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Analytic Number Theory and Logarithms

Carl Friedrich Gauss

What is Analytic Number Theory?

Number theory is the branch of
mathematics that studies objects of
an arithmetic nature; the
prototypical examples being prime
numbers. In particular, analytic
number theory employs tools from
complex analysis to investigate
arithmetic questions, for instance
using the residue theorem.

What is Analytic Number Theory
known for?

Lots of logs, loglogs, logloglogs . . .

A. Fazzari (Genova) On counting elements in product sets October 14, 2025 2 / 23



Analytic Number Theory and Logarithms

Carl Friedrich Gauss

What is Analytic Number Theory?

Number theory is the branch of
mathematics that studies objects of
an arithmetic nature; the
prototypical examples being prime
numbers. In particular, analytic
number theory employs tools from
complex analysis to investigate
arithmetic questions, for instance
using the residue theorem.

What is Analytic Number Theory
known for?

Lots of logs, loglogs, logloglogs . . .

A. Fazzari (Genova) On counting elements in product sets October 14, 2025 2 / 23



Analytic Number Theory and Logarithms

Carl Friedrich Gauss

What is Analytic Number Theory?

Number theory is the branch of
mathematics that studies objects of
an arithmetic nature; the
prototypical examples being prime
numbers. In particular, analytic
number theory employs tools from
complex analysis to investigate
arithmetic questions, for instance
using the residue theorem.

What is Analytic Number Theory
known for?

Lots of logs, loglogs, logloglogs . . .

A. Fazzari (Genova) On counting elements in product sets October 14, 2025 2 / 23



Analytic Number Theory and Logarithms

A. Fazzari (Genova) On counting elements in product sets October 14, 2025 3 / 23



Analytic Number Theory and Logarithms

A. Fazzari (Genova) On counting elements in product sets October 14, 2025 4 / 23



Analytic Number Theory and Logarithms

But are these logarithms truly necessary, or do analytic number theorists just have
a perverse sense of aesthetics?

Many mathematicians claim that these iterated logarithms naturally appear in
nature.

Let’s see an example: the multiplication table problem, posed by Erdős in 1955.
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The Multiplication Table Problem

Back to elementary school–let’s look at the 10× 10 multiplication table:

× 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90
10 10 20 30 40 50 60 70 80 90 100

There are 100 entries in the above table; how many distinct integers appear in the
table?
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There are 100 entries in the above table; how many distinct integers appear in the
table? There are 42 numbers appearing in the 10× 10 table.
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The Multiplication Table Problem

Given N ∈ N, let M(N) denote the number of distinct products ab, where
1 ≤ a, b ≤ N. These are precisely the entries in an N × N multiplication table.

How many distinct products occur, i.e., what is M(N)?

The table has N2 entries, i.e., M(N) ≤ N2

It is symmetric, so we have repetitions: M(N) ≤ N(N+1)
2 .

How many distinct entries does it have?

In the previous slide, we saw that M(10) = 42.

Other examples can be computed:

N 5 10 20 40 80 160 320 640 1000
M(N) 14 42 109 321 784 1792 3968 8704 15864
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The Multiplication Table Problem

What would you conjecture about M(N) asymptotically, i.e. as N → ∞?

It is natural to compare the size of M(N) with the total number of entries N2:

N M(N)
N2

5 0.5600
10 0.4200
20 0.3800
40 0.3231
80 0.3030
160 0.2802
320 0.2671
640 0.2538
1000 0.2481
2000 0.2399
8000 0.2267
16000 0.2215
32000 0.2166
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The Multiplication Table Problem

So perhaps
M(N)

N2
→ 0? For friends, M(N) = o(N2)?

And, if so, how fast does that ratio go to 0? Explicit bounds on the order of
magnitude of M(N)? Even asymptotic formulae?

Is M(N) of the form N2−c1?

Or is M(N) of the form N2/(logN)c2?

Or how about M(N) of the form N2/ exp((logN)c3)?

N M(N)
N2 c1 c2 c3

5 0.5600 0.3603 1.2184 1.1453
10 0.4200 0.3768 1.0401 0.1704
20 0.3800 0.3230 0.8819 0.0300
40 0.3231 0.3063 0.8655 0.0935
80 0.3030 0.2725 0.8081 0.1200
160 0.2802 0.2507 0.7832 0.1482
320 0.2671 0.2289 0.7533 0.1585
640 0.2538 0.2122 0.7349 0.1692
1000 0.2481 0.2018 0.7213 0.1718

Acknowledgment:
Table adapted from
work of Pomerance &
Kurlberg & Lagarias.
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The Function of Prime Divisors

Besides numerics, a key tool to understand the multiplication table problem is the
prime divisor function Ω of an integer n:

Ω(n) : = number of prime divisors of n, counted with multiplicity

=
∑
pα||n

α = α1 + · · ·+ αk , if n = pα1
1 · · · pαk

k .

Note that the additive function Ω(n) is pretty nasty; its behavior is very erratic:

If n = p is prime, then Ω(n) = 1;

If n = 2k , then Ω(n) = k.

In particular, for any n ≥ 2,

1 ≤ Ω(n) ≪ log n

with both inequalities being optimal.
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The Function of Prime Divisors

The average behavior of Ω is much more regular. One can show that

1

N

∑
n≤N

Ω(n) ∼ log logN,

Indeed,

1

N

∑
n≤N

Ω(n) ≈ 1

N

∑
n≤N

∑
p|n

1 =
1

N

∑
p≤N

∑
n≤N

n≡0 (p)

1 =
1

N

∑
p≤N

∑
m≤N/p

1

=
1

N

∑
p≤N

(
N

p
+ O(1)

)
=

∑
p≤N

1

p
+ O

(
1

N

∑
p≤N

1

)
= log logN + O(1).
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The Function of Prime Divisors

With the same technique, one sees that

1

N

∑
n≤N

Ω(n)2 = (log logN)2 + O(log logN).

Via Chebyshev’s inequality, these two computations imply that

Ω(n) ∼ log log n “typically”.

In other words, this means that not only does Ω(n) have average value log log n,
but this is also its normal order. More precisely, Ω(n) ∼ log log n for all n ≤ N
outside an exceptional set of size o(N).
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Erdős’ idea

Let’s now prove that
M(N) = o(N2).

Recall that for
√
N < n ≤ N, we have Ω(n) ∼ log logN, typically. Most products

ab have both a >
√
N and b >

√
N. Therefore:

On one hand,
√
N < a, b ≤ N implies that N < ab ≤ N2 and for most such

products, Ω(ab) ∼ log logN2 ∼ log logN;

On the other hand, the complete additivity of Ω implies that
Ω(ab) = Ω(a) + Ω(b) ∼ 2 log logN.

This observation (made by Erdős) suggests that the products ab are not typical
integers, as they have an unusually large number of prime divisors.

Consequently, this immediately implies that, at least, M(N) = o(N2).
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The Function of Prime Divisors, refined

The distribution of prime divisors can be studied much more precisely. The
famous Erdős-Kac theorem states that Ω(n) converges in distribution to a
Gaussian. Namely, for any fixed V > 0,

1

N
#

{
n ≤ N :

Ω(n)− log logN√
log logN

> V

}
∼

∫ ∞

V

e−x2/2 dx√
2π
.

In other words, most integers have Ω(n) close to log log n, and the typical
deviations of order

√
log log n are Gaussian.

Moreover, the large deviations of the function Ω exhibit Poisson-like behavior; for
any B > 1,

1

N
#

{
n ≤ N : Ω(n) > B log logN

}
≍ e−ϕ(B) log logN = (logN)−ϕ(B),

where ϕ(B) = B logB − B + 1.
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The Answer to the Multiplication Table Problem

Using these more refined results (and many other techniques), Erdős (1960)
showed that

M(N) =
N2

(logN)δ+o(1)
, where δ = 1− 1 + log log 2

log 2
≈ 0.08607.

This means that, for any fixed ε > 0,

N2

(logN)δ
(logN)−ε ≪ M(N) ≪ N2

(logN)δ
(logN)ε.

Building on work of Tenenbaum, Ford (2008) finally determined the order of
magnitude of M(N), proving that

N2

(logN)δ(log logN)3/2
≪ M(N) ≪ N2

(logN)δ(log logN)3/2
.

The constant is still unknown, so an asymptotic formula for M(N) remains out of
reach with current technology.
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The Answer to the Multiplication Table Problem

The upshot of the multiplication table problem is:

The multiplication table numbers have an unusually large number of prime
divisors, and hence they are not typical integers.

The multiplication table numbers are typically balanced products ab, say with
a, b >

√
N, and each factor “contributes”with ∼ log logN prime divisors.
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On the Asymptotic Density of Product Sets

Let’s look at the analogous problem for infinite sets of natural numbers. In this
context, the role of the cardinality is played by the natural density; given a set
A ⊆ N,

d(A) := lim
x→∞

#(A ∩ [1, x ])

x
.

In 2021, Bettin-Koukoulopoulos-Sanna studied the product set

A · A := {a1a2 : a1, a2 ∈ A},

and proved the following result:

If A is a set with natural density 1, then the set A · A has also density 1.
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On the Asymptotic Density of Product Sets

Note that this case differs from the multiplication table problem. The difference
lies in the fact that many elements of A · A come from very unbalanced products,
meaning products ab such that the sizes of a and b are completely different.

Idea: any integer n can be factored as

n = nsmooth · nrough,

where nsmooth and nrough are the products of its “small” and “large” prime factors,
respectively. If n ̸∈ A · A, then at least one of these factors must be missing from
A, meaning either nsmooth ̸∈ A or nrough ̸∈ A. If the product set A · A does not
have density 1, then A must lack its expected proportion of either smooth or
rough numbers. Consequently, A itself cannot have density 1.
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On the Asymptotic Density of Product Sets

More precisely, denoting

Rx(A) = 1− #(A ∩ [1, x ])

x
,

Bettin-Koukoulopoulos-Sanna proved that

If
Rx(A) ≪ (log x)−a for some a ∈ (0, 1)

then

Rx(A · A) ≪ (log x)−
a2

1+a+o(1).

Equivalently, letting

ψ(a) := sup{b > 0 : Rx(A · A) ≪ (log x)−b ∀A ⊆ N with Rx(A) ≪ (log x)−a},

their result can be stated as

ψ(a) ≥ a2

1 + a
,

for a ∈ (0, 1).
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On the Asymptotic Density of Product Sets

In joint work with Sandro Bettin and Matteo Bordignon, we proved an upper
bound for ψ, providing a set of density 1 such that its square is “as small as
possible”.

Theorem (Bettin, Bordignon, F., 2025)

Letting

ψ(a) := sup{b > 0 : Rx(A · A) ≪ (log x)−b ∀A ⊆ N with Rx(A) ≪ (log x)−a},

we have

ψ(a) ≤

{
a for a ∈ (0, 0.117)

6.51a2 + o(a2) as a → 0.

To construct a set A such that N \ (A · A) is large, we define A as the set of
integers that have “not too few” large prime divisors. This way, elements of A · A
have “too many”prime divisors, as in the multiplication table problem.
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On the Asymptotic Density of Product Sets

In joint work with Sandro Bettin and Matteo Bordignon, we proved an upper
bound for ψ, providing a set of density 1 such that its square is “as small as
possible”.

Theorem (Bettin, Bordignon, F., 2025)
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6.51a2 + o(a2) as a → 0.

To construct a set A such that N \ (A · A) is large, we define A as the set of
integers that have “not too few” large prime divisors. This way, elements of A · A
have “too many”prime divisors, as in the multiplication table problem.
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On the Asymptotic Density of Product Sets

In particular, our result implies that ψ(a) decays quadratically as a → 0+:

1 ≤ lim inf
a→0+

ψ(a)

a2
≤ lim sup

a→0+

ψ(a)

a2
≤ 2

1− log 2
= 6.51778 . . . .

The functions a2

1+a
(green), K(a) (blue) and a (orange) for 0 ≤ a ≤ 0.15. The function ψ

lies between the green curve and the minimum of the blue and the orange curves.
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Sketch of the Proof

For parameters y > 1 and 1
2 < B < 1, let’s discretize the positive real axis

according to the points

Ek = ee
yk

.

Given an integer n, denote by kn the largest integer k such that Ek < n.

1 E1 E2 · · · Ekn−1 Ekn n

Consider the function

Ωk(n) := #{p | n : Ek−1 < p < Ek , with multiplicity}.

Define the set

A := {n ∈ [E0,∞) : Ωkn(n) > B(log log Ekn − log log Ekn−1)}.

Note that log log Ek − log log Ek−1 is the expected number of prime divisors
between Ek−1 and Ek .
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Sketch of the Proof

1 E1 E2 · · · Ekn−1 Ekn n

One sees that
Rx(A) ≪ (log x)

−ϕ(B)( 1
y −

1
y2

)
.

Now consider n = ab ∈ (A · A) ∩ [1, x ]. Then:

if a, b ∈ [Ekn−1,Ekn ], then a, b ∈ A implies that their product ab has
2B(log log Ekn − log log Ekn−1) prime divisors in [Ekn−1,Ekn ]
=⇒ unlikely (2B > 1) =⇒ A · A “small” =⇒ lower bound for Rx(A · A).
if a ∈ [Ekn−1,Ekn ] and b ∈ [Er−1,Er ] for some r < kn, then the conditions on
the number of prime divisors on disjoint intervals are independent. Using
classical large deviation results, one gets a lower bound for Rx(A · A).
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