Examples of good and bad texts for the Final English Exam

Bad text

Calculus Textbook

This text is mostly equations and doesn’t contain terms and ideas that can be
discussed.



When x = g, the function is of the form %, and is indeterminate.
Letx =a+h. Then
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Expanding (a + h)" by the binomial theorem:
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But since x=a+h, whenx —a,h — 0.

Therefore
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since all the other terms have a power of h as a factor, and therefore vanish when h — 0.

. Example 2.6.3

Xx=3

Find the limit of 77—
,Jx— 2 ==X

Both the numerator and the denominator are zero when x = 3, so the function takes the
form %, and is indeterminate.

as x— 3,

Multiplying the numerator and denominator by {X 24 J4_y 8ives:



Good texts

Thermodynamics and Phase Diagrams of Materials

On pages 11 — 12 there are ideas that can be discussed. The teacher might ask:
“What is tangent construction?”

“What is the Gibbs — Duhem Equation?”

“What is activity?”

“What are ideal Raoultian solutions?”



1.4.3 Tangent Construction

An important construction is illustrated
in Fig. I-4. If a tangent is drawn to the
curve of ¢' at a certain composition
(Xc,=0.6 in Fig. 1-4), then the intercepts
of this tangent on the axes at X, =1 and
Xey=1 are equal to g,, and gc, respec-
tively at this composition.

To prove this, we first consider that the
Gibbs energy of the solution at constant T
and P is a function of n,, and n,. Hence:
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Eq. (1-25) can be integrated as follows:
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where the integration is performed at con-
stant composition so that the intensive
properties g,, and g, are constant. This
integration can be thought of as describing
a process in which a pre-mixed solution of
constant composition is added to the sys-
tem, which initially contains no material.
Dividing Egs. (1-26) and (1-25) by
(s, +ne,) we obtain expressions for the
molar Gibbs energy and its derivative:
.qj = X.Au aut X{.‘u Geu (]'27)
and

(1-28)

dg'= gy dXay + geudXe,

Since dX,, =—dX_,. it can be seen that
Eqs. (1-27) and (1-28) are equivalent to the
tangent construction shown in Fig. 1-4.

These equations may also be rearranged
to give the following useful expression for
a binary system:

g;=g+(1-X,)dg/dX, (1-29)
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1.44 Gibbs—Duhem Equation
Differentiation of Eq. (1-27) yields:

dg' = (X, dga, + Xcudge,)

+ (g.-\u dxau"'gCudXCu) (]‘30}

Comparison with Eq. (1-28) then gives the
Gibbs—Duhem equation at constant T and P:

X.Aud.‘fAu +XCudgCu=O (]_3]}

1.4.5 Relative Partial Properties

The difference between the partial Gibbs
energy ¢, of a component in solution and
the partial Gibbs energy g/ of the same
component in a standard state is called the
relative partial Gibbs energy (or relative
chemical potential ), Ag,. It is most usual to
choose as standard state the pure compo-
nent in the same phase at the same temper-
ature. The activity a; of the component rel-
ative to the chosen standard state is then
defined in terms of Ag; by the following
equation, as illustrated in Fig. 1-4.
Ag=g-g'=p -1 =RT Ina;, (1-32)

Note that g; and y; are equivalent symbols,
as are g and u, see Eq. (1-23).
From Fig. 1-4, it can be seen that:
Ay = XauwAgau + Xew Adey
=RT(Xa Inay, + Xe, Inag,) (1-33)

The Gibbs energy of mixing can be di-
vided into enthalpy and entropy terms, as
can the relative partial Gibbs energies:
Agy,=Ah,-TAs, (1-34)
Ag, =Ah-TAs, (1-35)
Hence, the enthalpy and entropy of mixing
may be expressed as:

Ahy = Xy Ahy, + Xe, Al
Asm = XAuASr\u + XCLIASCU

(1-36)
(1-37)
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and tangent constructions similar to that of
Fig. 1-4 can be used to relate the relative
partial enthalpies and entropies Ah, and
As, to the integral molar enthalpy of mix-
ing Ah,, and integral molar entropy of mix-
ing As,, respectively.

14.6 Activity

The activity of a component in a solution
was defined by Eq. (1-32).

Since a; varies monotonically with g; it
follows that when two or more phases are
in equilibrium the activity of any compo-
nent is the same in all phases, provided that
the activity in every phase is expressed
with respect to the same standard state.

The use of activities in caleulations of
chemical equilibrium conditions is illus-
trated by the following example. A liquid
solution of Au and Cu at 1400K with
Xe,=0.6 is exposed to an atmosphere in
which the oxygen partial pressure is
Po,=107" bar. Will Cu,0 be formed? The

reaction is:

2Cu(l) +%03(g]:Cu30(sul] (1-38)

where the Cu(l) is in solution. If the reac-
tion proceeds with the formation of dn
moles of Cu,0, then 2dn moles of Cu are
consumed, and the Gibbs energy of the
Au-Cu solution changes by

-2 (dGdencu] dn
The total Gibbs energy then varies as:
dG/dn = g, 0 - 1 4o, - 2(dG'ldne,)

=fou0— % Go,~ 20y

= (g0 - 200,- 200)
—%RT In po, - 2RT Inag,

=AG"+RT In(pgaci)

=AG (1-39)
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For the reaction, Eq. (1-38), at 1400 K,
AG"=-68.35kJ (Barin et al., 1977). The
activity of Cu in the liquid alloy at
Xey=0.6 is ap,=043 (Hultgren etal.,
1973). Substitution into Eq. (1-39) with
Po,= 107" bar gives:

dGidn = AG =-50.84 k]

Hence under these conditions the reaction
entails a decrease in the total Gibbs energy
and so the copper will be oxidized.

1.4.7 Ideal Raoultian Solutions

An ideal solution or Raoultian solution
is usually defined as one in which the ac-
tivity of a component is equal to its mole
fraction:

gl = x, (1-40)

(With a judicious choice of standard state,
this definition can also encompass ideal
Henrian solutions, as discussed in Sec.
15.11.)

However, this Raoultian definition of
ideality is generally only useful for simple
substitutional solutions. There are more
useful definitions for other types of solu-
tions such as interstitial solutions, ionic so-
lutions, solutions of defects, polymer solu-
tions, etc. That is, the most convenient def-
inition of ideality depends upon the solu-
tion model. This subject will be discussed
in Sec. 1.10. In the present section, Eq.
(1-40) for an ideal substitutional solution
will be developed with the Au-Cu solution
as example.

In the ideal substitutional solution model
it is assumed that Au and Cu atoms are
nearly alike, with nearly identical radii and
electronic structures. This being the case,
there will be no change in bonding energy
or volume upon mixing, so that the en-
thalpy of mixing is zero:

Al = (1-41)




