
Minimal representatives and the isomorphism

problem for graph-like objects

Petr Vojtěchovský

December 3, 2024

University of Denver

Table of contents

1. Computational complexity: theory versus practice

2. The graph isomorphism problem

3. Canonical and minimal representatives

4. Minimal representatives of endofunctions

5. Counting groupoids up to isomorphism

1

Computational complexity: theory

versus practice

Computational complexity

Takeaway: Theoretically best algorithms are not always practical.

f (x) is O(g(x))

if there are M, x0 such that |f (x)| ≤ M|g(x)| for all x ≥ x0

f (x) is Õ(g(x))

if it is O(g(x)(log g(x))c) for some c ≥ 0

2

Primality testing: The AKS algorithm

IsPrime(n) is the problem to decide whether n is a prime number.

Theorem (Agrawal-Kayal-Saxena 2002)
IsPrime(n) is in P, with running time Õ((log n)12).

� In terms of the number d of digits of n, the complexity is

Õ(d12).

� Improved to Õ(d6) by Pomerance and Lenstra in 2005.

3

Primality testing: The Miller-Rabin test (1980)

The Miller-Rabin test is a probabilistic primality test. It can be

made deterministic under certain assumptions.

Let n be an odd integer with n − 1 = 2sd , d odd.

Let a be comprime to n.

Then n is a strong probable prime to base a if

ad ≡ 1 (mod n) or

a2
rd ≡ −1 (mod n) for some 0 ≤ r ≤ s.

4

Primality testing: The Miller-Rabin test (1980)

� If n is not a strong probable prime to (some) base a, it is

composite.

� A composite number is a strong probable prime for at most

1/4 of all possible bases a.

� Running k rounds of the test with random choices of a will

(incorrectly) declare a composite number to be prime with

probability ≤ 4−k .

� The running time for k rounds is O(k(log n)3).

� If ERH holds, it suffices to test fewer bases, yielding a

deterministic algorithm with Õ((log n)4).

� The number of bases that need to be tested for a deterministic

algorithm is astonishingly small if n is small. If n < 264, it

suffices to test a ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}.

5

Linear programming: The Simplex algorithm

Goal: Given c ∈ Rn, b ∈ Rm and A ∈ Rm×n,

maximize cT x subject to x ≥ 0 and Ax ≤ b.

(wikipedia)

The Simplex algorithm (Dantzig 1947) travels along the vertices of

the feasible region, never decreasing the value of the objective

function, and eventually reaching an optimal solution.

6

Linear programming: The Simplex algorithm

� The key parameter of the simplex algorithm: pivoting rules, a

procedure that decides which vertex should be visited next.

� For each popular pivoting rule it has been shown that the

algorithm requires exponential time.

� With the oracle pivoting rule (which takes unit amount of

time at any juncture and always ends up traveling along a

shortest path in the end), the best bound is O(nlog n),

although O(n) is suspected.

� The oracle rule is not an algorithm. The complexity of the

simplex algorithm is not known.

7

Quasi-polynomial time algorithms

An algorithm is quasi-polynomial if it runs in O(n(log n)
c
) for some

constant c.

Note that nlog n << bn.

(Apply log to get (log n)2 and n log b, respectively.)

We will encounter a quasi-polynomial time algorithm shortly.

8

Linear programming: Two algorithms in P

(wikipedia)

Theorem (Khachiyan 1979, Karmarkar 1984)
The ellipsoid method and the interior point method are in P.

All three methods are used in practice, particularly the interior

point method and the simplex method. The simplex method is

probably most popular despite the fact that it has not been proved

to be in P.
9

The group isomorphism problem

The group isomorphism problem is to decide if two groups are

isomorphic.

The problem is sensitive to how the groups are given.

If the groups are given by presentations, the group isomorphism

problem is undecidable. This is not surprising in view of:

Theorem (Novikov 1955)
The group word problem is undecidable in a strong sense. There is

a finitely presented group G for which no algorithm can determine

if two words in the generators of G represent the same element.

10

The group isomorphism problem for multiplication tables

If the groups are given by multiplication tables, the problem is

decidable but its complexity is not known. It is a good candidate

for a problem properly between P and NP-complete.

Naive algorithm: O(n!n2). Try all n! permutations and check if

they are homomorphisms.

Tarjan’s 1978 algorithm: O(nlog n+O(1)). How?

� By Lagrange’s theorem, a group of order n has a generating

set of size ≤ log n. (The bound is best possible, see Zn
2.)

� Assign f on a generating set and check if it extends to an

isomorphism.

Sun improved this in 2023 to O(n(log n)
5/6

) for p-groups of class 2

and exponent p. Babai: “After 50 years, we finally have something

substantial to talk about.” 11

The group isomorphism problem in practice

In practice, groups are given by presentations, or by a generating

set of permutations or matrices.

There are efficient algorithms (very sensitive to the number of

generators) for calculating various structural properties of the

groups, such as the center, the derived subgroup, etc

Note: All FSGs are two-generated.

This allows us to work with groups much larger than the

quasi-polynomial bound should permit.

But p-groups remain difficult to handle. There are no efficient

invariants for distinguishing p-groups and there might not be any.

12

The graph isomorphism problem

Babai’s result

Takeaway: Many problems can be reduced to questions about

graphs. Once again, specialized algorithms, often with unknown

complexity, rule.

Two graphs G = (V ,E) and G ′ = (V ′,E ′) are isomorphic if there

is a bijection f : V → V ′ such that for all x , y ∈ V we have

(x , y) ∈ E if and only if (f (x), f (y)) ∈ E ′.

The graph isomorphism problem is to decide if two graphs are

isomorphic.

Theorem (Babai 2015, 2017)
The graph isomorphism problem is quasi-polynomial.

Note: The group isomorphism problem seems to be of key

importance to the graph isomorphism problem.

13

Reduction of group IP to graph IP

The group isomorphism problem (and more) is reducible to the

graph isomorphism problem.

14

Planar graph isomorphism problem is in P

Edmonds proved that trees can be canonically labeled (see the

next Section) in polynomial time.

(Colbourn and Booth)

Theorem (Colbourn and Booth 1981)
Planar graphs can be canonically labeled in polynomial time.

They did not implement their algorithm (and I am not sure if it

has been implemented).

15

Graph IP in practice: Canonical labelings in nauty and Traces

nauty and Traces (McKay and Piperno, 2014–2024) is a state

of the art software for graph isomorphisms. It is based on

canonical labelings, which are in turn based on equitable colorings.

(nauty and Traces manual)

Special graphs that require exponential time in nauty and

Traces are known but do not typically appear.

16

Canonical and minimal

representatives

Canonical and minimal representatives

Let G be an object and [G] its equivalence class (say its

isomorphism class).

A canonical labeling is a function c : G 7→ c(G) ∈ [G] that is

constant on every [G]. Then c(G) is a canonical representative of

[G].

This solves the equivalence problem: G ≡ H iff c(G) = c(H).

If the objects are linearly ordered, a minimal labeling is a function

m : G 7→ m(G) ∈ [G] such that m(G) = min{H : H ∈ [G]}. Then
m(G) is a minimal representative of [G].

Clearly, minimal representatives are canonical representatives.

There exist general algorithms for finding minimal representatives

of the action of a permutation group on k-element subsets

(Linton, Jefferson et al). 17

A discouraging min rep example from graph theory

Identify a graph with its incidence matrix. Order incidence

matrices lexicographically.

Problem: Find the minimal incidence matrix of a graph under the

action of permuting the rows and columns of the incidence matrix.

Theorem (Crawford et al 1996)
The above problem is NP-complete.

“We trust that the above demonstration will discourage finding

lex-leading-incidence-matrices as an approach to finding canonical

forms for graphs and, thereby, to graph isomorphism.”

18

Why minimal representatives?

It is a self-organizing principle. Many general constructions were

found by staring long enough at small minimal representatives.

It is a space-saving measure for extensive libraries of objects (due

to a large overlap between consecutive members).

A silly example: Minimal (greedy) latin squares.

1 2 3

2 1 ?

? ? ?

1 2 3

2 3 1

3 1 2

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

Exercise: Call two lists equivalent if they coincide as multisets.

Minimal representative = sorted list. Is there a better algorithm for

equivalence?

19

Minimal representatives of

endofunctions

Endofunctions and the transformation monoid

Takeaway: You usually win if you can convert the problem to a

graph isomorphism problem for planar graphs.

An endofunction is a function t : X → X .

All endofunctions on X form a monoid under composition, the full

transformation monoid TX of X . The identity function on X is the

identity element of TX .

If |X | = n then |TX | = nn.

For X = {1, . . . , n}, identify t : X → X with (t(1), t(2), . . . , t(n)).

Order TX lexicographically.

20

Labeled functional digraphs

A digraph G = (V ,E) is a functional digraph if for every u ∈ V

there is a unique v ∈ V such that u → v is in E .

Example: A connected component of a labeled functional digraph:

21

Conjugation versus relabeling

Given an endofunction t : X → X , G (t) = (X ,E) with

E = {(x , t(x)) : x ∈ X} is a functional digraph.

Given a functional digraph G = (X ,E), define tG : X → X by

(x , tG (x)) ∈ E .

These constructions are inverse to each other.

The symmetric group SX acts on TX by conjugation:

f : t 7→ ftf −1.

The effect of conjugation on G (t):

If t(x) = y then ftf −1(f (x)) = ft(x) = f (y),

so (x , y) ∈ G (t) iff (f (x), f (y)) ∈ G (ftf −1).

To obtain G (ftf −1), relabel the vertices of G (t) according to f .

22

Minimal representative of a conjugacy class

Task: Find the minimal representative in the SX -conjugacy class

of t ∈ TX .

Equivalent task: Find a minimal labeling of the correspondigng

functional digraph G (t).

It is reasonable to expect an efficient algorithm since G (t) is

planar.

23

1 is in a cycle

The smallest label must be in a cycle:

24

Consecutive layers

Layers are populated consecutively:

(a = first unfinished vertex, b = first unused label)

25

Ordering connected components

Suppose that every connected component has been minimally

labeled. How should the components be ordered?

Shorter cycles come first:

(2, 1, 4, 5, 3, . . .) < (2, 3, 1, 5, 4, . . .)

Makes sense: (2, 1) < (2, 3, 1).

26

Ordering connected components

Cycles of the same length:

(2, 1, 4, 3, 3, . . .) > (2, 1, 1, 5, 4, . . .)

Yet (2, 1) < (2, 1, 1). What’s going on?

Well, (2, 1) < (2, 1, 1) because (2, 1) is a proper prefix of (2, 1, 1).

Cycle length comparison =
27

Ordering connected components: The spelling bee ordering

Answer: Use the spelling bee ordering. This is just like the

lexicographic ordering except that proper prefixes come later.

Example: aardvark < antelope < ant < a < beer < bee

(2024 Scripps National Spelling Bee finalists, photo by Craig Hudson)

28

Structural labels

We can now assume WLOG that G (t) is connected. It remains to

determine the position of 1, and the order in each layer.

29

Finishing

Populating the layers: According to the structural edge labels.

Positioning 1 on the cycle:

� We can try all possibilities.

� Better: Pick a starting position, keep going around the cycle,

collecting the first entry from each structural vertex label in

every round. Position 1 where the resulting concatenated

structural label is largest. In particular, the indegree at 1 must

be maximal on the cycle.

Note: Carefully exploring ties among structural edge labels leads

to a description of the automorphism group of G (t).

30

Computational complexity of the algorithm

� Constructing G (t): O(n).

� Calculating structural labels: O(n2).

� Determining the location of 1 in each connected component:

O(n2) total.

� Ordering the components: O(n2).

Theorem (Mitchell, Mukherjee and V 2024)
Finding the minimal representative of t ∈ TX in its SX -conjugacy

class and finding a suitable conjugating permutation can be done

in O(|X |2).

Note: A better approach could give O(n log n).

31

Counting groupoids up to

isomorphism

Diagonals

Takeaway: There are too many groupoids. Group actions and

invariant domains can help.

In a multiplication table of a groupoid (X , ∗), the diagonal can be

seen as an endofunction

d∗ : X → X , d∗(x) = x ∗ x .

If f : (X , ∗) → (X , ◦) is an isomorphism, we have

x ◦ y = f (f −1(x) ∗ f −1(y))

and thus d◦(x) = x ◦ x = f (d∗f
−1(x)), so d◦ = fd∗f

−1.

32

Diagonals first in a lexmin model

Traditionally, the lexicographically minimal multiplication table is

understood as the lexicographically smallest vector obtained by

concatenating the rows. But this is only a convention.

We can reorder the cells so that the diagonal cells are considered

first. Then, searching for a lexmin copy of (X , ∗), we must first

find an isomorphic copy of (X , ∗) with the smallest diagonal. This

is precisely the problem we just solved.

33

Lexmin by SAT solvers

Janota, Chow, Araújo, Codish and V 2024 implemented a SAT

solver-based algorithm for finding lexmin groupoids.

Basic setup:

f : (X , ·) → (X , ∗), xi→j is a variable meaning f (i) = j

Constraints:

� B(X) = {
∑

j∈X xj→i =
∑

j∈X xi→j = 1 : i ∈ X}
� For all r , c, v ∈ X

E (r ∗ c = v) = {(xi→r ∧ xj→c) ⇒ xi ·j→v : i , j ∈ X}.

34

Lexmin by SAT solvers: The algorithm

Basic algorithm:

A:= empty set

for r,c in [1..n] do

v:=1

while not SAT(B(X) and E(r*c=v)) do

v := v+1

A := Append(A, r* c=v)

With many improvements (such as focusing on the diagonal first),

the algorithm performs quite well and is in some situations

competitive with nauty when used as an isomorphism test.

35

Mapping types

For a set X of a fixed cardinality n, the minimal representatives of

SX -conjugacy classes are known as mapping types.

Theorem (de Bruijn 1972)
The number of mapping types on a set of cardinality n is

Mn =
∑ ∞∏

i=1

(∑
j |i

(jnj)
)ni

i−ni/(ni !),

where the first summation runs over all (n1, n2, . . .) such that

n1 + 2n2 + 3n3 + · · · = n. (Good luck!)

We get M1 = 1, M2 = 3, M3 = 7, . . . , M10 = 7318. Values up to

M1000 have been calculated.

36

Right self-distributive groupoids

In 1997, Ježek used the idea of mapping types to enumerate right

self-distributive groupoids, that is, groupoids (X , ∗) satisfying

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

Theorem (Ježek 1997)
The number of right self-distributive groupoids of order n is

n 2 3 4 5 6

absolutely 9 224 14067 3717524 ?

up to isomorphism 6 48 720 33425 35527077∗

∗ = corrected by us, Ježek reported 35527485

37

From the master himself ...

38

Right self-distributive groupoids revisited

A common phenomenon in enumerative combinatorics: Anybody

can calculate an, it takes a lot of effort to do an+1, and an+2 is

presently impossible.

Mukherjee and V managed to count the number of right

self-distributive groupoids of order 6 and 7 absolutely:

a6 = 25488943921 (30 min), a7 = 3021268037534480 (1 month)

We are double-checking a7.

Main ideas:

� Sn acts on the nn
2
space of all multiplication tables.

� Let it act on partial tables (partial domains).

� Subdivide the table: the diagonal, the rest of the first row, etc.

� Apply the orbit-stabilizer theorem iteratively.

� Finish some cases by hand, e.g., the diagonal 1111223. 39

Sets of mutually right distributive groupoids

We were led into this due to our work in knot theory.

The third Reidemeister move naturally corresponds to the right

self-distributive law.

There are homology theories (due to Przytycki) based on a set S

of mutually right distributive groupoids, that is,

(x ∗ y) ◦ z = (x ◦ z) ∗ (y ◦ z) for any two operations in the set.

How big can S get?

40

Sets of mutually right distributive groupoids: A construction

Fix c ≤ k ≤ n and consider any groupoid such that

x ∗ y =

{
c , if x ≤ k ,

∈ {1, . . . , k}, otherwise.

There are kn(n−k) such groupoids.

Example: c = 2, k = 3, n = 5:

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

1 3 2 3 1

1 1 1 3 1

Any two such groupoids right distribute over each other.

41

L. Babai, Graph isomorphism in quasipolynomial time

[extended abstract], STOC’16–Proceedings of the 48th Annual

ACM SIGACT Symposium on Theory of Computing, 684–697,

ACM, New York, 2016.

C.J. Colbourn and K.S. Booth, Linear time automorphism

algorithms for trees, interval graphs, and planar graphs, SIAM

J. Comput. 10 (1981), no. 1, 203–225.

J. Crawford, M. Ginsberg, E. Luks and A. Roy,

Symmetry-breaking predicates for search problems,

Proceedings 5th International Conference on Principles of

Knowledge Representation and Reasoning, 1996, 148–159.

N.G. de Bruijn, Enumeration of mapping patterns,

J. Combinatorial Theory Ser. A 12 (1972), 14–20.

41

The GAP Group, GAP – Groups, Algorithms, and

Programming, Version 4.13.1; 2024,

https://www.gap-system.org.

C. Jefferson, E. Jonauskyte, M. Pfeiffer and R. Waldecker,

Minimal and canonical images, J. Algebra 521 (2019),

481–506.

C. Jefferson, M. Pfeiffer, R. Waldecker and E. Jonauskyte,

images, Minimal and Canonical Images, Version 1.3.2 (2024),

GAP package, https://gap-packages.github.io/images/

M. Janota, C. Chow, J. Araújo, M. Codish and

P. Vojtěchovský, SAT-based techniques for lexicographically

smallest finite models, Proceedings of the AAAI Conference on

Artificial Intelligence 38(8) (2024), 8048–8056.

41

https://www.gap-system.org
https://gap-packages.github.io/images/

J. Ježek, Enumerating left distributive groupoids,

Czechoslovak Math. J. 47(122) (1997), no. 4, 717–727.

E. Klarreich, Algorithmic Advance: the Group Isomorphism

Problem, Communications of the ACM 67 (February 2024),

no. 2, 9–11.

S. Linton, Finding the smallest image of a set, in ISSAC ’04:

Proceedings of the 2004 international symposium on symbolic

and algebraic computation, July 2004, 229–234.

B.D. McKay and A. Piperno, Practical graph isomorphism, II,

J. Symbolic Comput. 60 (2014), 94–112.

B.D. McKay and A. Piperno, nautyTraces, software

distribution webpage http://cs.anu.edu.au/~bdm/nauty

and http://pallini.di.uniroma1.it.

41

http://cs.anu.edu.au/~bdm/nauty
http://pallini.di.uniroma1.it

J.D. Mitchell, S. Mukherjee and P. Vojtěchovský, Minimal

representatives of endofuctions, to appear in Semigroup Forum.

L.H. Soicher, GRAPE, graph algorithms using permutation

groups, version 4.9.0,

https://gap-packages.github.io/grape, December

2022, refereed GAP package.

Sun, X., Faster isomorphism for p-groups of class 2 and

exponent p, https://arxiv.org/abs/2303.15412

41

https://gap-packages.github.io/grape
https://arxiv.org/abs/2303.15412

	Computational complexity: theory versus practice
	The graph isomorphism problem
	Canonical and minimal representatives
	Minimal representatives of endofunctions
	Counting groupoids up to isomorphism

