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Introduction

Face Lattices

Regions in Hyper-
plane Arrangements
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Hamiltonian cycles

Hamiltonian cycles and paths

A Hamiltonian cycle (path) in a graph G is a cycle
(path) that visits every vertex precisely once.

▶ NP-hard problem

▶ sufficient conditions (Dirac’s theorem)

Lovasz Conjecture

Every vertex-transitive graph has a Hamiltonian
path.
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Combinatorial generation

Aim: listing of all combinatorial objects of a certain type, allowing only small
modifications (flips) between consecutive elements (”Gray code”)

Example

▶ bit strings of length n, by bit flips

▶ permutations on n symbols, by adjacent
transpositions

▶ noncrossing perfect matchings on a convex point
set of size 4n, by alternating 4-cycles

Flip graph

▶ vertices = objects

▶ edge = feasible flip

▶ combinatorial Gray code = Hamiltonian path
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Steinhaus-Johnson-Trotter Algorithm

Aim: Gray code for all permutations on n symbols by adjacent transpositions

n
1 1
2 12, 21
3 123, 132, 312, 321, 231, 213
4 1234, 1243, 1423, 4123,

4132, 1432, 1342, 1324,
3124, 3142, 3412, 4312,
4321, 3421, 3241, 3214,
2314, 2341, 2431, 4231,
4213, 2413, 2143, 2134
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Zigzag framework

Aim: Gray codes for objects that are in bijection with certain subsets of permutations
(“zigzag languages”)

▶ binary reflected Gray code [Gray, 1953]

▶ Steinhaus-Johnson-Trotter algorithm [Steinhaus, Johnson, Trotter, 1960s]

▶ pattern avoiding permutations [Hartung, Hoang, Mütze, Williams, 2020]

▶ lattice quotients of the weak order (quotientopes) [Hoang, Mütze, 2021]

[Pilaud, Santos, 2019]

▶ elimination trees of chordal graphs (graph associahedra of chordal graphs)
[Cardinal, Merino, Mütze, 2022]

▶ (patter-avoiding) rectangulations (rectangulotopes) [Merino, Mütze, 2023]

[Cardinal, Pilaud, 2025]

▶ . . .
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Introduction

Face Lattices

Regions in Hyper-
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Face lattices of polytopes

Given a polytope P, we consider (the cover
graph of) its face lattice L(P).

▶ vertices are the faces of P (including
∅ and P)

▶ F1 and F2 are adjacent if F1 ⊆ F2
and dimF2 = dimF1 + 1

1

3
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Hamiltonicity of face lattices

Observation
The graph of L(P) is bipartite and balanced.

∅

P

vertices

edges

facets

L(P )
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Hamiltonicity of face lattices

Conjecture

For any polytope P, the cover graph of L(P) is
Hamiltonian.

Observation
The graph of L(P) is bipartite and balanced.

∅

P

vertices

edges

facets

L(P )
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Some evidence

Theorem (Behrooznia, B., Merino, Mütze, Rieck,
Verciani, 2026)

For the following classes of polytopes P, the cover
graph of L(P) has a Hamiltonian cycle:

▶ hypercubes

▶ permutahedra

▶ B-permutahedra

▶ quotientopes

▶ associahedra

▶ graph associahedra of chordal graphs

▶ 3-dimensional polytopes

11 / 23
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And in general...?

Conjecture

For any polytope P, the cover graph of L(P) is
Hamiltonian.

∅

P

vertices

edges

facets

L(P )

13 / 23
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Zigzag framework

Aim: Gray codes for objects that are in bijection with certain subsets of permutations
(“zigzag languages”)

▶ binary reflected Gray code [Gray, 1953]

▶ Steinhaus-Johnson-Trotter algorithm [Steinhaus, Johnson, Trotter, 1960s]

▶ pattern avoiding permutations [Hartung, Hoang, Mütze, Williams, 2020]

▶ lattice quotients of the weak order (quotientopes) [Hoang, Mütze, 2021]

[Pilaud, Santos, 2019]

▶ elimination trees of chordal graphs (graph associahedra of chordal graphs)
[Cardinal, Merino, Mütze, 2022]

▶ (patter-avoiding) rectangulations (rectangulotopes) [Merino, Mütze, 2023]

[Cardinal, Pilaud, 2025]

▶ . . .

15 / 23



Zigzag framework

Aim: Gray codes for objects that are in bijection with certain subsets of permutations
(“zigzag languages”)

▶ binary reflected Gray code [Gray, 1953]

▶ Steinhaus-Johnson-Trotter algorithm [Steinhaus, Johnson, Trotter, 1960s]

▶ pattern avoiding permutations [Hartung, Hoang, Mütze, Williams, 2020]

▶ lattice quotients of the weak order (quotientopes) [Hoang, Mütze, 2021]

[Pilaud, Santos, 2019]

▶ elimination trees of chordal graphs (graph associahedra of chordal graphs)
[Cardinal, Merino, Mütze, 2022]

▶ (patter-avoiding) rectangulations (rectangulotopes) [Merino, Mütze, 2023]

[Cardinal, Pilaud, 2025]

▶ . . .

15 / 23



Regions of Hyperplane Arrangements

Hyperplane arrangements

A hyperplane arrangement H is a
finite collection of hyperplanes
(through the origin) in Rn.

▶ rank: dimension of the space
spanned by the normal vectors of
hyperplanes in H

▶ regions: connected components
of Rn \ H

▶ graph of regions G(H): vertices
are regions, adjacent if separated
by a single hyperplane
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Supersolvable arrangements

Supersolvable arrangements

A hyperplane arrangement H is supersolvable if

▶ it has rank ≤ 2, or
▶ H = H0 ∪̇H1, where

▶ H0 is a supersolvable arrangement of lower
rank, and

▶ for any H,H ′ ∈ H1, there is H0 ∈ H0 such
that H ∩ H ′ ⊆ H0.
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Hamiltonian cycles in supersolvable arrangements

Theorem (B., Cardinal, McConville,
Merino, Mütze, 2026)

Let H be a supersolvable hyperplane
arrangement of rank ≥ 2. Then G(H) has
a Hamiltonian cycle.
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Results

Coordinate arrangement:

▶ binary reflected Gray code

Braid arrangement:

▶ Steinhaus-Johnson-Trotter algorithm

▶ lattice quotients of the weak order (quotients of the braid arrangement)

▶ acyclic orientations of chordal graphs (graphic arrangements)

Type B arrangement:

▶ signed permutations

▶ type B quotients (quotients of the type B arrangement)

▶ symmetric triangulations (type B associahedron)

▶ pattern avoiding signed permutations (zigzag framework)
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