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Symmetric (self-adjoint) matrices

Notation
xT , AT transpose of a (column) vector or matrix

x∗, A∗ conjugate transpose of a (complex) vector or matrix

symmetric matrix: AT = A

self-adjoint (Hermitian) matrix: A∗ = A

orthogonal matrix: AT = A−1

unitary matrix: A∗ = A−1

Spectral Decomposition Theorem
Let A be a real symmetric (complex self-adjoint) matrix.

The eigenvalues are real.

The eigenvectors are orthogonal.

A = QΛQT with Q orthogonal. (A = UΛU∗ with U unitary.)
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Positive semi-definite (p.s.d.) matrices

Definition: Positive semi-definite matrix

real symmetric

xT Ax ≥ 0 for all vector x

complex self-adjoint

x∗Ax ≥ 0 for all vector x

Definition: Positive definite matrix
positive semi-definite

xT Ax = 0 if and only if x = 0

Theorem
A matrix is positive semi-definite (positive definite) if and only if

it is symmetric/self-adjoint

all eigenvalues are non-negative (positive)

GP Nagy (Hungary) Algebraic structure of midpoint operations 5 / 26



Positive semi-definite (p.s.d.) matrices

Definition: Positive semi-definite matrix

real symmetric

xT Ax ≥ 0 for all vector x

complex self-adjoint

x∗Ax ≥ 0 for all vector x

Definition: Positive definite matrix
positive semi-definite

xT Ax = 0 if and only if x = 0

Theorem
A matrix is positive semi-definite (positive definite) if and only if

it is symmetric/self-adjoint

all eigenvalues are non-negative (positive)

GP Nagy (Hungary) Algebraic structure of midpoint operations 5 / 26



Positive semi-definite (p.s.d.) matrices

Definition: Positive semi-definite matrix

real symmetric

xT Ax ≥ 0 for all vector x

complex self-adjoint

x∗Ax ≥ 0 for all vector x

Definition: Positive definite matrix
positive semi-definite

xT Ax = 0 if and only if x = 0

Theorem
A matrix is positive semi-definite (positive definite) if and only if

it is symmetric/self-adjoint

all eigenvalues are non-negative (positive)

GP Nagy (Hungary) Algebraic structure of midpoint operations 5 / 26



Positive semi-definite (p.s.d.) matrices

Definition: Positive semi-definite matrix

real symmetric

xT Ax ≥ 0 for all vector x

complex self-adjoint

x∗Ax ≥ 0 for all vector x

Definition: Positive definite matrix
positive semi-definite

xT Ax = 0 if and only if x = 0

Theorem
A matrix is positive semi-definite (positive definite) if and only if

it is symmetric/self-adjoint

all eigenvalues are non-negative (positive)

GP Nagy (Hungary) Algebraic structure of midpoint operations 5 / 26



Positive semi-definite (p.s.d.) matrices

Definition: Positive semi-definite matrix

real symmetric

xT Ax ≥ 0 for all vector x

complex self-adjoint

x∗Ax ≥ 0 for all vector x

Definition: Positive definite matrix
positive semi-definite

xT Ax = 0 if and only if x = 0

Theorem
A matrix is positive semi-definite (positive definite) if and only if

it is symmetric/self-adjoint

all eigenvalues are non-negative (positive)

GP Nagy (Hungary) Algebraic structure of midpoint operations 5 / 26



Positive semi-definite (p.s.d.) matrices

Definition: Positive semi-definite matrix

real symmetric

xT Ax ≥ 0 for all vector x

complex self-adjoint

x∗Ax ≥ 0 for all vector x

Definition: Positive definite matrix
positive semi-definite

xT Ax = 0 if and only if x = 0

Theorem
A matrix is positive semi-definite (positive definite) if and only if

it is symmetric/self-adjoint

all eigenvalues are non-negative (positive)

GP Nagy (Hungary) Algebraic structure of midpoint operations 5 / 26



Positive semi-definite (p.s.d.) matrices

Definition: Positive semi-definite matrix

real symmetric

xT Ax ≥ 0 for all vector x

complex self-adjoint

x∗Ax ≥ 0 for all vector x

Definition: Positive definite matrix
positive semi-definite

xT Ax = 0 if and only if x = 0

Theorem
A matrix is positive semi-definite (positive definite) if and only if

it is symmetric/self-adjoint

all eigenvalues are non-negative (positive)

GP Nagy (Hungary) Algebraic structure of midpoint operations 5 / 26



Positive semi-definite (p.s.d.) matrices

Definition: Positive semi-definite matrix

real symmetric

xT Ax ≥ 0 for all vector x

complex self-adjoint

x∗Ax ≥ 0 for all vector x

Definition: Positive definite matrix
positive semi-definite

xT Ax = 0 if and only if x = 0

Theorem
A matrix is positive semi-definite (positive definite) if and only if

it is symmetric/self-adjoint

all eigenvalues are non-negative (positive)

GP Nagy (Hungary) Algebraic structure of midpoint operations 5 / 26



Positive semi-definite (p.s.d.) matrices

Definition: Positive semi-definite matrix

real symmetric

xT Ax ≥ 0 for all vector x

complex self-adjoint

x∗Ax ≥ 0 for all vector x

Definition: Positive definite matrix
positive semi-definite

xT Ax = 0 if and only if x = 0

Theorem
A matrix is positive semi-definite (positive definite) if and only if

it is symmetric/self-adjoint

all eigenvalues are non-negative (positive)

GP Nagy (Hungary) Algebraic structure of midpoint operations 5 / 26



Positive semi-definite (p.s.d.) matrices

Definition: Positive semi-definite matrix

real symmetric

xT Ax ≥ 0 for all vector x

complex self-adjoint

x∗Ax ≥ 0 for all vector x

Definition: Positive definite matrix
positive semi-definite

xT Ax = 0 if and only if x = 0

Theorem
A matrix is positive semi-definite (positive definite) if and only if

it is symmetric/self-adjoint

all eigenvalues are non-negative (positive)

GP Nagy (Hungary) Algebraic structure of midpoint operations 5 / 26



Positive semi-definite (p.s.d.) matrices

Definition: Positive semi-definite matrix

real symmetric

xT Ax ≥ 0 for all vector x

complex self-adjoint

x∗Ax ≥ 0 for all vector x

Definition: Positive definite matrix
positive semi-definite

xT Ax = 0 if and only if x = 0

Theorem
A matrix is positive semi-definite (positive definite) if and only if

it is symmetric/self-adjoint

all eigenvalues are non-negative (positive)

GP Nagy (Hungary) Algebraic structure of midpoint operations 5 / 26



Positive semi-definite (p.s.d.) matrices

Definition: Positive semi-definite matrix

real symmetric

xT Ax ≥ 0 for all vector x

complex self-adjoint

x∗Ax ≥ 0 for all vector x

Definition: Positive definite matrix
positive semi-definite

xT Ax = 0 if and only if x = 0

Theorem
A matrix is positive semi-definite (positive definite) if and only if

it is symmetric/self-adjoint

all eigenvalues are non-negative (positive)

GP Nagy (Hungary) Algebraic structure of midpoint operations 5 / 26



Positive semi-definite (p.s.d.) matrices

Definition: Positive semi-definite matrix

real symmetric

xT Ax ≥ 0 for all vector x

complex self-adjoint

x∗Ax ≥ 0 for all vector x

Definition: Positive definite matrix
positive semi-definite

xT Ax = 0 if and only if x = 0

Theorem
A matrix is positive semi-definite (positive definite) if and only if

it is symmetric/self-adjoint

all eigenvalues are non-negative (positive)

GP Nagy (Hungary) Algebraic structure of midpoint operations 5 / 26



Positive semi-definite (p.s.d.) matrices

Definition: Positive semi-definite matrix

real symmetric

xT Ax ≥ 0 for all vector x

complex self-adjoint

x∗Ax ≥ 0 for all vector x

Definition: Positive definite matrix
positive semi-definite

xT Ax = 0 if and only if x = 0

Theorem
A matrix is positive semi-definite (positive definite) if and only if

it is symmetric/self-adjoint

all eigenvalues are non-negative (positive)

GP Nagy (Hungary) Algebraic structure of midpoint operations 5 / 26



Operations on general matrices

Unary operations on general matrices
exp(A)

log(A) for ∥A∥ < 1

exp(A + B) = exp(A) exp(B) if A ,B commute

exp(A) positive definite if and only if A is symmetric

Binary operations on general matrices
A + B, AB

exp(A + B) = exp(A) exp(B) if A ,B commute

Lie bracket: [A ,B] = AB − BA

Jordan product: A ◦ B = 1
2(AB + BA)
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Operations on p.s.d. matrices

Real functions on symmetric matrices
Let f be a real valued function defined on the eigenvalues of A . Define

f(A) = Q


f(λ1) · · · 0
...

. . .
...

0 · · · f(λn))

 QT .

Unary operations on p.s.d. matrices
log(A) is well defined if A is positive definite

A t for t ≥ 0

A
1
2

Binary operations on p.s.d. matrices
ABA

(1 − t)A + tB for 0 ≤ t ≤ 1
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Matrix norms

Definition

2-norm ∥A∥ = sup
x,0

∥Ax∥
∥x∥

Frobenius norm ∥A∥F =
√
Tr(AA∗)

For p.s.d. matrices:

∥A∥ = λmax

∥A∥F =
√
λ2

1 + · · ·+ λ
2
n

∥A∥ ≤ ∥A∥F

Frobenius inner product

⟨A ,B⟩F = Tr(AB∗) =
∑
i,j

aij b̄ij
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C*-algebras

Definition
Associative algebra A over C with norm ∥x∥ such that

∥xy∥ ≤ ∥x∥ ∥y∥

A is complete in the metrix induced by ∥.∥

and an involution x∗ such that

(x + y)∗ = x∗ + y∗, (λx)∗ = λ̄x∗

(xy)∗ = y∗x∗, (x−1)∗ = (x∗)−1 if x is invertible

∥xx∗∥ = ∥x∥2

Example: commutative C*-algebras
C(X) for a compact Hausdorff space X .

Fact

Self-adjoint, positive properties, exp(x), log(x), x
1
2 , etc. can be defined.
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1 Positive definite matrices

2 Midpoints, reflections and translations

3 The algebraic structure of the midpoint operations

4 Series expansion of midpoint operations
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Riemann and Wasserstein metrics

Definition
The Riemann metric of positive definite matrices A ,B is

dR(A ,B) = ∥ log(A−
1
2 BA−

1
2 )∥

The Wasserstein metric of p.s.d. matrices A ,B is

dW (A ,B) =
1
2
Tr

(
A + B − 2(A

1
2 BA

1
2 )

1
2

)

Wasserstein = Leonid Vaseršteı̆n

The Wasserstein metric pops up naturally in the theory of optimal
transport

“earth mover’s distance”

and also in quantum information theory.
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Least square means and midpoints

Definition
Let (X , d) be a metric space, and p1, . . . , pm points in X .

The least square mean is the point x ∈ X which minimizes

d(x, p1)
2 + · · ·+ d(x, pm)

2.

The weighted mean with weights 0 ≤ w1, . . . ,wm minimizes

w1d(x, p1)
2 + · · ·+ w1d(x, pm)

2.

The midpoint of two points p, q is the least square mean of p, q.

The segment pq consist of the weighted means of p, q with weights
1 − t , t , 0 ≤ t ≤ 1.

Example
In the Euclidean space, the (weighted) least square mean is the
(weighted) arithmetic mean.
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The Riemannian geometric mean

midpoint: x#y = x
1
2

(
x−

1
2 y x−

1
2

) 1
2

x
1
2

weighted midpoint: x#ty = x
1
2

(
x−

1
2 y x−

1
2

)t
x

1
2

Central reflection of x on z: solve x#y = z for y:

x
1
2

(
x−

1
2 y x−

1
2

) 1
2

x
1
2 = z

x−
1
2 y x−

1
2 =

(
x−

1
2 z x−

1
2

)2
= x−

1
2 zx−1z x−

1
2

y = zx−1z

No square root is needed!

Translation = product of two central reflections: x
1
2 yx

1
2 .
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The Wasserstein mean

x ⋄ y =
1
4

x−
1
2

(
x +

√
x

1
2 yx

1
2

)2

x−
1
2

Straightforward computations [Bhatia, Jain, Lim 2019] give that

x ⋄ y =
1
4

(
x + y + x(x−1#y) + (x−1#y)x

)
.

and

(x(x−1#y))2 = xy, ((x−1#y)x)2 = yx.

With some cheating, we have

x ⋄ y =
1
4

(
x + y + (xy)

1
2 + (yx)

1
2

)
.

x, y commute if and only if

x ⋄ y =

 √x +
√

y
2

2

.
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Molnár’s results

Using heavy C*-algebra machinery, Lajos Molnár (Szeged) proved:

Theorem (Molnár 2023)

Let A be a C*-algebra and A++ the set of positive definite elements. The
bijective map ϕ : A++ → A++ preserves the Wasserstein mean if and
only if there is

a Jordan *-automorphism J : A → A

and a central element c ∈ A

such that
ϕ(x) = cJ(x), x ∈ A++.

Theorem (Molnár 2023)
The binary operation 4(x ⋄ y) is left alternative, right alternative and
flexible. Moreover, it is a semigroup (i.e. associative) if and only if the
algebra A is commutative.
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The algebraization project

Define algebraic structures in which the Riemannian geometric mean
and the Wasserstein mean can be defined.

x#y = x
1
2

(
x−

1
2 y x−

1
2

) 1
2

x
1
2

x ⋄ y =
1
4

x−
1
2

(
x +

√
x

1
2 yx

1
2

)2

x−
1
2

Prove Molnár-type results for these structures.
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The success story: Twisted subgroups and Bol loops

Definition (Aschbacher)
Let G be a group. The subset S ⊆ G is a twisted subgroup of G is

1 ∈ S,

a−1 ∈ S for all a ∈ S,

aba ∈ S for all a, b ∈ S.

Examples
Let α be an involutorial automorphism of G.

The set S = {x ∈ G | α(x) = x−1} of anti-fixed elements.

The set T = {x−1α(x) | x ∈ G} of “commutators”.

Homework: Construct the set of positive definite matrices as set of
commutators.
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Bol loops, Bruck loops and the Z*-theorem

Theorem [Glauberman 1968 (and Kiechle, and Ungar, and ...)]
The reflection

xy−1x
is well-defined in any twisted subgroup S.

It is a left quasigroup.

Moreover, it is a quasigroup if and only if S is 2-divisible.

In the latter case, its loop isotopy is given by the operation x
1
2 yx

1
2 .

(A version of) Glauberman’s Z*-theorem
If S is a finite twisted subgroup of odd order, then ⟨S⟩ has odd order. In
particular, the loop x

1
2 yx

1
2 is solvable.

Interesting objects (Aschbacher 2006, GN 2007, Baumeister, Stein,
Stroth ∼2010)
Finite twisted subgroups (Bol loops) of exponent two.
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Unipotent matrices

(Upper) unipotent matrix 
1 ∗ · · · ∗

0 1 · · · ∗
...

. . .
...

0 0 · · · 1


Observations

Convex combination of unipotent matrices are unipotent.

An = 1 for n × n unipotent A .

Inverse and square root are well-defined for unipotent matrices.

So is the Wasserstein mean

x ⋄ y =
1
4

x−
1
2

(
x +

√
x

1
2 yx

1
2

)2

x−
1
2 .

4(x ⋄ y) is not!
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Split C*-by-nilpotent algebras

Definition: Split C*-by-nilpotent algebra
Let B be a unitary associative algebra over C. We say that B is a split
C∗-by-nilpotent algebra, if the following conditions hold:

1 B has a unitary subalgebra A that is a C∗-algebra and the unit of A
coincides with the unit of B;

2 B has an ideal N which consists of nilpotent elements;
3 B = A+ N;
4 The elements of A and N commute.

Lemma
The geometric and Wasserstein means, and 4(x ⋄ y) is well-defined on

B++ = {a + n | a ∈ A++, n ∈ N}.
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Associativity of 4(x ⋄ y)

Theorem (La Rosa, Mancini, GN 2024)
Let B = A⊕N be a split C∗-by-nilpotent algebra. The operation 4(x ⋄ y) is
well-defined and commutative on B++. Moreover, it is associative if and
only if [[x, y], z] = 0 holds for all x, y, z ∈ B.

[[x, y], z] = 0 holds if N is 2-step nilpotent.

This gives non-commutative split C∗-by-nilpotent algebra with
associative 4(x ⋄ y).

In a C*-algebra, [[x, y], z] = 0 implies [x, y] = 0, hence commutativity.

Molnár’s 2nd Theorem follows.
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Lie triple systems

Lie triple systems are ternary operations [x, y, z] motivated by the
double Lie bracket

[[x, y], z].

In a Lie group, twisted subgroups correspond to Lie triple subsystems
of the tangent Lie algebra.

If (L , •) is a real analytic Bruck loop, then its tangent space is an
(abstract) Lie triple system.

Baker-Campbell-Hausdorff formula (GN 2002): Near the identity, the
Bruck loop operation can be expressed as an infinite series of L.t.s.
terms:

log(exp(x) • exp(y)) = x + y +
1
3
[y, x, x] −

1
6
[x, y, y] + · · ·

This implies BCH formula for the geometric mean.
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BCH formula for the Wasserstein mean

Problem
Is there a BCH formula for the Wasserstein mean in terms of the
Jordan product?

What is Aut(B++)?

Recently, Choi, Kim et al. proved binomial expansion formulae for the
geometric mean and the Wasserstein mean using the Taylor
expansion for the analytic power map.
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THANK YOU FOR YOUR
ATTENTION!
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