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Hamiltonian cycles

Hamiltonian cycles and paths

A Hamiltonian cycle (path) in a graph G is a cycle
(path) that visits every vertex precisely once.

» NP-hard problem
» sufficient conditions (Dirac's theorem)

Lovasz Conjecture

Every vertex-transitive graph has a Hamiltonian
path.
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Aim: listing of all combinatorial objects of a certain type, allowing only small
modifications (flips) between consecutive elements (" Gray code”)
Example

> bit strings of length n, by bit flips

» permutations on n symbols, by adjacent
transpositions

P noncrossing perfect matchings on a convex point
set of size 4n, by alternating 4-cycles

Flip graph

P vertices = objects

» edge = feasible flip

» combinatorial Gray code = Hamiltonian path
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Steinhaus-Johnson-Trotter Algorithm
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Face lattices of polytopes

Given a polytope P, we consider (the cover
graph of) its face lattice L(P).

> vertices are the faces of P (including
() and P)

» F; and Fp are adjacent if F; C F
and dim F, =dimF; + 1
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Conjecture

For any polytope P, the cover graph of L(P) is

Hamiltonian.

Observation

The graph of L(P) is bipartite and balanced.
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Some evidence

Theorem (Behrooznia, B., Merino, Miitze, Rieck,
Verciani, 2026)

For the following classes of polytopes P, the cover
graph of L(P) has a Hamiltonian cycle:

>

vVvyYvyVvVvyVvyy

hypercubes

permutahedra

B-permutahedra

quotientopes

associahedra

graph associahedra of chordal graphs

3-dimensional polytopes
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And in general...?

Conjecture

For any polytope P, the cover graph of L(P) is

Hamiltonian.

L(P) o P
e o o o fycets
000000000

eeec0o0ocooe edges

eeee e vyertices

0

13/23



Regions in Hyper-
plane Arrangements

T1=a3 3194 11 02




Zigzag framework

15/23



Zigzag framework

Aim: Gray codes for objects that are in bijection with certain subsets of permutations
(“zigzag languages”)

» binary reflected Gray code [Gray, 1953]
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Regions of Hyperplane Arrangements

Hyperplane arrangements

A hyperplane arrangement H is a
finite collection of hyperplanes
(through the origin) in R".

» rank: dimension of the space
spanned by the normal vectors of
hyperplanes in H

> regions: connected components
of R"\ H

» graph of regions G(H): vertices
are regions, adjacent if separated
by a single hyperplane
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Supersolvable arrangements

Supersolvable arrangements

A hyperplane arrangement H is supersolvable if
» it has rank < 2, or
> H = HoUHq, where
» 7, is a supersolvable arrangement of lower
rank, and
» for any H, H" € H1, there is Hy € Ho such
that HN H' C H.
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Results
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Braid arrangement:
» Steinhaus-Johnson-Trotter algorithm
> lattice quotients of the weak order (quotients of the braid arrangement)

» acyclic orientations of chordal graphs (graphic arrangements)

Type B arrangement:
» signed permutations
> type B quotients (quotients of the type B arrangement)
» symmetric triangulations (type B associahedron)

» pattern avoiding signed permutations (zigzag framework)
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