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Niklas visits Brno

Approximation algorithms for finding as many disjoint cycles as
possible from a certain family of cycles in a given planar or
bounded-genus graph.

Question: Given a genus g surface and k > 0, what is the
maximum number of simple curves that are non-homotopic and
they intersect pairwise at most k-times?
Let Σ be a compact surface and k ∈ N, the set of simple curves
that are non-homotopic and they intersect pairwise at most
k-times is called a k-system.
Question: What is the maximum size N(Σ, k) of a k-system?
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k-systems and their size

(1996 - Juvan, Malnič and Mohar): N(Σ, k) is finite for every
compact surface Σ and every k ∈ N.

(2019 - Greene): If Σ is a closed orientable surface of genus g,

N(Σ, k) ≤ O(gk+1 log g)

for any fixed k.
For k = 1, k-systems of size O(g2) have been constructed.
Is the result tight?
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Can we improve on Greene?

N(Σ, k) ≤ O(gk+1 log g)

The gk+1 follows from an analysis of arcs on the
hyperbolic surface, also there is a corresponding lower bound.

the log g follows from a nuanced probabilistic argument.

NO
probably
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Let’s look at the Torus
the general bound

N(Σ, k) ≤ O(gk+1 log g)

Juvan, Malnič and Mohar:

k + 1 ≤ N(T2, k) ≤ 3
2
k + O(1).

Agol:

N(T2, k) ≤ p(k) + 1 p(k) is the smallest prime greater than k

N(T2, k) ≤ (1+ o(1))k
Baker, Harman and Pintz via prime number gap:
N(T2, k) ≤ k + O(k21/40).
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Let’s look at the Torus some more
Cramér in 1920:
If the Riemann hypothesis holds, then

N(T2, k) ≤ k + O(
√
k log k)

and under further number-theoretic conjecture even*
N(T2, k) ≤ k + O(log2 k)

Aougab and Gaster

N(T2, k) ≤ k + O(
√
k log k)

Observations:
combinatorial + geometric arguments + estimates from analytic
number theory
Is there a k-system on the torus whose size exceeds k + 6?
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Let’s look at the Torus some more more

Balla, F, Kiełak, Kráľ and Schlomberg

N(T2, k) ≤ k + 6

Theorem

For every k ∈ N \ K0, it holds that

N(T2, k) =


k + 4 if k mod 6 = 2,
k + 3 if k mod 6 ∈ {1, 3, 5}, and
k + 2 otherwise.

K0 is a special set containing 59 integers.
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K0
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Geometric observations in T2

Cm,n is the closed curve parameterized as (m · t mod 1, n · t
mod 1) for t ∈ [0, 1];
Every non-trivial closed curve C is freely homotopic to a curve
Cm,n for some non-zero (m, n) ∈ Z2

if the curve is non-self-intersecting, i.e. simple, then m and n are
coprime.
minimal number of crossings between curves?
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More geometric observations in T2

minimal number of crossings between curves freely homotopic to
Cm,n and Cm′,n′

is equal to |mn′ −m′n| (Attained by Cm,n and Cm′,n′ ).
Conclusion:

We can represent a k-system K by a list of pairs of coprime
integers Q(K).
Γ · Q(K) represents the same k-system for any Γ ∈ SL(2,Z).

We can use this to put all the points in a nice position
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Formally

For an integer k ∈ N, a set Q ⊆ Z2 is k-nice if the following holds:
Q contains non-zero coprime pairs only,
Q does not contain both (x, y) and (−x,−y) for any (x, y) ∈ Z2,
and
|xy′ − x′y| ≤ k for all (x, y) and (x′, y′) contained in Q.

Lemma

For every k ∈ N, N(T2, k) is equal to the maximum size of a k-nice set.

Q ⊆ Z2 is y-non-negative if y ≥ 0 for all (x, y) ∈ Q.
The height of Q ⊆ Z2 is the maximum h ∈ N such that the set Q
contains (x, y) with |y| = h
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What is the volume of the convex hull of Q?

Lemma
Let Q be k-nice, y ≥ 0. If (m, n) ∈ Z2 is contained in the convex hull of Q
and the integers m and n are coprime, then (m, n) is contained in Q.

The density of coprime numbers in Z2 is roughly 6
π

What is the volume of conv(Q)?

Lemma
Let k ∈ N. If S ⊆ R2 is a convex set such that y ≥ 0 for every (x, y) ∈ S
and |xy′ − yx′| ≤ k for all (x, y), (x′, y′) ∈ S, then the area of S is at
most πk

2 .
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A little calculus
Rescalining: we assume k = 1, y ∈ [0, 1], and define

f−(y) = min{x : (x, y) ∈ S}, f+(y) = max{x : (x, y) ∈ S}, y′ =
√
1− y2

1∫
0

f+(y)dy −
1∫
0

y√
1− y2

f−
(√

1− y2
)

dy ≤
1∫
0

1√
1− y2

dy =
π

2
.

(1)
by substituting, we get

1∫
0

y√
1− y2

f−
(√

1− y2
)

dy = −1
0∫
1

f−(y)dy =
1∫
0

f−(y)dy. (2)

We combine (1) and (2) to conclude that the area of S is
1∫
0

f+(y)−f−(y)dy =
1∫
0

f+(y)dy−
1∫
0

y√
1− y2

f−
(√

1− y2
)

dy ≤ π

2
.
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Upper bound on the size of a k-nice set of height h

For ℓ ∈ N, we define

ρℓ =
∏

primes p, p|ℓ

(
1− 1

p

)
;

and

αℓ = max
1≤a≤b≤2ℓ

|{z, a ≤ z ≤ b and gcd(z, ℓ) = 1}| − ρℓ(b− a+ 1);

If X is a set of n consecutive integers, then at most ρℓn+ αℓ elements
of X are coprime with ℓ.
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Size of a k-nice set of height h - LP
Consider the following linear program (LPℓ) with 2ℓ variables
σ1, . . . , σℓ and τ1, . . . , τℓ:

maximize
ℓ∑
i=1

ρi(τi − σi)

subject to τi ≥ σi ≥ 0 for all 1 ≤ i ≤ ℓ, and
− 1 ≤ iτj − jσi ≤ 1 for all 1 ≤ i, j ≤ ℓ.

The objective value of the program (LPℓ) is denoted by γℓ.
Define β0 = 1 and βℓ = βℓ−1 + αℓ + ρℓ.

Lemma
γℓ < 1 for every ℓ ≥ 4.
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Size of a k-nice set of height h - LP 2

Lemma

Let k ∈ N. For every h ∈ {1, . . . , k}, every k-nice set Q ⊆ Z2 with height
exactly h has at most γhk + βh elements.

ℓ ρℓ αℓ γℓ βℓ
1 1.0000 0.0000 1.0000 2.0000
2 0.5000 0.5000 1.0000 3.0000
3 0.6667 0.6667 1.0000 4.3333
4 0.5000 0.5000 0.9722 5.3333
16 0.5000 0.5000 0.9553 23.4929
17 0.9412 0.9412 0.9617 25.3753
18 0.3333 1.0000 0.9576 26.7086
19 0.9474 0.9474 0.9634 28.6033
20 0.4000 1.2000 0.9615 30.2033
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Proof sketch

Fix k ∈ N and h ∈ {1, . . . , k}, Let Q be x, y-non-negative, k-nice set
with height exactly h.

si and ti for i = 1, . . . , h be the minimum and maximum reals
such that (si, i) and (ti, i) are in the convex hull of Q.

Observation σi = si/k and τi = ti/k, i = 1, . . . , h, is a feasible
solution of (LPh)

this implies

h∑
i=1

ρi(ti − si) = k
h∑
i=1

ρi(τi − σi) ≤ γhk. (3)
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Proof end
For i ∈ {0, . . . , h}, let Qi be the points contained in Q with their
second coordinate equal to i. Then

|Qi| ≤ ρi(ti − si + 1) + αi = ρi(ti − si) + (αi + ρi)

Putting everything together, we get

|Q| =
h∑
i=0

|Qi| =

(
h∑
i=1

ρi(ti − si)

)
+ 1+

h∑
i=1

(αi + ρi) ≤ γhk + βh.

This concludes the proof of the lemma.

Lemma

Let k ∈ N. For every h ∈ {1, . . . , k}, every k-nice set Q ⊆ Z2 with height
exactly h has at most γhk + βh elements.
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Asymptotics for fixed height
Proved with computer assistance:

Lemma

For every h ≥ 41020 and every k ≥ h, the maximum size of a k-nice set
with height h is at most

3264π
10255

· k + 4946
3675

· h+ 1.

If the height of a k-nice set Q is small, then the size of Q is less than k
(note that 3264π10255 < 1). Luckily, the height of a Q is sublinear in k.

Lemma

For every k ∈ N, there exists a k-nice set with maximum size that has
height at most

√
2k.
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Asymptotics conclusions

Since γℓ < 1 for every ℓ ≥ 4, for every k ≥ 3225, there exists a
maximum size k-nice set with height at most 3.

Such k-nice sets can be directly analyzed.

Lemma

For every k ≥ 3, the maximum size of a k-nice set of height at most 3 is
k + 4 if k mod 6 = 2,
k + 3 if k mod 6 ∈ {1, 3, 5}, and
k + 2 otherwise.
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Final steps

We are left with determining the sizes of k-nice sets for k ≤ 3224.
With computer assistance, we can improve the height further

Lemma

For every k ∈ {2, . . . , 3224}, there exists a k-nice set with maximum
size that has height at most

√
4k/3.

Thus for k ≥ 1892, there exists a maximum size k-nice set with
height at most 3.

k ∈ {3, . . . , 1891}: A recursive program based on extra structure
gives the proof of the main result.
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A look back at the main result

Theorem
For every k ∈ N \ K0, it holds that

N(T2, k) =


k + 4 if k mod 6 = 2,
k + 3 if k mod 6 ∈ {1, 3, 5}, and
k + 2 otherwise.

K0 is a special set containing 59 integers.
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Pictures!
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Thank You for Your Attention!


