimal.

3

8 Computational Linguistics: Morphological, Syntactic and Semantic Analy-
sis of Natural Languages (specialization question – 3 points)

1. Explain the notion of “ontology” in the processing of natural language semantics.

2. Describe the semantic network Wordnet.

3. Explain the notion of “anaphora” and list basic categories of anaphora in texts.

9 Computational Linguistics: Formal Languages and Automata (specializa-
tion question – 3 points)

The most popular tool for morphological analysis in late eighties had been the so-called Two-level morphology of Kartunnen
and Koskenniemi.

1. Identify the two levels of representation mentioned in the name of the theory.

2. Which basic formal framework has been used for morphology processing in the Two-level morphology?

3. List at least two basic ideas of this mechanism.

10 Computational Linguistics: Basic Formalisms for Description of a Natural
Language (specialization question – 3 points)

1. List and describe three basic components of Chomsky’s Transformational grammar.

2. Explain the notion of transformation in Chomsky’s Transformational grammar – which two parts define transforma-
tions?

3. Why it is necessary to use typed feature structures in unification grammars?

11 Databases and Web: Validity of XML data (specialization question – 3
points)

1. Explain the term “valid XML schema”.

2. Provide at least 3 differences between languages DTD and XML Schema.

3. Using XML Schema describe element address which contains subelements street, number, city, and postcode in any
order. Can such a schema be expressed also in DTD? If so, how. If not, why.

12 Databases and Web: XSLT (specialization question – 3 points)

1. Briefly describe how the XSLT processor works. Explain the term “implicit XSLT template”.

2. What is the output of application of an empty XSLT script on a document
containing only element <h1 c="blue">Hello world!</h1>?

3. Provide an XSLT script whose output is a list of names and values of all attributes of any input XML document.

13 Databases and Web: Relational completeness, joining of tables and SQL
(specialization question – 3 points)

1. Using a suitable simple example explain the difference between inner and outer join of SQL tables.

4

2. Explain the terms “relation” and “relationally complete language”. Is the SQL relationally complete? Why?

14 Orthonormal basis (3 body)

1. Define the notion of orthonormal basis.

2. Let z1, z2, z3, z4 be an orthonormal basis of R4 and let u = z1 − z2 + 2z3 − 2z4.

– Compute ‖u‖.

– Decide whether the vector v = z1 − z2 + 3z3 + 4z4 is orthogonal to the vector u.

– Find the orthogonal projection of u onto the orthogonal complement of the set {z1, z2}.

15 Determinants and the similarity of matrices (3 body)

1. Define the notion of determinant of a matrix. Decide whether the equality det(A + B) = det(A) + det(B) holds in
general (prove or disprove).

2. Compute the determinant of the matrix
0 0 1 1 1 1
1 0 0 0 0 1
1 0 1 1 1 1
0 1 1 1 0 1
0 1 0 1 0 0
0 0 1 0 0 0

 .

3. Define the notion of similarity of matrices. Prove that similar matrices have equal determinants.

16 Regular matrices (3 body)

1. Define the notion of regular matrix. Prove that the set of real regular matrices of order n and the operation of matrix
multiplication form a group.

2. Find the number of regular matrices in Z3×3
2 .

17 Taylor series (3 body)

Give Taylor series of the function log(1 + x), centered at x = 0.

Compute the limit
lim

x→+∞

(
x2(log(x+ 1)− log x)− x

)
.

18 Integration (3 body)

State the formula for integration (i.e., finding antiderivative) by parts.

Use it to find ∫
ex sinx .

5

19 Graphs (3 body)

1. Define the notion of trail and closed trail in a graph.

2. State the neccessary and suficient condition for the existence of a closed trail containing all edges of a given graph.

3. Show that every graph has an orientation such that the in-degree and the out-degree of each vertex differs by at most
one.

20 Generating functions (3 body)

Let a0, a1, a2 . . . be a sequence of numbers defined by the following system of recurrences:

a0 = 2

a1 = −1
an = 3an−1 − 2an−2 for n ≥ 2.

Find the generating function of this sequence. Express the result as a formula in closed form, i. e., without infinite sums.
(You are not required to find a closed-form expression for the an terms themselves; an expression for the generation function
is enough.)

21 Normal subgroups (3 body)

Define a normal subgroup of a group.

For a positive integer n, let Sn be the symmetric group of all permutations on {1, . . . , n} and let An be the set of permutations
in Sn which have sign (a.k.a. signum) equal to 1. Prove that An is a subgroup of Sn and prove or disprove that An is a
normal subgroup of Sn.

22 Logic (3 points)

Write down the following two statements as formulas of predicate logic in a suitably chosen language (with unary predicates
for “wants”, “ looks for a way”, “seeks excuses”).

1. He who wants (to do something), looks for a way, he who does not want (to do something), seeks excuses.

2. He who does not look for a way, seeks excuses.

Prove in some formal proof system (tableaux method, resolution method, Hilbert calculus) that the latter statement follows
from the former.

6

	Automata (3 points)
	Algorithms and Data Structures (3 points)
	Databases (3 points)
	Programming Languages (3 points)
	Locks (3 points)
	Networking (3 points)
	Duality of LP (3 body)
	Computational Linguistics: Morphological, Syntactic and Semantic Analysis of Natural Languages (specialization question – 3 points)
	Computational Linguistics: Formal Languages and Automata (specialization question – 3 points)
	Computational Linguistics: Basic Formalisms for Description of a Natural Language (specialization question – 3 points)
	Databases and Web: Validity of XML data (specialization question – 3 points)
	Databases and Web: XSLT (specialization question – 3 points)
	Databases and Web: Relational completeness, joining of tables and SQL (specialization question – 3 points)
	Orthonormal basis (3 body)
	Determinants and the similarity of matrices (3 body)
	Regular matrices (3 body)
	Taylor series (3 body)
	Integration (3 body)
	Graphs (3 body)
	Generating functions (3 body)
	Normal subgroups (3 body)
	Logic (3 points)

