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These are rough notes for my course Proof complexity and arithmetic at
the Charles University in Fall’03. They are formed to a large extent by parts
of Chapters 9 and 14 in [5]. Some background material given in the course
is in the notes [8] (relating to a course I had in Spring’03).

These two sets of lecture notes will eventually form a part of bigger
lecture notes on Proof complexity. In particular, the bibliographical infor-
mation given here is rather rudimentary and often refers just to [5]; full
details will appear in the eventual lecture notes.
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1 Background review

Here I list background notions and facts the reader is assumed to be familiar
with; see [8] or [5].

Definition of Frege systems F , general definition of a propositional proof
system (shortly ”proof system”, from now on) in the sense of Cook-Reckhow
[4].

p-bounded proof systems. Their existence and the NP/coNP problem.
The notions of simulation and p-simulation.

Reckhow’s theorem: Any two Frege systems p-simulate each other. Proof
of the theorem in the case the two systems have the same language (and for
EF ). Tree-like Frege systems F ∗, their p-equivalence with F .

Extended Frege system EF , extension rule. Proportional relation be-
tween the minimal number of steps in F -proofs and in EF -proofs. Poly-
nomial relation between the minimal number of steps and the size in EF -
proofs.

Substitution Frege system SF , p-simulation of EF by SF (the opposite
will be in here - Lemma 6.12). Circuit Frege CF from alla Jeřábek, and its
p-equivalence with EF .

Quantified propositional calculus G and a p-simulation of SF by G.

2 Language L and bounded formulas

L is a two-sorted first order language. One sort x, y, i, j, . . . are numbers.
There are constants 0, 1, and functions + and · with their usual arithmetical
meaning, and relation <. (Equality = is always included for all sorts.)

The other sort ranges over bounded sets of numbers. The variables
are written αt(x), where t(x) is a number-term in number-variables x =
(x1, . . . , xn). The meaning of the term is that (as will be forced by axioms
of the theories we will consider) αt ⊆ [t] := {0, . . . , t−1}. We will often skip
the superscript t, if there is no danger of a confusion.

Bounded formulas are those with all number-quantifiers bounded, i.e. of
the form: ∃y < t or ∀y < t. The class of all bounded formulas without the
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set-quantifiers is denoted Σ1,b
0 .

Define simulatenously two bigger classes of bounded formulas, Σ1,b
1 and

Π1,b
1 : These are the smallest classes of bounded formulas such that it holds:

• Σ1,b
0 ⊆ Σ1,b

1 ∩ Π1,b
1 .

• Both Σ1,b
1 and Π1,b

1 are closed under ∨ and ∧.

• Both Σ1,b
1 and Π1,b

1 are closed under bounded number-quantifiers.

• If A ∈ Σ1,b
1 then ¬A ∈ Π1,b

1 , and vice versa.

Theorem 2.1 (Fagin) A language L ⊆ {0, 1}∗ is in the class NP iff it is

Σ1,b
1 -definable, i.e. there is a Σ1,b

1 -formula A(αx) such that

w ∈ L iff A(wn)

where words w of length n are identified with subsets of [n].

Any language definable by a Σ1,b
0 -formula is p-time decidable but the

converse is not true. However, we have at least the following.

Corollary 2.2 A p-time decidable language is Σ1,b
1 -definable and also Π1,b

1 -
definable.

In particular, properties of strings (i.e. bounded sets) like being a proof,

a formula, a satisfying assignment etc. are also definable by both Σ1,b
1 and

Π1,b
1 formulas.

3 Propositional translation of bounded formulas

Definition 3.1 Let θ(x1, . . . , xk, α
t1(x)
1 , . . . , α

tℓ(x)
ℓ ) be a Σ1,b

0 -formula. Let
n = (n1, . . . , nk). Let pij be propositional atoms, one for each i ≤ ℓ and
j < ti(n) − 1.

Define the propositional formula 〈θ〉(n1,...,nk) by induction on the logical
depth of θ:

1. if θ is the atomic formula s(x) = t(x) then:

〈θ〉(n) :=

{

1 if s(n) = t(n) is true
0 if s(n) = t(n) is false



Proof complexity and arithmetic - draft, do not distribute 4

2. if θ is the atomic formula s(x) ≤ t(x) then:

〈θ〉(n) :=

{

1 if s(n) ≤ t(n) is true
0 if s(n) ≤ t(n) is false

3. 〈αs(x) = βt(x)〉n :=
∧

i≤s(n)(pi ≡ qi) ∧
∧

s(n)<i≤t(n) ¬qi where s(n) ≤
t(n) and atoms pi resp. qi correspond to α and β resp.. The case
s(n) > t(n) is defined analogously.

4.

〈s(x) ∈ βt(x)〉n :=

{

qu if u = s(n) ≤ t(n)
0 otherwise

5. if θ = ¬ξ then:
〈θ〉(n) := ¬〈ξ〉(n)

6. if θ = ν ◦ ξ, ◦ = ∨,∧ then:

〈θ〉(n) := 〈ν〉(n) ◦ 〈ξ〉(n)

7. if θ = ∃y ≤ s(x) ν(x, y) and s(n) = u then:

〈θ〉(n) :=
∨

m≤u

〈ν〉(n,m)

8. if θ = ∀y ≤ s(x) ν(x, y) and s(n) = u then:

〈θ〉(n) :=
∧

m≤u

〈ν〉(n,m)

In the last two clauses the disjunction (resp. the conjunction) is formed
from the binary connectives with the brackets associated, for example, to
the left.

Next lemma is proved by induction on the complexity of θ.

Lemma 3.2 Let θ(x) be a Σ1,b
0 -formula. Then there are d and ℓ such that

for every n:

1. dp(〈θ〉(n)) ≤ d

2. |〈θ〉(n)| ≤ max(n)ℓ

The depth of θ is the maximal number of alternations of
∨

and
∧

in the
formula.
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4 Theories V
1
1 and V

0
1

V 1
1 is a theory in the language L with the following axioms:

• A finite set of axioms codifying the basic arithmetical properties of the
addition and the multiplication. E.g. finite theory PA− (the theory
of non-negative parts of ordered commutative rings) will work fine.

• Extensionality: (∀x < t+ s;x ∈ αt ≡ x ∈ βs) → αt = βs.

• Boundedness of sets: y ∈ αt → y < t.

• Comprehension axiom CA:

∃αt∀y < t;A(y) ≡ y ∈ αt

where A is any Σ1,b
0 -formula.

• Induction axioms IND:

A(0) ∨ (∃y < x;A(y) ∧ ¬A(y + 1)) ∨A(x)

where A is any Σ1,b
1 -formula.

Formulas A may have other free parameters, and all free variables are as-
sumed to be universally quantified.

The theory V 0
1 is defined exactly like the theory V 1

1 except that the

axiom scheme IND is accepted for all Σ1,b
0 -formulas only.

5 Propositional simulation of arithmetical proofs

Theorem 5.1 Let θ(x) be a Σ1,b
0 -formula and assume:

V 0
1 ⊢ ∀xθ(x).

Then there are d and ℓ such that every propositional formula 〈θ〉(n) has a

depth d F -proof of size at most nℓ.
Moreover, there is a polynomial time algorithm producing on input 1 . . . 1(n

- times) a depth d F -proof of 〈θ〉(n).



Proof complexity and arithmetic - draft, do not distribute 6

Proof
We shall describe the construction of a depth d size nℓ LK - proof of the

sequent
−→ 〈θ〉(n) ,

and it will be obvious that the required algorithm exists. This is equivalent
to the required task by the mutual p-simulation of Frege systems and sequent
calculus LK that preserves the depth (cf.[8]).

By cut - elimination theorem (straightforwardly modified for V 0
1 ) there

is an LKB - proof π using the Σ1,b
0 - IND rule (see the end of the proof for

the defintion of the rule) of the sequent:

−→ θ(a) .

A sequent in the proof π has the form:

φ1(b), . . . φr(b) −→ ψ1(b), . . . ψs(b)

where all φi, ψj are Σ1,b
0 . By induction on the number of inferences above

the sequent in π prove that there is d and ℓ such that for any tuple n the
sequent:

〈φ1〉(n), . . . , 〈φr〉(n) −→ 〈ψ1〉(n), . . . , 〈ψs〉(n)

has a depth d size max(n)ℓ LK - proof.
All initial sequents have the form A −→ A, A atomic, or −→ A, A

an axiom of PA−. In the former case the propositional translation is either
0 −→ 0, 1 −→ 1 or pij −→ pij. In the latter case the translation is of the form
−→ τ , where τ is true boolean sentence (i.e. without atoms). Moreover, the
depth of τ is constant (= the maximal logical depth of a PA− - axiom).
Any such sentence has a dp(τ) LK - proof of size O(|τ |).

The case when the sequent was obtained by structural or propositional
rules or by the cut - rule is obvious : the same rules of propositional logic
should be applied to the propositional translations of the upper sequents.

For the closed terms t ≤ s(n) is a formula of the form 〈η(t)〉(n) one of the
disjuncts of 〈∃x ≤ s, η(x)〉(n); thus ∃ ≤: right rule is simulated by repeated
(polynomially many times)

∨

: right rule of LK.
For the ∀ ≤: right inference:

a ≤ t,Γ −→ ∆, A(a)

Γ −→ ∆,∀x ≤ t A(x)

assume that for each a = 0, 1, . . . , val(t) there is an LK -proof of the
translation of the upper sequent with the required properties. Then all



Proof complexity and arithmetic - draft, do not distribute 7

a ≤ t translate to 1, and thus can be cut out with the initial sequent
−→ 1, and the obtained sequents are joined by repeated applications of
the

∧

: right rule for a = 0, 1, . . . , val(t). Hence the size of this translation
is val(t)O(1) = max(n)O(1). The left quantifier rules are treated analogously.

Finally, the IND rule:

A(a),Γ −→ ∆, A(a+ 1)

A(0),Γ −→ ∆, A(t)

is simulated by applying the cut rule to the LK -proofs of the translations
of the upper sequent for a = 0, 1, . . . , val(t) − 1.

Q.E.D.

We shall extend the simulation to the theory V 1
1 .

A sequence of formulas θ1, . . . , θk is called an EF - sequence iff it
satisfies the conditions to be an EF - proof with the condition that no
extension atom appears in θk dropped.

Theorem 5.2 Let A(x) be a Σ1,b
0 -formula and assume that:

V 1
1 ⊢ ∀xA(x).

Then the formulas 〈A(x)〉n have polynomial size EF -proofs.

Proof
We shall consider V 1

1 formalized in the sequent calculus with Σ1,b
1 −IND

rule in place of Σ1,b
1 − IND axioms and with the introduction rules for the

second order quantifiers replacing Σ1,b
0 − CA.

Assume that π is a V 1
1 -proof of the sequent → A(a); w.l.o.g. we may

assume that all formulas in π are strictΣ1,b
1 . These are Σ1,b

1 -formulas in
which all second order quantifier precede all first order quantifiers and all
connectives.

By induction on the number of steps in π above a sequent show that if:

∃ψ1B1(x, α, ψ1), . . . ,∃ψuBu(x, α, ψu) → ∃ξ1C1(x, α, ξ1), . . . ,∃ξvCv(x, α, ξv)

is a sequent in π then there is a constant k such that for all m there is an
EF -sequence of size at most (max(m))k ending with the sequent:

〈B1〉m(pα, pψ1), . . . , 〈Bu〉m(pα, pψu) −→ 〈C1〉m(pα, pξ1), . . . , 〈Cv〉m(pα, pξv) ,
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and such that in this EF -sequence none of the atoms pαt or pψi

t corresponding
to a free second order variable αi resp. to a second order variable ψj from
an antecedent is an extension atom.

The construction follows the proof of the earlier theorem and we only
need to treat two new rules : the introduction of the second order ∃ to
the succedent and Σ1,b

1 -IND (the introduction of the second order ∃ to the
antecedent does not change the translation).

Assume that in the former case the minor formula of the inference is

C(x, α,
t ∈ ξ

E(x, t, α)
)

with both C,E ∈ Σ1,b
0 , and that the principal formula is ∃ξC(x, α, ξ). In-

troduce a new atom pξt ≡ 〈E〉m,t(p
α). Then the equivalence :

〈C〉m(pα,
pξt

〈E〉m,t
) ≡ 〈C〉m(pα, pξ)

can be derived from the new extension axioms by an F -derivation of size :

O((|〈C〉m| + |〈E〉m,t|)
2) = (max(m))O(1),

as t is implicitly bounded in E by a power of max(m). This concludes the
first case.

Now consider a Σ1,b
1 -IND inference:

∃ξbC(b, ξb) → ∃ξb+1C(b+ 1, ξb+1)

∃ξ0C(0, ξ0) → ∃ξnC(n, ξn)

(the other free variables and the side formulas are omitted for simplicity ).
By the induction hypothesis we have polynomial size EF -sequences ending
with the formulas:

〈C〉m,u(p
ξu) → 〈C〉m,u+1(p

ξu+1)

for u = 0, 1, . . . , n − 1. Joining these sequences by n − 1 cuts gives an
EF -sequence ending with the implication:

〈C〉m,0(p
ξ0) → 〈C〉m,n(p

ξn),

of total size polynomial in max(m,n).

As the formula A is Σ1,b
0 , atoms in 〈A〉(n) correspond to free second order

variables in A and hence cannot be the extension atoms. Thus the final EF
-sequence is, in fact, an EF - proof.

Q.E.D.
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6 Reflection principles and polynomial simulations

In this section we show that the provability of the reflection principles for
propositional proof systems in bounded arithmetic implies polynomial sim-
ulation. As an illustration of this idea assume that we can verify in V 1

1 the
soundness of a proof system P . Then the simulation of V 1

1 by EF allows to
”prove” the soundness of P in EF , and then to use this proof to simulate
P -proofs by EF - proofs. This idea is due to Cook (1975).

Recall that a sequence of sets can be coded by a set by:

j ∈ (α)i ≡ 〈j, i〉 ∈ α ,

and again such coding exists using CA applied to the definition of the se-
quence; this will always be Σ1,b

0 or ∆1,b
1 . Thus we can carry in V 0

1 some
usual set - theoretic coding of propositional formulas, say as finite binary
trees with inner nodes labelled by the connectives and leaves labelled by
atoms or constants. Proofs are then particular sequences of formulas, and
for systems F or EF the definitions of F - proofs resp. of EF - proofs are
obviously also Σ1,b

0 . A truth evaluation of a formula will be coded a 0, 1-
labelling of the nodes of the formula computed according to truth tables
of the connectives. Moreover, these definitions allow to prove in V 0

1 the
elementary syntactic properties like ” a formula has unique immediate sub-
formulas ” etc. . We leave to the reader to design her/his own definitions
and to carry with them the arguments below. We just stipulate a certain
notation.

Definition 6.1 1. Fla(α) is a Σ1,b
0 -definition of ” α is a propositional

formula ”

2. For P = F,EF , PrfP (π, α) is a Σ1,b
0 -definition of ” π is a P - proof

of α ”

3. Assign(η, α) is a Σ1,b
0 -definition of ” η is a truth assignment to the

atoms of the formula α ”, and Assign(η, α) implies in V 0
1 Fla(α)

4. Eval(η, α, γ) is a Σ1,b
0 -definition of ” γ is the evaluation of the formula

α over the truth assignment η to its atoms ” , and Eval(η, α, γ) implies
in V 0

1 the conjunction Fla(α) ∧Assign(η, α)

5. η |= α is a ∆1,b
1 -definition in V 1

1 of ” η is a satisfying truth assignment
to the atoms of the formula α ” , and it is in V 0

1 -defined by:

∃γ,Eval(η, α, γ) ∧ ”γ evaluates to 1 ” .
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6. TAUT (α) is a Π1,b
1 formula defined in V 0

1 as:

∀η,Assign(η, α) → η |= α .

Formula η |= α is ∆1,b
1 in V 1

1 as even V 0
1 can prove the implication:

Eval(η, α, γ1) ∧Eval(η, α, γ2) → γ1 = γ2

(by induction on the size of γ1, γ2), and by the following lemma which is not
obvious.

Lemma 6.2 The theory V 1
1 proves that every propositional formula can be

evaluated over any truth assignment to its atoms:

∀η, α∃γ,Assign(η, α) → Eval(η, α, γ) .

Definition 6.3 Let P be a proof system. RefP (x) is (the universal closure

of) the following Σ1,b
0 -formula:

PrfP (πx, αx) → ηx |= αx

Theorem 6.4 The theory V 1
1 proves that EF is a sound proof system:

∀α, π;PrfEF (π, α) → TAUT (α) .

Proof
Argue in V 1

1 . Let π be an EF - proof of α with steps (π)1, . . . , (π)k = α,
where (π)1, . . . , (π)m are the extension atoms used in π, m < k.

Let Assign(η, α) holds and w.l.o.g. assume that in π occur only the
atoms from α or the extension atoms. Take the formula A(u):

A(u) := ∃ξ ”ξ is a truth assignment to the extension atoms in π”∧

∧ η ∪ ξ |= (π)u .

This is a Σ1,b
1 - formula clearly satisfying A(1) and A(u) → A(u+ 1), giving

to the extension atoms truth values computed from η by their definitions,
for u = 1, . . . ,m. Hence Σ1,b

1 − IND implies A(k), and η |= α follows.

Q.E.D.
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There is no Σ1,b
0 -definition of the relation η |= α. This is because such

definition would allow to express every boolean formula by a constant depth
circuit 〈η |= α〉n of size polynomial in n = |α|, which is impossible (e.g. the
parity function ⊕(x1, . . . , xn) has a formula of size n2 but it has no poly-
nomial size constant depth circuits. Thus we cannot translate the previous
arguments into V 0

1 . The theory V 0
1 does not even prove that every formula

can be evaluated:

∀η, α;Assign(η, α) → ∃γ,Eval(η, α, γ) .

There is, however, a Σ1,b
0 -definition of η |= α assuming that the depth of

α is bounded by a standard constant.

Lemma 6.5 Let d be a constant and let Flad(α) be a Σ1,b
0 - definition of ”

α is a depth ≤ d formula ” . Then:

V 0
1 ⊢ ∀η, α;Flad(α) ∧Assign(η, α) → ∃γ,Eval(η, α, γ) .

Proof
Prove the statement by induction on d showing that the evaluation γ is

actually (for fixed d) Σ1,b
0 - definable from η and α (the implication then

follows by Σ1,b
0 −CA). This is because V 0

1 can prove that a depth d formula
with the outmost connective ∧ is a conjunction of (arbitrarily bracketed)
depth d− 1 formulas, i.e. it is true iff ”all these subformulas of depth d− 1
are true ”. Assuming that a truth definition for d − 1 formulas is already
formed, this allows to define the truth for depth d formulas with a help of a
∀ ≤ quantifier. Similarly when the outmost connective is ∨. If it is ¬ then
first apply de Morgan rules to rewrite α such that all negations apply only
to the atomic subformulas.

Q.E.D.

Theorem 6.6 Let d > 0 be a constant. Then the theory V 0
1 proves that any

Frege proof of depth ≤ d is sound:

∀π, α;PrfF (π, α) ∧ ”dp(π) ≤ d” → TAUT (α) .

Proof
The proof goes by induction on the number of steps in π as before,

using the Σ1,b
0 - definition of the satisfaction relation for depth ≤ d formulas

provided by the previous lemma.
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Q.E.D.

Now we will formulate in model theoretic terms a sufficient condition for
a demonstration of superpolynomial lower bounds.

Lemma 6.7 Assume that A is a Σ1,b
0 - formula. Then V 0

1 proves the equiv-
alence:

A(αx) ≡ (α̃ |= 〈A〉x(p))

where is a truth assignment, α̃ is a Σ1,b
0 -definable in V 0

1 , assigning to pi the
value 1 iff i ∈ αx.

Proof
This is readily established by induction on the logical complexity of A.

Q.E.D.

Define nω :=
⋃

k<ω n
k for n an element of a non-standard model of

arithmetic.

Theorem 6.8 Let A(a, α) be a Σ1,b
0 -formula with a and α the only free

variables. Let M be a non-standard model of the true arithmetic Th(ω) and
let n ∈M \ ω be its non-standard element.

Assume that for every bounded set π ⊆ nω coded in M there is a family
X ⊆ exp(nω) of bounded subsets of nω and α ∈ X such that:

(i) π ∈ X

(ii) (nω,X ) |= V 0
1

(iii) (nω,X ) |= ¬A(n, α).

Then the formulas 〈A(a)〉m, m < ω, do not have polynomial size constant
- depth F -proofs.

If (nω,X ) |= V 1
1 then the formulas 〈A(a)〉m do not have polynomial size

EF - proofs.

Proof
Assume that the formulas 〈A(a)〉m, m < ω, do have polynomial size

constant - depth F -proofs. As M satisfies the true arithmetic there is k < ω
such that for every element n ∈M , M codes a constant - depth F -proof of
〈A(a)〉n of size at most nk. Let π ⊆ nk be such a proof.
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Take X and α ∈ X satisfying the conditions (i)-(iii). Then (nω,X ) is a
model of V 0

1 in which the propositional formula 〈A(a)〉n has a depth d F -
proof, some d ∈ ω. By the soundness of depth d F in V 0

1 the formula 〈A(a)〉n
must be a tautology. However, ¬A(n, α) is true, hence the assignment α̃
defined in Lemma 6.7 does not satisfy 〈A(a)〉n, by that lemma. This is a
contradiction.

The case of V 1
1 follows analogously, using the provability of RefEF in

V 1
1 .

Q.E.D.

The following lemma is a formalized version of Σ1,b
1 -completeness.

Lemma 6.9 Assume that A(αx) ∈ Σ1,b
0 . Then:

V 1
1 ⊢ A(αx) → ( EF ⊢ 〈A〉x(p/ã) ) .

where α̃ is as in Lemma 6.7.

Lemma 6.10 Let A(αx) be a Σ1,b
0 -formula. Let P be a proof system.

Then V 1
1 proves the implication:

( RefP ∧ (P ⊢ 〈A〉x) → ∀αx, A(αx) ) .

Proof
The lemma follows from (essentially) Lemma 6.7.

Q.E.D.

Corollary 6.11 Let P be a propositional proof system. Assume:

V 1
1 ⊢ RefP .

Then EF p-simulates P and, in fact:

V 1
1 ⊢ EF ≥p P .

The following corollary states a p-simulation result that is hard to prove
directly.

Corollary 6.12 EF p-simulates SF .

Proof
By the previous corollary it is enough to prove RefSF in V 1

1 , which
is straightforward : by induction on the number of steps in an SF -proof
show that every formula in the proof is a tautology. This needs IND for
Π1,b

1 -formulas which is, however, available in V 1
1 .

Q.E.D.
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7 Model-theoretic constructions

In this section we give model - theoretic proofs for Theorems 5.1 and 5.2.
I believe that this side of the simulation results is important for under-
standing of the interplay between arithmetic and propositional logic, and
the fundamental problem of lower bounds for proof systems.

Theorem 7.1 Let M be a countable model of the true arithmetic Th(ω) and

let n, t ∈M \ω be its two non-standard elements. Let θ(a) be a Σ1,b
0 -formula

with a the only free number-variable and Ra the only set-variable.
Assume that in M there is no Frege proof of 〈θ〉(n) of depth ≤ t and size

≤ nt (i.e. no element ≤ 2n
t

codes such a proof).
Then it is possible to define R ⊆M ×M such that:

(nω, Rn) |= V 0
1

and
(nω, Rn) |= ¬θ(n) .

Before we give the proof we should understand that this theorem implies
Theorem 5.1. Assume that the formulas 〈θ〉(m), m < ω, do not have poly-
nomial size constant depth Frege proofs. This means that for any k < ω
and any d < ω there are m < ω such that 〈θ〉(m) does not have a depth

d size ≤ mk F -proof. By the compactness there is a model of Th(ω) and
non-standard d, k ∈ M such that for some m ∈ M , M thinks that there is
no depth d F -proof of 〈θ〉(m) of size ≤ mk. Take t := min(d, k). By this
theorem then there is a model of V 0

1 in which ∀xθ(x) fails, i.e. ∀xθ(x) is not
provable in V 0

1 .

Proof
Let M , θ, n and t satisfy the hypothesis of the theorem. Assume that

the only set-variable in θ is Ra (we will skip the superscript). We will add an
interpretation of R to nω, and we will consider all other sets in the eventual
model of V 0

1 as being the sets Σ1,b
0 -definable from R. Denote by ∆0(R) the

subclass of Σ1,b
0 -formulas where the only set-variable is R.

Let Fle denotes the set of propositional formulas coded in M , having a
standard depth, build from the atoms pi (corresponding to R), and of size
≤ nω. We shall form a set T ⊆ Fle satisfying :

1. ¬〈θ〉(n) ∈ T

2. for any ψ ∈ Fle: ψ ∈ T or ¬ψ ∈ T , but not both
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3. if ψ ∈ Fle has the form
∧

i φi then: ψ ∈ T iff φi ∈ T all i

4. if ψ ∈ Fle has the form
∨

i φi then: ψ ∈ T iff φi ∈ T some i

5. for all η(x) ∈ ∆0(R) with parameters from nω and x the only free
variable, either ¬〈η〉(0) ∈ T or 〈η〉(u) ∈ T for all u ∈ nω or 〈η〉(u) ∧
¬〈η〉(u+1) ∈ T for some u ∈ nω

having such set T define a set R ⊆ [n] by:

i ∈ R iff pi ∈ T .

Claim 1 For any ∆0(R)-sentence ξ with parameters from nω :

(nω, R) |= ξ iff 〈ξ〉 ∈ T .

The claim follows by conditions 2.-4. posed on T .

Claim 2 (nω, R) |= V 0
1 + ¬θ(n) .

This follows from conditions 1. and 5.

It remains to construct the set T having the required properties. This
can be done by a completeness type argument but we shall cast it as a
forcing type argument.

Let P denotes the class of subsets S ⊆ Fle satisfying the conditions:

(i) ¬〈θ〉(n) ∈ S

(ii) for any k < ω there is no depth k size ≤ nk F - proof of contradiction
(= 0) from formulas in S

(iii) S is definable (and hence coded) in M .

Note that for S ∈ P there is s > ω such that there is no F -proof of 0
from S of depth ≤ s and size ≤ ns; this follows by induction as it is true for
all standard s.

The next claim is obvious.

Claim 3 Let S ∈ P and ψ ∈ Fle.
Then either S ∪ {ψ} ∈ P or S ∪ {¬ψ} ∈ P.

Claim 4 Let S ∈ P and ψ ∈ S, and assume that ψ has the form ψ :=
∨

j≤r φj . Then for some j0 ≤ r, S ∪ {φj0} ∈ P.
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Assume otherwise, i.e. for every j ≤ r there is a depth kj size ≤ nkj

F -proof of 0 from S∪{φj}, and hence depth ℓj size ≤ nℓj F -proof πj of ¬φj
from S, kj , ℓj < ω. As ψ ∈ Fle, r ≤ |ψ| ≤ nℓ, some ℓ ∈ ω.

Take s > ω such that there is no depth s size ≤ ns F - proof of 0 from
S. Each proof πj has depth << s and size << ns

nℓ , so joining these ≤ nℓ

proofs gets a depth < s size < ns proof of 0 from S, a contradiction.

Claim 5 Let S ∈ P and ψ ∈ S, and let ψ has the form
∧

i φi.
Then S ∪ {φi | all i} ∈ P.

This is seen analogously as Claim 4.

Claim 6 Let S ∈ P and let η(x) be a ∆0(R) formula with the parameters
from nω and with x the only free variable.

Then one of the following sets is in P too:

(a) S ∪ {¬〈η〉(0)}

(b) S ∪ {〈η〉(u) | u ∈ nω}

(c) S ∪ {〈η〉(u)} ∪ {¬〈η〉(u+1)} some u ∈ nω.

To prove Claim 6 assume otherwise, so there is a depth k0 size ≤ nk0

proof π−1 of 〈η〉(0) from S, a depth ku size ≤ nku proof πu of

〈η〉(u) → 〈η〉(u+1)

from S for all u ∈ nω, and there is a depth k size ≤ nk proof from S of the
disjunction

∨

u∈X

¬〈η〉(u) ,

for some X ⊆ nω of size ≤ nk.
For any non-standard s, joining proofs π−1, π0, . . . , πv for v = max(X)

by cuts entails all 〈η〉(u), u ∈ X by a depth s size ≤ ns proofs, obtaining
thus a depth s size ≤ ns proof of 0 from S, contradicting S ∈ P.

Now we are ready to construct the set T . Let ψ1, ψ2, . . . enumerate the
set Fle and η1(x), η2(x), . . . enumerate all ∆0(R) formulas with parameters
from nω and with one free variable x.

Construct a sequence S0, S1, . . . ∈ P such that:

(i) S0 := {¬〈θ〉(n)}

(ii) Si ⊆ Si+1
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(iii) ψi ∈ Si or ¬ψi ∈ Si

(iv) if ψi ∈ Si and ψi =
∨

j≤r φj then φj0 ∈ Si, some j0 ≤ r

(v) if ψi ∈ Si and ψi =
∧

j≤r φj then all φj ∈ Si

(vi) either ¬〈ηi〉(0) ∈ Si or 〈ηi〉(u) ∧ ¬〈ηi〉(u+1) ∈ Si for some u < nω, or
〈ηi〉(u) ∈ Si all u ∈ nω.

Having Si satisfying the conditions, Si+1 exists by Claims 3.- 6.. Put

T :=
⋃

i

Si .

The set T fulfils the requirements 1. - 5. above.

Q.E.D.

The reason for the particular forcing type formulation of the argument
is its similarity with the following, more involved, construction which is
conveniently expressed using forcing.

Theorem 7.2 Let (M,X ) be a model of V 1
1 and let τ̃(p1, . . . , pn) ∈ X be a

propositional formula in (M,X ).
Then the following two conditions are equivalent:

1. In (M,X ) there is no EF -proof of τ̃ .

2. There is a Σ1,b
0 -elementary extension (M ′,X ′) of (M,X ) in which ¬τ̃

is satisfiable.

Proof
Assume that 1. fails, and let π ∈ X be an EF -proof of τ̃ in (M,X ). As

(M ′,X ′) is a Σ1,b
0 -elementary extension, π is an EF -proof of τ̃ in (M ′,X ′)

as well. But RefEF is provable in V 1
1 , so τ̃ must be tautologically true in

(M ′,X ′), hence 2. fails.

Assume now that 1. holds and assume also that (M,X ) is countable.
Construct (M ′,X ′) as follows.

By the compactness there is a countable elementary extension (M0,X0)
of (M,X ) satisfying V 1

1 such that:

(i) there is t ∈M0 such that for all v ∈M , v < t
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(ii) in (M0,X0) there is no EF -proof of τ̃ .

Let (M∗,X ∗) be a substructure of (M0,X0) defined by:

(i) M∗ = {v ∈M0 |∃w ∈M,v ≤ w}

(ii) X ∗ = {β̃ ∈ X0 |β̃ ⊆M∗}.

We define in (M0,X0) several families. Let {p} be the atoms of τ̃ and
let Fle(p) ⊆ X0 be the formulas with the atoms among {p}. Further let A
be the smallest set of the atoms containing {p} plus new atoms of the form
qψ, one for each ψ built from atoms in A, and let Fle ⊆ X0 be the set of
the formulas with atoms among A.

Let C ⊆ X0 be the family of tuples of elements of A ∪ {0, 1}. Let

C∗ := {β ∈ C | |β| ∈M∗}

where |(qψ1 , . . . , qψm
)| = m, and let

Fle∗ := {φ ∈ Fle | |φ| ∈M∗} .

The size means here the number of occurence of atoms. We will consider
β̃ ∈ X0 simultaneously also as an element of C: the tuple of bits of the
characteristic function of β̃ (so for such β̃: β̃ ∈ C∗ ≡ β ∈ X ∗).

The following claim is established by induction on the logical complexity
of B.

Claim 1 Let B(β) be a Σ1,b
0 -formula and let β̃ ∈ X ∗.

Then
(M∗,X∗) |= B(β̃) → ∃πPrfF (π, 〈B〉(q/β̃)) ,

where q are atoms corresponding to β.

This is analogous to Lemma 6.7.

We will construct a set G ⊆ Fle satisfying the following conditions:

(1) ¬τ̃ ∈ G,

(2) for all ψ ∈ Fle∗ exactly one of ψ, ¬ψ is in G,

(3) whenever π ∈ X0 is an EF -proof of ψ from the assumptions ψ1, . . . , ψr
, |π| ∈M∗ and all ψi ∈ G, then also ψ ∈ G,

(4) if ψ ∈ G, ψ ∈ Fle∗ and ψ =
∨

1≤i≤r ψi then ψj ∈ G for some 1 ≤ j ≤ r,
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(5) for any Σ1,b
0 -formula H(φ, x) with the parameters from C∗ and any

v ∈M∗ one of the following three conditions hold:

(a) ¬〈H(φ, 0)〉v(δ̃) ∈ G, all δ̃ ∈ C∗ of length ≤ t(v),

(b) 〈H(φ, v)〉v(δ̃) ∈ G, for some δ̃ ∈ C∗ of length ≤ t(v),

(c) there is v′ < v such that

〈H(φ, v′)〉v(δ̃) ∈ G and ¬〈H(φ, v′ + 1)〉v(ǫ̃) ∈ G

for some δ̃ ∈ C∗ of length ≤ t(v) and for all ǫ̃ ∈ C∗ of length
≤ t(v).

The term t(v) bounds implicitly the size of the interval whose subsets
can be substituted for φ in H for x ≤ v.

Assume for a moment that we have such set G. Define a structure
(M∗[G],X ∗[G]) by:

M∗[G] := M∗ and X ∗[G] := C∗/ ∼ ,

where ∼ is an equivalence relation defined by:

β̃1 ∼ β̃2 iff 〈β1 = β2〉u(β̃1, β̃2) ∈ G

(u the maximum of the lengths of β̃1, β̃2). Note that (M∗[G],X ∗[G]) is an
extension of (M∗,X ∗) and hence of (M,X ) too.

Claim 2 Let B(β) be any Σ1,b
0 -formula with parameters from C∗ and

β̃ ∈ C∗. Then we have for all sufficiently large u:

(M∗[G],X ∗[G]) |= B(β̃/ ∼) iff 〈B〉u(β̃) ∈ G .

In particular, (M∗[G],X ∗[G]) is a Σ1,b
0 -elementary extension of (M,X ).

The claim follows from conditions (2)-(4) posed on G. For example, that

all Σ1,b
0 -sentences true in (M,X ) hold also in (M∗[G],X ∗[G]) follows from

condition (3) and Claim 1 .

Claim 3 Structure (M∗[G],X ∗[G]) is a model of V 1
1 .

Condition (5) posed on G guarantees that the induction for every Σ1,b
1 -

formula ∃φH(φ, x) holds up to every v ∈ M∗[G]. The other axioms hold

in (M∗[G],X ∗[G]) obviously. In particular, the Σ1,b
0 − CA is guaranteed by

Claim 2.
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Claim 4 There is α̃ ∈ X ∗[G] such that

(M∗[G],X ∗[G]) |= (α̃ |= ¬τ̃) .

By condition (1) posed on G and Claim 2 , α̃ is a satisfying assignment
for ¬τ̃ in (M∗[G],X ∗[G]), where

α̃ := pα/ ∼ .

It remains to construct the set G satisfying the above five requirements.
We shall use two simple technical properties of system EF .

Form a set T ⊆ Fle consisting of all formulas:

(i) qpi
≡ pi, whenever pi ∈ {p},

(ii) q¬ψ ≡ (¬qψ), whenever ψ ∈ Fle,

(iii) qψ1◦ψ2 ≡ (qψ1 ◦ qψ2), whenever ψ1, ψ2 ∈ Fle and ◦ = ∨,∧.

A set of formulas S ⊆ Fle is said to ℓ-entail formula ψ iff there is an
F -proof of size at most ℓ of ψ with the axioms from S ∪ T (the size means
here the number of occurences of atoms). A set S is called ℓ-consistent iff
S does not ℓ-entail 0.

Claim 5 Let S ⊆ Fle be a ∆1.b
1 -definable in (M0,X0), and assume that

ψ has an EF -proof from S of size ℓ in (M0,X0).
Then S also O(ℓ)2-entails ψ in (M0,X0).

This follows as every extension axiom of size t in the EF -proof can be
proved (after suitably renaming the extension atoms) from T by an F -proof
of size O(t2).

Claim 6 Let S ⊆ Fle be a ∆1,b
1 - definable in (M0,X0) and assume that

S is ℓ-consistent in (M0,X0), where ℓ is non-standard.
Then for every formula ψ of size at most ℓ2

−1
one of the sets S ∪ {ψ}

or S ∪ {¬ψ} is ℓ2
−1

-consistent.
Also, for every disjunction

∨

i≤r ψi ∈ Fle of size at most ℓ3
−1

one of sets

S ∪ {
∧

i≤r ¬ψi} or S ∪ {
∨

i≤r ψi} ∪ {ψj}, some j ≤ r, is ℓ3
−1

-consistent.

The first part is obvious. For the second part; assuming that all r + 2
sets above are ℓ3

−1
-inconsistent would allow us to construct in an obvious

way a proof of 0 from S of size at most

(r + 2)ℓ3−1 +O(|
∨

i≤r

ψi|
2) ≤ ℓ .
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This is a contradiction.

Claim 7 Let S ⊆ Fle be a ∆1,b
1 - definable family of formulas in (M0,X0),

and assume that S is ℓ-consistent in (M0,X0), where ℓ is non-standard.

Let H(φ, x) be a Σ1,b
0 -formula with parameters from C∗ and M∗. Let

v ∈ M∗, and assume that a term t(v) bounds the size of the interval whose
subsets can be substituted for φ in H for all x < v.

Then one of the following sets is ℓ3
−1

-consistent:

(i) S ∪ {¬〈H(φ, 0)〉v(δ̃) | δ̃ ∈ C∗, |δ̃| ≤ t(v)},

(ii) S ∪ {〈H(φ, v)〉v(δ̃)}, some δ̃ ∈ C∗ of length ≤ t(v),

(iii) S ∪ {〈H(φ, v′)v(δ̃)} ∪ {¬〈H(φ, v′ + 1)v(ρ̃) | ρ̃ ∈ C∗, |ρ̃| ≤ t(v)}, some
δ̃ ∈ C∗ of size ≤ t(v) and v′ < v.

To prove Claim 7 take a formula D(u):

∀w ≤ u∃rw ∈ C; S ℓ3
−1

− entails formula 〈H(φ,w)〉(rw) .

The formula D(u) is a Σ1,b
1 -formula and witnesses rw are actually from

C∗ (using the bound |rw| ≤ t(v)).
As (M0,X0) |= V 1

1 one of the two cases must occur:

(a) D(v) holds in (M0,X0)

(b) there exists minimal u ≤ v for which D(u) fails in (M0,X0).

In case (a) define

S′ := S ∪ {〈H(φ, v)〉(rv)} ,

where rv is a witness to the existential quantifier of D(v). The set S′ is
ℓ/2-consistent as otherwise one could ℓ/2 + ℓ3

−1
≤ ℓ-entail 0 from S, which

would be a contradiction.

In case (b) let u ≤ v be the first u such that D(u) fails. Take a set

S′ := S ∪ {〈H(φ, u − 1)〉(ru−1)} ∪ {¬〈H(φ, u)〉(q) | q ∈ C, |q| ≤ t(v)}

for u ≥ 1 (and again ru−1 the relevant witness) or

S′ := S ∪ {¬〈H(φ, 0)〉(q) | q ∈ C, |q| ≤ t(v)}

for u = 0.



Proof complexity and arithmetic - draft, do not distribute 22

We claim that S′ is ℓ3
−1

-consistent. Assume otherwise and w.l.o.g. let
u ≥ 1. The set S+〈H(φ, u−1)〉(ru−1) then O(ℓ2/3)-entails some disjunction
of the form

∨

q∈I

〈H(φ, u)〉(q) ,

where I ⊆ C∗. But then 〈H(φ, u)〉(r) can be also O(ℓ2/3)-entailed from
S + 〈H(φ, u− 1)〉(ru−1), where r is a new tuple defined by extension atoms
using a case distinction considering which disjunct in the disjunction is true
(cf. Claim 5). Note that |r| ≤ t(v). This contradicts the assumption that
D(u) fails, hence S′ is ℓ3

−1
-consistent.

Define now the family P of all H ⊆ Fle which are ∆1,b
1 -definable in

(M0,X0) and which are ℓ-consistent for some ℓ ∈ (M0 \M∗); such ℓ exists
by our assumption about (M0,X0) . Note that {¬τ̃} ∈ P.

Family P is partially ordered by the inclusion relation ⊆. Class Q ⊆ P
is dense if

∀H ∈ P∃H ′ ∈ Q; H ⊆ H ′.

Class Q is definable if there is a formula Ψ(X) in the language of V 1
1 aug-

mented by new metavariable X such that:

Q = {H ∈ P| (M,X ,H) |= Ψ(H)}.

Class G ⊆ P is generic if it satisfies the following conditions:

(i) if H ∈ G and H ′ ⊆ H then H ′ ∈ G,

(ii) G intersects every dense, definable subclass of P.

Claim 8 Let G ⊆ P be a generic class and assume that {¬τ̃} ∈ G. Put

G :=
⋃

G .

Then G satisfies conditions (1) - (5) above and hence (M∗[G],X ∗[G]) is
a model of V 1

1 in which the formula ¬τ̃ is satisfiable.

As model (M0,X0) is countable there are only countably many dense
definable subclasses of P, hence by the standard argument a generic class
G exists. By Claims 5,6,7 the classes of those K ∈ P which fullfil condition
(2) for ψ ∈ Fle∗ , i.e.:

ψ ∈ K or ¬ψ ∈ K,
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are clearly definable and dense, as well as are the classes of K ∈ P which
fullfil condition (4) for ψ =

∨

i≤r ψi ∈ Fle∗, i.e.:

∧

i≤r

¬ψi ∈ K or {ψ,ψj} ⊆ K, some j ≤ r,

and the classes of K ∈ P which fullfil condition (5) for K(φ, x) and v ∈M∗,
i.e.:

{¬〈K(φ, 0)〉v(δ̃) | δ̃ ∈ C, |δ̃| ≤ t(v)} ⊆ K, or:

{〈K(φ, v)〉v(δ̃)} ⊆ K, some δ̃ ∈ C of length ≤ t(v), or:

{〈K(φ, v′)v(δ̃)} ∪ {¬〈K(φ, v′ + 1)v(ρ̃) | ρ̃ ∈ C, |ρ̃| ≤ t(v)} ⊆ K, some
δ̃ ∈ C of length ≤ t(v) and v′ < v.

Hence any G defined from a generic G satisfies conditions (1) - (5).

This concludes the description of the forcing construction of the model

(M ′,X ′) = (M∗[G],X∗[G]) .

Q.E.D.

We leave it as an exercise for the reader to give proofs for the preceeding
two theorems modifying the proofs of Theorems 5.1 and 5.2 and by working
with V 0

1 (resp. V 1
1 ) plus the Σ1,b

0 - diagram of the original model.

8 Finitistic consistency statements and optimal proof

systems

Definition 8.1 (a) Let P be a propositional proof system. Function cP (τ) :
TAUT → N is defined by:

cP (τ) := min{|π| | π is an P -proof of τ} .

(b) Let P , Q be two propositional proof systems. Then system P is better
than Q, P ≥ Q in symbols, iff there is a polynomial p(x) such that:

∀τ ∈ TAUT, cP (τ) ≤ p(cQ(τ)) .

(c) Propositional proof system P is optimal iff it is the greatest element
of the quasi order ≥.
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Observe that P is better than Q iff Q has a polynomial speed-up over
P , and that P ≥p Q implies P ≥ Q but not necessarily vice versa.

Problem Does there exist an optimal propositional proof system ?

Any proof system P which proves all tautologies in polynomial size is
optimal; thus NP = coNP implies the affirmative answer to the problem.
It is unknown however, whether the converse implication is also true.

A non-trivial information about the problem is provided by Corollary
6.11: relative to V 1

1 EF is an optimal proof system, i.e. it is a ≥-greatest
proof system among those whose soundness is provable in the theory. We
use the idea of the proof of these results to obtain a particular representation
of a general proof system.

Denote by 〈RefP 〉 teh sets of all formulas 〈RefP 〉n, n < ω.

Theorem 8.2 Let P be a propositional proof system. Let

EF + 〈RefP 〉

be the proof system obtained from EF by adding tautologies from 〈RefP 〉 as
extra axioms.

Then:
EF + 〈RefP 〉 ≥p P .

In particular:
EF + 〈RefP 〉 ≥ P .

Proof
Let π be a P - proof of τ . By Lemmas 6.9 and 6.10 there is a polynomial

size EF -proof η1 of:

〈Prf〉m(π̃, τ̃) ∧ 〈Fla(v)〉m(τ̃)

where m = max(|π|, |τ |). From this formula (and η1) and the new axiom

〈RefP 〉m

we get by the substitution a polynomial size (EF + 〈RefP 〉)- proof η2 of:

〈TAUT (v)〉m(τ̃) .

There is polynomial size EF - proof η3 of the implication (analogously to
Lemma 6.7):

〈TAUT (v)〉m(τ̃ ) → τ .
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From η2 and η3 one obtains by modus ponens a polynomial size (EF +
〈RefP 〉) - proof η4 of τ .

Note that η1 and η3 are actually constructible by a polynomial time
algorithm and so this gives a p-simulation of P by (EF + 〈RefP 〉).

Q.E.D.

Note that a natural P (like the systems SF or G, and other) is, in fact,
p-equivalent to EF + 〈RefP 〉. This is because such P admits a polynomial
time construction of proofs of the formulas 〈RefP 〉n.

Now we link the problem of the existence of an optimal proof system
to a question from logic. The question deals with the lengths of first order
proofs of the so called finitistic consistency statements. Let T be a consistent
theory extending V 1

1 and with a polynomial time set of axioms. Then there

is a ∆1,b
1 - formula PrfT (π, α) expressing that ”π is a T -proof of formula α”.

Consider a formula ConT (x) naturally expressing that no T -proof of length
≤ x is a proof of 0 = 1:

∀πx¬PrfP (πx, ⌈0 = 1⌉) .

It is a fundamental problem to estimate the length of the shortest proof
of the sentence ConT (ñ) in a theory S. The term ñ is the dyiadic numeral
for n defined inductively by: 0̃ := 0, 1̃ := 1, 2̃ := (1 + 1), 2̃k := 2̃ · k̃, and

˜2k + 1 := 2̃k + 1. The length of the numeral ñ is O(log n) hence the only
apriori lower bound to such proofs is the length of the formula, i.e. Ω(log n).
The next theorem estimates sharply the length of the shortest S - proofs in
the case when S = T .

Theorem 8.3 (H. Friedman, P. Pudlák) Let T ⊇ V 1
1 be a consistent

theory with a polynomial time set of axioms and let ConT (x) be the formula
defined above.

Then there are constants ǫ > 0 and c ≥ 1 such that for all n the minimal
size mn of a T -proof of the sentence ConT (ñ) satisfies:

nǫ ≤ mn ≤ nc .

Note that |ConT (ñ)| << nǫ and hence the lower bound is non-trivial.
The upper bound is also non-trivial. To see this take, for example, S = V 1

1

and T = ZFC. There does not seem to be other way how to prove ConT (ñ)
in S then to list (in S) all T -proofs of length ≤ n and check that none of
them is a proof of 0 = 1. This gives however, only the estimate 2O(n).

The question whether there is S admitting size nO(1) proofs of ConT (ñ)
for all T can be linked to the problem posed above.
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Theorem 8.4 The following two propositions are equivalent:

1. there exists an optimal propositional proof system

2. there exists a consistent theory S ⊇ S1
2 with a polynomial-time set of

axioms such that for every consistent theory T ⊇ S1
2 with a polynomial-

time set of axioms there is polynomial p(x) such that for each n the
sentence ConT (ñ) has S-proof of size ≤ p(n).

Proof
Assume that P is an optimal proof system. Define the theory SP by:

SP := S1
2 +RefP .

Now let T ⊇ V 1
1 be a consistent theory with a polynomial-time set of axioms.

Define the formula A(βx):

A(βx) := ConT (x) .

Then A is a Π1,b
1 - formula. Consider a proof system Q:

Q := P + {〈A〉m | m < ω} .

The formulas 〈A〉m are tautologies as T is consistent,a nd form a p-time set,
so Q is indeed a proof system.

Since P is optimal, there is a polynomial q(x) such that each 〈A〉m has
P -proof of size ≤ q(m). Hence the theory SP admits proofs of

TAUT (〈A〉m)

of size mO(1) and also size mO(1) proofs of

A(m̃) .

Consequently ConT (m̃) has SP - proof of size mO(1). This proves that the
first statement implies the second.

Now let S be a theory satisfying the second statement. Define the propo-
sitional proof system PS by:

π : PS ⊢ τ) iff π : S ⊢ ⌈TAUT (τ̃ )⌉ .

That is, a PS-proof of a formula is an S-proof of the statement that the
formula is a tautology.



Proof complexity and arithmetic - draft, do not distribute 27

Let Q be an arbitrary propositional proof system. We know by earlier
theorems that Q is p-simulated by the system EF + 〈RefQ〉. As S ⊇ V 1

1 ,
we also know that PS p-simulates EF . It is thus sufficient to construct
polynomial size PS-proofs for the tautologies:

〈RefQ〉m .

Consider the theory TQ:

TQ := V 1
1 +RefQ .

By the hypothesis there are polynomial size S-proofs of:

ConTQ
(ñ) .

Assume that π is the size m = |π| Q-proof of τ . As ¬Taut ∈ Σ1,b
1 , there is

k < ω such that the implication:

¬TAUT (τ̃) → ∃δm
k

∧ PrfS(δ, ⌈¬TAUT (τ̃ )⌉)

is provable in V 1
1 and hence also in S (this is analogous to Lemma 6.7).

For the same reason there is a size ≤ mk TQ-proof of PrfQ(π̃, τ̃), and
by the axioms RefQ TQ also admits size ≤ mk proofs of:

TAUT (τ̃)

and hence there are size mO(1) S-proofs of

∃δm
O(1)

, P rfTQ
(δ, ⌈TAUT (τ̃ )⌉) .

This formula and the last but one entails that there is a size mO(1) S-proof
of:

¬TAUT (τ̃) → ¬ConTQ
(m̃d) ,

some fixed d < ω.
By the hypothesis there is a constant t < ω such that all ConTQ

(ñ) have

size ≤ nt S-proofs, hence there are size ≤ mdt S-proofs of TAUT (τ̃ ).
By the definition of PS this proof is also a PS-proof of τ of size ≤ mdt.

Q.E.D.
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One may speculate about a construction of a theory T for which given
S does not admit size nO(1) proofs of ConT (ñ). Possible candidates are
T := S + ConS or a theory formed from S by adding to the language a
truth predicate for formulas in the language of S , Tarski’s conditions on
this predicate and the statement (using the new predicate) that all axioms
of S are true (such theory is called ”jump” of S by Buss). However, if for S
one can find T without short S-proofs of ConT (ñ) it follows that S does not
prove that NP = coNP . This is because the formula A considered in the
proof above is Π1,b

1 and NP = coNP would allow to express it also as a Σ1,b
1 -

formula and so its instances (and consequently the instances of ConT (x))
would have polynomial size proofs by (an analogy of) Lemma 6.7.

The next theorem links the problem of the existence of an optimal proof
system to a problem in structural complexity theory. We will not prove it.

Theorem 8.5 The following two propositions are equivalent:

1. there exists an optimal propositional proof system

2. for every coNP - set X there exists a non-deterministic Turing ma-
chine M accepting exactly X and such that for every polynomial-time,
sparse Y ⊆ X there is a polynomial p(x) such that every u ∈ Y is
accepted by M in time ≤ p(|u|).

9 Hard tautologies

The first definition formalizes a notion of hard tautologies.

Definition 9.1 A sequence {τn}n<ω of tautologies is hard for a proposi-
tional proof system P iff the following three conditions are fullfiled:

1. there exists a polynomial time machine computing from 1(n) the for-
mula τn

2. n ≤ |τn|, for all n

3. there is no polynomial p(x) for which

cP (τn) ≤ p(|τn|)

would hold for all n
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Note that |τn| = nO(1). Conditions 1. and 2. imply that set {τn | n < ω}
is polynomial-time recognizable and so we may add it to P as extra axioms
to form new proof system Q := P + {τn | n < ω}. Adding extra axioms
to a general proof system precisely means that π is a Q-proof of τ iff it is
a P -proof of σ → τ , where σ is a conjunction of substitution instances of
new axioms. P is then not better than Q. Hence the task to construct a
hard sequence {τn}n<ω for P is the same as the task to find proof system Q
such that P 6≥ Q and its axiomatization over P by a polynomial-time set of
tautologies.

Assume P ≥ EF . Having Q for which P 6≥ Q we may take the proof
system Q′ := EF + 〈RefQ〉. Then Q′ ≥ Q, hence P 6≥ Q′ and the sequence
〈RefQ〉n}n<ω is hard for P . This gives the following simple but useful state-
ment.

Theorem 9.2 Let P be a proof system and assume that P ≥ EF . The
following three statements are equivalent:

1. there exists a sequence of tautologies {τn}n<ω hard for P

2. there exists a proof system Q such that P is not better than Q : P 6≥ Q

3. there exists a proof system Q such that the sequence 〈RefQ〉n}n<ω is
hard for P

The quasiordering of proof systems induces a reducibility among se-
quences {τn}n<ω, {σn}n<ω over a given system P :

{τn}n<ω ≥P {σn}n<ω iff P + {τn | n < ω} ≥P P + {σn | n < ω} ,

i.e. formulas σn can be deduced by polynomial size P - proofs from substi-
tution instances of some τm ’s.

10 Further topics

We have discussed a relations of cryptographic conjectures to feasible inter-
polation and to the automatizability of proof systems. See [7] and [11] (both
available from my web page).
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