

Curves on the torus with prescribed intersections

Marek Filakovský joint w. Balla, Kiełak, Kráľ and Schlomberg filakovsky@fi.muni.cz

This work is supported by the OP JAK MSCAfellow5 MUNI project

May 6th, Prague

Niklas visits Brno

 Approximation algorithms for finding as many disjoint cycles as possible from a certain family of cycles in a given planar or bounded-genus graph.

Niklas visits Brno

- Approximation algorithms for finding as many disjoint cycles as possible from a certain family of cycles in a given planar or bounded-genus graph.
- Question: Given a genus g surface and k > 0, what is the maximum number of simple curves that are non-homotopic and they intersect pairwise at most k-times?

Niklas visits Brno

- Approximation algorithms for finding as many disjoint cycles as possible from a certain family of cycles in a given planar or bounded-genus graph.
- Question: Given a genus g surface and k > 0, what is the maximum number of simple curves that are non-homotopic and they intersect pairwise at most k-times?
- Let Σ be a compact surface and $k \in \mathbb{N}$, the set of simple curves that are non-homotopic and they intersect pairwise at most k-times is called a k-system.

Question: What is the maximum size $N(\Sigma, k)$ of a k-system?

■ (1996 - Juvan, Malnič and Mohar): $N(\Sigma, k)$ is finite for every compact surface Σ and every $k \in \mathbb{N}$.

■ (1996 - Juvan, Malnič and Mohar): $N(\Sigma, k)$ is finite for every compact surface Σ and every $k \in \mathbb{N}$.

(2019 - Greene): If Σ is a closed orientable surface of genus g,

$$N(\Sigma, k) \leq O(g^{k+1} \log g)$$

for any fixed k.

■ (1996 - Juvan, Malnič and Mohar): $N(\Sigma, k)$ is finite for every compact surface Σ and every $k \in \mathbb{N}$.

(2019 - Greene): If Σ is a closed orientable surface of genus g,

$$N(\Sigma, k) \leq O(g^{k+1} \log g)$$

for any fixed *k*.

For k = 1, k-systems of size $O(g^2)$ have been constructed.

■ (1996 - Juvan, Malnič and Mohar): $N(\Sigma, k)$ is finite for every compact surface Σ and every $k \in \mathbb{N}$.

(2019 - Greene): If Σ is a closed orientable surface of genus g,

$$N(\Sigma, k) \leq O(g^{k+1} \log g)$$

for any fixed k.

For k = 1, k-systems of size $O(g^2)$ have been constructed.

Is the result tight?

$$N(\Sigma, k) \leq O(g^{k+1} \log g)$$

The g^{k+1} follows from an analysis of arcs on the hyperbolic surface, also there is a corresponding lower bound.

$$N(\Sigma, k) \leq O(g^{k+1} \log g)$$

The g^{k+1} follows from an analysis of arcs on the hyperbolic surface, also there is a corresponding lower bound.
 the log g follows from a nuanced probabilistic argument.

$$N(\Sigma, k) \leq O(g^{k+1} \log g)$$

The g^{k+1} follows from an analysis of arcs on the hyperbolic surface, also there is a corresponding lower bound.

the log g follows from a nuanced probabilistic argument.

$$N(\Sigma, k) \leq O(g^{k+1} \log g)$$

The g^{k+1} follows from an analysis of arcs on the hyperbolic surface, also there is a corresponding lower bound.

the log g follows from a nuanced probabilistic argument.

the general bound

$$N(\Sigma, k) \leq O(g^{k+1} \log g)$$

the general bound

$$\mathit{N}(\Sigma,k) \leq \mathit{O}(g^{k+1}\log g)$$

Juvan, Malnič and Mohar:

$$\mathbf{k+1} \leq N(\mathbb{T}^2,k) \leq \frac{3}{2}k + O(1).$$

the general bound

$$N(\Sigma, k) \leq O(g^{k+1} \log g)$$

Juvan, Malnič and Mohar:

$$\mathbf{k+1} \leq N(\mathbb{T}^2,k) \leq \frac{3}{2}k + O(1).$$

Agol:

 $N(\mathbb{T}^2,k) \leq p(k) + 1$ p(k) is the smallest prime greater than k

the general bound

$$N(\Sigma, k) \leq O(g^{k+1} \log g)$$

Juvan, Malnič and Mohar:

$$\mathbf{k+1} \leq N(\mathbb{T}^2,k) \leq \frac{3}{2}k + O(1).$$

Agol:

 $N(\mathbb{T}^2,k) \leq p(k) + 1$ p(k) is the smallest prime greater than k

$$N(\mathbb{T}^2, k) \le (1 + o(1))k$$
Baker, Harman and Pintz via prime number gap:
 $N(\mathbb{T}^2, k) \le k + O(k^{21/40}).$

Cramér in 1920:

If the Riemann hypothesis holds, then

$$N(\mathbb{T}^2, k) \leq k + O(\sqrt{k} \log k)$$

and under further number-theoretic conjecture even* $N(\mathbb{T}^2, k) \le k + O(\log^2 k)$

Cramér in 1920:

If the Riemann hypothesis holds, then

$$N(\mathbb{T}^2, k) \leq k + O(\sqrt{k} \log k)$$

and under further number-theoretic conjecture even* $N(\mathbb{T}^2, k) \le k + O(\log^2 k)$

Aougab and Gaster

$$N(\mathbb{T}^2,k) \leq k + O(\sqrt{k}\log k)$$

Observations:

Cramér in 1920:

If the Riemann hypothesis holds, then

$$N(\mathbb{T}^2, k) \leq k + O(\sqrt{k} \log k)$$

and under further number-theoretic conjecture even* $N(\mathbb{T}^2, k) \le k + O(\log^2 k)$

Aougab and Gaster

$$N(\mathbb{T}^2, k) \leq k + O(\sqrt{k} \log k)$$

Observations:

 combinatorial + geometric arguments + estimates from analytic number theory

Cramér in 1920:

If the Riemann hypothesis holds, then

$$N(\mathbb{T}^2, k) \leq k + O(\sqrt{k} \log k)$$

and under further number-theoretic conjecture even* $N(\mathbb{T}^2, k) \le k + O(\log^2 k)$

Aougab and Gaster

$$N(\mathbb{T}^2, k) \leq k + O(\sqrt{k} \log k)$$

Observations:

 combinatorial + geometric arguments + estimates from analytic number theory

Is there a k-system on the torus whose size exceeds k + 6?

Balla, F, Kiełak, Kráľ and Schlomberg

$$N(\mathbb{T}^2,k) \leq k+6$$

Balla, F, Kiełak, Kráľ and Schlomberg

$$N(\mathbb{T}^2,k) \leq k+6$$

Theorem

For every $k \in \mathbb{N} \setminus K_0$, it holds that

$$N(\mathbb{T}^{2}, k) = \begin{cases} k+4 & \text{if } k \mod 6 = 2, \\ k+3 & \text{if } k \mod 6 \in \{1, 3, 5\}, \text{and} \\ k+2 & \text{otherwise.} \end{cases}$$

Balla, F, Kiełak, Kráľ and Schlomberg

$$N(\mathbb{T}^2,k) \leq k+6$$

Theorem

For every $k \in \mathbb{N} \setminus K_0$, it holds that

$$N(\mathbb{T}^{2}, k) = \begin{cases} k+4 & \text{if } k \mod 6 = 2, \\ k+3 & \text{if } k \mod 6 \in \{1, 3, 5\}, \text{and} \\ k+2 & \text{otherwise.} \end{cases}$$

 K_0 is a special set containing 59 integers.

*K*₀

k	1	2	19	23	24	25	33	34	37	47
$N(\mathbb{T}^2,k)$	3	4	23	27	30	30	37	38	42	51
$N(\mathbb{T}^2,k)-k$	+2	+2	+4	+4	+6	+5	+4	+4	+5	+4
"pattern"	+3	+4	+3	+3	+2	+3	+3	+2	+3	+3
k	48	49	53	54	55	61	62	63	64	76
$N(\mathbb{T}^2, k)$	54	54	57	59	60	65	67	67	68	80
$N(\mathbb{T}^2,k)-k$	+6	+5	+4	+5	+5	+4	+5	+4	+4	+4
"pattern"	+2	+3	+3	+2	+3	+3	+4	+3	+2	+2
k	83	84	85	89	90	94	113	114	115	118
$N(\mathbb{T}^2,k)$	87	89	89	93	94	98	117	119	119	122
$N(\mathbb{T}^2,k)-k$	+4	+5	+4	+4	+4	+4	+4	+5	+4	+4
"pattern"	+3	+2	+3	+3	+2	+2	+3	+2	+3	+2
k	119	120	121	124	127	139	141	142	143	144
$\frac{k}{N(\mathbb{T}^2, k)}$	119 123	120 126	121 126	124 128	127 132	139 143	141 145	142 147	143 147	144 149
$ \begin{array}{ c c }\hline k \\ \hline N(\mathbb{T}^2,k) \\ N(\mathbb{T}^2,k)-k \end{array} $	$ \begin{array}{r} 119 \\ 123 \\ +4 \end{array} $	$120 \\ 126 \\ +6$	$121 \\ 126 \\ +5$	$124 \\ 128 \\ +4$	$127 \\ 132 \\ +5$	$139 \\ 143 \\ +4$	$ \begin{array}{r} 141 \\ 145 \\ +4 \end{array} $	$142 \\ 147 \\ +5$	$ \begin{array}{r} 143 \\ 147 \\ +4 \end{array} $	$ \begin{array}{r} 144 \\ 149 \\ +5 \end{array} $
$\frac{k}{N(\mathbb{T}^2,k)}$ $N(\mathbb{T}^2,k)-k$ "pattern"	$ \begin{array}{r} 119 \\ 123 \\ +4 \\ +3 \end{array} $	$120 \\ 126 \\ +6 \\ +2$	$121 \\ 126 \\ +5 \\ +3$	$ \begin{array}{r} 124 \\ 128 \\ +4 \\ +2 \end{array} $	127 132 +5 +3	$139 \\ 143 \\ +4 \\ +3$	$ \begin{array}{r} 141 \\ 145 \\ +4 \\ +3 \end{array} $	$ \begin{array}{r} 142 \\ 147 \\ +5 \\ +2 \end{array} $	$ \begin{array}{r} 143 \\ 147 \\ +4 \\ +3 \end{array} $	$ \begin{array}{r} 144 \\ 149 \\ +5 \\ +2 \end{array} $
$ \begin{array}{ c c }\hline k \\ \hline N(\mathbb{T}^2, k) \\ N(\mathbb{T}^2, k) - k \\ \text{``pattern''} \\\hline k \end{array} $	$ \begin{array}{r} 119 \\ 123 \\ +4 \\ +3 \\ 145 \end{array} $	120 126 +6 +2 154	121 126 +5 +3 167	124 128 +4 +2 168	127 132 +5 +3 169	139 143 +4 +3 174	$ \begin{array}{r} 141 \\ 145 \\ +4 \\ +3 \\ 184 \end{array} $	$ \begin{array}{r} 142 \\ 147 \\ +5 \\ +2 \\ 204 \end{array} $	$ \begin{array}{r} 143 \\ 147 \\ +4 \\ +3 \\ 208 \end{array} $	$ \begin{array}{r} 144 \\ 149 \\ +5 \\ +2 \\ 214 \end{array} $
$ \begin{array}{ c c }\hline k \\ N(\mathbb{T}^2,k) \\ N(\mathbb{T}^2,k)-k \\ \text{``pattern''} \\\hline k \\ N(\mathbb{T}^2,k) \end{array} $	$ \begin{array}{r} 119 \\ 123 \\ +4 \\ +3 \\ 145 \\ 149 \end{array} $	120 126 +6 +2 154 158	121 126 +5 +3 167 171	124 128 +4 +2 168 174	127 132 +5 +3 169 174	139 143 +4 +3 174 178	$ \begin{array}{r} 141 \\ 145 \\ +4 \\ +3 \\ 184 \\ 188 \end{array} $	142 147 +5 +2 204 208	$ \begin{array}{r} 143 \\ 147 \\ +4 \\ +3 \\ 208 \\ 212 \end{array} $	$ \begin{array}{r} 144 \\ 149 \\ +5 \\ +2 \\ 214 \\ 217 \end{array} $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{r} 119 \\ 123 \\ +4 \\ +3 \\ 145 \\ 149 \\ +4 \\ +4 \end{array} $	120 126 +6 +2 154 158 +4	121 126 +5 +3 167 171 +4	124 128 +4 +2 168 174 +6	127 132 +5 +3 169 174 +5	139 143 +4 +3 174 174 178 +4	$ \begin{array}{r} 141 \\ 145 \\ +4 \\ +3 \\ 184 \\ 188 \\ +4 \\ \end{array} $	142 147 +5 +2 204 208 +4	$ \begin{array}{r} 143 \\ 147 \\ +4 \\ +3 \\ 208 \\ 212 \\ +4 \\ +4 \end{array} $	$ \begin{array}{r} 144 \\ 149 \\ +5 \\ +2 \\ 214 \\ 217 \\ +3 \\ \end{array} $
	$ \begin{array}{r} 119 \\ 123 \\ +4 \\ +3 \\ 145 \\ 149 \\ +4 \\ +3 \\ \end{array} $	$ \begin{array}{r} 120 \\ 126 \\ +6 \\ +2 \\ 154 \\ 158 \\ +4 \\ +2 \\ \end{array} $	$\begin{array}{c} 121 \\ 126 \\ +5 \\ +3 \\ \hline 167 \\ 171 \\ +4 \\ +3 \end{array}$	$\begin{array}{r} 124\\ 128\\ +4\\ +2\\ 168\\ 174\\ +6\\ +2\\ \end{array}$	$\begin{array}{r} 127 \\ 132 \\ +5 \\ +3 \\ \hline 169 \\ 174 \\ +5 \\ +3 \\ \end{array}$	$ \begin{array}{r} 139 \\ 143 \\ +4 \\ +3 \\ 174 \\ 178 \\ +4 \\ +2 \\ \end{array} $	$ \begin{array}{r} 141 \\ 145 \\ +4 \\ +3 \\ 184 \\ 188 \\ +4 \\ +2 \\ \end{array} $	142 147 +5 +2 204 208 +4 +2	$ \begin{array}{r} 143 \\ 147 \\ +4 \\ +3 \\ 208 \\ 212 \\ +4 \\ +2 \\ \end{array} $	$\begin{array}{r} 144\\ 149\\ +5\\ +2\\ 214\\ 217\\ +3\\ +2\\ \end{array}$
	$ \begin{array}{r} 119 \\ 123 \\ +4 \\ +3 \\ 145 \\ 149 \\ +4 \\ +3 \\ 234 \\ \end{array} $	$ \begin{array}{r} 120 \\ 126 \\ +6 \\ +2 \\ 154 \\ 158 \\ +4 \\ +2 \\ 244 \\ \end{array} $	$\begin{array}{c} 121 \\ 126 \\ +5 \\ +3 \\ 167 \\ 171 \\ +4 \\ +3 \\ 264 \end{array}$	$\begin{array}{r} 124 \\ 128 \\ +4 \\ +2 \\ 168 \\ 174 \\ +6 \\ +2 \\ 274 \end{array}$	$\begin{array}{r} 127 \\ 132 \\ +5 \\ +3 \\ 169 \\ 174 \\ +5 \\ +3 \\ 294 \end{array}$	$ \begin{array}{r} 139 \\ 143 \\ +4 \\ +3 \\ 174 \\ 178 \\ +4 \\ +2 \\ 304 \end{array} $	$ \begin{array}{r} 141\\ 145\\ +4\\ +3\\ 184\\ 188\\ +4\\ +2\\ 324\\ \end{array} $	$\begin{array}{r} 142 \\ 147 \\ +5 \\ +2 \\ 204 \\ 208 \\ +4 \\ +2 \\ 354 \end{array}$	$ \begin{array}{r} 143 \\ 147 \\ +4 \\ +3 \\ 208 \\ 212 \\ +4 \\ +2 \\ 384 \\ \end{array} $	$ \begin{array}{r} 144\\ 149\\ +5\\ +2\\ 214\\ 217\\ +3\\ +2\\ \end{array} $
	$ \begin{array}{r} 119 \\ 123 \\ +4 \\ +3 \\ 145 \\ 149 \\ +4 \\ +3 \\ 234 \\ 238 \\ \end{array} $	$\begin{array}{r} 120 \\ 126 \\ +6 \\ +2 \\ 154 \\ 158 \\ +4 \\ +2 \\ 244 \\ 247 \end{array}$	$\begin{array}{c} 121 \\ 126 \\ +5 \\ +3 \\ \hline 167 \\ 171 \\ +4 \\ +3 \\ \hline 264 \\ 268 \end{array}$	$\begin{array}{r} 124 \\ 128 \\ +4 \\ +2 \\ 168 \\ 174 \\ +6 \\ +2 \\ 274 \\ 277 \end{array}$	$\begin{array}{c} 127 \\ 132 \\ +5 \\ +3 \\ \hline 169 \\ 174 \\ +5 \\ +3 \\ \hline 294 \\ 297 \\ \end{array}$	$\begin{array}{r} 139 \\ 143 \\ +4 \\ +3 \\ 174 \\ 178 \\ +4 \\ +2 \\ 304 \\ 307 \\ \end{array}$	$ \begin{array}{r} 141\\ 145\\ +4\\ +3\\ 184\\ 188\\ +4\\ +2\\ 324\\ 327\\ \end{array} $	$\begin{array}{r} 142 \\ 147 \\ +5 \\ +2 \\ 204 \\ 208 \\ +4 \\ +2 \\ 354 \\ 357 \\ \end{array}$	$\begin{array}{r} 143 \\ 147 \\ +4 \\ +3 \\ 208 \\ 212 \\ +4 \\ +2 \\ 384 \\ 387 \\ \end{array}$	$ \begin{array}{r} 144\\ 149\\ +5\\ +2\\ 214\\ 217\\ +3\\ +2\\ \end{array} $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{r} 119 \\ 123 \\ +4 \\ +3 \\ 145 \\ 149 \\ +4 \\ +3 \\ 234 \\ 234 \\ +4 \\ +4 \end{array} $	$\begin{array}{c} 120 \\ 126 \\ +6 \\ +2 \\ 154 \\ 158 \\ +4 \\ +2 \\ 244 \\ 247 \\ +3 \end{array}$	$\begin{array}{c} 121 \\ 126 \\ +5 \\ +3 \\ \hline 167 \\ 171 \\ +4 \\ +3 \\ \hline 264 \\ 268 \\ +4 \\ \end{array}$	$\begin{array}{r} 124\\ 128\\ +4\\ +2\\ 168\\ 174\\ +6\\ +2\\ 274\\ 277\\ +3\\ \end{array}$	$\begin{array}{c} 127\\ 132\\ +5\\ +3\\ 169\\ 174\\ +5\\ +3\\ 294\\ 297\\ +3\\ \end{array}$	$\begin{array}{r} 139 \\ 143 \\ +4 \\ +3 \\ 174 \\ 178 \\ +4 \\ +2 \\ 304 \\ 307 \\ +3 \end{array}$	$141 \\ 145 \\ +4 \\ +3 \\ 184 \\ 188 \\ +4 \\ +2 \\ 324 \\ 327 \\ +3 \\ $	$\begin{array}{r} 142 \\ 147 \\ +5 \\ +2 \\ 204 \\ 208 \\ +4 \\ +2 \\ 354 \\ 357 \\ +3 \end{array}$	$\begin{array}{c} 143 \\ 147 \\ +4 \\ +3 \\ 208 \\ 212 \\ +4 \\ +2 \\ 384 \\ 387 \\ +3 \end{array}$	$ \begin{array}{r} 144\\ 149\\ +5\\ +2\\ 214\\ 217\\ +3\\ +2\\ \end{array} $

■ $C_{m,n}$ is the closed curve parameterized as $(m \cdot t \mod 1, n \cdot t \mod 1)$ for $t \in [0, 1]$;

- $C_{m,n}$ is the closed curve parameterized as $(m \cdot t \mod 1, n \cdot t \mod 1)$ for $t \in [0, 1]$;
- Every non-trivial closed curve *C* is freely homotopic to a curve $C_{m,n}$ for some non-zero $(m, n) \in \mathbb{Z}^2$

- $C_{m,n}$ is the closed curve parameterized as $(m \cdot t \mod 1, n \cdot t \mod 1)$ for $t \in [0, 1]$;
- Every non-trivial closed curve *C* is freely homotopic to a curve $C_{m,n}$ for some non-zero $(m, n) \in \mathbb{Z}^2$
- if the curve is non-self-intersecting, i.e. simple, then m and n are coprime.

minimal number of crossings between curves?

minimal number of crossings between curves freely homotopic to $C_{m,n}$ and $C_{m',n'}$

minimal number of crossings between curves freely homotopic to $C_{m,n}$ and $C_{m',n'}$ is equal to |mn' - m'n| (Attained by $C_{m,n}$ and $C_{m',n'}$).

minimal number of crossings between curves freely homotopic to $C_{m,n}$ and $C_{m',n'}$ is equal to |mn' - m'n| (Attained by $C_{m,n}$ and $C_{m',n'}$). Conclusion:

- We can represent a *k*-system *K* by a list of pairs of coprime integers *Q*(*K*).
- $\Gamma \cdot Q(K)$ represents the same *k*-system for any $\Gamma \in SL(2, \mathbb{Z})$.

minimal number of crossings between curves freely homotopic to $C_{m,n}$ and $C_{m',n'}$ is equal to |mn' - m'n| (Attained by $C_{m,n}$ and $C_{m',n'}$). Conclusion:

- We can represent a *k*-system *K* by a list of pairs of coprime integers *Q*(*K*).
- $\Gamma \cdot Q(K)$ represents the same *k*-system for any $\Gamma \in SL(2, \mathbb{Z})$.

We can use this to put all the points in a *nice position*

Formally

For an integer $k \in \mathbb{N}$, a set $Q \subseteq \mathbb{Z}^2$ is *k*-nice if the following holds:

- Q contains non-zero coprime pairs only,
- *Q* does not contain both (x, y) and (-x, -y) for any $(x, y) \in \mathbb{Z}^2$, and
- $|xy' x'y| \le k$ for all (x, y) and (x', y') contained in Q.

Formally

For an integer $k \in \mathbb{N}$, a set $Q \subseteq \mathbb{Z}^2$ is *k*-nice if the following holds:

- Q contains non-zero coprime pairs only,
- *Q* does not contain both (x, y) and (-x, -y) for any $(x, y) \in \mathbb{Z}^2$, and
- $|xy' x'y| \le k$ for all (x, y) and (x', y') contained in Q.

Lemma

For every $k \in \mathbb{N}$, $N(\mathbb{T}^2, k)$ is equal to the maximum size of a k-nice set.

Formally

For an integer $k \in \mathbb{N}$, a set $Q \subseteq \mathbb{Z}^2$ is *k*-nice if the following holds:

- Q contains non-zero coprime pairs only,
- *Q* does not contain both (x, y) and (-x, -y) for any $(x, y) \in \mathbb{Z}^2$, and
- $|xy' x'y| \le k$ for all (x, y) and (x', y') contained in Q.

Lemma

For every $k \in \mathbb{N}$, $N(\mathbb{T}^2, k)$ is equal to the maximum size of a k-nice set.

- $Q \subseteq \mathbb{Z}^2$ is y-non-negative if $y \ge 0$ for all $(x, y) \in Q$.
- The height of $Q \subseteq \mathbb{Z}^2$ is the maximum $h \in \mathbb{N}$ such that the set Q contains (x, y) with |y| = h

What is the volume of the convex hull of Q?

Lemma

Let Q be k-nice, $y \ge 0$. If $(m, n) \in \mathbb{Z}^2$ is contained in the convex hull of Q and the integers m and n are coprime, then (m, n) is contained in Q.

What is the volume of the convex hull of Q?

Lemma

Let Q be k-nice, $y \ge 0$. If $(m, n) \in \mathbb{Z}^2$ is contained in the convex hull of Q and the integers m and n are coprime, then (m, n) is contained in Q.

The density of coprime numbers in \mathbb{Z}^2 is roughly $\frac{6}{\pi}$

■ What is the volume of conv(*Q*)?

What is the volume of the convex hull of Q?

Lemma

Let Q be k-nice, $y \ge 0$. If $(m, n) \in \mathbb{Z}^2$ is contained in the convex hull of Q and the integers m and n are coprime, then (m, n) is contained in Q.

- The density of coprime numbers in \mathbb{Z}^2 is roughly $\frac{6}{\pi}$
- What is the volume of conv(*Q*)?

Lemma

Let $k \in \mathbb{N}$. If $S \subseteq \mathbb{R}^2$ is a convex set such that $y \ge 0$ for every $(x, y) \in S$ and $|xy' - yx'| \le k$ for all $(x, y), (x', y') \in S$, then the area of S is at most $\frac{\pi k}{2}$.

Rescalining: we assume $k = 1, y \in [0, 1]$, and define

 $f^{-}(y) = \min\{x : (x, y) \in S\}, f^{+}(y) = \max\{x : (x, y) \in S\}, y' = \sqrt{1 - y^2}$

Rescalining: we assume $k = 1, y \in [0, 1]$, and define

$$f^{-}(y) = \min\{x : (x,y) \in S\}, f^{+}(y) = \max\{x : (x,y) \in S\}, y' = \sqrt{1-y^2}$$
$$\int_{0}^{1} f^{+}(y) dy - \int_{0}^{1} \frac{y}{\sqrt{1-y^2}} f^{-}\left(\sqrt{1-y^2}\right) dy \leq \int_{0}^{1} \frac{1}{\sqrt{1-y^2}} dy = \frac{\pi}{2}.$$
(1)

Rescalining: we assume $k = 1, y \in [0, 1]$, and define

$$f^{-}(y) = \min\{x : (x, y) \in S\}, f^{+}(y) = \max\{x : (x, y) \in S\}, y' = \sqrt{1 - y^2}$$
$$\int_{0}^{1} f^{+}(y) dy - \int_{0}^{1} \frac{y}{\sqrt{1 - y^2}} f^{-}\left(\sqrt{1 - y^2}\right) dy \le \int_{0}^{1} \frac{1}{\sqrt{1 - y^2}} dy = \frac{\pi}{2}.$$
(1)

by substituting, we get

$$\int_{0}^{1} \frac{y}{\sqrt{1-y^{2}}} f^{-}\left(\sqrt{1-y^{2}}\right) \mathrm{d}y = -1 \int_{1}^{0} f^{-}(y) \mathrm{d}y = \int_{0}^{1} f^{-}(y) \mathrm{d}y.$$
 (2)

Rescalining: we assume $k = 1, y \in [0, 1]$, and define

$$f^{-}(y) = \min\{x : (x,y) \in S\}, f^{+}(y) = \max\{x : (x,y) \in S\}, y' = \sqrt{1-y^2}$$
$$\int_{0}^{1} f^{+}(y) dy - \int_{0}^{1} \frac{y}{\sqrt{1-y^2}} f^{-}\left(\sqrt{1-y^2}\right) dy \le \int_{0}^{1} \frac{1}{\sqrt{1-y^2}} dy = \frac{\pi}{2}.$$
(1)

by substituting, we get

$$\int_{0}^{1} \frac{y}{\sqrt{1-y^2}} f^{-}\left(\sqrt{1-y^2}\right) \mathrm{d}y = -1 \int_{1}^{0} f^{-}(y) \mathrm{d}y = \int_{0}^{1} f^{-}(y) \mathrm{d}y.$$
 (2)

We combine (1) and (2) to conclude that the area of S is

$$\int_{0}^{1} f^{+}(y) - f^{-}(y) \mathrm{d}y = \int_{0}^{1} f^{+}(y) \mathrm{d}y - \int_{0}^{1} \frac{y}{\sqrt{1 - y^{2}}} f^{-}\left(\sqrt{1 - y^{2}}\right) \mathrm{d}y \leq \frac{\pi}{2}.$$

Upper bound on the size of a *k***-nice set of height** *h*

For $\ell \in \mathbb{N}$, we define

$$\rho_{\ell} = \prod_{\text{primes } p, p \mid \ell} \left(1 - \frac{1}{p} \right);$$

and

$$lpha_\ell = \max_{1 \leq a \leq b \leq 2\ell} |\{z, a \leq z \leq b \text{ and } \gcd(z, \ell) = 1\}| -
ho_\ell(b - a + 1);$$

Upper bound on the size of a *k*-nice set of height *h*

For $\ell \in \mathbb{N}$, we define

$$o_{\ell} = \prod_{\text{primes } p, p \mid \ell} \left(1 - \frac{1}{p} \right);$$

and

$$\alpha_\ell = \max_{1 \le a \le b \le 2\ell} |\{z, a \le z \le b \text{ and } \gcd(z, \ell) = 1\}| - \rho_\ell(b - a + 1);$$

If X is a set of *n* consecutive integers, then at most $\rho_{\ell}n + \alpha_{\ell}$ elements of X are coprime with ℓ .

Consider the following linear program (LP_{ℓ}) with 2 ℓ variables $\sigma_1, \ldots, \sigma_\ell$ and $\tau_1, \ldots, \tau_\ell$:

$$\begin{array}{ll} \text{maximize } \sum_{i=1}^{\ell} \rho_i(\tau_i - \sigma_i) \\ \text{subject to } & \tau_i \geq \sigma_i \geq 0 \\ & -1 \leq i\tau_j - j\sigma_i \leq 1 \end{array} \quad \begin{array}{l} \text{for all } 1 \leq i \leq \ell, \text{ and} \\ \text{for all } 1 \leq i, j \leq \ell. \end{array}$$

Consider the following linear program (LP_{ℓ}) with 2 ℓ variables $\sigma_1, \ldots, \sigma_\ell$ and $\tau_1, \ldots, \tau_\ell$:

$$\begin{array}{l} \text{maximize } \sum_{i=1}^{\ell} \rho_i(\tau_i - \sigma_i) \\ \text{subject to } & \tau_i \geq \sigma_i \geq 0 \\ & -1 \leq i\tau_j - j\sigma_i \leq 1 \end{array} \quad \begin{array}{l} \text{for all } 1 \leq i \leq \ell, \text{ and} \\ \text{for all } 1 \leq i, j \leq \ell. \end{array}$$

The objective value of the program (LP_{ℓ}) is denoted by γ_{ℓ} .

Consider the following linear program (LP_{ℓ}) with 2 ℓ variables $\sigma_1, \ldots, \sigma_\ell$ and $\tau_1, \ldots, \tau_\ell$:

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^{\ell} \rho_i(\tau_i - \sigma_i) \\ \text{subject to} & \tau_i \geq \sigma_i \geq 0 \\ & -1 \leq i\tau_j - j\sigma_i \leq 1 \end{array} \quad \begin{array}{ll} \text{for all } 1 \leq i \leq \ell, \text{ and} \\ \text{for all } 1 \leq i, j \leq \ell. \end{array} \end{array}$$

The objective value of the program (LP_ℓ) is denoted by γ_ℓ.
Define β₀ = 1 and β_ℓ = β_{ℓ−1} + α_ℓ + ρ_ℓ.

Consider the following linear program (LP_{ℓ}) with 2 ℓ variables $\sigma_1, \ldots, \sigma_\ell$ and $\tau_1, \ldots, \tau_\ell$:

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^{\ell} \rho_i(\tau_i - \sigma_i) \\ \text{subject to} & \tau_i \geq \sigma_i \geq 0 \\ & -1 \leq i\tau_j - j\sigma_i \leq 1 \end{array} \quad \begin{array}{ll} \text{for all } 1 \leq i \leq \ell, \text{ and} \\ \text{for all } 1 \leq i, j \leq \ell. \end{array}$$

The objective value of the program (LP_{ℓ}) is denoted by γ_{ℓ} .

• Define $\beta_0 = 1$ and $\beta_\ell = \beta_{\ell-1} + \alpha_\ell + \rho_\ell$.

Lemma

 $\gamma_{\ell} < 1$ for every $\ell \geq 4$.

Lemma

Let $k \in \mathbb{N}$. For every $h \in \{1, ..., k\}$, every k-nice set $Q \subseteq \mathbb{Z}^2$ with height exactly h has at most $\gamma_h k + \beta_h$ elements.

Lemma

Let $k \in \mathbb{N}$. For every $h \in \{1, ..., k\}$, every k-nice set $Q \subseteq \mathbb{Z}^2$ with height exactly h has at most $\gamma_h k + \beta_h$ elements.

l	ρ_ℓ	$lpha_\ell$	γ_ℓ	β_{ℓ}
1	1.0000	0.0000	1.0000	2.0000
2	0.5000	0.5000	1.0000	3.0000
3	0.6667	0.6667	1.0000	4.3333
4	0.5000	0.5000	0.9722	5.3333
16	0.5000	0.5000	0.9553	23.4929
17	0.9412	0.9412	0.9617	25.3753
18	0.3333	1.0000	0.9576	26.7086
19	0.9474	0.9474	0.9634	28.6033
20	0.4000	1.2000	0.9615	30.2033

Proof sketch

Fix $k \in \mathbb{N}$ and $h \in \{1, ..., k\}$, Let Q be x, y-non-negative, k-nice set with height exactly h.

■ s_i and t_i for i = 1, ..., h be the minimum and maximum reals such that (s_i, i) and (t_i, i) are in the convex hull of Q.

Proof sketch

Fix $k \in \mathbb{N}$ and $h \in \{1, ..., k\}$, Let Q be x, y-non-negative, k-nice set with height exactly h.

- s_i and t_i for i = 1, ..., h be the minimum and maximum reals such that (s_i, i) and (t_i, i) are in the convex hull of Q.
- **Observation** $\sigma_i = s_i/k$ and $\tau_i = t_i/k$, i = 1, ..., h, is a feasible solution of (LP_h)

Proof sketch

Fix $k \in \mathbb{N}$ and $h \in \{1, ..., k\}$, Let Q be x, y-non-negative, k-nice set with height exactly h.

■ s_i and t_i for i = 1,..., h be the minimum and maximum reals such that (s_i, i) and (t_i, i) are in the convex hull of Q.

Observation $\sigma_i = s_i/k$ and $\tau_i = t_i/k$, i = 1, ..., h, is a feasible solution of (LP_h)

this implies

$$\sum_{i=1}^{h} \rho_i(t_i - s_i) = k \sum_{i=1}^{h} \rho_i(\tau_i - \sigma_i) \le \gamma_h k.$$
(3)

Proof end

For $i \in \{0, ..., h\}$, let Q_i be the points contained in Q with their second coordinate equal to i. Then

$$|\mathcal{Q}_i| \leq
ho_i(t_i - s_i + 1) + lpha_i =
ho_i(t_i - s_i) + (lpha_i +
ho_i)$$

Putting everything together, we get

$$|\mathcal{Q}| = \sum_{i=0}^{h} |\mathcal{Q}_i| = \left(\sum_{i=1}^{h} \rho_i(t_i - s_i)\right) + 1 + \sum_{i=1}^{h} (\alpha_i + \rho_i) \leq \gamma_h k + \beta_h.$$

This concludes the proof of the lemma.

Proof end

For $i \in \{0, ..., h\}$, let Q_i be the points contained in Q with their second coordinate equal to i. Then

$$|\mathcal{Q}_i| \leq
ho_i(t_i - s_i + 1) + lpha_i =
ho_i(t_i - s_i) + (lpha_i +
ho_i)$$

Putting everything together, we get

$$|\mathcal{Q}| = \sum_{i=0}^{h} |\mathcal{Q}_i| = \left(\sum_{i=1}^{h} \rho_i(t_i - s_i)\right) + 1 + \sum_{i=1}^{h} (\alpha_i + \rho_i) \leq \gamma_h k + \beta_h.$$

This concludes the proof of the lemma.

Lemma

Let $k \in \mathbb{N}$. For every $h \in \{1, ..., k\}$, every k-nice set $Q \subseteq \mathbb{Z}^2$ with height exactly h has at most $\gamma_h k + \beta_h$ elements.

Asymptotics for fixed height

Proved with computer assistance:

Lemma

For every $h \ge 41020$ and every $k \ge h$, the maximum size of a k-nice set with height h is at most

$$\frac{3264\pi}{10255} \cdot k + \frac{4946}{3675} \cdot h + 1.$$

Asymptotics for fixed height

Proved with computer assistance:

Lemma

For every $h \ge 41020$ and every $k \ge h$, the maximum size of a k-nice set with height h is at most

$$\frac{3264\pi}{10255} \cdot k + \frac{4946}{3675} \cdot h + 1.$$

If the height of a *k*-nice set *Q* is small, then the size of *Q* is less than *k* (note that $\frac{3264\pi}{10255} < 1$). Luckily, the height of a Q is sublinear in *k*.

Lemma

For every $k \in \mathbb{N}$, there exists a k-nice set with maximum size that has height at most $\sqrt{2k}$.

Asymptotics conclusions

Since $\gamma_{\ell} < 1$ for every $\ell \ge 4$, for every $k \ge 3225$, there exists a maximum size *k*-nice set with height at most 3.

Such *k*-nice sets can be directly analyzed.

Asymptotics conclusions

Since $\gamma_{\ell} < 1$ for every $\ell \ge 4$, for every $k \ge 3225$, there exists a maximum size *k*-nice set with height at most 3.

Such *k*-nice sets can be directly analyzed.

Lemma

For every $k \ge 3$, the maximum size of a k-nice set of height at most 3 is

- k + 4 if k mod 6 = 2,
- k + 3 if k mod $6 \in \{1, 3, 5\}$, and
- k + 2 otherwise.

We are left with determining the sizes of *k*-nice sets for $k \le 3224$. With computer assistance, we can improve the height further

We are left with determining the sizes of *k*-nice sets for $k \le 3224$. With computer assistance, we can improve the height further

Lemma

For every $k \in \{2, ..., 3224\}$, there exists a k-nice set with maximum size that has height at most $\sqrt{4k/3}$.

Thus for $k \ge 1892$, there exists a maximum size k-nice set with height at most 3.

We are left with determining the sizes of *k*-nice sets for $k \le 3224$. With computer assistance, we can improve the height further

Lemma

For every $k \in \{2, ..., 3224\}$, there exists a k-nice set with maximum size that has height at most $\sqrt{4k/3}$.

Thus for $k \ge 1892$, there exists a maximum size k-nice set with height at most 3.

■ $k \in \{3, ..., 1891\}$: A recursive program based on extra structure gives the proof of the main result.

A look back at the main result

Theorem

For every $k \in \mathbb{N} \setminus K_0$, it holds that

$$N(\mathbb{T}^{2}, k) = \begin{cases} k+4 & \text{if } k \mod 6 = 2, \\ k+3 & \text{if } k \mod 6 \in \{1, 3, 5\}, \text{and} \\ k+2 & \text{otherwise.} \end{cases}$$

 K_0 is a special set containing 59 integers.

Pictures!

Thank You for Your Attention!