Proof complexity and arithmetic (lecture notes)

Jan Krajíček
Mathematical Institute
Academy of Sciences of the Czech Republic
Praha

These are rough notes for my course Proof complexity and arithmetic at the Charles University in Fall'03. They are formed to a large extent by parts of Chapters 9 and 14 in [5]. Some background material given in the course is in the notes [8] (relating to a course I had in Spring'03).

These two sets of lecture notes will eventually form a part of bigger lecture notes on Proof complexity. In particular, the bibliographical information given here is rather rudimentary and often refers just to [5]; full details will appear in the eventual lecture notes.

Contents

1 Background review 2
2 Language L and bounded formulas 2
3 Propositional translation of bounded formulas 3
4 Theories V_{1}^{1} and V_{1}^{0} 5
5 Propositional simulation of arithmetical proofs 5
6 Reflection principles and polynomial simulations 9
7 Model-theoretic constructions 14
8 Finitistic consistency statements and optimal proof systems 23

9 Hard tautologies 28
10 Further topics 29
11 References 30

1 Background review

Here I list background notions and facts the reader is assumed to be familiar with; see [8] or [5].

Definition of Frege systems F, general definition of a propositional proof system (shortly "proof system", from now on) in the sense of Cook-Reckhow [4].
p-bounded proof systems. Their existence and the NP/coNP problem. The notions of simulation and p-simulation.

Reckhow's theorem: Any two Frege systems p-simulate each other. Proof of the theorem in the case the two systems have the same language (and for $E F)$. Tree-like Frege systems F^{*}, their p-equivalence with F.

Extended Frege system EF, extension rule. Proportional relation between the minimal number of steps in F-proofs and in $E F$-proofs. Polynomial relation between the minimal number of steps and the size in $E F$ proofs.

Substitution Frege system $S F, p$-simulation of $E F$ by $S F$ (the opposite will be in here - Lemma 6.12). Circuit Frege $C F$ from alla Jeřábek, and its p-equivalence with $E F$.

Quantified propositional calculus G and a p-simulation of $S F$ by G.

2 Language L and bounded formulas

L is a two-sorted first order language. One sort x, y, i, j, \ldots are numbers. There are constants 0,1 , and functions + and \cdot with their usual arithmetical meaning, and relation $<$. (Equality $=$ is always included for all sorts.)

The other sort ranges over bounded sets of numbers. The variables are written $\alpha^{t(x)}$, where $t(x)$ is a number-term in number-variables $x=$ $\left(x_{1}, \ldots, x_{n}\right)$. The meaning of the term is that (as will be forced by axioms of the theories we will consider) $\alpha^{t} \subseteq[t]:=\{0, \ldots, t-1\}$. We will often skip the superscript t, if there is no danger of a confusion.

Bounded formulas are those with all number-quantifiers bounded, i.e. of the form: $\exists y<t$ or $\forall y<t$. The class of all bounded formulas without the
set-quantifiers is denoted $\Sigma_{0}^{1, b}$.
Define simulatenously two bigger classes of bounded formulas, $\Sigma_{1}^{1, b}$ and $\Pi_{1}^{1, b}$: These are the smallest classes of bounded formulas such that it holds:

- $\Sigma_{0}^{1, b} \subseteq \Sigma_{1}^{1, b} \cap \Pi_{1}^{1, b}$.
- Both $\Sigma_{1}^{1, b}$ and $\Pi_{1}^{1, b}$ are closed under \vee and \wedge.
- Both $\Sigma_{1}^{1, b}$ and $\Pi_{1}^{1, b}$ are closed under bounded number-quantifiers.
- If $A \in \Sigma_{1}^{1, b}$ then $\neg A \in \Pi_{1}^{1, b}$, and vice versa.

Theorem 2.1 (Fagin) A language $L \subseteq\{0,1\}^{*}$ is in the class $N P$ iff it is $\Sigma_{1}^{1, b}$-definable, i.e. there is a $\Sigma_{1}^{1, b}$-formula $A\left(\alpha^{x}\right)$ such that

$$
w \in L \text { iff } A\left(w^{n}\right)
$$

where words w of length n are identified with subsets of $[n]$.
Any language definable by a $\Sigma_{0}^{1, b}$-formula is p-time decidable but the converse is not true. However, we have at least the following.

Corollary 2.2 A p-time decidable language is $\Sigma_{1}^{1, b}$-definable and also $\Pi_{1}^{1, b}$ definable.

In particular, properties of strings (i.e. bounded sets) like being a proof, a formula, a satisfying assignment etc. are also definable by both $\Sigma_{1}^{1, b}$ and $\Pi_{1}^{1, b}$ formulas.

3 Propositional translation of bounded formulas

Definition 3.1 Let $\theta\left(x_{1}, \ldots, x_{k}, \alpha_{1}^{t_{1}(x)}, \ldots, \alpha_{\ell}^{t_{\ell}(x)}\right)$ be a $\Sigma_{0}^{1, b}$-formula. Let $n=\left(n_{1}, \ldots, n_{k}\right)$. Let p_{j}^{i} be propositional atoms, one for each $i \leq \ell$ and $j<t_{i}(n)-1$.

Define the propositional formula $\langle\theta\rangle_{\left(n_{1}, \ldots, n_{k}\right)}$ by induction on the logical depth of θ :

1. if θ is the atomic formula $s(\bar{x})=t(\bar{x})$ then:

$$
\langle\theta\rangle_{(\bar{n})}:= \begin{cases}1 & \text { if } s(\bar{n})=t(\bar{n}) \text { is true } \\ 0 & \text { if } s(\bar{n})=t(\bar{n}) \text { is false }\end{cases}
$$

2. if θ is the atomic formula $s(\bar{x}) \leq t(\bar{x})$ then:

$$
\langle\theta\rangle_{(\bar{n})}:= \begin{cases}1 & \text { if } s(\bar{n}) \leq t(\bar{n}) \text { is true } \\ 0 & \text { if } s(\bar{n}) \leq t(\bar{n}) \text { is false }\end{cases}
$$

3. $\left\langle\alpha^{s(x)}=\beta^{t(x)}\right\rangle_{n}:=\bigwedge_{i \leq s(n)}\left(p_{i} \equiv q_{i}\right) \wedge \bigwedge_{s(n)<i \leq t(n)} \neg q_{i}$ where $s(n) \leq$ $t(n)$ and atoms p_{i} resp. q_{i} correspond to α and β resp.. The case $s(n)>t(n)$ is defined analogously.
4.

$$
\left\langle s(x) \in \beta^{t(x)}\right\rangle_{n}:= \begin{cases}q_{u} & \text { if } u=s(n) \leq t(n) \\ 0 & \text { otherwise }\end{cases}
$$

5. if $\theta=\neg \xi$ then:

$$
\langle\theta\rangle_{(\bar{n})}:=\neg\langle\xi\rangle_{(\bar{n})}
$$

6. if $\theta=\nu \circ \xi, \circ=\vee, \wedge$ then:

$$
\langle\theta\rangle_{(\bar{n})}:=\langle\nu\rangle_{(\bar{n})} \circ\langle\xi\rangle_{(\bar{n})}
$$

7. if $\theta=\exists y \leq s(\bar{x}) \nu(\bar{x}, y)$ and $s(\bar{n})=u$ then:

$$
\langle\theta\rangle_{(\bar{n})}:=\bigvee_{m \leq u}\langle\nu\rangle_{(\bar{n}, m)}
$$

8. if $\theta=\forall y \leq s(\bar{x}) \nu(\bar{x}, y)$ and $s(\bar{n})=u$ then:

$$
\langle\theta\rangle_{(\bar{n})}:=\bigwedge_{m \leq u}\langle\nu\rangle_{(\bar{n}, m)}
$$

In the last two clauses the disjunction (resp. the conjunction) is formed from the binary connectives with the brackets associated, for example, to the left.

Next lemma is proved by induction on the complexity of θ.
Lemma 3.2 Let $\theta(\bar{x})$ be a $\Sigma_{0}^{1, b}$-formula. Then there are d and ℓ such that for every \bar{n} :

1. $d p\left(\langle\theta\rangle_{(\bar{n})}\right) \leq d$
2. $\left|\langle\theta\rangle_{(\bar{n})}\right| \leq \max (\bar{n})^{\ell}$

The depth of θ is the maximal number of alternations of \bigvee and \wedge in the formula.

4 Theories V_{1}^{1} and V_{1}^{0}

V_{1}^{1} is a theory in the language L with the following axioms:

- A finite set of axioms codifying the basic arithmetical properties of the addition and the multiplication. E.g. finite theory $P A^{-}$(the theory of non-negative parts of ordered commutative rings) will work fine.
- Extensionality: $\left(\forall x<t+s ; x \in \alpha^{t} \equiv x \in \beta^{s}\right) \rightarrow \alpha^{t}=\beta^{s}$.
- Boundedness of sets: $y \in \alpha^{t} \rightarrow y<t$.
- Comprehension axiom CA:

$$
\exists \alpha^{t} \forall y<t ; A(y) \equiv y \in \alpha^{t}
$$

where A is any $\Sigma_{0}^{1, b}$-formula.

- Induction axioms IND:

$$
A(0) \vee(\exists y<x ; A(y) \wedge \neg A(y+1)) \vee A(x)
$$

where A is any $\Sigma_{1}^{1, b}$-formula.
Formulas A may have other free parameters, and all free variables are assumed to be universally quantified.

The theory V_{1}^{0} is defined exactly like the theory V_{1}^{1} except that the axiom scheme IND is accepted for all $\Sigma_{0}^{1, b}$-formulas only.

5 Propositional simulation of arithmetical proofs

Theorem 5.1 Let $\theta(x)$ be a $\Sigma_{0}^{1, b}$-formula and assume:

$$
V_{1}^{0} \vdash \forall x \theta(x) .
$$

Then there are d and ℓ such that every propositional formula $\langle\theta\rangle_{(n)}$ has a depth $d F$-proof of size at most n^{ℓ}.

Moreover, there is a polynomial time algorithm producing on input $1 \ldots 1$ (n - times) a depth d F-proof of $\langle\theta\rangle_{(n)}$.

Proof

We shall describe the construction of a depth d size $n^{\ell} L K$ - proof of the sequent

$$
\longrightarrow\langle\theta\rangle_{(n)}
$$

and it will be obvious that the required algorithm exists. This is equivalent to the required task by the mutual p-simulation of Frege systems and sequent calculus $L K$ that preserves the depth (cf.[8]).

By cut - elimination theorem (straightforwardly modified for V_{1}^{0}) there is an $L K B$ - proof π using the $\Sigma_{0}^{1, b}$ - IND rule (see the end of the proof for the defintion of the rule) of the sequent:

$$
\longrightarrow \theta(a)
$$

A sequent in the proof π has the form:

$$
\phi_{1}(\bar{b}), \ldots \phi_{r}(\bar{b}) \longrightarrow \psi_{1}(\bar{b}), \ldots \psi_{s}(\bar{b})
$$

where all ϕ_{i}, ψ_{j} are $\Sigma_{0}^{1, b}$. By induction on the number of inferences above the sequent in π prove that there is d and ℓ such that for any tuple \bar{n} the sequent:

$$
\left\langle\phi_{1}\right\rangle_{(\bar{n})}, \ldots,\left\langle\phi_{r}\right\rangle_{(\bar{n})} \longrightarrow\left\langle\psi_{1}\right\rangle_{(\bar{n})}, \ldots,\left\langle\psi_{s}\right\rangle_{(\bar{n})}
$$

has a depth d size $\max (\bar{n})^{\ell} L K$ - proof.
All initial sequents have the form $A \longrightarrow A, A$ atomic, or $\longrightarrow A, A$ an axiom of $P A^{-}$. In the former case the propositional translation is either $0 \longrightarrow 0,1 \longrightarrow 1$ or $p_{j}^{i} \longrightarrow p_{j}^{i}$. In the latter case the translation is of the form $\longrightarrow \tau$, where τ is true boolean sentence (i.e. without atoms). Moreover, the depth of τ is constant ($=$ the maximal logical depth of a $P A^{-}$- axiom). Any such sentence has a $d p(\tau) L K$ - proof of size $O(|\tau|)$.

The case when the sequent was obtained by structural or propositional rules or by the cut - rule is obvious : the same rules of propositional logic should be applied to the propositional translations of the upper sequents.

For the closed terms $t \leq s(\bar{n})$ is a formula of the form $\langle\eta(t)\rangle_{(\bar{n})}$ one of the disjuncts of $\langle\exists x \leq s, \eta(x)\rangle_{(\bar{n})}$; thus $\exists \leq$: right rule is simulated by repeated (polynomially many times) \vee : right rule of $L K$.

For the $\forall \leq$: right inference:

$$
\frac{a \leq t, \Gamma \longrightarrow \Delta, A(a)}{\Gamma \longrightarrow \Delta, \forall x \leq t A(x)}
$$

assume that for each $a=0,1, \ldots, \operatorname{val}(t)$ there is an $L K$-proof of the translation of the upper sequent with the required properties. Then all
$a \leq t$ translate to 1 , and thus can be cut out with the initial sequent $\longrightarrow 1$, and the obtained sequents are joined by repeated applications of the \wedge : right rule for $a=0,1, \ldots, \operatorname{val}(t)$. Hence the size of this translation is $\operatorname{val}(t)^{O(1)}=\max (\bar{n})^{O(1)}$. The left quantifier rules are treated analogously.

Finally, the $I N D$ rule:

$$
\frac{A(a), \Gamma \longrightarrow \Delta, A(a+1)}{A(0), \Gamma \longrightarrow \Delta, A(t)}
$$

is simulated by applying the cut rule to the $L K$-proofs of the translations of the upper sequent for $a=0,1, \ldots, \operatorname{val}(t)-1$.
Q.E.D.

We shall extend the simulation to the theory V_{1}^{1}.
A sequence of formulas $\theta_{1}, \ldots, \theta_{k}$ is called an $E F$ - sequence iff it satisfies the conditions to be an $E F$ - proof with the condition that no extension atom appears in θ_{k} dropped.

Theorem 5.2 Let $A(x)$ be a $\Sigma_{0}^{1, b}$-formula and assume that:

$$
V_{1}^{1} \vdash \forall x A(x)
$$

Then the formulas $\langle A(x)\rangle_{n}$ have polynomial size EF-proofs.

Proof

We shall consider V_{1}^{1} formalized in the sequent calculus with $\Sigma_{1}^{1, b}-I N D$ rule in place of $\Sigma_{1}^{1, b}-I N D$ axioms and with the introduction rules for the second order quantifiers replacing $\Sigma_{0}^{1, b}-C A$.

Assume that π is a V_{1}^{1}-proof of the sequent $\rightarrow A(a) ;$ w.l.o.g. we may assume that all formulas in π are $\operatorname{strict} \Sigma_{1}^{1, b}$. These are $\Sigma_{1}^{1, b}$-formulas in which all second order quantifier precede all first order quantifiers and all connectives.

By induction on the number of steps in π above a sequent show that if:

$$
\exists \psi_{1} B_{1}\left(\bar{x}, \bar{\alpha}, \psi_{1}\right), \ldots, \exists \psi_{u} B_{u}\left(\bar{x}, \bar{\alpha}, \psi_{u}\right) \rightarrow \exists \xi_{1} C_{1}\left(\bar{x}, \bar{\alpha}, \xi_{1}\right), \ldots, \exists \xi_{v} C_{v}\left(\bar{x}, \bar{\alpha}, \xi_{v}\right)
$$

is a sequent in π then there is a constant k such that for all \bar{m} there is an $E F$-sequence of size at most $(\max (\bar{m}))^{k}$ ending with the sequent:

$$
\left\langle B_{1}\right\rangle_{\bar{m}}\left(\bar{p}^{\alpha}, \bar{p}^{\psi_{1}}\right), \ldots,\left\langle B_{u}\right\rangle_{\bar{m}}\left(\bar{p}^{\alpha}, \bar{p}^{\psi_{u}}\right) \longrightarrow\left\langle C_{1}\right\rangle_{\bar{m}}\left(\bar{p}^{\alpha}, \bar{p}^{\xi_{1}}\right), \ldots,\left\langle C_{v}\right\rangle_{\bar{m}}\left(\bar{p}^{\alpha}, \bar{p}^{\xi_{v}}\right),
$$

and such that in this $E F$-sequence none of the atoms p_{t}^{α} or $p_{t}^{\psi_{i}}$ corresponding to a free second order variable α_{i} resp. to a second order variable ψ_{j} from an antecedent is an extension atom.

The construction follows the proof of the earlier theorem and we only need to treat two new rules : the introduction of the second order \exists to the succedent and $\Sigma_{1}^{1, b}$-IND (the introduction of the second order \exists to the antecedent does not change the translation).

Assume that in the former case the minor formula of the inference is

$$
C\left(\bar{x}, \bar{\alpha}, \frac{t \in \xi}{E(\bar{x}, t, \bar{\alpha})}\right)
$$

with both $C, E \in \Sigma_{0}^{1, b}$, and that the principal formula is $\exists \xi C(\bar{x}, \bar{\alpha}, \xi)$. Introduce a new atom $p_{t}^{\xi} \equiv\langle E\rangle_{\bar{m}, t}\left(\bar{p}^{\alpha}\right)$. Then the equivalence :

$$
\langle C\rangle_{\bar{m}}\left(\bar{p}^{\alpha}, \frac{p_{t}^{\xi}}{\langle E\rangle_{\bar{m}, t}}\right) \equiv\langle C\rangle_{\bar{m}}\left(\bar{p}^{\alpha}, \bar{p}^{\xi}\right)
$$

can be derived from the new extension axioms by an F-derivation of size :

$$
O\left(\left(\left|\langle C\rangle_{\bar{m}}\right|+\left|\langle E\rangle_{\bar{m}, t}\right|\right)^{2}\right)=(\max (\bar{m}))^{O(1)},
$$

as t is implicitly bounded in E by a power of $\max (\bar{m})$. This concludes the first case.

Now consider a $\Sigma_{1}^{1, b}$-IND inference:

$$
\frac{\exists \xi_{b} C\left(b, \xi_{b}\right) \rightarrow \exists \xi_{b+1} C\left(b+1, \xi_{b+1}\right)}{\exists \xi_{0} C\left(0, \xi_{0}\right) \rightarrow \exists \xi_{n} C\left(n, \xi_{n}\right)}
$$

(the other free variables and the side formulas are omitted for simplicity). By the induction hypothesis we have polynomial size $E F$-sequences ending with the formulas:

$$
\langle C\rangle_{\bar{m}, u}\left(\bar{p}^{\xi_{u}}\right) \rightarrow\langle C\rangle_{\bar{m}, u+1}\left(\bar{p}^{\xi_{u+1}}\right)
$$

for $u=0,1, \ldots, n-1$. Joining these sequences by $n-1$ cuts gives an $E F$-sequence ending with the implication:

$$
\langle C\rangle_{\bar{m}, 0}\left(\bar{p}^{\xi_{0}}\right) \rightarrow\langle C\rangle_{\bar{m}, n}\left(\bar{p}^{\xi_{n}}\right),
$$

of total size polynomial in $\max (\bar{m}, n)$.
As the formula A is $\Sigma_{0}^{1, b}$, atoms in $\langle A\rangle_{(n)}$ correspond to free second order variables in A and hence cannot be the extension atoms. Thus the final $E F$ -sequence is, in fact, an $E F$ - proof.
Q.E.D.

6 Reflection principles and polynomial simulations

In this section we show that the provability of the reflection principles for propositional proof systems in bounded arithmetic implies polynomial simulation. As an illustration of this idea assume that we can verify in V_{1}^{1} the soundness of a proof system P. Then the simulation of V_{1}^{1} by $E F$ allows to "prove" the soundness of P in $E F$, and then to use this proof to simulate P-proofs by $E F$ - proofs. This idea is due to Cook (1975).

Recall that a sequence of sets can be coded by a set by:

$$
j \in(\alpha)_{i} \equiv\langle j, i\rangle \in \alpha
$$

and again such coding exists using $C A$ applied to the definition of the sequence; this will always be $\Sigma_{0}^{1, b}$ or $\Delta_{1}^{1, b}$. Thus we can carry in V_{1}^{0} some usual set - theoretic coding of propositional formulas, say as finite binary trees with inner nodes labelled by the connectives and leaves labelled by atoms or constants. Proofs are then particular sequences of formulas, and for systems F or $E F$ the definitions of F - proofs resp. of $E F$ - proofs are obviously also $\Sigma_{0}^{1, b}$. A truth evaluation of a formula will be coded a $0,1-$ labelling of the nodes of the formula computed according to truth tables of the connectives. Moreover, these definitions allow to prove in V_{1}^{0} the elementary syntactic properties like " a formula has unique immediate subformulas " etc. . We leave to the reader to design her/his own definitions and to carry with them the arguments below. We just stipulate a certain notation.

Definition 6.1 1. Fla (α) is a $\Sigma_{0}^{1, b}$-definition of " α is a propositional formula "
2. For $P=F, E F, \operatorname{Pr} f_{P}(\pi, \alpha)$ is a $\Sigma_{0}^{1, b}$-definition of " π is a P - proof of α "
3. $\operatorname{Assign}(\eta, \alpha)$ is a $\Sigma_{0}^{1, b}$-definition of " η is a truth assignment to the atoms of the formula α ", and Assign (η, α) implies in V_{1}^{0} Fla(α)
4. Eval (η, α, γ) is a $\Sigma_{0}^{1, b}$-definition of " γ is the evaluation of the formula α over the truth assignment η to its atoms ", and Eval (η, α, γ) implies in V_{1}^{0} the conjunction $\operatorname{Fla}(\alpha) \wedge \operatorname{Assign}(\eta, \alpha)$
5. $\eta \models \alpha$ is a $\Delta_{1}^{1, b}$-definition in V_{1}^{1} of " η is a satisfying truth assignment to the atoms of the formula α ", and it is in V_{1}^{0}-defined by:

$$
\exists \gamma, \operatorname{Eval}(\eta, \alpha, \gamma) \wedge " \gamma \text { evaluates to } 1 "
$$

6. $T A U T(\alpha)$ is a $\Pi_{1}^{1, b}$ formula defined in V_{1}^{0} as:

$$
\forall \eta, A \operatorname{ssign}(\eta, \alpha) \rightarrow \eta \models \alpha
$$

Formula $\eta \models \alpha$ is $\Delta_{1}^{1, b}$ in V_{1}^{1} as even V_{1}^{0} can prove the implication:

$$
\operatorname{Eval}\left(\eta, \alpha, \gamma_{1}\right) \wedge \operatorname{Eval}\left(\eta, \alpha, \gamma_{2}\right) \rightarrow \gamma_{1}=\gamma_{2}
$$

(by induction on the size of γ_{1}, γ_{2}), and by the following lemma which is not obvious.

Lemma 6.2 The theory V_{1}^{1} proves that every propositional formula can be evaluated over any truth assignment to its atoms:

$$
\forall \eta, \alpha \exists \gamma, \operatorname{Assign}(\eta, \alpha) \rightarrow \operatorname{Eval}(\eta, \alpha, \gamma)
$$

Definition 6.3 Let P be a proof system. $\operatorname{Re} f_{P}(x)$ is (the universal closure of) the following $\Sigma_{0}^{1, b}$-formula:

$$
\operatorname{Pr} f_{P}\left(\pi^{x}, \alpha^{x}\right) \rightarrow \eta^{x} \models \alpha^{x}
$$

Theorem 6.4 The theory V_{1}^{1} proves that EF is a sound proof system:

$$
\forall \alpha, \pi ; \operatorname{Pr} f_{E F}(\pi, \alpha) \rightarrow T A U T(\alpha)
$$

Proof

Argue in V_{1}^{1}. Let π be an $E F$ - proof of α with steps $(\pi)_{1}, \ldots,(\pi)_{k}=\alpha$, where $(\pi)_{1}, \ldots,(\pi)_{m}$ are the extension atoms used in $\pi, m<k$.

Let $\operatorname{Assign}(\eta, \alpha)$ holds and w.l.o.g. assume that in π occur only the atoms from α or the extension atoms. Take the formula $A(u)$:
$A(u):=\exists \xi " \xi$ is a truth assignment to the extension atoms in $\pi " \wedge$

$$
\wedge \eta \cup \xi \models(\pi)_{u}
$$

This is a $\Sigma_{1}^{1, b}$ - formula clearly satisfying $A(1)$ and $A(u) \rightarrow A(u+1)$, giving to the extension atoms truth values computed from η by their definitions, for $u=1, \ldots, m$. Hence $\Sigma_{1}^{1, b}-I N D$ implies $A(k)$, and $\eta \models \alpha$ follows.
Q.E.D.

There is no $\Sigma_{0}^{1, b}$-definition of the relation $\eta \models \alpha$. This is because such definition would allow to express every boolean formula by a constant depth circuit $\langle\eta \models \alpha\rangle_{n}$ of size polynomial in $n=|\alpha|$, which is impossible (e.g. the parity function $\oplus\left(x_{1}, \ldots, x_{n}\right)$ has a formula of size n^{2} but it has no polynomial size constant depth circuits. Thus we cannot translate the previous arguments into V_{1}^{0}. The theory V_{1}^{0} does not even prove that every formula can be evaluated:

$$
\forall \eta, \alpha ; \operatorname{Assign}(\eta, \alpha) \rightarrow \exists \gamma, \operatorname{Eval}(\eta, \alpha, \gamma) .
$$

There is, however, a $\Sigma_{0}^{1, b}$-definition of $\eta \models \alpha$ assuming that the depth of α is bounded by a standard constant.

Lemma 6.5 Let d be a constant and let $F l a_{d}(\alpha)$ be a $\Sigma_{0}^{1, b}$ - definition of " α is a depth $\leq d$ formula ". Then:

$$
V_{1}^{0} \vdash \forall \eta, \alpha ; F l a_{d}(\alpha) \wedge \operatorname{Assign}(\eta, \alpha) \rightarrow \exists \gamma, \operatorname{Eval}(\eta, \alpha, \gamma) .
$$

Proof

Prove the statement by induction on d showing that the evaluation γ is actually (for fixed d) $\Sigma_{0}^{1, b}$ - definable from η and α (the implication then follows by $\Sigma_{0}^{1, b}-C A$). This is because V_{1}^{0} can prove that a depth d formula with the outmost connective \wedge is a conjunction of (arbitrarily bracketed) depth $d-1$ formulas, i.e. it is true iff "all these subformulas of depth $d-1$ are true ". Assuming that a truth definition for $d-1$ formulas is already formed, this allows to define the truth for depth d formulas with a help of a $\forall \leq$ quantifier. Similarly when the outmost connective is \vee. If it is \neg then first apply de Morgan rules to rewrite α such that all negations apply only to the atomic subformulas.
Q.E.D.

Theorem 6.6 Let $d>0$ be a constant. Then the theory V_{1}^{0} proves that any Frege proof of depth $\leq d$ is sound:

$$
\forall \pi, \alpha ; \operatorname{Pr} f_{F}(\pi, \alpha) \wedge " d p(\pi) \leq d " \rightarrow T A U T(\alpha)
$$

Proof

The proof goes by induction on the number of steps in π as before, using the $\Sigma_{0}^{1, b}$ - definition of the satisfaction relation for depth $\leq d$ formulas provided by the previous lemma.

Now we will formulate in model theoretic terms a sufficient condition for a demonstration of superpolynomial lower bounds.

Lemma 6.7 Assume that A is a $\Sigma_{0}^{1, b}$ - formula. Then V_{1}^{0} proves the equivalence:

$$
A\left(\alpha^{x}\right) \equiv\left(\tilde{\alpha} \models\langle A\rangle_{x}(\bar{p})\right)
$$

where is a truth assignment, $\tilde{\alpha}$ is a $\Sigma_{0}^{1, b}$-definable in V_{1}^{0}, assigning to p_{i} the value 1 iff $i \in \alpha^{x}$.

Proof

This is readily established by induction on the logical complexity of A.
Q.E.D.

Define $n^{\omega}:=\bigcup_{k<\omega} n^{k}$ for n an element of a non-standard model of arithmetic.

Theorem 6.8 Let $A(a, \alpha)$ be a $\Sigma_{0}^{1, b}$-formula with a and α the only free variables. Let M be a non-standard model of the true arithmetic $T h(\omega)$ and let $n \in M \backslash \omega$ be its non-standard element.

Assume that for every bounded set $\pi \subseteq n^{\omega}$ coded in M there is a family $\mathcal{X} \subseteq \exp \left(n^{\omega}\right)$ of bounded subsets of n^{ω} and $\alpha \in \mathcal{X}$ such that:
(i) $\pi \in \mathcal{X}$
(ii) $\left(n^{\omega}, \mathcal{X}\right) \models V_{1}^{0}$
(iii) $\left(n^{\omega}, \mathcal{X}\right) \models \neg A(n, \alpha)$.

Then the formulas $\langle A(a)\rangle_{m}$, $m<\omega$, do not have polynomial size constant - depth F-proofs.

If $\left(n^{\omega}, \mathcal{X}\right) \models V_{1}^{1}$ then the formulas $\langle A(a)\rangle_{m}$ do not have polynomial size EF - proofs.

Proof

Assume that the formulas $\langle A(a)\rangle_{m}, m<\omega$, do have polynomial size constant - depth F-proofs. As M satisfies the true arithmetic there is $k<\omega$ such that for every element $n \in M, M$ codes a constant - depth F-proof of $\langle A(a)\rangle_{n}$ of size at most n^{k}. Let $\pi \subseteq n^{k}$ be such a proof.

Take \mathcal{X} and $\alpha \in \mathcal{X}$ satisfying the conditions (i)-(iii). Then $\left(n^{\omega}, \mathcal{X}\right)$ is a model of V_{1}^{0} in which the propositional formula $\langle A(a)\rangle_{n}$ has a depth $d F$ proof, some $d \in \omega$. By the soundness of depth $d F$ in V_{1}^{0} the formula $\langle A(a)\rangle_{n}$ must be a tautology. However, $\neg A(n, \alpha)$ is true, hence the assignment $\tilde{\alpha}$ defined in Lemma 6.7 does not satisfy $\langle A(a)\rangle_{n}$, by that lemma. This is a contradiction.

The case of V_{1}^{1} follows analogously, using the provability of $R e f_{E F}$ in V_{1}^{1}.
Q.E.D.

The following lemma is a formalized version of $\Sigma_{1}^{1, b}$-completeness.
Lemma 6.9 Assume that $A\left(\alpha^{x}\right) \in \Sigma_{0}^{1, b}$. Then:

$$
V_{1}^{1} \vdash A\left(\alpha^{x}\right) \rightarrow\left(E F \vdash\langle A\rangle_{x}(\bar{p} / \tilde{a})\right)
$$

where $\tilde{\alpha}$ is as in Lemma 6.7.
Lemma 6.10 Let $A\left(\alpha^{x}\right)$ be a $\Sigma_{0}^{1, b}$-formula. Let P be a proof system.
Then V_{1}^{1} proves the implication:

$$
\left(\operatorname{Re}_{P} \wedge\left(P \vdash\langle A\rangle_{x}\right) \rightarrow \forall \alpha^{x}, A\left(\alpha^{x}\right)\right)
$$

Proof
The lemma follows from (essentially) Lemma 6.7.
Q.E.D.

Corollary 6.11 Let P be a propositional proof system. Assume:

$$
V_{1}^{1} \vdash R e f_{P}
$$

Then EF p-simulates P and, in fact:

$$
V_{1}^{1} \vdash E F \geq_{p} P
$$

The following corollary states a p-simulation result that is hard to prove directly.

Corollary 6.12 EF p-simulates $S F$.

Proof

By the previous corollary it is enough to prove $\operatorname{Re} f_{S F}$ in V_{1}^{1}, which is straightforward : by induction on the number of steps in an $S F$-proof show that every formula in the proof is a tautology. This needs IND for $\Pi_{1}^{1, b}$-formulas which is, however, available in V_{1}^{1}.
Q.E.D.

7 Model-theoretic constructions

In this section we give model - theoretic proofs for Theorems 5.1 and 5.2. I believe that this side of the simulation results is important for understanding of the interplay between arithmetic and propositional logic, and the fundamental problem of lower bounds for proof systems.

Theorem 7.1 Let M be a countable model of the true arithmetic $T h(\omega)$ and let $n, t \in M \backslash \omega$ be its two non-standard elements. Let $\theta(a)$ be a $\Sigma_{0}^{1, b}$-formula with a the only free number-variable and R^{a} the only set-variable.

Assume that in M there is no Frege proof of $\langle\theta\rangle_{(n)}$ of depth $\leq t$ and size $\leq n^{t}$ (i.e. no element $\leq 2^{n^{t}}$ codes such a proof).

Then it is possible to define $R \subseteq M \times M$ such that:

$$
\left(n^{\omega}, R^{n}\right) \models V_{1}^{0}
$$

and

$$
\left(n^{\omega}, R^{n}\right) \models \neg \theta(n) .
$$

Before we give the proof we should understand that this theorem implies Theorem 5.1. Assume that the formulas $\langle\theta\rangle_{(m)}, m<\omega$, do not have polynomial size constant depth Frege proofs. This means that for any $k<\omega$ and any $d<\omega$ there are $m<\omega$ such that $\langle\theta\rangle_{(m)}$ does not have a depth d size $\leq m^{k} F$-proof. By the compactness there is a model of $T h(\omega)$ and non-standard $d, k \in M$ such that for some $m \in M, M$ thinks that there is no depth $d F$-proof of $\langle\theta\rangle_{(m)}$ of size $\leq m^{k}$. Take $t:=\min (d, k)$. By this theorem then there is a model of V_{1}^{0} in which $\forall x \theta(x)$ fails, i.e. $\forall x \theta(x)$ is not provable in V_{1}^{0}.

Proof

Let M, θ, n and t satisfy the hypothesis of the theorem. Assume that the only set-variable in θ is R^{a} (we will skip the superscript). We will add an interpretation of R to n^{ω}, and we will consider all other sets in the eventual model of V_{1}^{0} as being the sets $\Sigma_{0}^{1, b}$-definable from R. Denote by $\Delta_{0}(R)$ the subclass of $\Sigma_{0}^{1, b}$-formulas where the only set-variable is R.

Let Fle denotes the set of propositional formulas coded in M, having a standard depth, build from the atoms p_{i} (corresponding to R), and of size $\leq n^{\omega}$. We shall form a set $T \subseteq$ Fle satisfying :

1. $\neg\langle\theta\rangle_{(n)} \in T$
2. for any $\psi \in$ Fle: $\psi \in T$ or $\neg \psi \in T$, but not both
3. if $\psi \in$ Fle has the form $\bigwedge_{i} \phi_{i}$ then: $\psi \in T$ iff $\phi_{i} \in T$ all i
4. if $\psi \in F l e$ has the form $\bigvee_{i} \phi_{i}$ then: $\psi \in T$ iff $\phi_{i} \in T$ some i
5. for all $\eta(x) \in \Delta_{0}(R)$ with parameters from n^{ω} and x the only free variable, either $\neg\langle\eta\rangle_{(0)} \in T$ or $\langle\eta\rangle_{(u)} \in T$ for all $u \in n^{\omega}$ or $\langle\eta\rangle_{(u)} \wedge$ $\neg\langle\eta\rangle_{(u+1)} \in T$ for some $u \in n^{\omega}$
having such set T define a set $R \subseteq[n]$ by:

$$
i \in R \text { iff } p_{i} \in T
$$

Claim 1 For any $\Delta_{0}(R)$-sentence ξ with parameters from n^{ω} :

$$
\left(n^{\omega}, R\right) \models \xi \quad \text { iff } \quad\langle\xi\rangle \in T .
$$

The claim follows by conditions $2 .-4$. posed on T.
Claim $2\left(n^{\omega}, R\right) \models V_{1}^{0}+\neg \theta(n)$.
This follows from conditions 1. and 5.
It remains to construct the set T having the required properties. This can be done by a completeness type argument but we shall cast it as a forcing type argument.

Let \mathcal{P} denotes the class of subsets $S \subseteq$ Fle satisfying the conditions:
(i) $\neg\langle\theta\rangle_{(n)} \in S$
(ii) for any $k<\omega$ there is no depth k size $\leq n^{k} F$ - proof of contradiction $(=0)$ from formulas in S
(iii) S is definable (and hence coded) in M.

Note that for $S \in \mathcal{P}$ there is $s>\omega$ such that there is no F-proof of 0 from S of depth $\leq s$ and size $\leq n^{s}$; this follows by induction as it is true for all standard s.

The next claim is obvious.
Claim 3 Let $S \in \mathcal{P}$ and $\psi \in$ Fle.
Then either $S \cup\{\psi\} \in \mathcal{P}$ or $S \cup\{\neg \psi\} \in \mathcal{P}$.
Claim 4 Let $S \in \mathcal{P}$ and $\psi \in S$, and assume that ψ has the form $\psi:=$ $\bigvee_{j \leq r} \phi_{j}$. Then for some $j_{0} \leq r, S \cup\left\{\phi_{j_{0}}\right\} \in \mathcal{P}$.

Assume otherwise, i.e. for every $j \leq r$ there is a depth k_{j} size $\leq n^{k_{j}}$ F-proof of 0 from $S \cup\left\{\phi_{j}\right\}$, and hence depth ℓ_{j} size $\leq n^{\ell_{j}} F$-proof π_{j} of $\neg \phi_{j}$ from $S, k_{j}, \ell_{j}<\omega$. As $\psi \in F l e, r \leq|\psi| \leq n^{\ell}$, some $\ell \in \omega$.

Take $s>\omega$ such that there is no depth s size $\leq n^{s} F$ - proof of 0 from S. Each proof π_{j} has depth $\ll s$ and size $\ll \frac{\overline{n^{s}}}{n^{\ell}}$, so joining these $\leq n^{\ell}$ proofs gets a depth $<s$ size $<n^{s}$ proof of 0 from S, a contradiction.

Claim 5 Let $S \in \mathcal{P}$ and $\psi \in S$, and let ψ has the form $\bigwedge_{i} \phi_{i}$.
Then $S \cup\left\{\phi_{i} \mid\right.$ all $\left.i\right\} \in \mathcal{P}$.
This is seen analogously as Claim 4.
Claim 6 Let $S \in \mathcal{P}$ and let $\eta(x)$ be a $\Delta_{0}(R)$ formula with the parameters from n^{ω} and with x the only free variable.

Then one of the following sets is in \mathcal{P} too:
(a) $S \cup\left\{\neg\langle\eta\rangle_{(0)}\right\}$
(b) $S \cup\left\{\langle\eta\rangle_{(u)} \mid u \in n^{\omega}\right\}$
(c) $S \cup\left\{\langle\eta\rangle_{(u)}\right\} \cup\left\{\neg\langle\eta\rangle_{(u+1)}\right\}$ some $u \in n^{\omega}$.

To prove Claim 6 assume otherwise, so there is a depth k_{0} size $\leq n^{k_{0}}$ proof π_{-1} of $\langle\eta\rangle_{(0)}$ from S, a depth k_{u} size $\leq n^{k_{u}}$ proof π_{u} of

$$
\langle\eta\rangle_{(u)} \rightarrow\langle\eta\rangle_{(u+1)}
$$

from S for all $u \in n^{\omega}$, and there is a depth k size $\leq n^{k}$ proof from S of the disjunction

$$
\bigvee_{u \in X} \neg\langle\eta\rangle_{(u)},
$$

for some $X \subseteq n^{\omega}$ of size $\leq n^{k}$.
For any non-standard s, joining proofs $\pi_{-1}, \pi_{0}, \ldots, \pi_{v}$ for $v=\max (X)$ by cuts entails all $\langle\eta\rangle_{(u)}, u \in X$ by a depth s size $\leq n^{s}$ proofs, obtaining thus a depth s size $\leq n^{s}$ proof of 0 from S, contradicting $S \in \mathcal{P}$.

Now we are ready to construct the set T. Let $\psi_{1}, \psi_{2}, \ldots$ enumerate the set $F l e$ and $\eta_{1}(x), \eta_{2}(x), \ldots$ enumerate all $\Delta_{0}(R)$ formulas with parameters from n^{ω} and with one free variable x.

Construct a sequence $S_{0}, S_{1}, \ldots \in \mathcal{P}$ such that:
(i) $S_{0}:=\left\{\neg\langle\theta\rangle_{(n)}\right\}$
(ii) $S_{i} \subseteq S_{i+1}$
(iii) $\psi_{i} \in S_{i}$ or $\neg \psi_{i} \in S_{i}$
(iv) if $\psi_{i} \in S_{i}$ and $\psi_{i}=\bigvee_{j \leq r} \phi_{j}$ then $\phi_{j_{0}} \in S_{i}$, some $j_{0} \leq r$
(v) if $\psi_{i} \in S_{i}$ and $\psi_{i}=\Lambda_{j \leq r} \phi_{j}$ then all $\phi_{j} \in S_{i}$
(vi) either $\neg\left\langle\eta_{i}\right\rangle_{(0)} \in S_{i}$ or $\left\langle\eta_{i}\right\rangle_{(u)} \wedge \neg\left\langle\eta_{i}\right\rangle_{(u+1)} \in S_{i}$ for some $u<n^{\omega}$, or $\left\langle\eta_{i}\right\rangle_{(u)} \in S_{i}$ all $u \in n^{\omega}$.

Having S_{i} satisfying the conditions, S_{i+1} exists by Claims 3.- 6 .. Put

$$
T:=\bigcup_{i} S_{i} .
$$

The set T fulfils the requirements $1 .-5$. above.

Q.E.D.

The reason for the particular forcing type formulation of the argument is its similarity with the following, more involved, construction which is conveniently expressed using forcing.

Theorem 7.2 Let (M, \mathcal{X}) be a model of V_{1}^{1} and let $\tilde{\tau}\left(p_{1}, \ldots, p_{n}\right) \in \mathcal{X}$ be a propositional formula in (M, \mathcal{X}).

Then the following two conditions are equivalent:

1. In (M, \mathcal{X}) there is no $E F$-proof of $\tilde{\tau}$.
2. There is a $\Sigma_{0}^{1, b}$-elementary extension $\left(M^{\prime}, \mathcal{X}^{\prime}\right)$ of (M, \mathcal{X}) in which $\neg \tilde{\tau}$ is satisfiable.

Proof

Assume that 1. fails, and let $\pi \in \mathcal{X}$ be an $E F$-proof of $\tilde{\tau}$ in (M, \mathcal{X}). As $\left(M^{\prime}, \mathcal{X}^{\prime}\right)$ is a $\Sigma_{0}^{1, b}$-elementary extension, π is an $E F$-proof of $\tilde{\tau}$ in $\left(M^{\prime}, \mathcal{X}^{\prime}\right)$ as well. But $\operatorname{Re} f_{E F}$ is provable in V_{1}^{1}, so $\tilde{\tau}$ must be tautologically true in ($M^{\prime}, \mathcal{X}^{\prime}$), hence 2. fails.

Assume now that 1. holds and assume also that (M, \mathcal{X}) is countable. Construct ($M^{\prime}, \mathcal{X}^{\prime}$) as follows.

By the compactness there is a countable elementary extension $\left(M_{0}, \mathcal{X}_{0}\right)$ of (M, \mathcal{X}) satisfying V_{1}^{1} such that:
(i) there is $t \in M_{0}$ such that for all $v \in M, v<t$
(ii) in $\left(M_{0}, \mathcal{X}_{0}\right)$ there is no $E F$-proof of $\tilde{\tau}$.

Let $\left(M^{*}, \mathcal{X}^{*}\right)$ be a substructure of $\left(M_{0}, \mathcal{X}_{0}\right)$ defined by:
(i) $M^{*}=\left\{v \in M_{0} \mid \exists w \in M, v \leq w\right\}$
(ii) $\mathcal{X}^{*}=\left\{\tilde{\beta} \in X_{0} \mid \tilde{\beta} \subseteq M^{*}\right\}$.

We define in $\left(M_{0}, \mathcal{X}_{0}\right)$ several families. Let $\{\bar{p}\}$ be the atoms of $\tilde{\tau}$ and let $F l e(\bar{p}) \subseteq X_{0}$ be the formulas with the atoms among $\{\bar{p}\}$. Further let A be the smallest set of the atoms containing $\{\bar{p}\}$ plus new atoms of the form q_{ψ}, one for each ψ built from atoms in A, and let $F l e \subseteq X_{0}$ be the set of the formulas with atoms among A.

Let $C \subseteq X_{0}$ be the family of tuples of elements of $A \cup\{0,1\}$. Let

$$
C^{*}:=\left\{\beta \in C| | \beta \mid \in M^{*}\right\}
$$

where $\left|\left(q_{\psi_{1}}, \ldots, q_{\psi_{m}}\right)\right|=m$, and let

$$
F l e^{*}:=\left\{\phi \in F l e| | \phi \mid \in M^{*}\right\}
$$

The size means here the number of occurence of atoms. We will consider $\tilde{\beta} \in \mathcal{X}_{0}$ simultaneously also as an element of C : the tuple of bits of the characteristic function of $\tilde{\beta}$ (so for such $\tilde{\beta}: \tilde{\beta} \in C^{*} \equiv \beta \in \mathcal{X}^{*}$).

The following claim is established by induction on the logical complexity of B.

Claim 1 Let $B(\beta)$ be a $\Sigma_{0}^{1, b}$-formula and let $\tilde{\beta} \in \mathcal{X}^{*}$.
Then

$$
\left(M^{*}, X^{*}\right) \models B(\tilde{\beta}) \rightarrow \exists \pi \operatorname{Pr} f_{F}(\pi,\langle B\rangle(\bar{q} / \tilde{\beta}))
$$

where \bar{q} are atoms corresponding to β.
This is analogous to Lemma 6.7.
We will construct a set $G \subseteq$ Fle satisfying the following conditions:
(1) $\neg \tilde{\tau} \in G$,
(2) for all $\psi \in$ Fle* exactly one of $\psi, \neg \psi$ is in G,
(3) whenever $\pi \in \mathcal{X}_{0}$ is an $E F$-proof of ψ from the assumptions $\psi_{1}, \ldots, \psi_{r}$,$|\pi| \in M^{*}$ and all $\psi_{i} \in G$, then also $\psi \in G$,
(4) if $\psi \in G, \psi \in F l e^{*}$ and $\psi=\bigvee_{1 \leq i \leq r} \psi_{i}$ then $\psi_{j} \in G$ for some $1 \leq j \leq r$,
(5) for any $\Sigma_{0}^{1, b}$-formula $H(\phi, x)$ with the parameters from C^{*} and any $v \in M^{*}$ one of the following three conditions hold:
(a) $\neg\langle H(\phi, 0)\rangle_{v}(\tilde{\delta}) \in G$, all $\tilde{\delta} \in C^{*}$ of length $\leq t(v)$,
(b) $\langle H(\phi, v)\rangle_{v}(\tilde{\delta}) \in G$, for some $\tilde{\delta} \in C^{*}$ of length $\leq t(v)$,
(c) there is $v^{\prime}<v$ such that

$$
\left\langle H\left(\phi, v^{\prime}\right)\right\rangle_{v}(\tilde{\delta}) \in G \text { and } \neg\left\langle H\left(\phi, v^{\prime}+1\right)\right\rangle_{v}(\tilde{\epsilon}) \in G
$$

for some $\tilde{\delta} \in C^{*}$ of length $\leq t(v)$ and for all $\tilde{\epsilon} \in C^{*}$ of length $\leq t(v)$.

The term $t(v)$ bounds implicitly the size of the interval whose subsets can be substituted for ϕ in H for $x \leq v$.

Assume for a moment that we have such set G. Define a structure $\left(M^{*}[G], \mathcal{X}^{*}[G]\right)$ by:

$$
M^{*}[G]:=M^{*} \text { and } \mathcal{X}^{*}[G]:=C^{*} / \sim
$$

where \sim is an equivalence relation defined by:

$$
\tilde{\beta}_{1} \sim \tilde{\beta}_{2} \text { iff }\left\langle\beta_{1}=\beta_{2}\right\rangle_{u}\left(\tilde{\beta}_{1}, \tilde{\beta}_{2}\right) \in G
$$

(u the maximum of the lengths of $\tilde{\beta}_{1}, \tilde{\beta}_{2}$). Note that $\left(M^{*}[G], \mathcal{X}^{*}[G]\right)$ is an extension of $\left(M^{*}, \mathcal{X}^{*}\right)$ and hence of (M, \mathcal{X}) too.

Claim 2 Let $B(\beta)$ be any $\Sigma_{0}^{1, b}$-formula with parameters from C^{*} and $\tilde{\beta} \in C^{*}$. Then we have for all sufficiently large u :

$$
\left(M^{*}[G], \mathcal{X}^{*}[G]\right) \models B(\tilde{\beta} / \sim) \text { iff }\langle B\rangle_{u}(\tilde{\beta}) \in G
$$

In particular, $\left(M^{*}[G], \mathcal{X}^{*}[G]\right)$ is a $\Sigma_{0}^{1, b}$-elementary extension of (M, \mathcal{X}).
The claim follows from conditions (2)-(4) posed on G. For example, that all $\Sigma_{0}^{1, b}$-sentences true in (M, \mathcal{X}) hold also in $\left(M^{*}[G], \mathcal{X}^{*}[G]\right)$ follows from condition (3) and Claim 1.

Claim 3 Structure $\left(M^{*}[G], \mathcal{X}^{*}[G]\right)$ is a model of V_{1}^{1}.
Condition (5) posed on G guarantees that the induction for every $\Sigma_{1}^{1, b}{ }_{-}$ formula $\exists \phi H(\phi, x)$ holds up to every $v \in M^{*}[G]$. The other axioms hold in $\left(M^{*}[G], \mathcal{X}^{*}[G]\right)$ obviously. In particular, the $\Sigma_{0}^{1, b}-C A$ is guaranteed by Claim 2.

Claim 4 There is $\tilde{\alpha} \in \mathcal{X}^{*}[G]$ such that

$$
\left(M^{*}[G], \mathcal{X}^{*}[G]\right) \models(\tilde{\alpha} \models \neg \tilde{\tau}) .
$$

By condition (1) posed on G and Claim 2, $\tilde{\alpha}$ is a satisfying assignment for $\neg \tilde{\tau}$ in $\left(M^{*}[G], \mathcal{X}^{*}[G]\right)$, where

$$
\tilde{\alpha}:=\bar{p}^{\alpha} / \sim .
$$

It remains to construct the set G satisfying the above five requirements. We shall use two simple technical properties of system $E F$.

Form a set $T \subseteq$ Fle consisting of all formulas:
(i) $q_{p_{i}} \equiv p_{i}$, whenever $p_{i} \in\{\bar{p}\}$,
(ii) $q_{\neg \psi} \equiv\left(\neg q_{\psi}\right)$, whenever $\psi \in F l e$,
(iii) $q_{\psi_{1} \circ \psi_{2}} \equiv\left(q_{\psi_{1}} \circ q_{\psi_{2}}\right)$, whenever $\psi_{1}, \psi_{2} \in$ Fle and $\circ=\vee, \wedge$.

A set of formulas $S \subseteq$ Fle is said to ℓ-entail formula ψ iff there is an F-proof of size at most ℓ of ψ with the axioms from $S \cup T$ (the size means here the number of occurences of atoms). A set S is called ℓ-consistent iff S does not ℓ-entail 0 .

Claim 5 Let $S \subseteq$ Fle be a $\Delta_{1}^{1 . b}$-definable in $\left(M_{0}, \mathcal{X}_{0}\right)$, and assume that ψ has an EF-proof from S of size ℓ in $\left(M_{0}, \mathcal{X}_{0}\right)$.

Then S also $O(\ell)^{2}$-entails ψ in $\left(M_{0}, \mathcal{X}_{0}\right)$.
This follows as every extension axiom of size t in the $E F$-proof can be proved (after suitably renaming the extension atoms) from T by an F-proof of size $O\left(t^{2}\right)$.

Claim 6 Let $S \subseteq$ Fle be a $\Delta_{1}^{1, b}$ - definable in $\left(M_{0}, \mathcal{X}_{0}\right)$ and assume that S is ℓ-consistent in $\left(M_{0}, \mathcal{X}_{0}\right)$, where ℓ is non-standard.

Then for every formula ψ of size at most $\ell^{2^{-1}}$ one of the sets $S \cup\{\psi\}$ or $S \cup\{\neg \psi\}$ is $\ell^{2^{-1}}$-consistent.

Also, for every disjunction $\bigvee_{i \leq r} \psi_{i} \in$ Fle of size at most $\ell^{3^{-1}}$ one of sets $S \cup\left\{\bigwedge_{i \leq r} \neg \psi_{i}\right\}$ or $S \cup\left\{\bigvee_{i \leq r} \psi_{i}\right\} \cup\left\{\psi_{j}\right\}$, some $j \leq r$, is $\ell^{3^{-1}}$-consistent.

The first part is obvious. For the second part; assuming that all $r+2$ sets above are ℓ^{3-1}-inconsistent would allow us to construct in an obvious way a proof of 0 from S of size at most

$$
(r+2) \ell^{3-1}+O\left(\left|\bigvee_{i \leq r} \psi_{i}\right|^{2}\right) \leq \ell
$$

This is a contradiction.
Claim 7 Let $S \subseteq$ Fle be a $\Delta_{1}^{1, b}$ - definable family of formulas in $\left(M_{0}, \mathcal{X}_{0}\right)$, and assume that S is ℓ-consistent in $\left(M_{0}, \mathcal{X}_{0}\right)$, where ℓ is non-standard.

Let $H(\phi, x)$ be a $\Sigma_{0}^{1, b}$-formula with parameters from C^{*} and M^{*}. Let $v \in M^{*}$, and assume that a term $t(v)$ bounds the size of the interval whose subsets can be substituted for ϕ in H for all $x<v$.

Then one of the following sets is $\ell^{3^{-1}}$-consistent:
(i) $S \cup\left\{\neg\langle H(\phi, 0)\rangle_{v}(\tilde{\delta})\left|\tilde{\delta} \in C^{*},|\tilde{\delta}| \leq t(v)\right\}\right.$,
(ii) $S \cup\left\{\langle H(\phi, v)\rangle_{v}(\tilde{\delta})\right\}$, some $\tilde{\delta} \in C^{*}$ of length $\leq t(v)$,
(iii) $S \cup\left\{\left\langle H\left(\phi, v^{\prime}\right)_{v}(\tilde{\delta})\right\} \cup\left\{\neg\left\langle H\left(\phi, v^{\prime}+1\right)_{v}(\tilde{\rho})\right| \tilde{\rho} \in C^{*},|\tilde{\rho}| \leq t(v)\right\}\right.$, some $\tilde{\delta} \in C^{*}$ of size $\leq t(v)$ and $v^{\prime}<v$.

To prove Claim 7 take a formula $D(u)$:

$$
\forall w \leq u \exists \bar{r}_{w} \in C ; S \ell^{3^{-1}}-\text { entails formula }\langle H(\phi, w)\rangle\left(\bar{r}_{w}\right) .
$$

The formula $D(u)$ is a $\Sigma_{1}^{1, b}$-formula and witnesses \bar{r}_{w} are actually from C^{*} (using the bound $\left|\bar{r}_{w}\right| \leq t(v)$).

As $\left(M_{0}, \mathcal{X}_{0}\right) \models V_{1}^{1}$ one of the two cases must occur:
(a) $D(v)$ holds in $\left(M_{0}, \mathcal{X}_{0}\right)$
(b) there exists minimal $u \leq v$ for which $D(u)$ fails in (M_{0}, \mathcal{X}_{0}).

In case (a) define

$$
S^{\prime}:=S \cup\left\{\langle H(\phi, v)\rangle\left(\bar{r}_{v}\right)\right\},
$$

where \bar{r}_{v} is a witness to the existential quantifier of $D(v)$. The set S^{\prime} is $\ell / 2$-consistent as otherwise one could $\ell / 2+\ell^{3^{-1}} \leq \ell$-entail 0 from S, which would be a contradiction.

In case (b) let $u \leq v$ be the first u such that $D(u)$ fails. Take a set

$$
S^{\prime}:=S \cup\left\{\langle H(\phi, u-1)\rangle\left(\bar{r}_{u-1}\right)\right\} \cup\{\neg\langle H(\phi, u)\rangle(\bar{q})|\bar{q} \in C,|\bar{q}| \leq t(v)\}
$$

for $u \geq 1$ (and again \bar{r}_{u-1} the relevant witness) or

$$
S^{\prime}:=S \cup\{\neg\langle H(\phi, 0)\rangle(\bar{q})|\bar{q} \in C,|\bar{q}| \leq t(v)\}
$$

for $u=0$.

We claim that S^{\prime} is $\ell^{3^{-1}}$-consistent. Assume otherwise and w.l.o.g. let $u \geq 1$. The set $S+\langle H(\phi, u-1)\rangle\left(\bar{r}_{u-1}\right)$ then $O\left(\ell^{2 / 3}\right)$-entails some disjunction of the form

$$
\bigvee_{\bar{q} \in I}\langle H(\phi, u)\rangle(\bar{q})
$$

where $I \subseteq C^{*}$. But then $\langle H(\phi, u)\rangle(\bar{r})$ can be also $O\left(\ell^{2 / 3}\right)$-entailed from $S+\langle H(\phi, u-1)\rangle\left(\bar{r}_{u-1}\right)$, where \bar{r} is a new tuple defined by extension atoms using a case distinction considering which disjunct in the disjunction is true (cf. Claim 5). Note that $|\bar{r}| \leq t(v)$. This contradicts the assumption that $D(u)$ fails, hence S^{\prime} is $\ell^{3^{-1}}$-consistent.

Define now the family \mathcal{P} of all $H \subseteq$ Fle which are $\Delta_{1}^{1, b}$-definable in $\left(M_{0}, \mathcal{X}_{0}\right)$ and which are ℓ-consistent for some $\ell \in\left(M_{0} \backslash M^{*}\right)$; such ℓ exists by our assumption about $\left(M_{0}, \mathcal{X}_{0}\right)$. Note that $\{\neg \tilde{\tau}\} \in \mathcal{P}$.

Family \mathcal{P} is partially ordered by the inclusion relation \subseteq. Class $\mathcal{Q} \subseteq \mathcal{P}$ is dense if

$$
\forall H \in \mathcal{P} \exists H^{\prime} \in \mathcal{Q} ; H \subseteq H^{\prime}
$$

Class \mathcal{Q} is definable if there is a formula $\Psi(X)$ in the language of V_{1}^{1} augmented by new metavariable X such that:

$$
\mathcal{Q}=\{H \in \mathcal{P} \mid(M, \mathcal{X}, H) \models \Psi(H)\}
$$

Class $\mathcal{G} \subseteq \mathcal{P}$ is generic if it satisfies the following conditions:
(i) if $H \in \mathcal{G}$ and $H^{\prime} \subseteq H$ then $H^{\prime} \in \mathcal{G}$,
(ii) \mathcal{G} intersects every dense, definable subclass of \mathcal{P}.

Claim 8 Let $\mathcal{G} \subseteq \mathcal{P}$ be a generic class and assume that $\{\neg \tilde{\tau}\} \in \mathcal{G}$. Put

$$
G:=\bigcup \mathcal{G}
$$

Then G satisfies conditions (1) - (5) above and hence $\left(M^{*}[G], \mathcal{X}^{*}[G]\right)$ is a model of V_{1}^{1} in which the formula $\neg \tilde{\tau}$ is satisfiable.

As model $\left(M_{0}, \mathcal{X}_{0}\right)$ is countable there are only countably many dense definable subclasses of \mathcal{P}, hence by the standard argument a generic class \mathcal{G} exists. By Claims 5, 6,7 the classes of those $K \in \mathcal{P}$ which fullfil condition (2) for $\psi \in F l e^{*}$, i.e.:

$$
\psi \in K \text { or } \neg \psi \in K
$$

are clearly definable and dense, as well as are the classes of $K \in \mathcal{P}$ which fullfil condition (4) for $\psi=\bigvee_{i \leq r} \psi_{i} \in F l e^{*}$, i.e.:

$$
\bigwedge_{i \leq r} \neg \psi_{i} \in K \text { or }\left\{\psi, \psi_{j}\right\} \subseteq K, \text { some } j \leq r
$$

and the classes of $K \in \mathcal{P}$ which fullfil condition (5) for $K(\phi, x)$ and $v \in M^{*}$, i.e.:

$$
\begin{aligned}
& \left\{\neg\langle K(\phi, 0)\rangle_{v}(\tilde{\delta})|\tilde{\delta} \in C,|\tilde{\delta}| \leq t(v)\} \subseteq K,\right. \text { or: } \\
& \left\{\langle K(\phi, v)\rangle_{v}(\tilde{\delta})\right\} \subseteq K, \text { some } \tilde{\delta} \in C \text { of length } \leq t(v), \text { or: } \\
& \left\{\left\langle K\left(\phi, v^{\prime}\right)_{v}(\tilde{\delta})\right\} \cup\left\{\neg\left\langle K\left(\phi, v^{\prime}+1\right)_{v}(\tilde{\rho})\right| \tilde{\rho} \in C,|\tilde{\rho}| \leq t(v)\right\} \subseteq K,\right. \text { some } \\
& \tilde{\delta} \in C \text { of length } \leq t(v) \text { and } v^{\prime}<v
\end{aligned}
$$

Hence any G defined from a generic \mathcal{G} satisfies conditions (1) - (5).
This concludes the description of the forcing construction of the model

$$
\left(M^{\prime}, \mathcal{X}^{\prime}\right)=\left(M^{*}[G], X^{*}[G]\right)
$$

Q.E.D.

We leave it as an exercise for the reader to give proofs for the preceeding two theorems modifying the proofs of Theorems 5.1 and 5.2 and by working with V_{1}^{0} (resp. V_{1}^{1}) plus the $\Sigma_{0}^{1, b}$ - diagram of the original model.

8 Finitistic consistency statements and optimal proof systems

Definition 8.1 (a) Let P be a propositional proof system. Function $c_{P}(\tau)$: $T A U T \rightarrow \mathbf{N}$ is defined by:

$$
c_{P}(\tau):=\min \{|\pi| \mid \pi \text { is an } P \text {-proof of } \tau\}
$$

(b) Let P, Q be two propositional proof systems. Then system P is better than $Q, P \geq Q$ in symbols, iff there is a polynomial $p(x)$ such that:

$$
\forall \tau \in T A U T, c_{P}(\tau) \leq p\left(c_{Q}(\tau)\right)
$$

(c) Propositional proof system P is optimal iff it is the greatest element of the quasi order \geq.

Observe that P is better than Q iff Q has a polynomial speed-up over P, and that $P \geq_{p} Q$ implies $P \geq Q$ but not necessarily vice versa.

Problem Does there exist an optimal propositional proof system?
Any proof system P which proves all tautologies in polynomial size is optimal; thus $N P=$ coNP implies the affirmative answer to the problem. It is unknown however, whether the converse implication is also true.

A non-trivial information about the problem is provided by Corollary 6.11: relative to $V_{1}^{1} E F$ is an optimal proof system, i.e. it is a \geq-greatest proof system among those whose soundness is provable in the theory. We use the idea of the proof of these results to obtain a particular representation of a general proof system.

Denote by $\left\langle R e f_{P}\right\rangle$ teh sets of all formulas $\left\langle R e f_{P}\right\rangle_{n}, n<\omega$.
Theorem 8.2 Let P be a propositional proof system. Let

$$
E F+\left\langle R e f_{P}\right\rangle
$$

be the proof system obtained from $E F$ by adding tautologies from $\left\langle R e f_{P}\right\rangle$ as extra axioms.

Then:

$$
E F+\left\langle R e f_{P}\right\rangle \geq_{p} P
$$

In particular:

$$
E F+\left\langle\operatorname{Re} f_{P}\right\rangle \geq P
$$

Proof

Let π be a P - proof of τ. By Lemmas 6.9 and 6.10 there is a polynomial size $E F$-proof η_{1} of:

$$
\langle\operatorname{Pr} f\rangle_{m}(\tilde{\pi}, \tilde{\tau}) \wedge\langle F l a(v)\rangle_{m}(\tilde{\tau})
$$

where $m=\max (|\pi|,|\tau|)$. From this formula (and η_{1}) and the new axiom

$$
\left\langle R e f_{P}\right\rangle_{m}
$$

we get by the substitution a polynomial size $\left(E F+\left\langle R e f_{P}\right\rangle\right)$ - proof η_{2} of:

$$
\langle T A U T(v)\rangle_{m}(\tilde{\tau})
$$

There is polynomial size $E F$ - proof η_{3} of the implication (analogously to Lemma 6.7):

$$
\langle T A U T(v)\rangle_{m}(\tilde{\tau}) \rightarrow \tau
$$

From η_{2} and η_{3} one obtains by modus ponens a polynomial size $(E F+$ $\left.\left\langle R e f_{P}\right\rangle\right)$ - proof η_{4} of τ.

Note that η_{1} and η_{3} are actually constructible by a polynomial time algorithm and so this gives a p-simulation of P by $\left(E F+\left\langle R e f_{P}\right\rangle\right)$.
Q.E.D.

Note that a natural P (like the systems $S F$ or G, and other) is, in fact, p-equivalent to $E F+\left\langle R e f_{P}\right\rangle$. This is because such P admits a polynomial time construction of proofs of the formulas $\left\langle R e f_{P}\right\rangle_{n}$.

Now we link the problem of the existence of an optimal proof system to a question from logic. The question deals with the lengths of first order proofs of the so called finitistic consistency statements. Let T be a consistent theory extending V_{1}^{1} and with a polynomial time set of axioms. Then there is a $\Delta_{1}^{1, b}$ - formula $\operatorname{Pr} f_{T}(\pi, \alpha)$ expressing that " π is a T-proof of formula α ". Consider a formula $\operatorname{Con}_{T}(x)$ naturally expressing that no T-proof of length $\leq x$ is a proof of $0=1$:

$$
\forall \pi^{x} \neg \operatorname{Pr} f_{P}\left(\pi^{x},\lceil 0=1\rceil\right)
$$

It is a fundamental problem to estimate the length of the shortest proof of the sentence $\operatorname{Con}_{T}(\tilde{n})$ in a theory S. The term \tilde{n} is the dyiadic numeral for n defined inductively by: $\tilde{0}:=0, \tilde{1}:=1, \tilde{2}:=(1+1), \tilde{2 k}:=\tilde{2} \cdot \tilde{k}$, and $2 k+1:=\tilde{2 k}+1$. The length of the numeral \tilde{n} is $O(\log n)$ hence the only apriori lower bound to such proofs is the length of the formula, i.e. $\Omega(\log n)$. The next theorem estimates sharply the length of the shortest S - proofs in the case when $S=T$.

Theorem 8.3 (H. Friedman, P. Pudlák) Let $T \supseteq V_{1}^{1}$ be a consistent theory with a polynomial time set of axioms and let $\operatorname{Con}_{T}(x)$ be the formula defined above.

Then there are constants $\epsilon>0$ and $c \geq 1$ such that for all n the minimal size m_{n} of a T-proof of the sentence $\operatorname{Con}_{T}(\tilde{n})$ satisfies:

$$
n^{\epsilon} \leq m_{n} \leq n^{c}
$$

Note that $\left|\operatorname{Con}_{T}(\tilde{n})\right| \ll n^{\epsilon}$ and hence the lower bound is non-trivial. The upper bound is also non-trivial. To see this take, for example, $S=V_{1}^{1}$ and $T=Z F C$. There does not seem to be other way how to prove $\operatorname{Con}_{T}(\tilde{n})$ in S then to list (in S) all T-proofs of length $\leq n$ and check that none of them is a proof of $0=1$. This gives however, only the estimate $2^{O(n)}$.

The question whether there is S admitting size $n^{O(1)}$ proofs of $\operatorname{Con}_{T}(\tilde{n})$ for all T can be linked to the problem posed above.

Theorem 8.4 The following two propositions are equivalent:

1. there exists an optimal propositional proof system
2. there exists a consistent theory $S \supseteq S_{2}^{1}$ with a polynomial-time set of axioms such that for every consistent theory $T \supseteq S_{2}^{1}$ with a polynomialtime set of axioms there is polynomial $p(x)$ such that for each n the sentence $\mathrm{Con}_{T}(\tilde{n})$ has S-proof of size $\leq p(n)$.

Proof

Assume that P is an optimal proof system. Define the theory S_{P} by:

$$
S_{P}:=S_{2}^{1}+\operatorname{Re} f_{P}
$$

Now let $T \supseteq V_{1}^{1}$ be a consistent theory with a polynomial-time set of axioms. Define the formula $A\left(\beta^{x}\right)$:

$$
A\left(\beta^{x}\right):=\operatorname{Con}_{T}(x) .
$$

Then A is a $\Pi_{1}^{1, b}$ - formula. Consider a proof system Q :

$$
Q:=P+\left\{\langle A\rangle_{m} \mid m<\omega\right\} .
$$

The formulas $\langle A\rangle_{m}$ are tautologies as T is consistent, a nd form a p-time set, so Q is indeed a proof system.

Since P is optimal, there is a polynomial $q(x)$ such that each $\langle A\rangle_{m}$ has P-proof of size $\leq q(m)$. Hence the theory S_{P} admits proofs of

$$
T A U T\left(\langle A\rangle_{m}\right)
$$

of size $m^{O(1)}$ and also size $m^{O(1)}$ proofs of

$$
A(\tilde{m})
$$

Consequently $\operatorname{Con}_{T}(\tilde{m})$ has S_{P} - proof of size $m^{O(1)}$. This proves that the first statement implies the second.

Now let S be a theory satisfying the second statement. Define the propositional proof system P_{S} by:

$$
\left.\pi: P_{S} \vdash \tau\right) \text { iff } \pi: S \vdash\lceil T A U T(\tilde{\tau})\rceil
$$

That is, a P_{S}-proof of a formula is an S-proof of the statement that the formula is a tautology.

Let Q be an arbitrary propositional proof system. We know by earlier theorems that Q is p-simulated by the system $E F+\left\langle R e f_{Q}\right\rangle$. As $S \supseteq V_{1}^{1}$, we also know that $P_{S} p$-simulates $E F$. It is thus sufficient to construct polynomial size P_{S}-proofs for the tautologies:

$$
\left\langle R e f_{Q}\right\rangle_{m}
$$

Consider the theory T_{Q} :

$$
T_{Q}:=V_{1}^{1}+R e f_{Q}
$$

By the hypothesis there are polynomial size S-proofs of:

$$
\operatorname{Con}_{T_{Q}}(\tilde{n}) .
$$

Assume that π is the size $m=|\pi| Q$-proof of τ. As \neg Taut $\in \Sigma_{1}^{1, b}$, there is $k<\omega$ such that the implication:

$$
\neg T A U T(\tilde{\tau}) \rightarrow \exists \delta^{m^{k}} \wedge \operatorname{Pr} f_{S}(\delta,\lceil\neg T A U T(\tilde{\tau})\rceil)
$$

is provable in V_{1}^{1} and hence also in S (this is analogous to Lemma 6.7).
For the same reason there is a size $\leq m^{k} T_{Q}$-proof of $\operatorname{Pr} f_{Q}(\tilde{\pi}, \tilde{\tau})$, and by the axioms $\operatorname{Re} f_{Q} T_{Q}$ also admits size $\leq m^{k}$ proofs of:

$$
T A U T(\tilde{\tau})
$$

and hence there are size $m^{O(1)} S$-proofs of

$$
\exists \delta^{m^{O(1)}}, \operatorname{Pr} f_{T_{Q}}(\delta,\lceil T A U T(\tilde{\tau})\rceil)
$$

This formula and the last but one entails that there is a size $m^{O(1)} S$-proof of:

$$
\neg T A U T(\tilde{\tau}) \rightarrow \neg \operatorname{Con}_{T_{Q}}\left(\tilde{m^{d}}\right),
$$

some fixed $d<\omega$.
By the hypothesis there is a constant $t<\omega$ such that all $\operatorname{Con}_{T_{Q}}(\tilde{n})$ have size $\leq n^{t} S$-proofs, hence there are size $\leq m^{d t} S$-proofs of $T A U T(\tilde{\tau})$.

By the definition of P_{S} this proof is also a P_{S}-proof of τ of size $\leq m^{d t}$.

One may speculate about a construction of a theory T for which given S does not admit size $n^{O(1)}$ proofs of $\operatorname{Con}_{T}(\tilde{n})$. Possible candidates are $T:=S+C o n_{S}$ or a theory formed from S by adding to the language a truth predicate for formulas in the language of S, Tarski's conditions on this predicate and the statement (using the new predicate) that all axioms of S are true (such theory is called "jump" of S by Buss). However, if for S one can find T without short S-proofs of $\operatorname{Con}_{T}(\tilde{n})$ it follows that S does not prove that $N P=c o N P$. This is because the formula A considered in the proof above is $\Pi_{1}^{1, b}$ and $N P=c o N P$ would allow to express it also as a $\Sigma_{1}^{1, b}-$ formula and so its instances (and consequently the instances of $\operatorname{Con}_{T}(x)$) would have polynomial size proofs by (an analogy of) Lemma 6.7.

The next theorem links the problem of the existence of an optimal proof system to a problem in structural complexity theory. We will not prove it.

Theorem 8.5 The following two propositions are equivalent:

1. there exists an optimal propositional proof system
2. for every coNP - set X there exists a non-deterministic Turing machine M accepting exactly X and such that for every polynomial-time, sparse $Y \subseteq X$ there is a polynomial $p(x)$ such that every $u \in Y$ is accepted by M in time $\leq p(|u|)$.

9 Hard tautologies

The first definition formalizes a notion of hard tautologies.
Definition 9.1 A sequence $\left\{\tau_{n}\right\}_{n<\omega}$ of tautologies is hard for a propositional proof system P iff the following three conditions are fullfiled:

1. there exists a polynomial time machine computing from $1^{(n)}$ the formula τ_{n}
2. $n \leq\left|\tau_{n}\right|$, for all n
3. there is no polynomial $p(x)$ for which

$$
c_{P}\left(\tau_{n}\right) \leq p\left(\left|\tau_{n}\right|\right)
$$

would hold for all n

Note that $\left|\tau_{n}\right|=n^{O(1)}$. Conditions 1. and 2. imply that set $\left\{\tau_{n} \mid n<\omega\right\}$ is polynomial-time recognizable and so we may add it to P as extra axioms to form new proof system $Q:=P+\left\{\tau_{n} \mid n<\omega\right\}$. Adding extra axioms to a general proof system precisely means that π is a Q-proof of τ iff it is a P-proof of $\sigma \rightarrow \tau$, where σ is a conjunction of substitution instances of new axioms. P is then not better than Q. Hence the task to construct a hard sequence $\left\{\tau_{n}\right\}_{n<\omega}$ for P is the same as the task to find proof system Q such that $P \nsupseteq Q$ and its axiomatization over P by a polynomial-time set of tautologies.

Assume $P \geq E F$. Having Q for which $P \nsupseteq Q$ we may take the proof system $Q^{\prime}:=E F+\left\langle\operatorname{Re} f_{Q}\right\rangle$. Then $Q^{\prime} \geq Q$, hence $P \nsupseteq Q^{\prime}$ and the sequence $\left.\left\langle R e f_{Q}\right\rangle_{n}\right\}_{n<\omega}$ is hard for P. This gives the following simple but useful statement.

Theorem 9.2 Let P be a proof system and assume that $P \geq E F$. The following three statements are equivalent:

1. there exists a sequence of tautologies $\left\{\tau_{n}\right\}_{n<\omega}$ hard for P
2. there exists a proof system Q such that P is not better than $Q: P \nsupseteq Q$
3. there exists a proof system Q such that the sequence $\left.\left\langle\operatorname{Re} f_{Q}\right\rangle_{n}\right\}_{n<\omega}$ is hard for P

The quasiordering of proof systems induces a reducibility among sequences $\left\{\tau_{n}\right\}_{n<\omega},\left\{\sigma_{n}\right\}_{n<\omega}$ over a given system P :

$$
\left\{\tau_{n}\right\}_{n<\omega} \geq_{P}\left\{\sigma_{n}\right\}_{n<\omega} \text { iff } P+\left\{\tau_{n} \mid n<\omega\right\} \geq_{P} P+\left\{\sigma_{n} \mid n<\omega\right\}
$$

i.e. formulas σ_{n} can be deduced by polynomial size P - proofs from substitution instances of some τ_{m} 's.

10 Further topics

We have discussed a relations of cryptographic conjectures to feasible interpolation and to the automatizability of proof systems. See [7] and [11] (both available from my web page).

References

[1] Ajtai, M. (1988) The complexity of the pigeonhole principle, in: Proc. IEEE 29 ${ }^{\text {th }}$ Annual Symp. on Foundation of Computer Science, pp. 346355.
[2] Cook, S A. (1971) The complexity of theorem proving procedures, in: Proc. $3^{\text {rd }}$ Annual ACM Symp. on Theory of Computing, pp. 151-158. ACM Press.
[3] _ (1975) Feasibly constructive proofs and the propositional calculus, in: Proc. $7^{\text {th }}$ Annual ACM Symp. on Theory of Computing, pp. 83-97. ACM Press.
[4] Cook, S. A., and Reckhow, A. R. (1979) The relative efficiency of propositional proof systems, J. Symbolic Logic, 44(1):36-50.
[5] Krajíček, J. (1995) Bounded arithmetic, propositional logic, and complexity theory, Encyclopedia of Mathematics and Its Applications, Vol. 60, Cambridge University Press.
[6] J. Krajíček, On Frege and Extended Frege Proof Systems. in: "Feasible Mathematics II", eds. P. Clote and J. Remmel, Birkhauser, (1995), pp. 284-319.
[7] Krajíček, J. (1997) Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic, J. Symbolic Logic, 62(2), pp. 457-486.
[8] Krajíček, J. (2003) Propositional proof complexity I., lecture notes.
[9] Krajíček, J., and Pudlák, P. (1989a) Propositional proof systems, the consistency of first order theories and the complexity of computations, J. Symbolic Logic, 54(3):1063-1079
[10] Krajíček, J., and Pudlák, P. (1990a) Quantified propositional calculi and fragments of bounded arithmetic, Zeitschrift f. Mathematikal Logik u. Grundlagen d. Mathematik, 36:29-46.
[11] Krajíček, J., and Pudlák, P.: Some consequences of cryptographical conjectures for S_{2}^{1} and EF", Information and Computation, Vol. 140 (1), (January 10, 1998), pp.82-94.
[12] Krajíček, J.,Pudlák, P. and Woods, A. (1991) Exponential lower bound to the size of bounded depth Frege proofs of the pigeonhole principle, submitted.
[13] Paris, J., and Wilkie, A. J., (1985) Counting problems in bounded arithmetic, in: Methods in Math. Logic, LNM 1130, pp.317-340. Springer.
[14] Pitassi, T., Beame, P., and Impagliazzo, R. (1993) Exponential lower bounds for the pigeonhole principle, Computational complexity, 3, pp.97-308.

