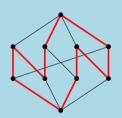
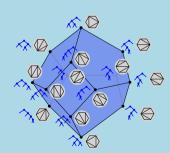
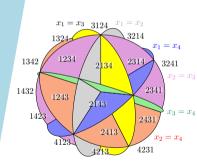
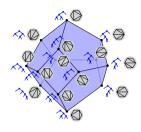
Hamiltonicity in polytopes and hyperplane arrangements

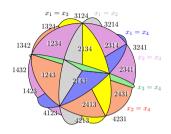


Sofia Brenner Charles University (KAM)





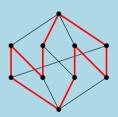




Listing faces of polytopeswith Nastaran Behrooznia, Arturo
Merino, Torsten Mütze, Christian
Rieck, and Francesco Verciani

Traversing regions of hyperplane arrangements and their lattice quotients with Jean Cardinal, Thomas McConville, Arturo Merino, and Torsten Mütze

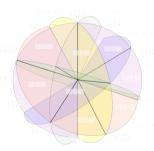
Introduction



Face Lattices

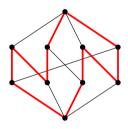


Regions in Hyperplane Arrangements

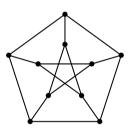


Hamiltonian cycles and paths

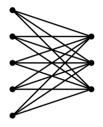
Hamiltonian cycles and paths



Hamiltonian cycles and paths



Hamiltonian cycles and paths



Hamiltonian cycles and paths

A Hamiltonian cycle (path) in a graph G is a cycle (path) that visits every vertex precisely once.

► NP-hard problem

Hamiltonian cycles and paths

- ► NP-hard problem
- sufficient conditions (Dirac's theorem)

Hamiltonian cycles and paths

A Hamiltonian cycle (path) in a graph G is a cycle (path) that visits every vertex precisely once.

- ► NP-hard problem
- sufficient conditions (Dirac's theorem)

Lovasz Conjecture

Every vertex-transitive graph has a Hamiltonian path.

Aim: listing of all combinatorial objects of a certain type, allowing only small modifications (flips) between consecutive elements ("Gray code")

Aim: listing of all combinatorial objects of a certain type, allowing only small modifications (flips) between consecutive elements ("Gray code")

Example

Aim: listing of all combinatorial objects of a certain type, allowing only small modifications (flips) between consecutive elements ("Gray code")

Example

 \triangleright bit strings of length n, by bit flips

Aim: listing of all combinatorial objects of a certain type, allowing only small modifications (flips) between consecutive elements ("Gray code")

Example

- \triangleright bit strings of length n, by bit flips
- permutations on *n* symbols, by adjacent transpositions

Aim: listing of all combinatorial objects of a certain type, allowing only small modifications (flips) between consecutive elements ("Gray code")

Example

- \triangleright bit strings of length n, by bit flips
- permutations on n symbols, by adjacent transpositions
- ▶ noncrossing perfect matchings on a convex point set of size 4n, by alternating 4-cycles

Aim: listing of all combinatorial objects of a certain type, allowing only small modifications (flips) between consecutive elements ("Gray code")

Example

- \triangleright bit strings of length n, by bit flips
- permutations on *n* symbols, by adjacent transpositions
- ▶ noncrossing perfect matchings on a convex point set of size 4n, by alternating 4-cycles

Aim: listing of all combinatorial objects of a certain type, allowing only small modifications (flips) between consecutive elements ("Gray code")

Example

- \triangleright bit strings of length n, by bit flips
- permutations on n symbols, by adjacent transpositions
- ▶ noncrossing perfect matchings on a convex point set of size 4n, by alternating 4-cycles

Flip graph

vertices = objects

Aim: listing of all combinatorial objects of a certain type, allowing only small modifications (flips) between consecutive elements ("Gray code")

Example

- \triangleright bit strings of length n, by bit flips
- permutations on *n* symbols, by adjacent transpositions
- ▶ noncrossing perfect matchings on a convex point set of size 4n, by alternating 4-cycles

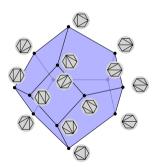
- vertices = objects
- edge = feasible flip

Aim: listing of all combinatorial objects of a certain type, allowing only small modifications (flips) between consecutive elements ("Gray code")

Example

- \triangleright bit strings of length n, by bit flips
- permutations on n symbols, by adjacent transpositions
- ▶ noncrossing perfect matchings on a convex point set of size 4n, by alternating 4-cycles

- vertices = objects
- ► edge = feasible flip

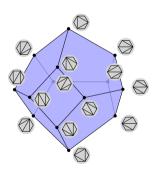


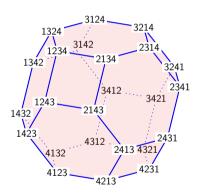
Aim: listing of all combinatorial objects of a certain type, allowing only small modifications (flips) between consecutive elements ("Gray code")

Example

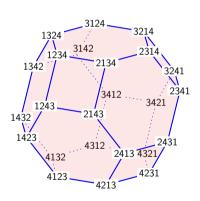
- \triangleright bit strings of length n, by bit flips
- permutations on n symbols, by adjacent transpositions
- ▶ noncrossing perfect matchings on a convex point set of size 4n, by alternating 4-cycles

- vertices = objects
- ► edge = feasible flip
- combinatorial Gray code = Hamiltonian path

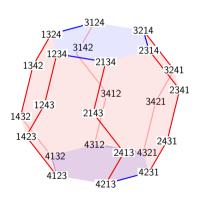




```
n
              12, 21
    123, 132, 312, 321, 231, 213
      1234, 1243, 1423, 4123,
     4132, 1432, 1342, 1324,
     3124, 3142, 3412, 4312,
     4321, 3421, 3241, 3214.
     2314, 2341, 2431, 4231,
      4213, 2413, 2143, 2134
```



```
n
              12, 21
    123, 132, 312, 321, 231, 213
      1234, 1243, 1423, 4123,
     4132, 1432, 1342, 1324,
     3124, 3142, 3412, 4312,
     4321, 3421, 3241, 3214,
     2314, 2341, 2431, 4231,
      4213, 2413, 2143, 2134
```



Aim: Gray codes for objects that are in bijection with certain subsets of permutations ("zigzag languages")

Aim: Gray codes for objects that are in bijection with certain subsets of permutations ("zigzag languages")

binary reflected Gray code

[Gray, 1953]

Aim: Gray codes for objects that are in bijection with certain subsets of permutations ("zigzag languages")

binary reflected Gray code

[Gray, 1953]

► Steinhaus-Johnson-Trotter algorithm

[Steinhaus, Johnson, Trotter, 1960s]

Aim: Gray codes for objects that are in bijection with certain subsets of permutations ("zigzag languages")

- binary reflected Gray code
- Steinhaus-Johnson-Trotter algorithm
- pattern avoiding permutations

[Gray, 1953]

[Steinhaus, Johnson, Trotter, 1960s]

[Hartung, Hoang, Mütze, Williams, 2020]

Aim: Gray codes for objects that are in bijection with certain subsets of permutations ("zigzag languages")

binary reflected Gray code

[Gray, 1953]

Steinhaus-Johnson-Trotter algorithm

[Steinhaus, Johnson, Trotter, 1960s]

pattern avoiding permutations

[Hartung, Hoang, Mütze, Williams, 2020]

▶ lattice quotients of the weak order (quotientopes)

[Hoang, Mütze, 2021]

[Pilaud, Santos, 2019]

Aim: Gray codes for objects that are in bijection with certain subsets of permutations ("zigzag languages")

binary reflected Gray code [Grav. 1953]

Steinhaus-Johnson-Trotter algorithm [Steinhaus, Johnson, Trotter, 1960s]

pattern avoiding permutations [Hartung, Hoang, Mütze, Williams, 2020]

lattice quotients of the weak order (quotientopes) [Hoang, Mütze, 2021]

[Pilaud, Santos, 2019]

elimination trees of chordal graphs (graph associahedra of chordal graphs) [Cardinal, Merino, Mütze, 2022]

Aim: Gray codes for objects that are in bijection with certain subsets of permutations ("zigzag languages")

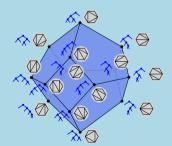
```
binary reflected Gray code
                                                                           [Grav. 1953]
  Steinhaus-Johnson-Trotter algorithm
                                                     [Steinhaus, Johnson, Trotter, 1960s]
pattern avoiding permutations
                                                [Hartung, Hoang, Mütze, Williams, 2020]
   lattice quotients of the weak order (quotientopes)
                                                                  [Hoang, Mütze, 2021]
                                                                  [Pilaud, Santos, 2019]
  elimination trees of chordal graphs (graph associahedra of chordal graphs)
                                                         [Cardinal, Merino, Mütze, 2022]
(patter-avoiding) rectangulations (rectangulotopes)
                                                                  [Merino, Mütze, 2023]
                                                                [Cardinal, Pilaud, 2025]
```

Aim: Gray codes for objects that are in bijection with certain subsets of permutations ("zigzag languages")

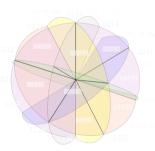
```
binary reflected Gray code
                                                                           [Grav. 1953]
  Steinhaus-Johnson-Trotter algorithm
                                                     [Steinhaus, Johnson, Trotter, 1960s]
pattern avoiding permutations
                                                [Hartung, Hoang, Mütze, Williams, 2020]
  lattice quotients of the weak order (quotientopes)
                                                                  [Hoang, Mütze, 2021]
                                                                  [Pilaud, Santos, 2019]
elimination trees of chordal graphs (graph associahedra of chordal graphs)
                                                        [Cardinal, Merino, Mütze, 2022]
(patter-avoiding) rectangulations (rectangulotopes)
                                                                 [Merino, Mütze, 2023]
                                                                [Cardinal, Pilaud, 2025]
```

Introduction

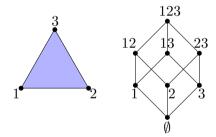
Face Lattices



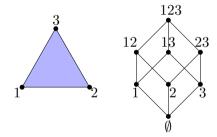
Regions in Hyperplane Arrangements



Given a polytope P, we consider (the cover graph of) its face lattice L(P).

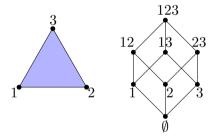


Given a polytope P, we consider (the cover graph of) its face lattice L(P).



Given a polytope P, we consider (the cover graph of) its face lattice L(P).

- ▶ F_1 and F_2 are adjacent if $F_1 \subseteq F_2$ and dim $F_2 = \dim F_1 + 1$



Question

For which polytopes P is the cover graph of L(P) Hamiltonian?

Question

For which polytopes P is the cover graph of L(P) Hamiltonian?

Observation

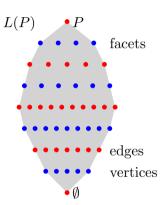
The graph of L(P) is bipartite and balanced.

Question

For which polytopes P is the cover graph of L(P) Hamiltonian?

Observation

The graph of L(P) is bipartite and balanced.

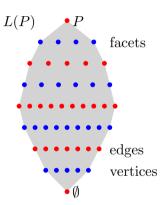


Conjecture

For any polytope P, the cover graph of L(P) is Hamiltonian.

Observation

The graph of L(P) is bipartite and balanced.

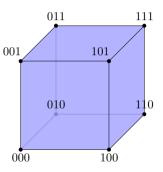


Theorem (Behrooznia, B., Merino, Mütze, Rieck, Verciani, 2026)

Theorem (Behrooznia, B., Merino, Mütze, Rieck, Verciani, 2026)

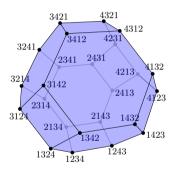
For the following classes of polytopes P, the cover graph of L(P) has a Hamiltonian cycle:

hypercubes



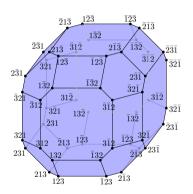
Theorem (Behrooznia, B., Merino, Mütze, Rieck, Verciani, 2026)

- hypercubes
- permutahedra



Theorem (Behrooznia, B., Merino, Mütze, Rieck, Verciani, 2026)

- hypercubes
- permutahedra
- ► B-permutahedra

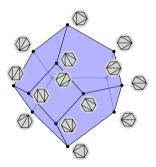


Theorem (Behrooznia, B., Merino, Mütze, Rieck, Verciani, 2026)

- hypercubes
- permutahedra
- ▶ *B*-permutahedra
- quotientopes

Theorem (Behrooznia, B., Merino, Mütze, Rieck, Verciani, 2026)

- hypercubes
- permutahedra
- ▶ *B*-permutahedra
- quotientopes
- associahedra



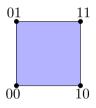
Theorem (Behrooznia, B., Merino, Mütze, Rieck, Verciani, 2026)

- hypercubes
- permutahedra
- ▶ *B*-permutahedra
- quotientopes
- associahedra
- graph associahedra of chordal graphs

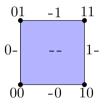
Theorem (Behrooznia, B., Merino, Mütze, Rieck, Verciani, 2026)

- hypercubes
- permutahedra
- ▶ *B*-permutahedra
- quotientopes
- associahedra
- graph associahedra of chordal graphs
- ► 3-dimensional polytopes

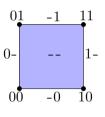
Theorem

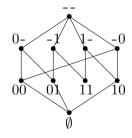


Theorem

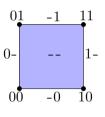


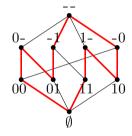
Theorem





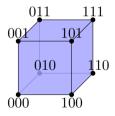
Theorem



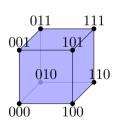


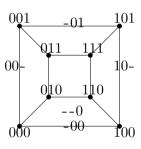
Theorem

Theorem

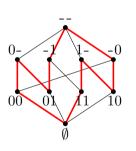


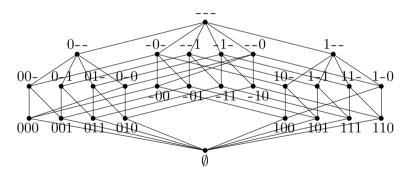
Theorem



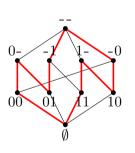


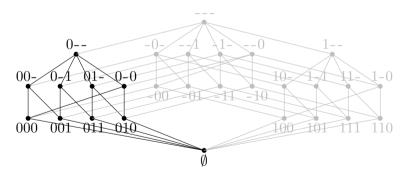
Theorem



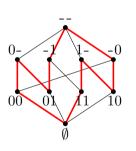


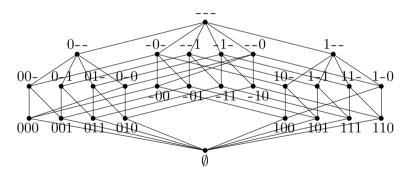
Theorem



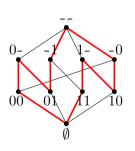


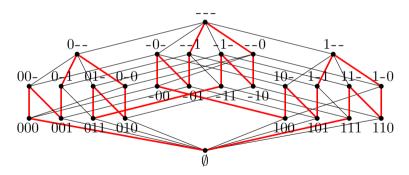
Theorem





Theorem

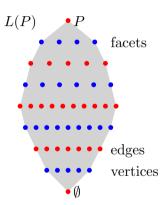




And in general...?

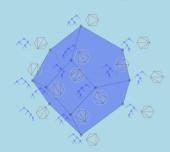
Conjecture

For any polytope P, the cover graph of L(P) is Hamiltonian.

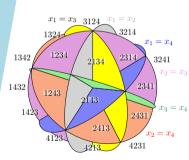


Introduction

Face Lattices



Regions in Hyperplane Arrangements



Zigzag framework

Zigzag framework

Aim: Gray codes for objects that are in bijection with certain subsets of permutations ("zigzag languages")

```
binary reflected Gray code
                                                                           [Grav. 1953]
  Steinhaus-Johnson-Trotter algorithm
                                                     [Steinhaus, Johnson, Trotter, 1960s]
pattern avoiding permutations
                                                [Hartung, Hoang, Mütze, Williams, 2020]
  lattice quotients of the weak order (quotientopes)
                                                                  [Hoang, Mütze, 2021]
                                                                  [Pilaud, Santos, 2019]
elimination trees of chordal graphs (graph associahedra of chordal graphs)
                                                        [Cardinal, Merino, Mütze, 2022]
(patter-avoiding) rectangulations (rectangulotopes)
                                                                 [Merino, Mütze, 2023]
                                                                [Cardinal, Pilaud, 2025]
```

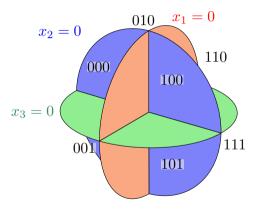
Regions of Hyperplane Arrangements

Hyperplane arrangements

A hyperplane arrangement \mathcal{H} is a finite collection of hyperplanes (through the origin) in \mathbb{R}^n .

Hyperplane arrangements

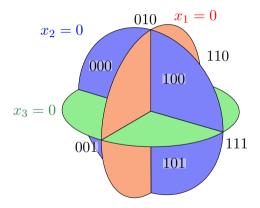
A hyperplane arrangement \mathcal{H} is a finite collection of hyperplanes (through the origin) in \mathbb{R}^n .



Hyperplane arrangements

A hyperplane arrangement \mathcal{H} is a finite collection of hyperplanes (through the origin) in \mathbb{R}^n .

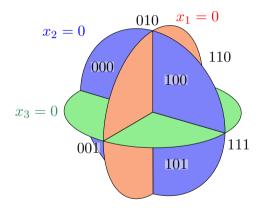
▶ rank: dimension of the space spanned by the normal vectors of hyperplanes in H



Hyperplane arrangements

A hyperplane arrangement \mathcal{H} is a finite collection of hyperplanes (through the origin) in \mathbb{R}^n .

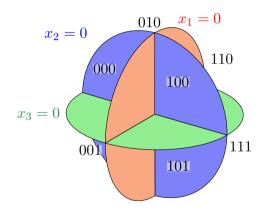
- ▶ rank: dimension of the space spanned by the normal vectors of hyperplanes in H
- ▶ **regions**: connected components of $\mathbb{R}^n \setminus \mathcal{H}$



Hyperplane arrangements

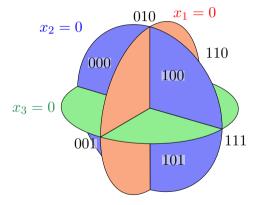
A hyperplane arrangement \mathcal{H} is a finite collection of hyperplanes (through the origin) in \mathbb{R}^n .

- ▶ rank: dimension of the space spanned by the normal vectors of hyperplanes in H
- ▶ **regions**: connected components of $\mathbb{R}^n \setminus \mathcal{H}$
- **proof** graph of regions $\mathcal{G}(\mathcal{H})$: vertices are regions, adjacent if separated by a single hyperplane

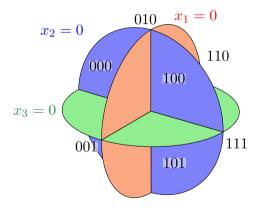


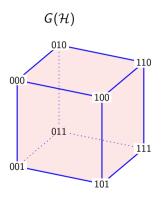
Example: Coordinate Arrangement

Example: Coordinate Arrangement



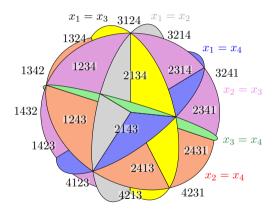
Example: Coordinate Arrangement



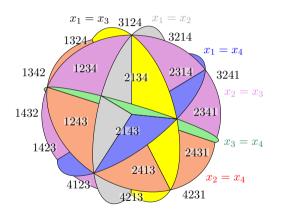


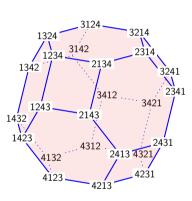
Example: Braid Arrangement

Example: Braid Arrangement



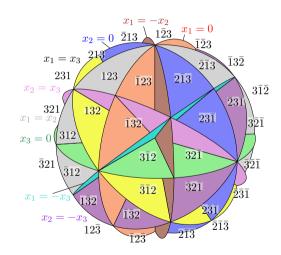
Example: Braid Arrangement



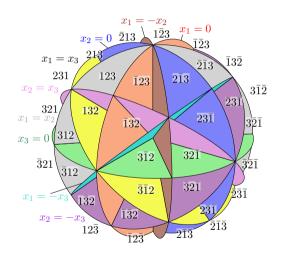


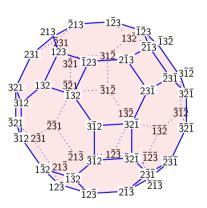
Example: Type *B* Arrangement

Example: Type B Arrangement



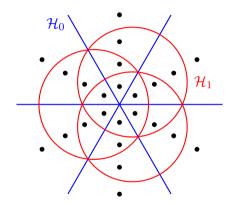
Example: Type B Arrangement





Supersolvable arrangements

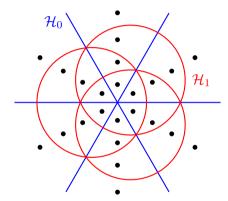
A hyperplane arrangement $\ensuremath{\mathcal{H}}$ is supersolvable if



Supersolvable arrangements

A hyperplane arrangement ${\cal H}$ is supersolvable if

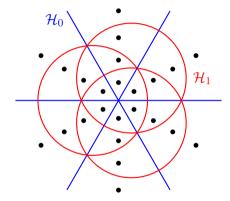
it has rank ≤ 2, or



Supersolvable arrangements

A hyperplane arrangement ${\cal H}$ is supersolvable if

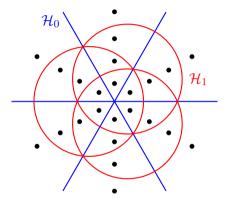
- ightharpoonup it has rank ≤ 2 , or
- $ightharpoonup \mathcal{H} = \mathcal{H}_0 \dot{\cup} \, \mathcal{H}_1$, where



Supersolvable arrangements

A hyperplane arrangement ${\cal H}$ is supersolvable if

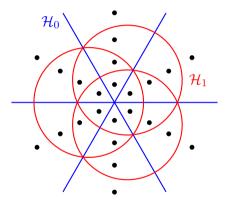
- ightharpoonup it has rank ≤ 2 , or
- $\vdash \mathcal{H} = \mathcal{H}_0 \dot{\cup} \mathcal{H}_1$, where
 - → H₀ is a supersolvable arrangement of lower rank, and



Supersolvable arrangements

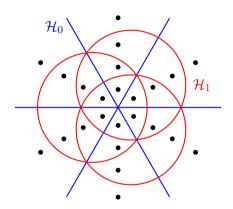
A hyperplane arrangement ${\cal H}$ is supersolvable if

- ightharpoonup it has rank ≤ 2 , or
- $\vdash \mathcal{H} = \mathcal{H}_0 \dot{\cup} \mathcal{H}_1$, where
 - → H₀ is a supersolvable arrangement of lower rank, and
 - ▶ for any $H, H' \in \mathcal{H}_1$, there is $H_0 \in \mathcal{H}_0$ such that $H \cap H' \subseteq H_0$.



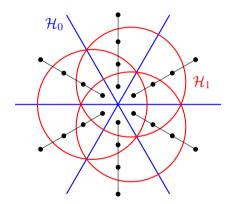
Theorem (B., Cardinal, McConville, Merino, Mütze, 2026)

Let $\mathcal H$ be a supersolvable hyperplane arrangement of rank ≥ 2 . Then $\mathcal G(\mathcal H)$ has a Hamiltonian cycle.



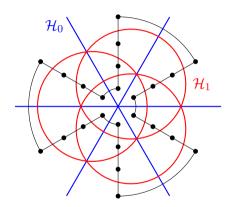
Theorem (B., Cardinal, McConville, Merino, Mütze, 2026)

Let $\mathcal H$ be a supersolvable hyperplane arrangement of rank ≥ 2 . Then $\mathcal G(\mathcal H)$ has a Hamiltonian cycle.



Theorem (B., Cardinal, McConville, Merino, Mütze, 2026)

Let $\mathcal H$ be a supersolvable hyperplane arrangement of rank \geq 2. Then $\mathcal G(\mathcal H)$ has a Hamiltonian cycle.



Coordinate arrangement:

Coordinate arrangement:

binary reflected Gray code

Coordinate arrangement:

binary reflected Gray code

Braid arrangement:

Coordinate arrangement:

binary reflected Gray code

Braid arrangement:

► Steinhaus-Johnson-Trotter algorithm

Coordinate arrangement:

binary reflected Gray code

Braid arrangement:

- ► Steinhaus-Johnson-Trotter algorithm
- ▶ lattice quotients of the weak order (quotients of the braid arrangement)

Coordinate arrangement:

binary reflected Gray code

Braid arrangement:

- Steinhaus-Johnson-Trotter algorithm
- ▶ lattice quotients of the weak order (quotients of the braid arrangement)
- acyclic orientations of chordal graphs (graphic arrangements)

Coordinate arrangement:

binary reflected Gray code

Braid arrangement:

- ► Steinhaus-Johnson-Trotter algorithm
- ▶ lattice quotients of the weak order (quotients of the braid arrangement)
- acyclic orientations of chordal graphs (graphic arrangements)

Coordinate arrangement:

binary reflected Gray code

Braid arrangement:

- Steinhaus-Johnson-Trotter algorithm
- lattice quotients of the weak order (quotients of the braid arrangement)
- acyclic orientations of chordal graphs (graphic arrangements)

Type B arrangement:

signed permutations

Coordinate arrangement:

binary reflected Gray code

Braid arrangement:

- Steinhaus-Johnson-Trotter algorithm
- lattice quotients of the weak order (quotients of the braid arrangement)
- acyclic orientations of chordal graphs (graphic arrangements)

- signed permutations
- ▶ type *B* quotients (quotients of the type *B* arrangement)

Coordinate arrangement:

binary reflected Gray code

Braid arrangement:

- Steinhaus-Johnson-Trotter algorithm
- lattice quotients of the weak order (quotients of the braid arrangement)
- acyclic orientations of chordal graphs (graphic arrangements)

- signed permutations
- ▶ type *B* quotients (quotients of the type *B* arrangement)
- symmetric triangulations (type B associahedron)

Coordinate arrangement:

binary reflected Gray code

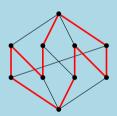
Braid arrangement:

- Steinhaus-Johnson-Trotter algorithm
- lattice quotients of the weak order (quotients of the braid arrangement)
- acyclic orientations of chordal graphs (graphic arrangements)

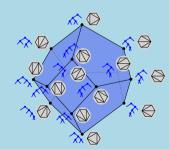
- signed permutations
- ▶ type *B* quotients (quotients of the type *B* arrangement)
- symmetric triangulations (type B associahedron)
- pattern avoiding signed permutations (zigzag framework)

Thank you!

Introduction



Face Lattices



Regions in Hyperplane Arrangements

