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The Story of Jake

The kidnapping of Jake’s advisor (artist’s rendition)
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Jake’s Task

Jake needs to construct a list of planes such that:

No plane contains the origin.

Every other point of {0, 1}3 is contained in at least six planes.

Jake can only use eleven planes!
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Did he succeed?

x = 1, y = 1, z = 1 twice each

x + y = 1, x + z = 1, y + z = 1 once each

x + y + z = 1 twice
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Almost Covers

Question (Komjáth, 1994)

How many hyperplanes does it take to cover all the vertices of Qn := {0, 1}n,
except for one which isn’t covered at all?

A hyperplane in n-dimensional space is a flat surface with dimension n − 1.

Example

Lines for n = 2.

Planes for n = 3.

x1 + 2x2 + 3x3 − x4 = 5 or 3x1 + 7x4 = 0 when n = 4.

a1x1 + a2x2 + · · ·+ anxn = c in general.
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Almost Covers

Question (Komjáth, 1994)

How many hyperplanes does it take to cover all the vertices of Qn := {0, 1}n,
except for one which isn’t covered at all?

Theorem (Alon–Füredi, 1993)

The minimum is n.
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Almost Covers

Theorem (Alon–Füredi, 1993)

The minimum number of hyperplanes needed to cover all but one vertex of Qn

is n.

Two of the possible constructions:

xi = 1 for i = 1, · · · , n.∑n
i=1 xi = t for t = 1, · · · , n.

Lower bound comes from Combinatorial Nullstellensatz.
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Combinatorial Nullstellensatz

How many zeros can a degree n polynomial have?

anx
n + an−1x

n−1 + · · ·+ a1x + a0 has at most n zeros, but ...

xy has infinitely many zeros!
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Combinatorial Nullstellensatz

Theorem (Alon, 1999)

Let F be a field and f ∈ F [x1, x2, · · · , xn]. Suppose deg f =
∑n

i=1 ti where each
ti ≥ 0 and that

∏n
i=1 x

ti
i has a nonzero coefficient in f .

Then, if S1, S2, · · · , Sn are subsets of F with |Si | > ti , there exist si ∈ Si for
i = 1, · · · , n such that f (s1, · · · , sn) 6= 0.

Example

Let f (x1, x2) = 4x2
1 x2 + x3

2 + 3x1x2 − x1 + 3. f cannot vanish on the entirety of
the grid {a, b, c} × {d , e}. That is, we do not ever have

f (a, d) = f (a, e) = f (b, d) = f (b, e) = f (c, d) = f (c, e) = 0.
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Proof of Alon–Füredi result

Theorem

n − 1 affine hyperplanes are insufficient to cover all but one vertex of Qn.

Proof.

Assume that we can cover all but one vertex of Qn using the hyperplanes
H1,H2, · · · ,Hn−1. We can write Hi as ai1x1 + · · ·+ ainxn = 1.

Let f =
∏n−1

i=1 Pi with Pi := ai1x1 + · · ·+ ainxn − 1. f vanishes on Qn \ {~0}.

f (~0) = (−1)n−1, so let g = f +
∏n

i=1(xi − 1).

g vanishes on Qn, contradicting Combinatorial Nullstellensatz.
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Theorem

n − 1 affine hyperplanes are insufficient to cover all but one vertex of Qn.

Proof.

Assume that we can cover all but one vertex of Qn using the hyperplanes
H1,H2, · · · ,Hn−1. We can write Hi as ai1x1 + · · ·+ ainxn = 1.

Let f =
∏n−1

i=1 Pi with Pi := ai1x1 + · · ·+ ainxn − 1. f vanishes on Qn \ {~0}.

f (~0) = (−1)n−1, so let g = f +
∏n

i=1(xi − 1).

g vanishes on Qn, contradicting Combinatorial Nullstellensatz.

22



Proof of Alon–Füredi result
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Almost k-Covers

An almost k-cover of Qn is a collection of affine hyperplanes which covers
every point of Qn \ {~0} at least k times, without covering ~0.

Let f (n, k) be the minimum size of an almost k-cover of Qn.
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Preliminary Lower Bound

If you remove a hyperplane from an almost k−cover, you get an almost
(k − 1)−cover. Thus, f (n, k) ≥ f (n, k − 1) + 1.

By induction, f (n, k) ≥ n + k − 1.
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Preliminary Upper Bound

Use each xi = 1 once for i = 1, · · · , n and use k − t copies of
∑n

i=1 xi = t for

t = 1, · · · , k − 1, for a total of n +
(
k
2

)
.

Example

For n = 3, k = 4,

x1 = 1, x2 = 1, x3 = 1

x1 + x2 + x3 = 1 three times

x1 + x2 + x3 = 2 twice

x1 + x2 + x3 = 3
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Improvements

Let f (n, k) be the minimum size of an almost k-cover of Qn.

Theorem (C.–Huang, 2020)

For n ≥ 2,
f (n, 3) = n + 3.

Theorem (C.–Huang, 2020)

For n ≥ 3, k ≥ 4,
f (n, k) ≥ n + k + 1.

Theorem (Sauermann–Wigderson, 2022)

For n ≥ 2k − 3, k ≥ 2,
f (n, k) ≥ n + 2k − 3.
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Upper Bound

Conjecture (C.–Huang, 2020)

For each k, f (n, k) = n +
(
k
2

)
for sufficiently large n.

Theorem (Alon, 2020; C., 2024++)

Any almost k-cover containing at least n − 2 of the hyperplanes
x1 = 1, x2 = 1, . . . , xn = 1 must have size at least n +

(
k
2

)
.

Example (C.–Grzesik–Kim, 2023++)

x1 = 1

x1 + xj = 1 for j = 2, . . . , n

k −m copies of (2− n/m)x1 + (x2 + · · ·+ xn)/m = 1 for m = 1, . . . , k − 1
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Almost Covers of Rectangular Grids

Theorem (Alon–Füredi, 1993)

For sets S1, S2, · · · , Sn ⊂ R, the minimum number of affine hyperplanes in Rn

needed to cover all but one point of S1 × S2 × · · · × Sn and leave the last point
uncovered is

n∑
i=1

(|Si | − 1).
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For sets S1, S2, · · · , Sn ⊂ R, the minimum number of affine hyperplanes in Rn

needed to cover all but one point of S1 × S2 × · · · × Sn and leave the last point
uncovered is

n∑
i=1

(|Si | − 1).

34



Why remove a point?

If we instead insist on covering every point of S1 × S2 × . . .Sn, then this is a
very boring question.

Every point lies on a hyperplane of maximum size!
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Triangular Grids

Not every point lies on a hyperplane of maximum size!
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Notation

Let Td(n) := {(x1, · · · , xd) ∈ Zd
≥0 | x1 + · · ·+ xd ≤ n − 1}.

Let f (n, d , k) denote the minimum number of hyperplanes needed to cover
every point of Td(n) at least k times.
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Integer Covering

Theorem (Basit–C.–Horn, 2023+)

For all n ≥ 2,

f (n, 2, k) =


n if k = 1,

d3n/2e if k = 2,

d9n/4e if k = 3,

3n if k = 4.
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Proof for k = 4: Upper Bound

Theorem (Basit–C.–Horn, 2023+)

For all n ≥ 2, f (n, 2, 4) = 3n.

Proof.

Our construction only uses lines parallel to the sides of the outer triangle.

Lines x = i , y = i , and x + y = n − 1− i for i ∈ {0, . . . , b n−1
3
c} have

multiplicity 2.

Lines x = i , y = i , and x + y = n− 1− i for i ∈ {b n−1
3
c+ 1, . . . , b 2n

3
c − 1}

have multiplicity 1.
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Proof for k = 4: Lower Bound

Theorem (Basit–C.–Horn, 2023+)

For all n ≥ 2, f (n, 2, 4) = 3n.

Proof.

We show f (n, 2, 4) ≥ 3n by induction.

If we use an outer line (x = 0, y = 0, or x + y = n − 1) at least three times,
then we require at least f (n − 1, 2, 4) + 3 = (3n − 3) + 3 lines.

Using each outer line twice leaves 3(n− 2) points on the boundary that need to
be covered an additional two times each. Only two of these can be covered at a
time by any other line, forcing at least 3(n−2)(2)

2
= 3n − 6 more lines.
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Integer Program

f (d , n, k) is the minimum number of hyperplanes needed to cover every point
of Td(n) at least k times each.

This is the optimum of an integer program:

Variables correspond to how many times each hyperplane is used.

Constraints correspond to each grid point being covered at least k times.
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Linear Relaxation

We define f ∗(n, d , k) to be the optimum of the linear relaxation. We write
f ∗(n, d) := f ∗(n, d , 1).

f (n, d , k) ≥ f ∗(n, d , k) = kf ∗(n, d).

Theorem (Basit–C.–Horn, 2023+)

For all integers j ≥ 0, 
f ∗(3j + 1, 2) = 2j + 1,

f ∗(3j + 2, 2) = 2j + 1 +
2j + 1

3j + 2
,

f ∗(3j + 3, 2) = 2j + 2 +
j + 1

3j + 4
.

1,
3

2
,

9

4
, 3,

18

5
,

30

7
, 5, . . .
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Fractional Covering: Upper Bound

Theorem (Basit–C.–Horn, 2023+)

f ∗(3j + 1, 2) = 2j + 1 for all integers j ≥ 0.

T2(3j + 1) = {(x , y) | x , y ≥ 0, x + y ≤ 3j}. We can cover all these points with
the following lines:

x = i for i = 0, · · · , 2j − 1 with weight 2j−i
3j

,

y = i from i = 0, · · · , 2j − 1 with weight 2j−i
3j

, and

x + y = 3j − i from i = 0, · · · , 2j − 1 with weight 2j−i
3j

.

If i1, i2 ≤ 2j − 1, (i1, i2) is covered with weight 2j−i1
3j

by a vertical line and

weight 2j−i2
3j

by a horizontal line for a total weight of 4j−i1−i2
3j

.

If this is not at least 1, i1 + i2 ≥ j + 1 and the point is covered by a diagonal
line with weight i1+i2−j

3j
for a total weight of 1.
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Fractional Covering: Lower Bound

Theorem (Basit–C.–Horn, 2023+)

f ∗(3j + 1, 2) = 2j + 1 for all integers j ≥ 0.

1
12

2
12

3
12
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Fractional Covering: Lower Bound

Theorem (Basit–C.–Horn, 2023+)
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Fractional Covering: Lower Bound

Theorem (Basit–C.–Horn, 2023+)

f ∗(3j + 1, 2) = 2j + 1 for all integers j ≥ 0.

3
12

2
12

1
12

53



Integer Covering Revisited

We automatically get the bound f (n, 2, k) ≥ kf ∗(n, 2) but it is not tight.

For example, f ∗(n, 2) = 2n/3 + O(1), but f (n, 2, 4) = 3n rather than
8n/3 + O(1).

Computations suggest f (n, 2, k) = Ckn + O(1) for some constant Ck and in
particular that C5 = 18/5,C6 = 30/7, and C7 = 5.
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Conjecture

Conjecture (Basit–C.–Horn, 2023+)

For k ≥ 1,
f (n, 2, k) = (f ∗(k, 2))n + Ok(1).

We can translate the upper bound construction for the fractional problem
to the necessary upper bound construction for the integer program.

The desired lower bound on f (n, 2, k) holds under certain natural
constraints.
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Open Problems

Determine the asymptotic formula (in terms of n) for general f (n, d , k).

Is f (n, d , k) ≥ f ∗(k, d)n for all n, d , k?

Does f (n, d , k) = f (k, d , n) for all n, d , k?
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D́ıky moc!

59



Higher Dimensions

Recall that f (n, d , k) is the minimum number of hyperplanes needed to cover
every point of Td(n) := {(x1, · · · , xd) ∈ Zd

≥0 | x1 + · · ·+ xd ≤ n − 1} at least k
times.

Theorem

a) If k ≥ 2 and d ≥ 2k − 3, then

f (n, d , k) =

(
1 +

k − 1

d − k + 2

)
n + Od,k(1),

b) If k ≥ 3 and 2k − 3 ≥ d ≥ k − 2, then

f (n, d , k) =

(
2 +

2k − 3− d

2d + 3− k

)
n + Od,k(1).
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Key Observations

Fix d and k.

1) Suppose you want to show a lower bound of f (n, d , k) ≥ Cn + C ′ via
induction on n. It suffices to assume that all bounding hyperplanes
(xi = 0 or x1 + · · ·+ xd = n − 1) are used fewer than C times.

2) The intersection of a bounding hyperplane H with Td(n) is a copy of
Td−1(n). Any hyperplane not parallel to H intersects this in an affine
subspace of dimension d − 2. Thus, the number of hyperplanes needed to
cover k times this copy of Td−1(n) without using H is at least
f (n, d − 1, k).
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cover k times this copy of Td−1(n) without using H is at least
f (n, d − 1, k).

62



Proof Example

We induct on k. Suppose we wish to show that f (n, 6, 4) = 7n/4 + O(1) and
we already know that f (n, 5, 3) = 3n/2 + O(1).

By Observation 1), it suffices to assume that every bounding hyperplane of
T6(n) has multiplicity at most 1. Then excluding the bounding hyperplanes
used, each face of the grid, which is a copy of T5(n), includes an interior copy
of T5(n − 6) whose points have been covered at most once.

We cannot use anymore bounding hyperplanes so by Observation 2), each of
these copies requires at least f (n − 6, 5, 3) = 3n/2 + O(1) hyperplanes to be
covered an additional three times. However, no hyperplane will intersect all
seven copies of T5(n − 6) that need to be covered, so this requires at least(

7

6

)
(3n/2 + O(1)) = 7n/4 + O(1).
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Proof Example

We induct on k. Suppose we wish to show that f (n, 6, 4) = 7n/4 + O(1) and
we already know that f (n, 5, 3) = 3n/2 + O(1).

By Observation 1), it suffices to assume that every bounding hyperplane of
T6(n) has multiplicity at most 1. Then excluding the bounding hyperplanes
used, each face of the grid, which is a copy of T5(n), includes an interior copy
of T5(n − 6) whose points have been covered at most once.

We cannot use anymore bounding hyperplanes so by Observation 2), each of
these copies requires at least f (n − 6, 5, 3) = 3n/2 + O(1) hyperplanes to be
covered an additional three times. However, no hyperplane will intersect all
seven copies of T5(n − 6) that need to be covered, so this requires at least(

7

6

)
(3n/2 + O(1)) = 7n/4 + O(1).
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Proof Example

We induct on k. Suppose we wish to show that f (n, 6, 4) = 7n/4 + O(1) and
we already know that f (n, 5, 3) = 3n/2 + O(1).

By Observation 1), it suffices to assume that every bounding hyperplane of
T6(n) has multiplicity at most 1. Then excluding the bounding hyperplanes
used, each face of the grid, which is a copy of T5(n), includes an interior copy
of T5(n − 6) whose points have been covered at most once.

We cannot use anymore bounding hyperplanes so by Observation 2), each of
these copies requires at least f (n − 6, 5, 3) = 3n/2 + O(1) hyperplanes to be
covered an additional three times. However, no hyperplane will intersect all
seven copies of T5(n − 6) that need to be covered, so this requires at least(

7

6

)
(3n/2 + O(1)) = 7n/4 + O(1).
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