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STATISTICAL DEPTH



MULTIVARIATE NONPARAMETRICS

Nonparametric statistics:

• Inference without assumptions — more flexible, but harder
mathematically.

• On the real line using the ordering — median, quantiles, ranks...
• What are ranks or quantiles for multivariate (non-Euclidean) data?
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STATISTICAL DEPTH

Statistical depth function: Ordering data in multivariate spaces.
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Introduced in 1975 (Tukey); studied intensively since the 1990s.
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STATISTICAL DEPTH FUNCTION

For P
(
Rd) Borel probability measures on Rd, consider the depth

D : Rd × P
(
Rd
)
→ [0, 1] : (x,P) 7→ D(x,P).
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HALFSPACE DEPTH

Halfspace depth (Tukey, 1975) of a point x ∈ Rd w.r.t. P ∈ P
(
Rd)

D(x;P) = inf
H∈H(x)

P (H) .
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HALFSPACE DEPTH

D (x;Pn) = min
# of observations in a halfspace that contains x

n
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HALFSPACE DEPTH
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APPLICATION: BAGPLOT

Bagplot: A multivariate boxplot (Rousseeuw et al., 1999)
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DEPTH: LEVEL SETS

D(·;P) is always quasi-concave, i.e. for each δ ∈ [0, 1]

Pδ =
{
x ∈ Rd : D(x;P) ≥ δ

}
is convex
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DEPTH: LEVEL SETS

We can write (Rousseeuw and Struyf, 1999; Zuo and Serfling, 2000)

Pδ =
{
x ∈ Rd : D(x;P) ≥ δ

}
=
∩

{H ∈ H : P(H) > 1− δ} .
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DEPTH: ASYMPTOTIC NORMALITY

Let Pn ∈ P
(
Rd

)
be the empirical measure of n i.i.d. variables from P.

√
n (D(x;Pn)− D(x;P)) is asymptotically normal

⇐⇒ D(x;P) is realised by a single halfspace H ∈ H(x) (Massé, 2004)
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PROBLEM: SMOOTHNESS OF THE DEPTH

Elliptically symmetric distributions have smooth depth contours
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PROBLEM: SMOOTHNESS OF THE DEPTH

Many common distributions do not have smooth depth
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PROBLEM: SMOOTHNESS OF THE DEPTH

Smooth quasi-concave density is not sufficient for smooth depth
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PROBLEM: SMOOTHNESS OF THE DEPTH

Problem (Massé and Theodorescu, 1994)

(P1) Does there exist a non-elliptical distribution with smooth depth
contours?
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PROBLEM: DEPTH OF A MEDIAN

For P in the vertices of a simplex in Rd (Donoho and Gasko, 1992)

sup
x∈Rd

D(x;P) = (d+ 1)−1 −−−→
d→∞

0
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PROBLEM: DEPTH OF A MEDIAN

Problem (Donoho and Gasko, 1992)

(P2) The maximum depth in Rd is at least 1/(d+ 1). Can we say more?
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PROBLEM: CHARACTERIZATION CONJECTURE

Problem (Struyf and Rousseeuw, 1999)

(P3) Is it possible for two different distributions P,Q ∈ P
(
Rd) to have

the same depth at all x ∈ Rd?

Partial answers:

• Certainly not for d = 1 (there depth ∼ distribution function).
• Not if P is atomic (Struyf and Rousseeuw, 1999; Koshevoy, 2002; Hassairi and
Regaieg, 2007; Laketa and Nagy, 2021).

• Not if the contours of D (·;P) are smooth (Kong and Zuo, 2010).
• Long conjectured general negative answer
(Koshevoy, 2003; Hassairi and Regaieg, 2008; Cuesta-Albertos and Nieto-Reyes,
2008).
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FLOATING BODIES



STATISTICS OF CONVEX BODIES

Convex body is a non-empty, compact and convex set K ⊂ Rd

(Webster, 1994; Schneider, 2014).
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DEPTH OF CONVEX BODIES

Depth of a convex body K
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MOTIVATION: GRÜNBAUM’S INEQUALITY

Proposition (Grünbaum, 1960)
Let K ⊂ Rd be a convex body, vol (K) = 1, and X uniform on K. Then

D (E X; K) ≥
(

d
d+ 1

)d
.

• limd→∞

(
d
d+1

)d
= exp(−1) ≈ 0.37.
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FLOATING BODY

Definition (Dupin, 1822)
A convex body K[δ] is called the Dupin floating body of a convex body
K ⊂ Rd for δ ∈ [0, vol (K) /2] if each supporting hyperplane of K[δ] cuts
off a set of volume δ from K.
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FLOATING BODY

Dupin’s floating body of K ⊂ R2 for δ = 0.3
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FLOATING BODY

Dupin’s floating body of K ⊂ R2 for δ = 0.3
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FLOATING BODY

Dupin’s floating body of K ⊂ R2 for δ = 0.3

48



FLOATING BODY

Dupin’s floating body of K ⊂ R2 for δ = 0.1
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FLOATING BODY

Dupin’s floating body of K ⊂ R2 for δ = 0.1
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FLOATING BODY

Dupin’s floating body of K ⊂ R2 for δ = 0.1
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FLOATING BODY

Dupin’s floating body of K ⊂ R2 for δ = 0.3
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FLOATING BODY

Dupin’s floating body of K ⊂ R2 for δ = 0.3
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FLOATING BODY

Dupin’s floating body of K does not have to exist
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FLOATING BODY

Dupin’s floating body of K does not have to exist
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FLOATING BODY

Dupin’s floating body of K does not have to exist
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CONVEX FLOATING BODY

Definition (Schütt and Werner, 1990)
Let K ⊂ Rd be a convex body with vol (K) = 1 and δ ∈ (0, 1/2).
The convex floating body of K associated with δ is given by

Kδ =
∩

{H ∈ H : vol (K ∩ H) ≥ 1− δ} .

Proposition (Schütt and Werner, 1990)

• Kδ always exists.
• If K[δ] exists, then K[δ] = Kδ .
• Just as K[δ], also Kδ has “nice” properties.
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CONVEX FLOATING BODY

Convex floating body of K always exists
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ELISABETH WERNER AND CARSTEN SCHÜTT

[1] Stanislav Nagy, Carsten Schütt, and Elisabeth M. Werner. Halfspace depth and
floating body. Statistics Surveys, 13:52–118, 2019.
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GRÜNBAUM’S INEQUALITY

• If K is a convex body, D(E X; K) ≥ exp(−1) (Grünbaum, 1960);
• Extensions to log-concave, κ-concave and quasi-concave measures
and densities (Ball, 1986, 1988; Caplin and Nalebuff, 1991; Bobkov 2003, 2010);

=⇒ (P2) The more concave density, the higher maximum depth.
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SMOOTHNESS OF FLOATING BODIES

Problem (Massé and Theodorescu, 1994)

(P1) Does there exist a non-elliptical distribution with smooth depth
contours?

Proposition (Meyer and Reisner, 1991)
Uniform distributions on smooth, symmetric, strictly convex bodies
have smooth depth.
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PROBLEM: STRUCTURE OF FLOATING BODIES

For P uniform on a polytope K, describe the boundary structure of Kδ .
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DEPTH CHARACTERIZATION CONJECTURE

Question: (Struyf and Rousseeuw, 1999)
Does for any P 6= Q in P

(
Rd) exist x ∈ Rd such that D(x;P) 6= D(x;Q)?

Positive answers for P ∈ P
(
Rd) such that:

• d = 1 (there depth ∼ distribution function).
• P is purely atomic, with finitely many atoms.
(Struyf and Rousseeuw, 1999; Koshevoy, 2002; Laketa and Nagy, 2021)

• P is atomic. (Cuesta-Albertos and Nieto-Reyes, 2008)
• P is properly integrable. (Koshevoy, 2003)
• P has a smooth density. (Hassairi and Regaieg, 2008)
• all Dupin’s floating bodies of P exist.
(Kong and Zuo, 2010; Nagy, Schütt, Werner, 2019)

Conjectured positive answer.
(Cuesta-Albertos and Nieto-Reyes, 2008; Kong and Mizera, 2012)
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CHARACTERIZATION CONJECTURE

Question: (Struyf and Rousseeuw, 1999)
Does for any P 6= Q in P

(
Rd) exist x ∈ Rd such that D(x;P) 6= D(x;Q)?

Not for d > 1.

[1] Stanislav Nagy. Halfspace depth does not characterize probability distributions. Statistical
Papers, 62:1135–1139, 2021.

[2] Stanislav Nagy. The halfspace depth characterization problem. Nonparametric Statistics,
379–389. Springer International Publishing. 2020.
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DEPTH CHARACTERIZATION: PROOF I

A measure P ∈ P
(
Rd) is called α-symmetric (Eaton, 1981) if

ψ(t) =
∫
Rd

exp (i 〈t, x〉) dP(x) = ξ (‖t‖α) for all t ∈ Rd

for some ξ : R → R. For X = (X1, . . . , Xd) ∼ P, these measures satisfy

〈X,u〉 d
= ‖u‖α X1 for all u ∈ Sd−1.

For the depth of α-symmetric P

D (x;P) = inf
u∈Sd−1

P (〈X,u〉 ≤ 〈x,u〉) = inf
u∈Sd−1

P (‖u‖α X1 ≤ 〈x,u〉)

= P
(
X1 ≤ inf

u∈Sd−1
〈x,u〉 / ‖u‖α

)
= F1

(
−‖x‖β

)
for β the conjugate index to α, and F1 the c.d.f. of X1.
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DEPTH CHARACTERIZATION: PROOF II

Fix γ ∈ (0, 1) and take ψα(t) = exp (−‖t‖γα) for γ ≤ α ≤ 1. Then

• Measure Pα with characteristic function ψα exists (Lévy, 1937);
• The conjugate index to α ≤ 1 is β = ∞; and
• For the characteristic function of X1 with X ∼ Pα we have

E exp (i t X1) = exp (− |t|γ) for all t ∈ R,

i.e. F1 does not depend on α.

All Pα ∈ P
(
Rd) have the same depth

D (x;Pα) = F1 (−‖x‖∞) for all x ∈ Rd.
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DEPTH CHARACTERIZATION: PROOF III

For γ = 1/2, the density of Pα with α = 1 (left) and α = 1/2 (right).
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SIMPLICIAL DEPTH AND BEYOND



SIMPLICIAL DEPTH

Simplicial depth (Liu, 1988) of x ∈ Rd w.r.t. P ∈ P
(
Rd) is

SD(x;P) = P (x ∈ 4(X1, . . . , Xd+1)) .
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HOW TO COMPUTE SIMPLICIAL DEPTH?

Simplicial depth (Liu, 1988) of x =
(
x1
x2

)
∈ R2 w.r.t. P ∈ P

(
R2) is

SD(x;P) = P
((

x1
x2

)
∈ 4

((
X1,1
X1,2

)
,

(
X2,1
X2,2

)
,

(
X3,1
X3,2

)))

=

∫∫ ∫∫ ∫∫
I [x ∈ 4] dP(x1,1, x1,2) dP(x2,1, x2,2) dP(x3,1, x3,2).

• d× (d+ 1) integrals in Rd.
• Impossible to calculate already for Gaussian distributions in R2.
• How does the real (that is, population) simplicial depth of P even
look like?
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POPULATION SIMPLICIAL DEPTH

The integrals are simpler if P ∈ P
(
R2) lives on a curve.

Three medians?
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COMPUTING SIMPLICIAL DEPTH EXACTLY

We want to compute the simplicial depth in R2 exactly:

SD(x;P) = P (x ∈ 4(X1, X2, X3)) .

pSU

SL

x∗1

x∗2
x∗3z

−x∗1
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COMPUTING SIMPLICIAL DEPTH EXACTLY

Proposition (Mendroš and Nagy, 2023+)
Let a ∈ R2 be any non-zero vector, X ∼ P ∈ P

(
R2) be absolutely

continuous and let q = P(a⊤X > 0). Then

SD(0;P) = 6q · (1− q)2
∫ π

0
G(θ) · (1− G(θ)) d F(θ)

+ 6q2 · (1− q)
∫ π

0
F(θ) · (1− F(θ)) dG(θ),

where F (or G) is the upper (or lower) circular distribution function
of P.
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SIMPLICIAL DEPTH OF A SQUARE

P = Unif([−1, 1]2): Finding the circular distribution function F(θ).

θ

(1 + x) tan(θ)

1 + x

A

ZM

p

A

ZM

pθF

θF

θ − θF
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SIMPLICIAL DEPTH OF A SQUARE

For 0 ≤ x ≤ 1 and 0 ≤ y ≤ x we have

SD((x, y);P) =

(x− 1)2

32

[
−
2
(
3y4(−x2 + 3x+ 3)− y2(7x2 + 18x+ 9) + 6x2 + 9x+ 4

)
(x+ 1)(y2 − 1)

+ 3(y2(3x− 1) + x+ 1) log
(
1+ x
1− x

)
+ 3y(y2(x− 1) + 3x+ 1) log

(
1− y
1+ y

)]
.

In other parts of [−1, 1]2 symmetrically.
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SIMPLICIAL DEPTH OF A SQUARE

y

x

A B

CD

Zp M N

F (θ)

G(θ)

θF2θF1

θG1
θG2
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SIMPLICIAL DEPTH OF A TRIANGLE
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SIMPLICIAL DEPTH OF POLYGONS

p

θF1 θF2
θF3

I

V1

V2

V3

B

α

β

γ

δ

Z
Z p

α1
α2

α3

θI2
I1

I3
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SIMPLICIAL DEPTH IN MATHEMATICS

Simplicial depth (Liu, 1988) of x ∈ Rd w.r.t. P ∈ P
(
Rd) is

SD(x;P) = P (x ∈ 4(X1, . . . , Xd+1)) .

• Studied since the 1950s in geometry.
• First selection lemma: maxx∈Rd SD(x;P) ≥ cd > 0,
with c1 = 1/2, c2 = 2/9, cd = (d!)(d+ 1)−d (conjectured).

• Applications to breakdown point (BP) of the simplicial median: The
simplicial median is robust, but its BP decreases fast with d.

[1] Stanislav Nagy. Simplicial depth and its median: Selected properties and
limitations. (2023) Statistical Analysis and Data Mining 16(4), 374–390.
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CONCLUSION

Quantiles and multivariate data:

• Many different approaches; inherently geometric.
• Halfspace depth and the floating body are the same concept.
• Halfspace depth does not characterize distributions.
• Simplicial depth in R2 can be evaluated (sometimes).

What we do not know:

• When are floating bodies smooth?
• When does halfspace depth characterize distributions?
• Is the triangle characterized by its halfspace depth?
• How to evaluate simplicial depth in Rd, d > 2?
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GEOMETRIC METHODS IN STATISTICS
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