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Niklas visits Brno

m Approximation algorithms for finding as many disjoint cycles as
possible from a certain family of cycles in a given planar or
bounded-genus graph.
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Niklas visits Brno

m Approximation algorithms for finding as many disjoint cycles as
possible from a certain family of cycles in a given planar or
bounded-genus graph.

m Question: Given a genus g surface and k > 0, what is the
maximum number of simple curves that are non-homotopic and
they intersect pairwise at most k-times?

m Let 3 be a compact surface and k € N, the set of simple curves
that are non-homotopic and they intersect pairwise at most
k-times is called a k-system.

m Question: What is the maximum size N(X, k) of a k-system?
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k-systems and their size

m (1996 - Juvan, Malni¢ and Mohar): N(%, k) is finite for every
compact surface X and every k € N.
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k-systems and their size

m (1996 - Juvan, Malni¢ and Mohar): N(%, k) is finite for every
compact surface X and every k € N.

m (2019 - Greene): If & is a closed orientable surface of genus g,
N(Z, k) < 0(g"*" log g)

for any fixed k.
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k-systems and their size

m (1996 - Juvan, Malni¢ and Mohar): N(%, k) is finite for every
compact surface X and every k € N.

m (2019 - Greene): If & is a closed orientable surface of genus g,
N(Z, k) < 0(g"*" log g)

for any fixed k.
m For k = 1, k-systems of size O(g?) have been constructed.
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k-systems and their size

m (1996 - Juvan, Malni¢ and Mohar): N(%, k) is finite for every
compact surface X and every k € N.

m (2019 - Greene): If & is a closed orientable surface of genus g,
N(Z, k) < 0(g"*" log g)

for any fixed k.
m For k = 1, k-systems of size O(g?) have been constructed.
m |s the result tight?
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Can we improve on Greene?

N(Z, k) < 0(g“"* log g)

m The g¢¥t! follows from an analysis of arcs on the
hyperbolic surface, also there is a corresponding lower bound.
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N(Z, k) < 0(g“"* log g)

m The g¢¥t! follows from an analysis of arcs on the
hyperbolic surface, also there is a corresponding lower bound.

m the log g follows from a nuanced probabilistic argument.
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Can we improve on Greene?

N(Z, k) < 0(g“"* log g)

m The g¢¥t! follows from an analysis of arcs on the
hyperbolic surface, also there is a corresponding lower bound.

m the log g follows from a nuanced probabilistic argument.
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Can we improve on Greene?

N(Z, k) < 0(g“"* log g)

m The g¢¥t! follows from an analysis of arcs on the
hyperbolic surface, also there is a corresponding lower bound.

m the log g follows from a nuanced probabilistic argument.

NO

probably
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Let’s look at the Torus

m the general bound

N(Z, k) < 0(g" " log g)
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m Juvan, Malni¢ and Mohar:

k+1<N(T% k) < §k+ 0(1).

Marek Filakovsky « Curves on Torus « May 6th, Prague

5/24



Let’s look at the Torus

m the general bound

N(Z, k) < 0(g" " log g)

m Juvan, Malni¢ and Mohar:

k+1 < N(T? k) < §k+ 0(1).

m Agol:
N(T?,k) < p(k) +1 p(k) is the smallest prime greater than k
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Let’s look at the Torus

m the general bound

N(Z, k) < 0(g" " log g)

m Juvan, Malni¢ and Mohar:

k+1 < N(T? k) < §k+ 0(1).

m Agol:
N(T?,k) < p(k) +1 p(k) is the smallest prime greater than k
m N(T?, k) < (1+0(1))k
m Baker, Harman and Pintz via prime number gap:
N(T?, k) < k + O(k*1/40),
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Let’s look at the Torus some more

Cramér in 1920:
If the Riemann hypothesis holds, then

N(T?, k) < k + O(Vklog k)

and under further number-theoretic conjecture even*
N(T?2, k) < k + O(log? k)

Marek Filakovsky « Curves on Torus « May 6th, Prague 6/24



Let’s look at the Torus some more
Cramér in 1920:
If the Riemann hypothesis holds, then

N(T?, k) < k + O(Vklog k)

*

and under further number-theoretic conjecture even
N(T?2, k) < k + O(log? k)

Aougab and Gaster
N(T?, k) < k + O(Vk log k)

Observations:
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Let’s look at the Torus some more

Cramér in 1920:
If the Riemann hypothesis holds, then

N(T?, k) < k + O(Vklog k)

and under further number-theoretic conjecture even*
N(T?2, k) < k + O(log? k)

Aougab and Gaster
N(T?, k) < k + O(Vk log k)

Observations:

m combinatorial + geometric arguments + estimates from analytic
number theory
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Let’s look at the Torus some more

Cramér in 1920:
If the Riemann hypothesis holds, then

N(T?, k) < k + O(Vklog k)

and under further number-theoretic conjecture even*
N(T?2, k) < k + O(log? k)

Aougab and Gaster
N(T?, k) < k + O(Vk log k)

Observations:

m combinatorial + geometric arguments + estimates from analytic
number theory

m s there a k-system on the torus whose size exceeds k + 67
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Let’s look at the Torus some more more

Balla, F, Kietak, Kral and Schlomberg
N(T? k) < k+6
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Let’s look at the Torus some more more

Balla, F, Kietak, Kral and Schlomberg
N(T? k) < k+6 ‘

For every k € N\ Ky, it holds that

k+4 ifkmod6=2,
N(T?, k) =< k+3 ifkmod6 € {1,3,5}, and
k+ 2 otherwise.
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Let’s look at the Torus some more more

Balla, F, Kietak, Kral and Schlomberg
N(T? k) < k+6 ‘

For every k € N\ Ky, it holds that

k+4 ifkmod6=2,
N(T?, k) =< k+3 ifkmod6 € {1,3,5}, and
k+ 2 otherwise.

Ko is a special set containing 59 integers.
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k 1 2 19 23 24 25 33 34 37 47
N(T"’" k) 3 4 23 27 30 30 37 38 42 51
N(T% k) —k | +2 42 44 +4 +6 +5 +4 +4 +5 +4
“pattern” +3 +4 +3 +3 +2 +3 43 42 +3 +3
k 48 49 53 54 55 61 62 63 64 76
N(T? k) 54 54 57 59 60 65 67 67 68 80
N(T? k) —k | 46 45 +4 +5 +5 44 +5 +4 +4 44
“pattern” +2 +3 43 +2 +3 +3 +4 43 +2 42
k 83 84 8y 89 90 94 113 114 115 118
N(T?. k) 87 89 89 93 94 98 117 119 119 122
NT%E) =k | 44 +5 +4 44 +4 +4 +4 +5 +4 +4
“pattern” +3 +2 43 +3 +2 +2 43 42 +3 +2
k 119 120 121 124 127 139 141 142 143 144
N('[F""\ k) 123 126 126 128 132 143 145 147 147 149
N(T%k)—k| +4 46 45 +4 +5 +4 +4 45 +4 +5
“pattern” +3 +2 +3 +2 +3 +3 +3 +2 +3 +2
k 145 154 167 168 169 174 184 204 208 214
N(T?. k) 149 158 171 174 174 178 188 208 212 217
N(T%k)—k| +4 44 +4 +6 +5 +4 +4 +4 +4 +3
“pattern” +3 +2 +3 +2 +3 +2 42 42 42 +2
k 234 244 264 274 294 304 324 354 384
N(T? k) 238 247 268 277 297 307 327 357 387
N(T k) —k| +4 43 +4 +3 +3 +3 43 +3 +3
“pattern” +2 +2 42 +2 42 +2 42 42 +2
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Geometric observations in T2
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Geometric observations in T2

m Cpp is the closed curve parameterized as (m-t mod 1,n-¢
mod 1) for t € [0, 1];
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Geometric observations in T2

m Cpp is the closed curve parameterized as (m-t mod 1,n-¢
mod 1) for t € [0, 1];

m Every non-trivial closed curve C is freely homotopic to a curve
Cm.n for some non-zero (m, n) € Z?
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Geometric observations in T2

m Cpp is the closed curve parameterized as (m-t mod 1,n-¢
mod 1) for t € [0, 1];

m Every non-trivial closed curve C is freely homotopic to a curve
Cm.n for some non-zero (m, n) € Z?

m if the curve is non-self-intersecting, i.e. simple, then m and n are
coprime.

m minimal number of crossings between curves?
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More geometric observations in T?

minimal number of crossings between curves freely homotopic to
Cm7n and Cm”n/
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More geometric observations in T?

minimal number of crossings between curves freely homotopic to
Cm,n and Cpy 1 is equal to [mn” — m'n| (Attained by Cp, » and Gy ).
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More geometric observations in T?

minimal number of crossings between curves freely homotopic to
Cm,n and Cpy v is equal to [mn’ — m'n| (Attained by Cp » and Gy ).
Conclusion:

m We can represent a k-system K by a list of pairs of coprime

integers Q(K).
m [ - O(K) represents the same k-system for any I' € SL(2, Z).
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More geometric observations in T?

minimal number of crossings between curves freely homotopic to
Cm,n and Cpy v is equal to [mn’ — m'n| (Attained by Cp » and Gy ).
Conclusion:

m We can represent a k-system K by a list of pairs of coprime
integers Q(K).

m [ - O(K) represents the same k-system for any I' € SL(2, Z).

We can use this to put all the points in a nice position
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Formally

Foraninteger k € N,aset Q C 72 is k-nice if the following holds:
m Q contains non-zero coprime pairs only,

m Q does not contain both (x,y) and (—x, —y) for any (x,y) € Z?,
and

m [xy' — x'y| < kforall (x,y) and (x',y’) contained in Q.
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For every k € N, N(T?, k) is equal to the maximum size of a k-nice set.
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Formally

Foraninteger k € N,aset Q C 72 is k-nice if the following holds:
m Q contains non-zero coprime pairs only,

m Q does not contain both (x,y) and (—x, —y) for any (x,y) € Z?,
and

m [xy' — x'y| < kforall (x,y) and (x',y’) contained in Q.

For every k € N, N(T?, k) is equal to the maximum size of a k-nice set.

m Q C Z? is y-non-negative if y > 0 for all (x,y) € Q.
m The height of Q C Z? is the maximum h € N such that the set Q
contains (x,y) with [y| = h
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What is the volume of the convex hull of Q?

Let Q be k-nice, y > 0. If (m, n) € Z? is contained in the convex hull of Q
and the integers m and n are coprime, then (m, n) is contained in Q.
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What is the volume of the convex hull of Q?

Let Q be k-nice, y > 0. If (m, n) € Z? is contained in the convex hull of Q
and the integers m and n are coprime, then (m, n) is contained in Q.

m The density of coprime numbers in Z? is roughly %
m What is the volume of conv(Q)?
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What is the volume of the convex hull of Q?

Let Q be k-nice, y > 0. If (m, n) € Z? is contained in the convex hull of Q
and the integers m and n are coprime, then (m, n) is contained in Q.

m The density of coprime numbers in Z? is roughly %
m What is the volume of conv(Q)?

Let k € N. If S C R? is a convex set such that y > O for every (x,y) € S
and |xv' — yx'| < k for all (x,y),(x",y") € S, then the area of S is at
most =X,

2
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A little calculus
Rescalining: we assume k = 1,y € [0, 1], and define

f7(y) =min{x: (x,y) € S},f7(y) = max{x: (x,y) € S},y' = /1 - y?
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A little calculus
Rescalining: we assume k = 1,y € [0, 1], and define

f7y) = min{x: (x,y) € S}.f7(y) = max{x : (x,y) € S}y’ = /1 —y?

/f+ dy — 0/ﬁ ( >dy</ﬁ -7
@
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A little calculus
Rescalining: we assume k = 1,y € [0, 1], and define

by substituting, we get

1 \/1)/_7yzf‘ (ﬂ) dy = —1 /O F()dy =

1
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A little calculus
Rescalining: we assume k = 1,y € [0, 1], and define

x,y) € S} f(y) = max{x: (x,y) € S},y' =

(
0/ 1)y - 0/1 — (Vi-r)w< 0/1 Jll_iyzdy

by substituting, we get

01 e (V)= 1/0 )y = 0/1 )y

We combine (1) and (2) to conclude that the area of S is

/1f+(y)—f(y)dy=/1f+ /1 < 1- y2>d
0 0 0

Marek Filakovsky « Curves on Torus « May 6th, Prague
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>
(1)

(2)

y<Z.
2
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Upper bound on the size of a k-nice set of height h

For ¢ € N, we define
1
o= ]I (1 - > ;
primes p, p|¢ P

and

Qy 1§(r]n§abx§2€]{Z,a_z_ and gcd(z, /) H = pe( a+1);
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Upper bound on the size of a k-nice set of height h

For ¢ € N, we define
1
o= ]I (1 - > ;
primes p, p|¢ P

and

o 1§(r]n§abx§2€]{Z,a_z_ and ged(z,Y) M = pe(b— a+1);

If X is a set of n consecutive integers, then at most p,n + oy elements
of X are coprime with /.
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Size of a k-nice set of height h - LP

Consider the following linear program (LP,) with 2/ variables
01,...,0y¢ and T1yen-y Tl

¢

maximize Zp,'(T,' —0j)
i=1

subject to 77>0;>0 foralll <ij </ and
—-1<ifp—joi <1 foralll <ij</t.
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Size of a k-nice set of height h - LP

Consider the following linear program (LP,) with 2/ variables
01,...,0y¢ and T1yen-y Tl

¢
maximize Z pi(1i — aj)
i=1
subject to 77>0;>0 foralll <ij </ and
—-1<ifp—joi <1 foralll <ij</t.

m The objective value of the program (LP,) is denoted by ~,.
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Size of a k-nice set of height h - LP

Consider the following linear program (LP,) with 2/ variables
01,...,0y¢ and T1yen-y Tl

¢
maximize Z pi(1i — aj)
i=1
subject to 77>0;>0 foralll <ij </ and
—-1<ifp—joi <1 foralll <ij</t.

m The objective value of the program (LP,) is denoted by ~,.
m Define 5g = 1and By = By—1 + ay + py.
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Size of a k-nice set of height h - LP

Consider the following linear program (LP,) with 2/ variables
01,...,0y¢ and T1yen-y Tl

¢

maximize Zp,'(T,' —0j)
i=1

subject to 77>0;>0 foralll <ij </ and
—-1<ifp—joi <1 foralll <ij</t.

m The objective value of the program (LP,) is denoted by ~,.
m Define 5g = 1and By = By—1 + ay + py.

ve < 1 for every ¢ > 4.
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Size of a k-nice set of height h - LP 2

Let k € N. Forevery h € {1,...,k}, every k-nice set Q C Z? with height
exactly h has at most vk + 5y, elements.
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Size of a k-nice set of height h - LP 2

Let k € N. Forevery h € {1,...,k}, every k-nice set Q C Z? with height
exactly h has at most vk + 5y, elements.

Pe

%

Ve

Be

W N RS

4
16
17
18
19
20

1.0000
0.5000
0.6667
0.5000
0.5000
0.9412
0.3333
0.9474
0.4000

0.0000
0.5000
0.6667
0.5000
0.5000
0.9412
1.0000
0.9474
1.2000

1.0000
1.0000
1.0000
0.9722
0.9553
0.9617
0.9576
0.9634
0.9615

2.0000
3.0000
4.3333
5.3333
23.4929
25.3753
26.7086
28.6033
30.2033
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Proof sketch

Fixk e Nand h € {1,...,k}, Let Q be x, y-non-negative, k-nice set
with height exactly h.

m s;and t; fori=1,..., h be the minimum and maximum reals
such that (s;, /) and (t;, /) are in the convex hull of Q.
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Proof sketch

Fixk e Nand h € {1,...,k}, Let Q be x, y-non-negative, k-nice set
with height exactly h.

m s;and t; fori=1,..., h be the minimum and maximum reals
such that (s;, /) and (t;, /) are in the convex hull of Q.

m Observation o; = s;/kand 7; = tj/k,i = 1,..., h,is a feasible
solution of (LPy)

Marek Filakovsky « Curves on Torus « May 6th, Prague 17 /24



Proof sketch

Fixk e Nand h € {1,...,k}, Let Q be x, y-non-negative, k-nice set
with height exactly h.

m s;and t; fori=1,..., h be the minimum and maximum reals
such that (s;, /) and (t;, /) are in the convex hull of Q.

m Observation o; = s;/kand 7; = tj/k,i = 1,..., h,is a feasible
solution of (LPy)
this implies
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Proof end

Fori e {0,...,h}, let Q; be the points contained in Q with their
second coordinate equal to /. Then

Qi < pilti = si+ 1) + a; = pi(ti — 57) + (o + pi)

Putting everything together, we get

h

h
Q=Y 10| = (ZP, —S/)+1+Z(Oéi+m)§7hk+ﬂh-
i=0

i=1

This concludes the proof of the lemma.

Marek Filakovsky « Curves on Torus « May 6th, Prague 18/24



Proof end

Fori e {0,...,h}, let Q; be the points contained in Q with their
second coordinate equal to /. Then

Qi < pilti = si+ 1) + a; = pi(ti — 57) + (o + pi)
Putting everything together, we get

h

h
Q=Y 10| = (ZP, —S/)+1+Z(Oéi+m)§7hk+ﬂh-
i=0

i=1

This concludes the proof of the lemma.

Let k € N. Forevery h € {1,...,k}, every k-nice set Q C Z? with height
exactly h has at most vk + By, elements.
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Asymptotics for fixed height

Proved with computer assistance:

For every h > 41020 and every k > h, the maximum size of a k-nice set
with height h is at most

3264 i 4946
10255 3675

h+1.
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Asymptotics for fixed height

Proved with computer assistance:

For every h > 41020 and every k > h, the maximum size of a k-nice set
with height h is at most

3264 i 4946
10255 3675

h+1.

If the height of a k-nice set Q is small, then the size of Q is less than k
(note that 32527 < 1). Luckily, the height of a Q is sublinear in .

For every k € N, there exists a k-nice set with maximum size that has
height at most / 2k.
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Asymptotics conclusions

m Since vy, < 1 for every ¢ > 4, for every k > 3225, there exists a
maximum size k-nice set with height at most 3.

Such k-nice sets can be directly analyzed.
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Asymptotics conclusions

m Since vy, < 1 for every ¢ > 4, for every k > 3225, there exists a
maximum size k-nice set with height at most 3.

Such k-nice sets can be directly analyzed.

For every k > 3, the maximum size of a k-nice set of height at most 3 is
B k+4ifkmod6 =2
mk+3ifkmod 6 € {1,3,5}, and
m k + 2 otherwise.
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Final steps

We are left with determining the sizes of k-nice sets for k < 3224.
With computer assistance, we can improve the height further
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Final steps

We are left with determining the sizes of k-nice sets for k < 3224.
With computer assistance, we can improve the height further

Forevery k € {2,...,3224}, there exists a k-nice set with maximum
size that has height at most \/4k/3.

Thus for k > 1892, there exists a maximum size k-nice set with
height at most 3.
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Final steps

We are left with determining the sizes of k-nice sets for k < 3224.
With computer assistance, we can improve the height further

Forevery k € {2,...,3224}, there exists a k-nice set with maximum
size that has height at most \/4k/3.

Thus for k > 1892, there exists a maximum size k-nice set with
height at most 3.

m ke {3,...,1891}: Arecursive program based on extra structure
gives the proof of the main result.
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A look back at the main result

For every k € N\ Ky, it holds that

k+4 ifkmod6 =2,
N(T?, k) =< k+3 ifkmod6 c {1,3,5},and
k+ 2 otherwise.

Ko is a special set containing 59 integers.
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Pictures!

(0,0)
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Thank You for Your Attention!



