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This is a draft of a first part of lecture notes on Propositional proof com-
plexity. It is roughly the content of my course at the Charles University in
Spring’03. This first part is almost complete and there will be only a few
additions. Most notably: infinitary criteria for lower bounds in tree-like and
general resolution, on Ramsey theorem in resolution, the link between mod-
ular counting principles and algebraic proof systems, the separation between
depth d and d + 1 Frege systems, and the definition and few facts about the
constant depth Frege systems with modular counting gates. There may be
also missing references.

Next part will roughly correspond to a course I plan for Fall’04; it should
include: links with bounded arithmetic, finitistic consistency statements and
p-simulations, a construction of hard tautologies, N P-pairs and links to
cryptography, automatizability of proof systems, some upper bounds (that
can be proved via bounded arithmetic much more easily than directly), and
a part on the current project of 7-formulas based on pseudo-random gener-
ators.

The eventual lecture notes will include also some topics not covered in
either of the two courses. In particular, this should include auxiliary proof
systems like algebraic proof systems (Nullstellensatz, polynomial calculus, a
proof system based on a finitely presented group, etc.) or geometric proofs
systems (cutting planes and their extensions to Lovasz-Schrijver system and
to the 1st order theory of discretely ordered rings) or links with model theory
(e.g. the notion of covering classes and Euler structures), and perhaps some
other less familiar topics.

Some reference in the current text are just ?7; they refer to future parts.
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Chapter 1

Basic concepts and
motivations

Propositional proof complexity studies the complexity of proving that a
propositional formula is a tautology. For a definiteness we fix set TAUT
of tautologies in the DeMorgan language with constants 0, 1 (the truth
values FALSE and TRUE) and propositional connectives: unary — (the
negation), and binary A and V (the conjunction and the disjunction). (The
language also contains various auxiliary symbols like brackets or commas.)
The formulas are built, using the connectives, from the constants and from
atoms po,p1,--.,Pns-- -

We consider all finite objects encoded in a finite alphabet and , in fact, in
the binary alphabet {0,1}. In particular, we consider TAUT as a subset of
{0,1}* and so the length of a formula ¢ is denoted |¢|. A minor point to note
(and then ignore) is that the length of an atom p,, is not 1 but |p,| ~ logn,
as the index n has to be encoded in binary. But we shall ignore this as the
logarithmic factor is irrelevant in our computations.

Consider any one of the usual text-book examples of propositional calculi
working with DeMorgan formulas that is based on a finite number of axiom
schemes (like AV —A, or similar) and a finite number of inference rules (like
the modus ponens A,—~A V B/B, or similar)!. Any such system is called a
Frege system and denoted F'. Two properties the system has are:

1. A formula 7 has a proof in F iff 7 € TAUT (the if-direction is the
completeness and the only-if-direction is the soundness of F).

!What the qualification similar means will be explained in Section 3.1.
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2. The relation w is an F-proof of 7 is a p-time decidable relation of w
and 7.

These two properties lead to the following abstract definition of a proof
system.

Definition 1.0.1 (Cook-Reckhow[14]) A propositional proof system ( a
pps, shortly) is any p-time computable function P : {0,1}* — {0,1}* such
that Rng(P) = TAUT.

Any w € {0,1}* such that P(w) = 7 is called a P-proof of 7.

A pps P is polynomially bounded if there exists a polynomial p(x) € N[z]
such that any 7 € TAUT has a P-proof w of size |w| < p(|7]).

It is easy to see that F' can be seen as a pps in this abstract setting too.
Just define a function Pr by:

7 if w is an F-proof of 7
1 otherwise

Any of the usual logic systems for propositional logic can be similarly rep-
resented, be it the sequent calculus, the natural deduction system, the first-
order predicate logic or even first-order theories. For example, a less usual

pps is:

7 if w is a proof in set theory ZFC of the formalization
Prro(w) = of the statement 7 € TAUT
1 otherwise

based on set theory.
The following is the main theorem showing that proof complexity relates
to computational complexity.

Theorem 1.0.2 (Cook-Reckhow[14]) There ezists a polynomially bounded
pps iff NP = coN'P.

Proof :
If P is a p-bounded pps with the polynomial bound p(z) then

Fu(Jw| < p(|2])); P(w) = =

is an N'P-definition of TAUT, a coNP-complete set.
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On the other hand, if Ju(|u| < ¢(|z])); A(u, z) is such a definition (with
A a p-time relation) then the function

7 ifw=(u,z) and |u| < ¢(|7]) A A(u, ) holds
Plw) = { 1 otherwise

is a polynomially bounded pps.
q.e.d.

Hence, if we believe that NP # coNP, no pps is p-bounded. A large
part of proof complexity activity is centered around proving that particular
pps’ are not p-bounded (or even subexponentially bounded). The conjecture
NP # coNP itself would be unlikely proved in this incremental manner as a
way to prove a universal statement is rarely proving all its instances. But we
may hope to uncover hidden ”computional hardness assumptions” in these
lower bounds and thus to reduce the conjecture to some intuitively more
rudimentary one. (More on this in the introductions to [29, 40] or in [30].)

However, there is another less illusory motivation for proving lower bounds
for concrete pps’ that I shall explain now.

Counsider a first-order sentence in, say, the language of directed graphs:
=, a binary relation R(z,y) and a constant which we shall denote 0. As an
example? I take the pigeonhole principle PHP:

axvyu _'R($7y) \% [El.’L‘l,:Eg,y; z1 7é T2 N\ R(:Elay) A R(x27y)] \%

3z, y1,y2; 91 # y2 A R(z,y1) A R(w,y2)] V Jz; R(z,0) .

Assume that R(z,y), a relation on some universe M, does not satisfy any
of the first three disjuncts. Then it is a graph of an injective function
f:M — M. The last disjunct must then be true, i.e. 0 must be a value. In
other words, PHP says that an injective function is surjective. The principle
is valid for all finite M. For any n > 1 we can translate PHP into a proposi-
tional formula (PHP),, as follows: Replace 3 and V by the disjunction and
the conjunction respectively over all elements of [n], leave the propositional
connectives in place, replace true resp. false atomic sentences ¢ # j by 1
resp. by 0, and translate atomic sentences R(i,j) by new atoms r;;, one for

2This is not a random choice. We shall see that the PHP - in various forms - is the
most important principle studied in proof complexity.
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every pair i,j € [n]. The formula (PHP),, often denoted just PHP,, is

then:
VA-rig v IV rigArigl v
i J i1 <z,

[ \/ rijl/\rijg] V \/TZ'[) .

1,51 <J2 7

Here it is already simplified a bit, deleting disjuncts which are 0 (like (0Ar;; A
ri;)), and deleting also multiple occurences of some disjuncts (like (75, jAr;,;)
and (rj,; Ari ). In fact, PH P, is usually simplified yet more. By allowing
J to range only over [n]\ {0} we get rid of the last disjunct in the formula:

\//.\,—lT‘ij V [\/ \/rilj/\mw-] V [\/ \/ Tijl/\rih] .
i j

11 <12 ] % j1<j2

The truth assignments to ;" correspond to relations on [n]. As PHP is
valid in all structures of size n, PH P, is satisfied by all truth assignments,
i.e. it is a tautology.

In general this translation can be defined for any TI} first order sentence
®. If @ is valid in all finite structures then the resulting sequence of formulas
(®)y, n < w, is a sequence of tautologies.

The second important motivation for studying lengths of proofs in par-
ticular pps’ is the following fact: To any ”usual”? first-order theory 7' it is
possible to attach a pps Pr such that (®),, n < w, have short (usually poly-
nomial or quasipolynomial size) Pp-proofs if T proves ®. Hence a sufficiently
strong lower bound to the length of such proofs implies the unprovability of
® in T. A particular formula ® to which the construction applies can be,
for example, a consistency statement. Consistency statements are the most
important formulas used in a calibration of the strength of theories (for very
good proof-theoretic reasons).

Although we can describe Pr for T being Peano Arithmetic PA or set
theory ZFC, nobody has a clue how to prove any lower bound for such Pr.
However, for some theories of interest in logic (in particular, for the so called
Bounded Arithmetic theories) the situation is much better and we have even
expounential lower bounds for some of the Pr’ arising in these cases.

We conclude the chapter by a natural notion of quasi-ordering of pps’ by
their strength.

3This topic will be studied in Chapter ?? where we define the qualification usual.
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Definition 1.0.3 (Cook-Reckhow[14]) Let P,Q be two pps’. Pps P p-
simulates QQ, P >, Q) in symbols, iff there is a p-time computable function
g:{0,1}* = {0,1}* such that for all w € {0,1}*:

In other words, g translates )-proofs into P-proofs of the same formula.
As g is p-time, the length of the P-proofs is at most polynomially longer
than the length of the original Q-proofs.
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Chapter 2

Resolution

We start our investigation of particular pps’ with the resolution proof system
R. Tt is the simplest pps for which it is not easy to prove a lower bound. The
proof system has been introduced by Blake [9] and made prominent some
thirty years later in its use in automated theorem proving, cf. Davis-Putnam
[18] and Robinson [44].

2.1 Definition, soundness and completeness

Resolution is a proof system, denoted simply R, for proving formulas in a
DNF form. In general, transforming a formula into an equivalent one in the
DNF form may increase its size exponentially. However, we don’t really need
an equivalent formula, we only need that the original formula is a tautology
iff the constructed DNF formula is too. This can be done by a simple trick,
the so called limited extension, that is described in Exercise 2.9.1. A literal
is an atom or its negation. A clause is a disjunction of literals ¢1 V ...V ¥,
possibly empty. As there are no other connectives or formulas in resolution,
the clause is written simply as a set {/1,...,¢t}. The only inference rule in
R is the resolution rule:
Cuipi}  DU{-pi}
CuD

The atom p; is called the resolved atom. There are no restriction on occur-
rences of p; or =p; in C' and D, but it is easy to see that we can assume
w.l.o.g. that neither p; nor —p; occur in C U D.

An assignment satisfies a clause if it makes true at least one literal in the
clause. In particular, the empty clause cannot be satisfied. The resolution

11
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rule is sound: If both clauses in the hypothesis of an inference are satisfied
by an assignment then the assignment satisfies the conclusion too.

Let A be a formula in a DNF form V¢, Bj, with B; = Aj¢ ., E;'- and E;-
literals. Define clauses C; := {={} | j € J;}, for i € I. A resolution proof of
A is a sequence D,..., D; of clauses such that:

1. Each D, is either one of initial clauses Cj;, © € I, or it is derived using
the resolution rule from D,, and D,,, some vy, v2 < u.

2. The end-sequent Dy is the empty clause ().

The proof of A is also often called the refutation of C1, ..., C} as its existence
certifies that C;’ are not simultaneously satisfiable.

Theorem 2.1.1 A DNF formula is provable in R iff it is a tautology.

Proof :

Let A be a DNF formula and let C;’s be the clauses obtained as above.
Any truth assignment satisfying all C;’ would have to satisfy, by the sound-
ness of the resolution rule, all clauses in any resolution refutation of C1, . .., Ck.
In particular, also the end clause - the empty clause - would have to be sat-
isfied. But that is impossible as there is nothing to satisfy in (). This proves
the only-if part of the theorem.

For the opposite direction assume that C = {C1, ..., Cy} is unsatisfiable.
Let p1,...,pn, p1,...,pp be the literals appearing in C. We shall prove
by induction on n that for any such C there is a resolution refutation of C.

If n = 1 there is nothing to prove: C must contain clauses {p; } and {-p; }
and their resolvent is the empty clause. Assume n > 1, and partition C into
four disjoint sets: Cpo U Cp1 U C1g9 U C11, of those clauses which contain no
pn and no —p,, no p, but do contain —p,, do contain p, but not —p, and
contain both p,, —p, respectively.

Now form new set of clauses C’' by

1. Delete all clauses from C;.

2. Replace Cy; U Cig by the set of all clauses that are obtained by the
resolution rule applied to all pairs of clauses C U {—p,} from Cy; and
to 02 U {pn} from Clg.
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Note that the new clauses introduced in the 2nd step do not contain either
Pn O —p,. More importantly, the new set of clauses C’ is also unsatisfiable.
This is because any assignment o' : {p1,...,pp—1} — {0, 1} satisfies either all
clauses C; such that CyU{—p,} € Co1, or all clauses Cy such that CoU{p,} €
Co1 (otherwise we could find C1UC, € C' not satisfied by o). Hence o can be
extended, by giving a suitable value to p,, to a truth assignment « satisfying
C, which is a contradiction.

q.e.d.

Obviously, the proof constructed in the completeness part of the argu-
ment can be sometimes exponentially long (see Exercise 2.9.2). However, this
does not mean that there cannot be some other, much shorter, R-proofs. The
first superpolynomial (and, in fact, exponential) lower bound for R-proofs
has been proved only in 1985 by Haken [20]. We shall give, in the coming
sections, several exponential lower bounds for R.

2.2 Tree-like resolution

An R-proof m = (D,...,Dy) is tree-like iff each D; is used at most once as
a hypothesis of an inference in the proof. If one draws the proof-graph of «,
a directed graph with nodes being the clauses and the edges going from the
conclusion of an inference to the two hypothesis, then the condition tree-like
precisely says that the graph is a tree (a proof-tree).

The proof system allowing exactly tree-like R-proofs is called tree-like
resolution and denoted R*. In this section we give an exponential lower
bound on the size of R*-proofs of PH P,.

With an unsatisfiable set of clauses C = {C1,...,C;} we may associate
the following search problem: Given a truth assignment « to the atoms of C
find C; € C false under o. This search problem can be solved by a branching
program, a simple concept from Boolean complexity.

A branching program is a directed acyclic graph with one in-degree 0
node (the source), and with all other nodes of out-degree either 2 (the inner
nodes) or 0 (the leaves). The inner nodes are labelled by atoms and the
two edges leaving a node are labelled by 0,1 respectively. The leaves are
labelled by elements of a some set X. Any evaluation « of atoms determines
a path through the branching program: The path starts at the source and
in every node labelled by p; uses the edge labelled 1 iff a(p;) = 1. In this
way a branching program computes a function f(p1,...,pn) : {0,1}" = X
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assigning to a € {0,1}" the label of the leaf on the path determined by «a.
The size of a branching program is the number of nodes.

An important special case of branching programs are decision trees,
branching programs that are trees with the edges directed from the root
towards the leaves. We speak about the the height of a decision tree, mean-
ing the maximum length of a path through it.

Now back to our search problem of finding unsatisfied clauses from C.
Assume that we have an R*-refutation 7 of C. We shall use 7 as a decision
tree for solving the search problem as follows. The underlying tree of the
decision tree is the proof-tree of w. The source is the end-clause. A node
corresponding to a clause D derived in 7 by resolving atom p; is labeled by
pi. The edge from the node towards the node corresponding to a hypothesis
of the inference is labelled by 1 (resp. by 0) iff the hypothesis contains —p;
(resp. it contains p;). The leaves of the tree correspond to initial clauses in
m and they are labelled by the initial clauses themselves.

Lemma 2.2.1 Assume 7 is an R*-refutation of C. Then the decision tree
defined from w as above solves the search problem: Given a truth assignment
« find an unsatisfied clauses in C.

In particular, the height of the decision tree is the same as the height of
the proof tree of m.

Proof :
It is enough to observe that the clauses corresponding to the nodes on
the path determined by an « are all falsified by «.

q.e.d.
Now we can prove our first, quite modest, lower bound.

Theorem 2.2.2 Fvery R*-proof of PHP, must have the height at least
n — 1.

Proof :
By Lemma 2.2.1 it suffices to show that any decision tree solving the
search problem attached to PH P, must have the height at least n — 1.
The search problem can be interpreted as follows: Given a truth assign-
ment «, which we may identify with a relation C [n] x ([n] \ {0}), find one
of:



Proof complexity - draft: do not distribute 15
1. A pigeon i € [n] that is mapped (by the function whose graph « is
supposed to be) nowhere, i.e. 7 such that Vj € [n]\ {0}; —a(7, ).

2. Pigeons i1 < 12 and a hole j such that both 7; and ¢ are mapped into
j: O[(i17j) A O[(ig,j).

3. A pigeon ¢ and two holes j; < jo such that ¢ is mapped to both the
holes: «(7, j1) A (%, j2).

Let g :C [n] = [n] \ {0} be a partial 1-to-1 map. The map ¢ determines
a partial truth assignment o by:

L. agy(rij) = 1iff g(¢) is defined and equal to j.

2. ay(rij) = 0 iff g(4) is defined but different from j, or for some k # i,
=7

Q
Ey
\_/ﬁ

3. a(ry;) is undefined in all other cases.

A partial truth assignment forces a clause true iff it assigns 1 to a literal
in the clause, and it forces a clause false iff it assigns 0 to all literals in the
clause. In particular, a partial assignment cannot force a clause false without
giving a value to all literals occurring in it. The following is straightforward.

Claim: Let g :C [n] — [n]\ {0} be a partial 1-to-1 map of cardinality
<n—1. Then the partial truth assignment oy cannot force false any clause
of "PHP,, i.e. any initial clauses in an R*-proof of PHP,.

Assume that we have a decision tree of the height h solving the search
problem. We walk through the tree creating at step ¢ a partial 1-to-1 map
¢ : [n] = [n]\ {0} such that |g,| < ¢, and such that a4, gives values to
all atoms at the nodes of the path up to the fth step, and the values are
consistent with the path.

At the beginning put go := (). Assume we have gy and the atom at the
node we need to decide in the (/4 1)st step is r;;. If j # 0 and goU{(4,7)} is
a partial 1-to-1 map, define gg1 := g¢ U {(7,7)}. Otherwise put gp11 := gy.
It is easy to verify that the maps g,’ have the required properties.

By the claim, the last map must have the size at least n — 1. That is,
the path has to continue for at least n — 1 steps, i.e. the height of the tree
is at least n — 1.

q.e.d.
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A binary tree of height n may have, if it is very unbalanced, the size just
2n + 1 and that gives a very poor lower bound (even the number of clauses
in PHP, is bigger: O(n?)). Hence we need to modify the argument a bit
in order to get a lower bound for the size of R*-proofs of PHPF,. In fact,
we will estimate from below the number of clauses in any such proof (that
number is obviously a lower bound to the size).

First we prove a simple lemma about binary trees. We shall think of
binary trees as ordered upwards from the root (the minimal element) up
towards the leafs. Let us denote the ordering by a generic symbol >. For a
binary tree T" and a node a in T', denote by T the subtree of T" consisting
of nodes b such that b > a. By T, denote the tree (T"\ T%) U {a}, i.e. it
consists of nodes b such that b ¥ a. By |T'| denote the size of a tree T'.

Lemma 2.2.3 (Spira [45]) There is a node a € T such that:
AT < |Tal,IT* < (2/3)IT] -

Proof :

Walk a path through 7', starting at the root and always walking to the
bigger subtree (if the two subtrees have the same size, choose arbitrarily one).
The size s of a current subtree can decrease in one step only to s’ > %1

Continue in this fashion until we reach the first node a such that the
subtree 7% has the size < (2/3)|T'|. The key observation is that then also
(1/3)|T| < |T*|. This is because the immediately previous subtree can have
the size (by the bound to s’ above) at most s < 2|T%| + 1: If it were |T?| <
(1/3)|T’| then the previous subtree had the size < (2/3)|T"| and the process
should have stopped then.

As |T,| = |T| — |T*| + 1, the inequalities (1/3)|T| < |T,| < (2/3)|T| hold
too.

q.e.d.

Recall the definition of a partial truth assignment o, from the proof of
Theorem 2.2.2.

Theorem 2.2.4 Any R*-proof of PH P,, must have the size at least (3/2)" 2.

Proof :
Let k be the number of clauses in some R*-proof m of PHPF,,. We shall
construct a 4-tuple g, Dy, E, and S, where:
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1. gy :C [n] — [n] \ {0} is a partial 1-to-1 map such that |g,| < u.

2. D, is a set of clauses (in the literals of PH P,) each of which is forced
true by oy, .

3. E, is a clause forced false by «,,.
4. S, is an R*-proof of F, from clauses of PHP,, and D,,.
5. |Sul < (2/3)"k.

Put go := 0, Sy := m, Dy := () and Ey := (). Assume we have g,, Dy,
E,, S,. Find, using Lemma 2.2.3, a node a € S, splitting S, in the 1/3 -
2/3 fashion of the lemma. Let D be the clause at the node a. Consider two
cases:

(a) D can be forced true by some h D g,, a partial 1-to-1 map from [n]
into [n] \ {0}.
(b) There is no such h.

In Case (a) note that such h need to extend g, by at most one pair (i,7);
i.e. we may assume that b\ g,| < 1. This is because to make a clause true
it suffices to make one literal true. Take any such A and define:

o g i=h.

e Dy : =D, U{D}.

o Lyy1:=Ey.

® Sut1:=(Su)a, i.e. the nodes in S, that are not > a.

In Case (b) put gy+1 := gu, Dy+t1 := Dy, Eyt1:= D and Sy 41 := (Sy,)%

It is easy to verify that the properties 1. - 4. required from the 4-tuples
are maintained in the construction.

Now assume that £ is so large that Sy is just one clause Ey, i.e. |Sy| = 1.
By the construction Ey is forced false by gp. Hence it cannot be a clause
from D, and must be from PHP,. But then, identically as in the proof of
Theorem 2.2.2, it must hold that |g/| > n — 1, i.e. that £ > n — 1.

The lower bound is obtained by combining this inequality with the esti-
mate that £ < [logs (k)] is sufficient to enforce |S,| =1 (by |S,| < (2/3)%k):

[logg/a(k)] >2n—1 ,s0 k> (3/2)" 2.
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q.e.d.

Although the construction looks formally different from the argument in
Theorem 2.2.2, it is not really. We leave it as an Exercise 2.9.3 to turn the
construction into a construction of an J-decision tree, a decision tree that
branches according to the truth value of a clauses rather than of an atom.

Another direction to which it is possible to generalize this bound is to
consider a proof system that operates not only with clauses formed from lit-
erals but with clauses formed from small conjunctions of literals (cf.[28]).We
shall get back to this in ?7.

2.3 Effective interpolation: A general set-up

Assume that U and V are two disjoint N'P-sets (subsets of {0,1}*). By the
proof of the N"P-completeness of satisfiability there are sequences of proposi-
tional formulas A, (p1,...,Pn,q1,---,G,) and By(p1,--.,Pn,T1,---,Ts, ) such
that the size of A,, and B,, is n°(1) and such that

Un =UnN {O,I}n = {(61,--- ,Gn) € {O,I}n | 30{1,... , O, An(E,&) hOldS}
and
Vi =V N{0,1}" = {(e1,...,e,) €{0,1}" | 3By, ..., Bs, Bn(e, ) holds} .

The assumption that U NV = ) is equivalent to the statement that the
implications
A, — B,

are all tautologies. By the Craig interpolation theorem [16, 17] (see Exer-
cise 2.9.6) there is a formula I,,(p) built only from atoms p such that both
implications:

A, — I, and I, —» B,

are tautologies. This means that the set defined by I,:
W = J{€ € {0,1}" | I,,(€) holds }
n
separates U from V:

UCWand WnNnV =0.

Hence a lower bound to a complexity of interpolating formulas is also a lower
bound on the complexity of sets separating disjoint NP-sets. We cannot
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really expect to polynomially bound the size of a formula or a circuit defining
suitable W from the length of the implication 4, — —B,. This would
immediately imply, as observed by Mundici [35, 36, 37], that NP NcoNP C
NC! /poly or C P/poly (just take U and V two complementary NP-sets).

The idea of effective interpolation (discussed first in Krajicek [24]) is
more subtle: For a given propositional proof system P, try to estimate the
circuit-size of an interpolant of an implication in terms of the size of the
shortest proof of the implication.

Definition 2.3.1 A pps P admits effective interpolation! iff there is a poly-
nomial p(x) € Nz| such that any implication with a P-proof of size m has
an interpolant of a circuit size < p(m).

Exercise 2.9.7 shows why it is necessary to consider the circuit size and
not just the formula size of the interpolant.

To start with, we have at least one example when this clearly works (we
shall encounter LK in 3.4).

Example 2.3.2 Cut-free propositional sequent calculus LK admits effective
interpolation.

The interpolating circuit is constructed by an obvious induction on the
number of sequents in an LK-proof. (This is the base case in the usual
proof-theoretic proof of Craig’s interpolation theorem via cut-elimination,
see, for example, [25, 4.3].)

The point of the effective interpolation method is that by establishing a
good upper bound for a proof system P in the form of the effective interpo-
lation we prove lower bounds on the size of P-proofs. Namely:

Theorem 2.3.3 Assume that U and V are two disjoint N'P-sets such that
U, and V,, are inseparable by a set of circuit complexity < s(n), all n > 1.
Assume that P admits effective interpolation.

Then the implications A, — =By, require P-proofs of size > s(n)¢, some
e > 0.

!This is sometimes called feasible interpolation. 1 prefer the original name as in some
applications the interpolant is not feasible (in the usual meaning of the term as beeing -
uniform or nonuniform - p-time) but it is still in some sense effective.
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Proof :

By the effective interpolation, a proof of the implication of size < s yields
an interpolant of circuit size < p(s), some fixed polynomial. Pick € > 0 such
that p(s€) < s for all s > 1.

q.e.d.

An apriori difficulty with this strategy how to get proof complexity lower
bounds is that no non-trivial circuit lower bounds are known.

We shall overcome the difficulty by considering the monotone version of
the effective interpolation. This will work because strong lower bounds to
monotone circuits are known.

In the monotone version we consider separations of two NP-sets U and
V' as earlier but now we assume that U is closed upwards:

welU, N u<d — e,

where the ordering v < v/ on {0,1}" means that u; < u}, for all bits i < n.
IfUNV =0 and U is closed upwards then U and V can be separated by W
that is also closed upwards (e.g. by U itself). The same conclusion is true
if we assume instead that V is closed downwards - we shall not discuss this
dual case.

The propositional version of the monotone interpolation is the following
statement.

Lemma 2.3.4 (Lyndon’s theorem) Assume that A(p,q) — B(p,T) is a
tautology, and that the atoms p;’ occur only positively (i.e. in the scope of
an even number of negations) in A.

Then there is a monotone interpolant I(p) of the implication, an inter-
polant in which all p;” also occur only positively.

Definition 2.3.5 A pps P admits monotone effective interpolation iff there
is a polynomial p(xz) € N[z] such that any implication with a P-proof of size
m has a monotone interpolant of a monotone circuit size < p(m).

Similarly as Theorem 2.3.3 we get

Theorem 2.3.6 Assume that U and V are two disjoint N'P-sets with U
closed upwards. Assume that U, and V,, are inseparable by a set closed
upwards and of monotone circuit complexity < s(n), alln > 1. Assume that
P admits monotone effective interpolation.
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Then the implications A, — =By, require P-proofs of size > s(n)¢, some
e > 0.

Now we give an example of two N'P-sets U and V', U closed upwards (and
also, in fact, V' closed downwards) for which it is known that any monotone
separating set must be defined by a large monotone circuit.

In the next definition we denote the set of two-element subsets of {1,...,n}
by the suggestive symbol (3).

Definition 2.3.7 Let n,w,§ > 1. The set Clique, ,(p,q) is a set of the
following clauses in the atoms pij, {i,5} € (3), and qui, v = 1,...,w and
1=1,...,n:

1. Vign Qui, oll u < w,
2. 2qui V i, allu <v<wandi=1,...,n,
8. qui V —qu; V pij, all u <v <w and {i,j} € ().

The set Colory¢(p,r) is the set of the following clauses in the atoms p;j,
{i,j} € (3), and riq, i =1,...,n and a =1,...,&:

1. Vy<gTia, all i <,
2. gV, alla < b <€ and i <n,
3. ] ria V i V pij, all a < € and {i,j} € ().

Truth assignments to atoms p;; can be identified with undirected graphs
with the vertex set [n]. Truth assignments to g,; such that Clique, ., (p, q) is
satisfied can be identified with 1-to-1 maps from the set [w] onto a clique (i.e.
a complete subgraph) in the graph determined by p, and truth assignments
to 1, such that Color, ¢(p,r) is satisfied can be identified with colorings of
the graph by ¢ colors. The set

{p | 3q Cliquen .,(p,q)}

is the set of graphs on [n] with a clique of size > w, while the set

{p | 3Ir Colory¢(p,r)}

is the set of graphs on [n] colorable by < ¢ colors.
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Note that the atoms p;” occur only positively in clauses in Clique and
only negatively in Color and, indeed, the two sets are closed upwards and
downwards respectively.

The implication

/\ Cliquenp,, — - /\ Colory ¢

is obviosuly a tautology if w > £.
The following theorem just restates the bound from [5]2.

Theorem 2.3.8 (Alon-Boppana[5]) Assume that 3 < & < w and /Ew <

813gn . Then the implication

/\ Cliquen,, — — /\ Color, ¢
has no interpolant of the monotone circuit-size smaller than:

20(VE)

A suitable choice of parameters is £ := [{/n]| and w := & 4+ 1. The lower
bound provided by the theorem is then 20(n'/*)

2.4 Communication complexity interlude

We shall prove in Section 2.5 that R admits both monotone and nonmono-
tone effective interpolation. First we need to recall, in this section, few
notions and facts from communication complexity. This will be a base of a
universal method for proving effective interpolation.

Let Uy, V,, € {0,1}" be two disjoint sets. Karchmer-Wigderson game on
Un, V, (introduced in [21]) is played by two players A and B. Player A
receives u € U while B receives v € V. They communicate bits of infor-
mation (following a protocol previously agreed on) until both players agree
on the same i € [n] such that u; # v;. A measure of the complexity of the
game is the minimum (over all protocols) of the number of bits they need to
communicate in the worst case. This minimum is called the communication
complezity of the game and it is denoted by C (U, V,,).

2One needs to replace the class of graphs without a clique of size ¢ used in [5] by the
smaller class of £-colorable graphs. It is the bound to monotone circuits separating these
two classes what is actually proved in [5].
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Assume that we have a propositional formula (in the DeMorgan lan-
guage) ¢©(p1,...,pn) that is constantly 1 and 0 on U, and V,, respectively.
We say that such ¢ separates U, from V,. Applying the DeMorgan rules if
necessary, we may assume that the negations in ¢ are applied only to atoms.

The players can use such a formula as follows. They start at the top
connective, i.e. at the whole formula, and will work down to smaller and
smaller subformulas until reaching a literal. The property they will preserve
is that the current subformula gives value 1 on u and 0 on v. This is true at
the beginning, by the hypothesis. If the top connectiv is a conjunction the
player B indicates to A, by sending one bit, which of the two subformulas
yields value 0 on v. If the top conncetive is a disjunction, analogously A
indicates to B which of the two subformulas is 1 on w. This argument
proves a half of the following simple but important statement (for the other
half see Exercise 2.9.8).

In the monotone version of the game U, is assumed to be closed upwards,
and the players search for ¢ such that u; = 1 Av; = 0 (and not just u; #
v;). Any monotone formula separating U, from V, can be used by the
players as a protocol, identically as above. Let M C(U,, V,,) be the monotone
communication complexity of the game.

Theorem 2.4.1 (Karchmer-Wigderson[21]) LetU,,V, C{0,1}" be two
disjoint sets. Then C(Uy,,Vy,) is equal to the minimal depth of a DeMorgan
formula separating U, from V.

The same is true in the monotone case: MC(U,,Vy,) is equal to the
manimal depth of a monotone DeMorgan formula separating Uy, from V.

If the players had a circuit C separating U, from V,, instead of the formula
¢ they could use the same communication protocol. But the communication
complexity would be still bounded only by the depth of C' which really says
nothing about the size of C'. To capture the complexity of protocols comming
from circuits we need to use a more general notion of protocol. The definition
is a variant of a notion from [39] that used PLS-problems.

Definition 2.4.2 ([27]) Let U,,V, C {0,1}" be two disjoint sets. A pro-
tocol for the Karchmer-Wigderson game on the pair (Up,Vy,) is a labelled
directed graph G satisfying the following conditions:

1. G is acyclic and has one source denoted ).

The nodes with the out-degree 0 are leaves, all other are inner nodes.
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2. Leaves are labelled by one of the following formulas:
u; =1ANv; =0 or uy=0Av; =1
for somei1=1,...,n.

3. There is a function S(u,v,x) (the strategy) such that S assigns to a
node x and a pair (u,v) € U, X V,, an edge leaving from the node x.

Fizing a pair (u,v) € U, X V,, the strategy defines for every node x a
directed path P, = z1,...,zp in G: Start at x and go towards a leaf xy,
always going from x; using the edge S(u,v,x;).

4. For every (u,v)x € Uy, x V,, there is a set F(u,v) C G satisfying:

(a) O € F(u,v).
(b) z € F(u,v) —» Py, C F(u,v).
(¢) The label of any leaf from F(u,v) is valid for u,v.

Such a set F is called the consistency condition.

A protocol is called monotone iff every leaf in it is labelled by one of the
formulas u; =1ANv; =0,1=1,...,n.

The communication complexity of G is the minimal number t such that for
every x € G the players (one knowing u and x, the other one v and x) decide
whether © € F(u,v) and compute S(u,v,x) with at most t bits exchanged in
the worst case.

See Exercise 2.9.9 about the consistency condition.

Now let us observe that this notion naturally formalizes protocols formed
from a circuit (as described above). Assume that C'is a circuit separating U,
from V,,. Reverse the edges in C, take for F'(u,v) those subcircuits differing
in the value on u and v, and define the strategy and the labels of the leaves
in an obvious way. This determines a protocol for the game on (U, V,)
whose communication complexity is 2. The next theorem says that there
is a converse construction. The theorem reformulates a statement from [39]
but we give it a new proof which then applies to generalizations in ?7?.

Theorem 2.4.3 ([39]) Let Uy, V,, C {0,1}" be two disjoint sets. Let G be
a protocol for the game on U,,V, which has k nodes and the communication
complexity t.
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Then there is a circuit C' of size k200 separating U, from V,,. Moreover,
if G is monotone so is C.

On the other hand, any (monotone) circuit C of size s separating Uy, from
Vi, determines a (monotone) protocol G with s nodes whose communication
complezity is 2.

Proof :

The second part of the theorem was explained already, so let us concen-
trate on the first part. Let G be a protocol satisfying the hypothesis. For a
node a and w € {0, 1}, let R, 4, be the set of pairs (u,v) € Uy, x V,, such that
the communication of the players deciding a €7 F'(u,v) evolves according to
w and ends with the affirmation of the membership. It is easy to see that
R, . is a rectangle, i.e. of the form R, = Uy X Vi for some Uy, C U,
and Vg, CV,.

For a node a denote by k, the number of nodes in G that can be reached
from a by a (directed) path. So k, = 1 for a a leaf, while ky = k for the
source (.

Claim 1: For all a € G and w € {0,1} there is a circuit Cy,y separating
Ugw from V4 and of size < k200

(The constant in the O(t) is independent of a.) This implies the theorem
taking for a the source (which is in all F'(u,v)).

The claim is proved by induction on k,. If a is a leaf the statement
is clear. Assume a is not a leaf and let w € {0,1}'. For u € U,,, let
u* € {0,1}* be a vector whose bits u* are parametrized by w = (wy,ws) €
{0,1}F x {0,1}" and such that u} = 1 iff there is a v € V,, such that
the communication of the players computing S(u,v,a) evolves according to
wy and the computation of S(u,v,a) €2 F(u,v) evolves according to ws.
Define v}, € {0, 1}4t dually: v}, = 0 iff there is a u € U,y such that the
communication of the players computing S(u,v,a) evolves according to w;
and the computation of S(u,v,a) €2 F(u,v) evolves according to ws.

Let U, ,, and V', be the sets of all these u* and v* respectively.

Claim 2: There is a monotone formula @a, (in 4' atoms) separating Ugw
from Vit of size 200).

Claim 2 follows from Theorem 2.4.1 as there is an obvious way how the
players can find a bit w in which ), = 1 and v}, = 0: They simply compute
S(u,v,a) (this gives them wy) and then decide S(u,v,a) €7 F(u,v) (this
gives them wy).
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Let us resume the proof of Claim 1. For w; € {0,1}! let a,, be the node
S(u,v,a) computed for some u,v with communication w;. Define a circuit:

Ca,w = Qoa,w(' ) qul,WZ/Cawl,WQ’ B )

that is, we substitute the circuit Cq, , in the position of the (wi,ws)-th
variable in @g .

As kg, < kg, the induction hypothesis implies that all Cj,, o, work
correctly on all anlm X Vawlm- The circuit Cy,, works then correctly by
the definition of the formula g 4.

This concludes the proof of the general case. But the same proof gives
also the monotone case (as ¢, is monotone).

q.e.d.

2.5 Effective interpolation for resolution
In this section we prove the effective interpolation for resolution.
Theorem 2.5.1 (Krajicek[27]) Assume that the set of clauses
{A1,...,Am, B1,..., B¢}
where:
1. A; C{p1,7p1s -, Py TP, Q15 15 - -+, s, st all i <m

2. B] C {pla_'pla"'7pn7_'pn77nla_"r‘17---arta_'rt}’ a”] < 14

has a resolution refutation with k clauses.
Then the implication:

AN A4) — - A/ B)

i<m j<e

(where \/ C' denotes the disjunction of the literals in a clause C) has an
interpolant 1(p) whose circuit-size is kn©®W).

Moreover, if all atoms p;’ occur only positively in all A; then there is a
monotone interpolant whose monotone circuit-size is kn©® .

Before we prove the theorem let us note a corollary of the theorem and
Theorems 2.3.6 and 2.3.8, our first exponential lower bound for R.
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Corollary 2.5.2 ([27]) There is a constant ¢ > 0 such that whenever 3 <
£ <wand Ew < % the following holds.
Any R-proof of the implication

/\ Cliquep, — - /\ Colory ¢

must have at least n=°28""" clauses.
In particular, if (V) < € < w < n?/3 then any such refutation must
Q
have 2" clauses.

Proof of Theorem 2.5.1:

Assume that 7 is an R-refutation with k clauses of { Ay, ..., A, B1, ..., B},
a set of clauses satisfying the hypothesis of the theorem. Let U and V be
the subsets of {0,1}" defined by

{pef{0,1}" | 3ge {0, 1}, AV 43}

7

U :

and by
v

{pe{o,1}” | 3refo,1}', A\ B;}

J
respectively. Eventually we shall show how to transform 7 into a protocol
for the Karchmer-Wigderson game on U, V, of size k + 2n and of the com-
munication complexity O(logn). But we start with a less formal argument.

Assume that 7 = Dy, ..., Dg. For D a clause let D denote the set of all
truth assignments satisfying D.

Assume player A gets u € U and player B gets v € V. A fixes some
q“ € {0,1}* such that AV A;(u,q") holds, and similarly B picks some ¥ €
{0,1}!, a witness of the membership of v in V.

The players will construct a path P = Sy, ...,S, through 7, from the
endsequent (= Sp) to one of the initial sequents. The property they will
try to maintain is that the truth evaluations (u, ¢%, ") and (v, ¢%,r") do not
satisfy the clauses on the path, i.e. are not in Sa,a=0,...,h.

Assume the players reach S, which was deduced in 7 by the inference:

X Y
Sa

They first determine whether (u,q¢*,7") € X and (v,¢%,r") € X, and then
continue depending on a possible outcome:
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L. (u,q",r") € X A(v,q",1") € X.
2. (u,q"") ¢ X A(v,q"1") ¢ X.
3. Exactly one of (u,q",r"), (v,¢", r") is in X.

In the first case none of the two tuples can be in Y and the players put
Sa+1 : =Y. In the second case they take S, y; := X. It is the third case which
is most interesting: Necessarily v # v and the players stop constructing the
path and enter a protocol aimed at finding ¢ < n such that u; # v;.

As each initial sequent is satisfied by either (u,q"“,r") or by (v,q",r"),
the players must sooner or later enter the third possibility and thus find
1 < n such that u; # v;.

For this to work we need to show that each of the three tasks:

)
)

3. If (u,¢",r’) € D # (v,¢",r") € D find i < n such that u; # v;.

R

1. Decide whether (u, ¢“ €
€

O

bl T’U
2. Decide whether (v, ¢",r"

where D is a clause, has small communication complexity. But this is easy:
The first two can be decided by each player sending one bit (the truth value
of the part of the clause he can evaluate), the third task needs log n bits by
a binary search.

Let us now define the protocol G formally. G has (k + 2n) nodes, the k
clauses of m together 2n extra vertices. These extra vertices are labelled by
formulas u; =1 Av;i=0and u; =0Av; =1,1=1,...,n.

The consistency condition F'(u,v) is formed by those clauses D; that are
not satisfied by (v,q",7"), and also by those of the extra 2n nodes whose
label is valid for the pair u,v.

The strategy function S(u,v, Dj) (for D; derived from X and Y') is de-
fined as follows:

1. If (u,q",r") ¢ Dj then

X if (0,q% ) ¢ X
D;) = ~ ~
S(u, v, Dj) { Y if (v,q%,r") € X (and hence (v,q¢",r") ¢ Y).

2. If (u,q",r?) € Dj then the players use binary search for finding i < n
such that u; # v;. S(u,v,Dj) is then the one of the two nodes labelled
by ui =1 Av; =0 and u; = 0 A v; = 1 whose label is valid for the pair
u, .
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Note that the strategy function S(u,v,x) as well as the membership
relation z € F(u,v) can be determined by the players exchanging at most
logn bits. As G has (k+2n) nodes, Theorem 2.4.3 yields a circuit separating
U from V and having the size at most (k 4 2n) - 200087) = f,0(1),

Now we turn to the monotone case, which requires a modification. As-
sume that the atoms p;’ occur only positively in all A;’s. Note that this
means that U is closed upwards but even a bit more: If u € U and ¢“ is a
witness for this, and v < «', then ¢% also witnesses the membership v’ € U.

The protocol in the monotone case will have only (k 4+ n) nodes, the
k clauses of 7 plus n extra nodes labelled by formulas u; = 1 Av; = 0,
i =1,...,n. The consistency condition F'(u,v) is defined as before.

The strategy function changes a bit. In the third case of the construction
of the path above assume that (u,q%,7’) € X while (v,¢%, ") ¢ X. Then
the players, instead of using the binary search for finding the bit in which «
differs from v, they either find ¢ < n such that

u; =1Av; =0
or learn that there is some v’ satisfying
W > (W gt ) ¢ X

This can be done by the player A only, in fact, and hence he just need to
communicate logn bits identifying ¢ to B.
Formally, in the first case they define

X if (v,q%, ") ¢ X
D' = ~
S(u,v, Dj) {Y if (v,q%,r%) € X.

In the second case S(u,v,D;) is simply the additional node with the label
u; = 1L Av; = 0.

By the monotonicity condition assumed about Ai,..., A, for every v’
occurring above it holds:

(W' q",r") € [ 4;.
j<m

This implies that the players again have to, sooner or later, enter the option
leading to ¢ < n such that u; =1 Av; = 0.

So we get (k + n) - 290 = kn®M bound to the size of a monotone
separating circuit (by Theorem 2.4.3).

q.e.d.
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2.6 Generalizations and limitations of effective in-
terpolation

Note that the proof of Theorem 2.5.1 does not really use any particular
information about the syntax of R; it works with the sets of satisfying as-
signments. This means that we can generalize effective interpolation to a
more general situation which is grasped by the following concept.

Definition 2.6.1 ([27]) Let N > 1.

1. The semantic rule allows to infer from two subsets A,B C {0,1}" a

third one:
A B

C

iff C D AN B.

2. A semantic derivation of the set C C {0,1}" from sets Ay,...,Am C
{0,1}" s a sequence of sets By,..., By, C {0,1}" such that By = C,
and such that each B; is either one of A;” or derived from two previous
B;,, B;,, i1,i2 < j, by the semantic rule.

3. Let X C exp({0,1}) be a family of subsets of {0,1}. A semantic
derivation By,..., By is an X-derivation iff all B; € X.

Derivability in semantic derivations, without a restriction to some X,
would be rather trivial: C' is derivable from A;’s iff C' O ; 4;. But when the
family X is not a filter on {0, 1}V, the notion of X-derivability becomes non-
trivial. For example, a family formed by the subsets of {0, 1}V definable by a
clause yields a non-trivial notion. The following technical definition abstracts
a property of sets of truth assignments used in the proof of Theorem 2.5.1.

Definition 2.6.2 Let N = n + s+t be fized and let A C {0,1}V. Let
u,v € {0,1}", ¢ € {0,1}* and r¥ € {0,1}*.

The communication complexity of A, CC(A), is the minimal number of
bits two players (one knowing u,q"“ and the other one knowing v,r") need to
exchange in the worst case in solving any of the following three tasks:

1. Decide whether (u,q"“,r") € A.
2. Decide whether (v,q",r") € A.

3. If (u,q*, ") € A# (v,q", ") € A find i <n such that u; # v;.
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The monotone communication complexity w.r.t. U of A, MCCy(A), is
the minimal t > CC(A) such that the next task can be solved communicating
< t bits in the worst case.

4. If (u,q*,r?) € A and (v,q", %) ¢ A either find i < n such that
u; =1ANv; =0
or learn that there is some u' satisfying

u >un (W, ¢ r’) ¢ A

Note that proofs in any of the usual propositional calculi based on bounded
arity inference rules translate into semantic derivations: Replace a clause,
(a sequent, a formula, an equation, etc.) by the set of its satisfying truth
assignments. The soudness of the inference rules implies that they translate
into instances of the semantic rule.

The point of this generalization is that we can lift the effective interpo-
lation from R to this context. Let N = n + s + t be fixed for now. For
A C {0,1}"** define the set A by:

U {(a,b,c) | c € {0,1}'}

(ab)eA

where a, b, c range over {0, 1}", {0,1}* and {0, 1}! respectively, and similarly
for B C {0,1}"*! define B:

U {(a,b,c) | be {0,1}°} .

(a,c)EB

Theorem 2.6.3 Let Ay,..., A, C {0,1}"** and By,...,B, C {0,1}"*.
Assume that there is a semantzc derivation m = D1, ..., Dy of the empty set
0 = Dy, from the sets Aq,..., A, Bi,...,By.

If the communication complexity of all D;, i <k, satisfies CC(D;) <t
then the two sets

U={ue{0,1}"|3g" € {0,1}%; (u,q") € () 4;}

Jj<m

and
V={ve{0,1}" | I’ €{0,1});(v,r") € [ B;}
J<t
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can be separated by a circuit of size at most (k + 2n)2o(t).

Further, if the sets Ay, ..., Ay satisfy the following monotonicity condition
w.r.t. U:
(u,q") € ﬂ AjAu<ud = (u,q") € ﬂ A;
j<m j<m
and MCCly(D;) <t for all i <k, then there is a monotone circuit separating
U from V of size at most (k +n)2°00).

The proof is identical to the proof of Theorem 2.5.1.

Theorem 2.6.3 can be used to give exponential lower bounds for various
proof systems of ”geometric nature” (see Exercises 2.9.10, 2.9.11 and Chap-
ter 7?7). A particular proof system of this type that has been studied in the
connections with the linear programming is the cutting planes proof system
CP, introduced in [15]. This system operates with integer linear inequalities
of the form ayxy + ...ap,z, > b, with z; representing the truth values of
atoms. C'P has some obvious rules: adding two inequalities, multiplying an
inequality by a positive constant, but also a less obvious one, the division

rule:
a1x1+ ...,y > b
b

L+, > (1]

provided that ¢ > 0 and c|a;, all 7 (the rounding up is what makes the system
complete). CP has also two initial inequalities: z > 0, —z > —1. It is a
refutation system which derives from an unsatisfiable system of inequalities
the inequality 0 > 1. The term unsatisfiable means that the system has no 0-
1 solution. It is sound and complete and polynomially simulates resolution,
see [15] or [25, 13.1].

We shall discuss effective interpolation for C'P in Chapter 77, together
with a generalization of communication complexity from the Boolean frame-
work to the so called real communication complexity. .

Finally, let us discuss an apriori limitation to the monotone effective
interpolation method. Assume that

Cliqueny, U Color, ¢

were satisfiable. The satisfying assignment then defines a map from [w]
into [¢] that is 1-to-1 (composing the map from [w] onto a clique with the
coloring restricted to the clique). More formally, we can define propositional
formulas E,, for a € [w] and u € [¢] (built from the atoms p, ¢, r) and derive
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from Cliquey,, U Color, ¢ by a p-size R-proof that E,,’s define a graph
of an injective function from [w] into [¢]. Hence whenever a proof system
can prove the instance of the pigeonhole principle saying that no such map
exists, it also shortly proves the unsatisfiability of Clique,, ., U Color, ¢ and
hence cannot admit monotone effective interpolation. Such instances of the
pigeonhole principle are provable in F' and even in very weak subsystems of
F' (see Chapter 77).

One can also prove limitations to non-monotone effective interpolation
but only modulo unproven cryptographical conjectures (like the security of
RSA). More on this in ??.

2.7 Width of resolution proofs

For a clause C, the width of C, denoted w(C'), is the number of literals in C.
For a set C of clauses define w(C) := max.cc w(C). In particular, the width
of a proof m, w(w), is the maximal width of a clause in the proof.

Our aim in this section is to prove that a short R-proof can be trans-
formed into a narrow proof. This will allow us to prove lower bounds for the
size by proving sufficiently strong lower bounds on the width.

We shall use partial truth assignments called simply restrictions. The
following notation will be handy. For /¢ a literal and € € {0, 1} define:

e )€ ife=1
¢ '_{ ¢ ife=0

Further, for £ and € as above and C' a clause define the restriction of C' by
¢ = € to be the clause:

C if neither ¢ nor —¢ occur in C
Cll=e=¢ {1} iftceeC
C\ {61_6} if 1=€ € C.

Similarly, for a set of clauses C put C | £ =€ :={C | L =¢ | C € C}.
Consider the effect a restriction, say p = €, has on a resolution inference:

Xu{gy  Yu{-g}
XuY
If p = q then the inference trasnforms into

X m v
xuy % T Xxuy
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which is not a resolution inference. But it is an instance of a weakening rule:

Z
7; provided that Z; C Z5

that is obviously sound. Moreover, a restriction of a weakening is again an
instance of a weakening.
If p# q and p* € X UY then the inference becomes

Xip=eUiqg} Yip=eU{nq}
{1}
which is again not a resolution inference. But we can simulate it by allowing
{1} as a new initial clause (axiom) in proofs.

Let R' be a proof system extending R by the weakening rule and by the
new axiom. The point is that a restriction of an R’-proof is again an R'-proof
(after transforming resolution inferences as described above). Clearly, lower
bounds on R'-proofs apply, in particular, to R-proofs too.

The last piece of a usefull notation is w(C - A), denoting the minimal
width of an R'-derivation of a clause A from C, and C ; A which stands for
E>w(CF A).

Lemma 2.7.1 IfC | p=0Fg A then C Fry1 AU {p}.
IfClp=1ty A then Crpiy AU{-p}.

Proof :

We prove only the first part as the proof of the second part is identical.
Assume that m = Dq,..., D; is an R'-derivation of A from C | p = 0 having
the width k. Put E; := D; U{p}, for all i < ¢. We claim that 7’ = E1,..., E;
is essentially an R’'-derivation of A U {p}. The qualification essentially will
be clear in a moment.

Assume first D; € C | p =0, say D; = C | p = 0 for some C € C.
Consider three cases:

1. =p € C: Then D; = {1} and so E; = {1,p} can be derived from the
axiom {1} by a weakening.

2. pe C: Then D; = C'\ {p} and hence E; = C is an initial clause from
C.

3. Cn{p,—p} = 0: Then D; = C and so E; = C U {p} can be derived
from C' by a weakening.
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Note that the extra line in the derivations of E;’ has the width bounded
above by the width of clauses already in 7.

The case when D; is derived in 7 by a resolution rule was already dis-
cussed when we motivated the extension of R to R'. The case when D; is
obtained by the weakening rule is trivial.

q.e.d.
Lemma 2.7.2 For e € {0,1}, assume that
Clp=ebi_10 and Clp=1—€ekp 0.

Then
w(C F0) < max(k,w(C)) .

Proof :

By Lemma 2.7.1 the first part of the hypothesis implies C F; {p*~¢}.

Resolve {p' ¢} with all C' € C containing {p}; the width of all these
inferences is bounded by w(C). Therefore each clause D € C | p = 1 — € has
an R'-derivation from C of the width at most max(k,w(C)).

This, together with the second part of the hypothesis of the lemma,
concludes the proof.

q.e.d.

Theorem 2.7.3 (Ben-Sasson and Wigderson[8]) Let C be an unsatisfi-
able set of clauses in literals p;, —p;, for i < n. Assume that C has a tree-like
R'-refutation with < 2" clauses.
Then:
w(CF0) <w(C)+h.

Proof :

We shall proceed by a double induction on n and h. If n =0 or h =0
then necessarily () € C and there is nothing to prove. Assume that for hg > 0
the statement is true for all A < hy and for all n > 0. We shall prove that
this is true also for hg 4+ 1 by induction on n. By the above, we may assume
that n > 0, hence there is a literal in C.

Assume the last inference in a refutation 7 (having < 2#0%! clauses) has
been:
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{r} {-p}
0

Hence one of the subproofs has the size < 270, Assume that it is the subproof
mp ending with {p}. Restrict my by p = 0; it becomes an R'-refutation of
C | p = 0. By the induction hypothesis for hy:

w(Clp=0F0) <w(C{p=0)+ho

Similarly, the restriction of the subproof m; ending with {-p} by p = 1
becomes a refutation of C | p = 1. It has, of course, < 2/0F! clauses but it
has <n — 1 atoms. So the induction hypothesis for n — 1 implies:

wlClp=1F0) <w(Clp=1)+ho+1
Applying Lemma 2.7.2 concludes the proof.
q.e.d.

Note that this immediately yields a lower bound to the size in terms of
a lower bound to the width.

Corollary 2.7.4 Ewvery tree-like R' refutation of any C mus have the size
> 2w(CHD)—w(C)

Much more interesting is the following statement that shows that one
can derive a lower bound to the size from one to the width even for general,
not necessarily tree-like, R'-proofs.

Theorem 2.7.5 (Ben-Sasson and Wigderson [8]) Let C be an unsatis-
fiable set of clauses in literals p;, —p;, for i <n.
Then every R'-refutation must have the size at least

crp)—w(e)?
HO(LCD=uen?)

Proof :

Let k£ be the number of clauses in an R'-refutation m of C. Let h > 1 be
a parameter. Later we shall specify that h := [y/2nlog(k)] but this actual
value is not used in the argument; it is only used at the end to optimize the
bound.
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We shall prove that
w(CH0) < w(C)+ O(y/nlog(k)) .

If n = 0 then () € C and there is nothing to prove.

Suppose n > 0. Call a clause C in © wide if w(C) > h. Let s :=
(1—g5) "

By double induction on n and on ¢ we prove that if the number of wide

clauses in 7 is < s? then
w(lCkH0) < wlC)+h+t.

Assume t = 0. Then there is no wide clause, i.e w(m) < h < w(C) + h.

Now assume ¢t > 0. One of the 2n literals, say ¢, has to appear in at
least S;—: wide clauses. Restrict m by ¢ = 1. The clauses containing ¢ will
be eliminated (they transform to {1}). Hence, in = | £ = 1, a refutation of
C | £ =1, there remain less than

sth 1

2n
wide clauses. By the induction hypothesis for ¢ — 1:

wlCll=1F0) < wCll=1)+h+t—1.

Now apply to m the dual restriction £ = 0. This produces a refutation
m L ¢=0o0f C| ¢=0 where the number of wide clauses is still < s’ but
where the number of atoms is n — 1. Hence, by the induction hypothesis for
n— 1

wlCll=0F0) < w(lCll=0)+h+t.
By applying Lemma 2.7.2 we get:
w(lCkH0) < wlC)+h+t.

The particular value of the parameter h yields the wanted upper bound
(using the estimate trivial ¢ < log,(k)).

q.e.d.

In order to be able to prove via this theorem some lower bounds on the
size of resolution proofs, we need unsatisfiable sets of clauses of small width
(perhaps even constant) which require wide R-proofs. We shall construct
such sets of clauses in Section 2.8.
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2.8 Random sparse linear systems

Consider an m x n matrix A over the two-element field Fy.. We call such a
matrix £-sparse iff each row contains at most £ non-zero entries.

Let J; :={j € [n] | A;j = 1} (hence |J;| < £ if A is ¢-sparse). The linear
map from Fy” into F3™ defined by A is computed as:

(A'iE)i:Z:Az’ijj: @xj .

J JjeJi

Assume m > n. Hence Rng(A) is a proper subset of Fy™. Let b € Fy™ be
any vector outside of the range of A. In other words, the linear system:

Az =b

has no solution (in Fg). This unsolvability can be expressed as a tautology
7,(A) in a DNF as follows (we skip A from the notation of 7, as we always
consider only one matrix at a time):

ne v A<

i€[m] 56{0,1}\Ji|,@jeji€j:1_bi JEJ;

Here we use the notation z€ from section 2.7. The formula says that there is
some bit ¢ such that the ith bits of A-x and b differ, which itself is expressed
by saying that there is an evaluation € to bits z; of x that belong to J; which
determines the ith bit of A -z as 1 — b;, i.e. as different from b;.

Note that the size of the formula is bounded above by O(m2%¢), and that
the clauses of =7, have the width < £.

For the next definitions and statements let us fix parameters 1 <n <m
and £ < m, and an ¢-sparse m x n matrix A. The next definition is a special
case of a definition [1, Def.2.1].

Definition 2.8.1 A boundary of a set of rows I C [m], denoted 04(I), is
the set of j € [n] such that exactly one entry A;j equals 1 for i € I.

Let 1 < r < m and € > 0 be any parameters. Matriz A is an (r,e€)-
expander iff for all I C [m], |I| <r, |0a(I)] > €l|I].

Expanders simulate, in a sense, matrices with disjoint J;’s and of the
maximal size /. In such a case it would hold that |04 ()| = ¢|I|. An (r,¢€)-
expander achieves (as long as |I| < r) at least an e-percentage of this maximal
value.
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We do not have any explicit matrix A that has suitable expansion prop-
erties but the existence of such a matrix can be proved by a probabilistic
argument.

Consider the following random process yielding an /-sparse matrix A.
For every i € [m] and u < ¢ let j;,, be chosen independently and uniformly
at random from [n]. Let J; C [n] be the set of these values for fixed ¢, and
define Ai,j =1iff j € J;.

The following theorem is a special case of [1, Thm.5.1].

Theorem 2.8.2 For every & > 0 there is an £ > 1 such that for all suffi-
ciently large n the random (-sparse n? x n-matriz is an (nlf‘s, 3/4)-expander
with probability approaching 1.

Proof :

Let » < n? and £ > 1 be yet unspecified but fixed parameters; we shall
specify the values later. Let A be an /-sparse n’? x n-matrix constructed in
the random process described above (so m = n?). We want to show that

Prob[A is not an (r,3/4)-expander] — 0.

For ¢t < r let p; be the probability that any one fixed set I of £ rows in A
falsifies the expansion property. Then

r 2 r
Prob|A is not an (r,3/4)-expander| < Z (nt >Pt < Z”2tpt _
t=1 t=1

Fix one such I, |I| = ¢. Then:

U Jil <104+ 1/2[O] [5i]) — [0a(I)]]
i€l iel
as any j € U;er Ji \ 04(I) belongs to at least two rows in I. The right hand
side is bounded above by 1/2(|04(I)| + t¢) and hence if it were |04(1)| <
(3/4)¢t then also
[ Jil < (7/8)et .
1€l
Consequently,
pe < Prob|| | Ji| < (7/8)¢1] .
el
The right hand side is simply the probability that in picking ¢t elements of
[n] independently of each other we select less than (7/8)t¢ elements. If this
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happens then there must be a set of (1/8)t/ steps among the t/ steps when
we pick a point already selected; the later event has a probability bounded
above by %. Hence:

pe < PrOb[|ieLJIJi| < (7/8)¢t] < <(1;§)M> [';_g]% < [o(%)ﬂ/s]t

Putting all these inequalities together we see that the probability that A is
not an (r,3/4)-expander is bounded above by a finite geometric sum

i n2t[0(%r)€/8]t — zr:[nQO(%)l/S]t

t=1 t=1

Substituting n' % for r and taking £ > 1 large enough constant (so that
0¢/8 > 2) the base of the progression [nQO(%)l/ 8] becomes bounded above
by n~1). Hence the sum approaches 0 as n >> 0.

q.e.d.

For the next few definitions and lemmas assume that A is an /-sparse
m x n-matrix that is an (r, 2)-expander. For a set of rows I C [m] let
J(I) := Ujer Ji, and let A; be the (m — |I]) x (n — |J(I)])-matrix obtained
from A by deleting all rows in [ and all columns in J(I).

The next lemma slightly generalizes [1, L.4.6].

Lemma 2.8.3 For any set of rows I C [m] of size |I| < r/2 there is I D I,
|I| < 2|I|, such that

(%) For any i ¢ I, |S;\ U,c; Sul > €/2.

Moreover, for any I of size |I| < r having this property (), Aj is an (r, i)—
expander. Furthermore, there exists the smallest (w.r.t inclusion) such an

1.

Proof :
Assume || < r/2. Put Iy := I. Add in consecutive steps t = 0,... to I;
any one row i as long as

(%) [N Jkl > ¢/2.
kel
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We claim that this process stops before t reaches |I|. Assume not, and let
I' = I . Then, by (%), it holds

0a(I') < L]+ (£/2)|1] = (3/9)4T'|

This contradicts the expansion property of A, as |I'| < r.

Let I be the last I; in the process, so t < /2 and |I| < 2|I|.

I clearly has property (¥). Thus we only need to verify the expansion
property of A;. Let K be a set of < r rows in A;. Then

0a;(K) = 94(K) \ | Ji(4)

iel

As for all i € K\ T we have |J;(A) NU,; Ju(A)] < £/2, this equality implies
that

|04, (K)| 2 |04(K)| = (¢/2)| K| = (3/4)4 K| = (¢/2)|K| = (1/4)| K] .
q.e.d.
The next definition and lemma are from [29].

Definition 2.8.4 1. Any I satisfying the condition (%) from Lemma 2.8.3
is called a safe set of rows.

2. A partial assignment p :C {x1,...,z,} — {0,1} is called safe iff
dom(p) = U;er Ji, for some safe I.
We pick any such I and call it the support of p, denoted supp(p).

3. Let b € {0,1}". A safe partial assignment p with support I is a safe
partial solution of A-x =0b iff for all J; C Uyer Ju, Djey, p(z5) = bi

4. For p a safe partial solution with support I, b° is an (m — |I|)-vector
with the ith coordinate being by ® D ;e j,ndom(p) P(j), for © such that
Ji € dom(p).

Vector xy consists of those variables not in J(I).

Note that if p is a safe solution with support I, and £ is a solution of
Ar-xzy =0b°, then pU £ is a solution of A -z =b.
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Lemma 2.8.5 Let I C I' C [m] be two safe systems, with |I' \ I| < r.
Assume that p is a safe assignment with support I. Let ¢; € {0,1}, 1 € I'\ I,
be arbitrary.

Then p can be extended to a safe assignment p' with support I' such that

@je]i p'(xj) = ¢, for alli e I'\ I.

Proof :
By Lemma 2.8.3, Ay is an (r, i)—expander. By the expansion property,
every subset of I'\ I has a non-empty border in A; and hence, in particular,

cannot constitute a linearly dependent set of rows of A;. Thus the linear
system
D z=ae D )
jeJi\dom(p) jeJindom(p)

has a solution £. Put p/ := pUE.
q.e.d.

Theorem 2.8.6 (Krajicek[29]) Assume that A is an ¢-sparse m X n ma-
triz that is an (r,3/4)-expander. Let b ¢ Rng(A).
Then every R-proof of T,(A) must have the width at least > r /4.

Proof :
Let m be a resolution refutation of A-z = b, i.e. a proof of 7,(A4). Let w
denote the width of .

We shall construct a sequence of clauses CY,...,C, occurring in 7 and
a sequence of partial safe assignments o :C {z1,...,z,} — {0,1} for t =
0,...,e, such that the following conditions are satisfied:

1. Cy := 0 is the end clause of . Each Cy1 is a hypothesis of an inference
in 7 yielding Cy, and C, is an initial clause.

2. If zj occurs in Cy then z; € dom(oy).
3. C; is false under the assignment «;.

4. |supp(ay)| < 2w.

Put ag := 0. Assume we have C; and oy, and that C; has been inferred
in 7w by:
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Dy U{z;} Dy U{~az;}
Ct(: DU D2)

Let I' O supp(ay) be a minimal safe set with some row containing j. It
exists, by Lemma 2.8.3, as long as |supp(cy)| +1 < 7/2; as |supp(ay)| < 2w
this inequality follows if w < r/4.

By Lemma 2.8.5 there is a partial safe solution p’ D «y. Take for ayq C
p' a minimal safe assignment obeying conditions 2. Finally, take for Cyiq
the clause among Dy U {z;}, Dy U {—z;} made false by a; .

Now note that conditions on C, and a, lead to a contradiction. C,
is an initial clause and so a, makes true its negation which is one of the
conjunctions Aj¢ x? in 7p. In particular, ®jcse; = 1 — b;. But that
violates the assumption that «, satisfies all equations of A -z = b evaluated
by ae.

We have constructed the sequence under the assumption that w < r/4.
Hence w > r/4.

q.e.d.

Corollary 2.8.7 ([29]) Assume that A is an ¢-sparse m X n matriz that is
an (r,3/4)-expander. Let b ¢ Rng(A). Then every R-proof of m,(A) must
r/a—0)2
have the size at least > ZQ((—/4n )
In particular, for every § > 0 there is an £ > 1 such that for all sufficiently
large n there exists an (-sparse n? x n-matriz A such that 7,(A) requires R-

proofs of size at least > 20(n'™?)

Proof :

Apply Theorem 2.8.2 for 6/2, to get £ > 1 and an ¢-sparse n° X n-matrix
A which is an (n'=9/2,3/4)-expander. By Theorem 2.8.6 every R-proof of
75(A) must have the width at least Q(n!~9/2).

The width-size relation given in Theorem 2.7.5 it follows that the size of

any such proof must be at least exp(Q(W)), as ¢ bounds the width

(=)

2

of the initial clauses. This is 29

q.e.d.
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2.9 Exercises

Exercise 2.9.1 Limited extension is a way how to translate formulas into
DNF formulas and preserving (un)satisfiability. It is analogous to the reduc-
tion of the general satisfiability problem to the satisfiability of sets of clauses.
Let A be any formula built from atoms p1,...,pn. Introduce for each subfor-
mula B of A (including A itself) a new atom qp. Let Ext(A) of all clauses
of the form:

1. {qB,pi}, {—qB,pi}, if B is atom p;.

2. {gB.qc}, {—~gB,—~qc} if B=-C.

8. {—aB,49c,,90,}s 148,90, },{aB, 9y} if B=C1V Cs.
4- {~aB.q9c. }s {aB: ac.}s {aB—qc,, ~qc,} if B=CiACy

Compute the total length of all formulas in Ext(A) and prove that Ext(A)U
{qa} is satisfiable if and only if A is satisfiable.

Exercise 2.9.2 Analyze the argument in Theorem 2.1.1, and give an upper
bound on the number of clauses in a resolution refutation of any unsatisfiable
set of k clauses formed from literals build from n atoms.

Exercise 2.9.3 Let an d-decision tree be a decision tree branching according
to the truth value of a clause. Transform the proof of Theorem 2.2.4 into a
construction of an I-decision tree (from w) and a lower bound to the height
of such trees solving the search problem associated with PHP,,.

Exercise 2.9.4 Show that Lemma 2.2.1 can be reversed: Turning a decision
tree upside down gives, essentially, an R*-refutation of C.

Show that a general, non-tree-like, R-refutation of C yields a branching
program solving the search problem, but not vice versa.

Prove the following theorem, showing that even in the case of non-tree-
like proofs we can get, under special conditions, a correspondence between
branching programs and R-proofs.

Theorem 2.9.5 ([34]) The minimal number of clauses in a regular reso-
lution refutation of C, (where “regular“ means that on every path through the
refutation every atom is resolved at most once) equals to the minimal num-
ber of nodes in a read-once branching program solving the search problem
associated with C (where “read-once “ means that on every path through the
branching program every atom occurs at most once as a label of an node).
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A proof can be found in [25, Chpt.4] but let me give a sketch. For the
hard direction (from a program to a proof) associate with every node v in
the read-once program a clause Cy having the property that every assignment
determining a path going through v falsifies Cy. If v is a leaf then C, is the
clause from C labelling v in the program. Assume that the node v is labelled
by atom p; and the edge (v,v1) is labelled by 1, and (v,vy) by 0.

We claim that C,, does not contain p; and C,, does not contain —p;.
This is because o is read-once and so no path reaching v (and at least one
path does reach v as s is minimal possible) determines the value of p;. Hence
we could prolong such path by giving to p; value 1 if p; € C,, or value 0 if
—p; € Cy,. This new path would satisfy Cy, or C,, respectively, contradicting
the assumption above.

It follows that either one of the clauses C,,, C,, contains none of p;, —p;,
or that C,, contains p; but not —p; and C,, contains —p; but nor p;. In the
former case define C, to be the clause containing none of p;, —p;, and in the
latter case define C, to be the resolution of clauses C,, and Cy, w.r.t. atom
pi-

It is easy to verify (using an argument similar to the one above) that no
path through v satisfies C,.

The root of o has to be assigned the empty clause as all paths go through
it. Hence the constructed object is a regular resolution refutation.

Exercise 2.9.6 Prove the Craig interpolation theorem for propositional logic,
as well as its monotone version (Lyndon theorem,).

Exercise 2.9.7 Given a circuit C of size s formalize the statement that C
has a unique computation on an input p. The formalization is a family of
implications (one for each output bit). Show that each of these implications
has a resolution proof of size O(s).

Exercise 2.9.8 Prove Theorem 2.4.1.

Exercise 2.9.9 Show that in order for Theorem 2.4.3 to hold we cannot
replace the consistency condition in Definition 2.4.2 by a simpler one: For
all u,v the label of the leaf in Pg,v 15 valid for u,v.

Exercise 2.9.10 Define a linear equational calculus (LEC) to be a proof
system working with linear equations

a1+ ... +apr, =0b
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over a finite field. The rules allow to add two equations and to multiply
an equation by an element of the field. An LEC-refutation of equations
Ey,....E, is an LEC-derivation of the equation 0 = 1 from Ey,..., Epy,.
Let the 7size” of an equation be the number of non-zero coefficients. LEC' is
sound and complete (by Gauss elimination), if by completeness we mean that
every system of equations unsolvable in F' is refutable. When completeness is
considered only w.r.t. the systems with no 0-1 solution then LEC is complete
only for the two-element field Fo. But not even all Boolean functions can
be represented by a congunction of linear equations and so LEC cannot be
considered, even for Fao, as a full propositional proof system in the sense of
[14].

Prove all these facts and prove the effective interpolation for LEC.

Exercise 2.9.11 Prove a bound to the interpolantion for CP. Express the
bound in terms of n and M, a bound to the absolute values of coefficients
occuring in a derivation.



Chapter 3

Frege systems and stronger
systems

In this chapter we depart from resolution towards particular stronger systems
(general systems will be studied in Chapter ??). The most important among
them are Frege systems F' and Extended Frege systems EF. We shall also
discuss in this chapter the Substitution Frege systems SF and the Quantified
propositional calculus G.

3.1 Frege systems

The notion of a Frege system formalizes the usual calculus for propositional
logic everybody learns at school. It has a language complete for propositional
logic and is based on finitely many axiom schemes (like AV—A4) and inference
rules (like modus ponens A, A — B / B).

Definition 3.1.1 (Cook-Reckhow[14]) Let L be any fized finite language
complete for propositional logic (that is, all boolean functions can be defined
in L).

A Frege rule (tacitly in L) is a k + 1-tuple of formulas Ag,..., A in
atoms p1,...,pn written as:

such that any truth assignment o : {p1,...,pp} — {0, 1} satisfying all for-
mulas Ay, ..., Ar_1 satisfies also Ay.

47
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A Frege rule in which k = 0 is called a Frege axiom scheme.

An instance of the rule is obtained by a simultaneous substitution of
arbitrary formulas By for all p;.

The condition posed on a Frege rule in the definition is the soudness of
the rule.

Definition 3.1.2 (Cook-Reckhow[14]) Let F be a finite collection of Frege
rules.

1. A Frege proof (an F-proof briefly) of formula & from formulasny, ...,y
is a finite sequence 01, ...,0k of formulas such that 0 = &, and such
that every 0; is either one of ny, ..., 1y, oris inferred from some earlier
0;’s (j < i) by a rule of F.

2. F is implicationally complete if and only if any & can be F-proved
from any set {ny,...,nu} if every truth assignment satisfying all n;’s
satisfies also & (i.e. & is a semantical consequence of 1;’s).

3. F is a Frege proof system if and only if it is implicationally complete.

One of the main features of Frege system is the robustness of the defini-
tion. We may vary the language, the proof format (tree-like or sequence-like),
and even pass to natural deduction or sequent calculus formalizations, and
we always get a polynomially-equivalent (in the sense of polynomial simula-
tion) proof system. I shall not discuss the p-equivalence to sequent calculus
or natural deduction as we do not discuss the formalizations much in this
chapter (see Exercise 3.5.1 or [14]). The first two statements made above
are the content of the following two theorems.

In the next theorem we shall confine ourselves to Frege systems whose
language contains the DeMorgan language. The reason is that we have
defined in Definition 1.0.1 proof systems using the set TAUT of DeMorgan
tautologies. If the language of a system does not contain the DeMorgan
language we would have to specify a particular translation of DeMorgan
tautologies into the language and this is just obscures things.

Theorem 3.1.3 (Reckhow [41]) Assume that F and F' are two Frege sys-
tems and that the languages of both contain the DeMorgan language.

Then F and F' polynomially simulates each other.

Moreover, the p-simulations can be choosen so that both the number of
steps and the size of proofs increase at most proportionally and the depth
increases by a constant.
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The only full published proof of the theorem I am aware of is in [25,
Chpt.4]. I shall not repeat the proof here but I shall outline the main diffi-
culty and the main idea how to overcome it.

Obviously it is enough to prove that any Frege system F' in the DeMorgan
language p-simulates any Frege system F’ in a language L containing the
DeMorgan language. If L were in fact just the DeMorgan langauge then the
p-simulation could be done easily. In any F'-rule 7yq,...,n; the formula 7
semantically follows from 7, ..., nr_1. By the implicational completeness of
F there is an F-proof w of n from 7ng,...,nr_1. Thus whenever we would
see an application of the rule in an F'-proof we could simulate it in F' by
(an instance of) proof 7. It is easy to computate that this increases the size
as well as the number of steps only proportionally.

When the langueg of F”’ is bigger than the DeMorgan language the nat-
ural approach would be to first represent all connectives in L by DeMor-
gan formulas and then proceed as before. However, a difficulty may arise.
Assume that L contains the equivalence connective =. In the DeMorgan
language we may define p = g by (p A q) V (=p A —~q). If we translate inthis
way the formula

p=P2=@3s=... Pa—1=pn)--.)

we obtain a formula of size 2(2").

The way how to overcome this difficulty is the following. Note that if
the nesting of =’s in a formula is k then the translation will have size O(2F).
Hence if we manage first to modify the original F’'-proof (that we attempt
to p-simulate) so that every formula in it has only logarithmic depth then
the translation will work. In fact, this can be done. See [25, Lemma 4.4.14]
for a detailed proof.

Definition 3.1.4 A Frege proof 01,...,0; is tree-like if and only if every
step 0; is a hypothesis of at most one inference in the proof.
Frege proof system F using only tree-like proofs is denoted F*.

Theorem 3.1.5 (Krajicek[24]) F* p-simulates F. In fact, any F-proof
of size m, with k steps, of depth d can be transformed into a tree-like proof
of the same formula that has size O(mklog(k)), O(klog(k)) steps and the
depth d + O(1).

Proof :
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Let 61,...,60, be an F-proof of 7. Derive consecutively (in a tree-like
fashion) formulas ¢; := 61 A ... A0; (brackets balancing the conjunction into
a binary tree of depth at most O(log(7))).

We claim that ¢;;; has a tree-like proof from ¢; with a O(i - log(i))
number of steps, size O(i - |¢;]) and of the depth d + O(1). Obviously, the
following is sufficient:

Claim For j <4, any 0; can be proved from ¢; by a tree-like proof with
O(i - log(7)) steps, size O(log(i) - |p;|) and depth dp(¢p;) + O(1).

q.e.d.

No strong lower bounds are known for Frege systems. The following is
the best one.

Theorem 3.1.6 (Krajicek[23]) Any F-proof of =—...1, the negation oc-
curing 2n-times, must have the size at least Q(n?) (the constant implicit in
Q depends on the particular system F).

This theorem is a simple corollary of a general statement about the struc-
ture of proofs, even in predicate logic, from [22]. We state it only for Frege
systems.

Theorem 3.1.7 (Krajicek[22]) For every Frege system F there is a con-
stant ¢ > 0 such that the following holds.

If A has an F-proof # = By, ..., By with k steps there is another F-proof
Ci,...,Ck such that:

1. The logical depth of formulas C; is bounded by c- k, all i < k.

2. There is a substitution o of formulas for atoms in C;’s such that:
o(Ci) = B;

alli < k.

3.2 Substitution Frege systems

Instance of Frege rules are obtained by substitutions but the substitution it-
self is not a valid inference rule in Frege systems. Substitution Frege systems
extend Frege systems by allowing the rule.
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Definition 3.2.1 The substitution rule allows to substitute simultaneously
formulas for atoms:

A(p1,...,pn)

A(By,...,By)’

A Frege system F' augmented by the substitution rule is denoted SF'.

We can eliminate an application of the substitution rule by repeating the
part of the proof before the inference, with B;’s substituted everywhere for
p;s. In such a transformation these repetitions can be nested and the proof
may grow exponentially.

In fact, this exponential increase in the number of steps is necessary. This
fact is due to Tseitin-Cubarjan [46]. A simpler example than their original
one is provided by the following statement.

Lemma 3.2.2 ([23]) Let F' and SF be a frege and a Substitution Frege
systems respectively.

The formula ~(2")(1) has an SF-proof with O(n) steps but every F-proof
requires 2(2") steps.

Proof :
Define A,, := —~(2")(1) with =(¥) denoting k occurrences of —. Let Bj =
k
p— (=) (p).
SF-derives By from By 1 ina constant number of steps utilizing the
substitution rule: Substitute (—|)2k_1(p) for p in Bx_1 and apply modus

ponens. By has a constant size proof, so every Bj has an SF-proof with
O(k) steps.

For the second part of the statement assume that A, has an F-proof
with k steps. By Theorem 3.1.7 there is an F-proof of some formula B such
that, in particular, the logical depth of B is O(k) and A,, is a substitution
instance of B.

As B is a tautology, necessarily B = A,,. Hence Q(2") < k.

q.e.d.

Note that this statement does not exponentially separate F' from SF'; the
point is that the speed-up it achieved on a formula that has itself exponential
size. In fact, no lower bounds at all are known for SF'.
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3.3 Extended Frege systems

There is another way how to augment Frege systems to apparently stronger
proof systems. The idea is to allow the proof system to abbreviate (possibly
large) formulas by new atoms.

Definition 3.3.1 (Cook-Reckhow[14]) Let F' be a Frege system. An ex-
tended Frege proof is a sequence of formulas Ay, ..., Ay such that every A;
is either obtained from some previous A;j’s by an F- rule or has the form:

g=1B
with the following conditions satisfied:
1. Atom q does appear neither in B, nor in any Aj for j <.
2. Atom q does not appear in Aj.

(If = is not in the language of F we use any fized formula defining it.) A
formula of this form is called an extension axiom, g is called an extension
atom.

An extended Frege system EF is the proof system whose proofs are ex-
tended Frege proofs.

The possibility to introduce extension axiom in an extended Frege proof
is sometimes called the ”Extension rule” although it is not a rule in the
earlier sense.

Similarly as with the Substitution rule we can eliminate the extension
rule by consecutively replacing all extension atoms by their defining for-
mulas. However, extension atoms may occur in defining formulas of other
extension atoms (introduced later in the proof) and this nesting can cause
an exponential increase in size in this transformation. But if we have the
substitution rule this works well.

Lemma 3.3.2 A Substitution Frege system SF polynomially simulates any
Eztended Frege system EF.

Proof :

Let ¢1 = B, ...,q = B, be the extension axioms introduced in an FF-
proof in this order. In fact, we may clearly assume that these r extension
axioms form the first r steps of the proof.
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Now transform the original proof with steps A’s into a new proof with
steps
=B — (¢-1=B1—(..(@=8By)...) > A.

This transformation uses only Frege rules.

Next apply to the last formula of this form the substitution rule by
substituting B, for ¢, then B,_; for g,_; etc.. This eliminates (applying
modus ponens with formulas of the form C' = C) the part

qrEBr—)(qr_lEBr_l—)(...(qlEBl)...)—)...

It is easy to compute that the size of the original proof increases at most
quadratically in this process.

q.e.d.

Considerably more difficult is the opposite simulation. We shall give
its proof in Chapter ?? using bounded arithmetic. A direct combinatorial
p-simulation can be found in [31] or in [25, Sec.4.5].

Theorem 3.3.3 ([19, 31]) Any extended Frege system EF polynomially
simulates any Substitution Frege system SF.

The following four facts summarize further elementary but important
properties of Extended frege systems (see Exercises 3.5):

1. Extended Frege systems satisfy the analogue of Reckhow’s Theorem
3.1.3.

2. There is no difference in measuring the complexity of FF-proofs by the
size or by the number of steps: Any formula A having an EF-proof
with £ steps has also an EF-proof of size O(k + |4]).

3. The minimal numbers of steps in a F-proof and in an EF-proof of a
formula are proportional to each other.

4. Allowing the extension rule (see Exercise 3.5.4 for a precise formula-
tion) in resolution creates a proof system p-equivalent to EF.

5. E'F is p-equivalent to ”Frege systems operating with circuits”.
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I left to the end of the section the sad issue of lower bouds for EF"
No lower bounds, even super-linear, are known. Cook and Reckhow [14]
originally suggested that the pigeonhole principle PH P,, (see Chapter 1) may
separate EF from F. However, this is not true, the principle has polynomial
size proofs in both EF and F. The upper bound in EF is simple and the
proof just formalizes a straightforward proof by induction on n. The upper
bound in F' is much harder and requires to show that Frege system ”can
count”. We give here only the proof of the first upper bound; the proof of
the second will be given in Chapter 7?7 via bounded arithmetic.

Theorem 3.3.4 (Cook-Reckhow[14]) The pigeonhole principle PH P,, has
an EF-proof of size polynomial in n.

Proof :
Let p;; be the atoms of PHP,; i € [n] and j € [n — 1]. Define, using the
extension rule, new atoms gy, for u € [n — 1] and v € [n — 2] by:

Quv = Puv V [Pno /\pu(n—l)]

It is easy to see that there is a size nO0) EF-derivation of -PHP,_1 ex-
pressed in atoms gy, from -~PHP, (expressed in atoms p;;).

Iterating this proces deduces —PH P, from —PH F,, by p-size EF-proof.
But =PH P, has a refutation (of a constant size).

q.e.d.

Theorem 3.3.5 (Buss[10]) The pigeonhole principle PH P,, has an F-proof
of size polynomial in n.

The issue of which tautologies form plausible candidates as being hard
for EF will be discussed in Chapter ?? (see also [25, 26, 29]).

3.4 Quantified propositional calculus

It is most convenient to define the quantified propositional logic G over
Gentzen’s sequent calculus LK (we consider only its propositional fragment
here).

The lines in a sequent calculus proof are not formulas but sequents, an
ordered pair of two finite (possibly empty) sequences of formulas written as:

Al,...,Au—>B1,...,Bu.
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Formulas A,..., A, form the antecedent and formulas Bi, ..., B, form the
succedent of the sequent. Letters I', A, II, ... will denote finite sequences of
formulas, called also cedents.

The truth definition is extended from formulas to sequents as follows: A
truth assignment « to the atoms in a sequent I' — A satisfies the sequent
if and only if « either satisfies a formula from the succedent A or it satisfies
the negation of a formula from the antecedent I'.

Note that, in particular, the empty sequent ) — () (written also simply
—) cannot be satisfied. The empty sequent plays in LK the role of the
empty clause in R.

Definition 3.4.1 An LK -proof is a sequence of sequents in which every
sequent is either an initial sequent, a sequent having one of the forms:

p—p, 00—, — 1

with p an atom, or is derived from previous sequents in the proof by one of
the following rules:

1. weakening rules

lftﬂ d 'htﬂ
AT A M BB TTUA

2. exchange rules

Fl,A,B,FQ—)A F—)Al,A,B,AQ

lef igh
B AT, A M e B AA,
3. contraction rules
Fl,A,A,F2—>A . F—)Al,A,A,AQ
left d ht
LA, — A M TR TN AN,
4. = : introduction rules
I —AA ] Al — A
left At —a @ et Xy
5. A : introduction rules
left ATl — A p ATl — A
CANBT A M BAAT A
) r—AA I'—AB
and right

r—AAAB
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6. V : introduction rules
Al — A B, I' — A

left d
© AVB,T — A a
rieht r—AA d r—AA
et r A ave "™ T A Bva

7. cut rule
r—AA Al —A

I — A

Every rule except the cut rule introduces a new formula; such a formula
is called the principal formula of the rule and theformulas from which it is
inferred are called the minor formulas of the rule. All other formulas in the
rule are called the side formulas.

For a formula in A or I in the lower sequent of a rule, the same occur-
rence in the upper sequent(s) is called the immediate ancestor of the formula.
The immediate ancestor(s) of a principal formula of a rule are the minor for-
mulas of the rule.

An ancestor of a formula is any formula obtained by repeating the im-
mediate ancestor step.

The following is well-known (and left as an Exercise 3.5.7).

Theorem 3.4.2 The system LK s sound and complete. That is, all prov-
able sequents are satisfied by all truth assignments and whenever a sequent
' — A is satisfied by all truth assignments then it has an LK -proof. More-
over, this proof does not need to use the cut-rule.

Quantified propositional calculus is formed from the sequent calculus LK
by introduction of propositional quantifiers: VzA(p,z) (meaning A(p,0) A
A(p, 1), and 3zA(p, ) (meaning A(p,0) V A(p, 1).

Of course, any quantified propositional formula can be equivalently writ-
ten without the quantifiers. However, the quantifier-free formula may be
exponentially longer. For example, \/z A(€) with € ranging over {0,1}" has
size (2(2"|A]) but an equivalent quantified formula 3z; ... 3z, A(T) has size
only O(n) + |A|.

Definition 3.4.3 Quantified propositional calculus G extends LK by allow-
ing quantified propositional formulas in sequents and by augmenting LK by
the following four quantifier rules:
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1. V:introduction

A(B),I — A . I' — A Ap)
left d ht
© VzA(z), I — A ane Tght p AVzA(z)
2. F:iintroduction
A(p),I' — A I — AA(B
left (p), and right  A(B)

dzA(z), I — A I' — A,JzA(z)

where B is any formula. The atom p must not occur in the lower sequents
of V.right and 3:left.

Proof system G p-simulates SF' and is presumably strictly stronger. But
we do not know how to prove this.

Lemma 3.4.4 G p-simulates SF.

Proof :

The S F-proof is transformed into a G-proof line by line. A line consisting
of a formula A is represented by the sequent — A.

We shall only show how G simulates an application of the substitution

rule:
A(pla s apn)

A(Bla' o 7Bn)
the rest being obvious (cf. Exercise 3.5.8).
To — 6(p1,...,pn) apply n-times V:right to derive

— V.. Ve, Alzy, ..., xy) .

The sequent
A(Bl,...,Bn) — A(Bl,,Bn)

has a short G -proof. Hence
Voy.. Ve, Az, ..., zn) — A(By,...,Bp)

follows by n applications of V:left. Then infer, via cut-rule, the wanted

sequent:
— A(Bl, ,Bn) .

q.e.d.

The proof system G can be stratified into subsystems G7,G1,G5, G, . ..
and interesting relations between the subsystems can be proved. This will
be done in Chapter ?? using bounded arithmetic.
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3.5 Exercises
The next five exercises ask for proofs of five statements, all from [14].

Exercise 3.5.1 Prove that F and LK (Definition 3.4.1) p-simulate each
other.

Exercise 3.5.2 Prove the analogue of Theorem 3.1.3 for Extended Frege
systems.

Exercise 3.5.3 Prove that any formula A having an EF-proof with k steps
has also an EF-proof of size O(k + |A|).

Exercise 3.5.4 Define Extended resolution ER as the resolution proof sys-
tem R augmented by all clauses from Ext(p), for all formulas ¢, as extra
initial clauses (cf. Exercise 2.9.1).

Prove that ER and EF polynomially simulate each other.

Exercise 3.5.5 Prove that the minimal numbers of steps in a F-proof and
in an EF-proof of a formula are proportional to each other. Hence measuring
the size of EF-proofs is the same as measiring the number of steps in F'-

proofs.

Exercise 3.5.6 Define a notion of "a Frege system operating with circuits”
and prove thatit is p-equivalent with EF.

Circuit Frege systems are defined in [?]. Somewhat different formalization
is in [29].

Exercise 3.5.7 Prove that the sequent calculus defined in 3.4.1 is sound
and complete (even without the cut-rule).

Exercise 3.5.8 Complete the details in the proof of Lemma 3.4.4.



Chapter 4

Constant depth Frege
systems

Constant depth Frege systems are natural subsystems of Frege systems. Res-
olution can be seen as depth 0 or 1 (depending on the formulation) Frege
system. The interest in these systems is two-fold. First, these are the most
interesting and, essentially, the strongest proof systems for which we can
prove strog lower bounds. Secondly, formulas (®), produced in the trans-
lation of a first-order principle ® (cf. Chapter 1) have the depth bounded
by a constant. In fact, proofs in some theories of bounded arithmetic of
such ® yield a family of constant-depth Frege proofs for (®),,’s (cf.Chapter
??). Thus lower bounds for constant depth Frege proofs imply independence
results for such theories.

4.1 Definition of the systems and the PHP lower
bound

We shall consider a Frege system F' in the language 0, 1, = and V. The
depth of a formula is the maximum number of blocks of disjunctions and of
negations when going from the formula to atomic subformulas. The inductive
definition is as follows.

Definition 4.1.1 The depth of a formula A, denoted dp(A), is defined by
the following conditions:

1. dp(0) = dp(1) = dp(p) = 0, for any atom p.

99
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2. dp(—A) :=dp(A), if A starts with =, and dp(—=A) := 1+ dp(A) other-

wise.
3.
max(dp(A), dp(B)) if both A and B start with V
dp(AVB) = 1 + max(dp(A),dp(B)) if both A and B start with —
P | max(1+dp(A),dp(B)) if B starts with V and B does

max(dp(A),1 +dp(B)) if A starts with V and B does

A subsystem of F using only formulas of depth at most d is denoted Fj.

Recall the pigeonhole principle formulas PHP, from Chapter 1. We
shall consider it in the form saying that a relation cannot be a graph of a
bijection between n + 1 and n. It will be convenient to consider instead
of proofs of PH P, refutations of the set =P H P, of the following formulas
where 4’s ranger over [n + 1] while j’s range over [n]:

* \;pij, one for each i.
e \/; pij, one for each j.
® —p;,; V —p;,j, one for each triple 41 <y and j.

® i, V 7pij,, one for each triple 4 and j; < jo.

We are ready to state a major lower bound in proof complexity, perhaps
the most important of all. We give the proof of the theorem at the end of
Section 4.4 after developing some machinery.

Theorem 4.1.2 ([33, 38]) Letd > 2 and 0 < 6 < 5% be arbitrary. Then
for sufficiently large n > 1, in any Fy-refutation of ~PH P,, must occur at
least 2% different formulas as subformulas. In particular, any such proof
must have the size at least 2"°.

It was M. Ajtai[2] who first proved that there are no polynomial size Fy
proofs PH P,,. The first exponential lower bound for Fy’s have been actually
proved for different formulas in Krajicek [24] (cf. Section ??). Subsequently
Ajtai’s lower bound have been strenghten to the exponential one by inde-
pendent proofs in [33] and [38].

not
not
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4.2 PH P-decision trees

Let ¢(z1,...,zy,) be a propositional formula. Its truth value on a given truth
assignment can be determined by a decision tree (cf. Section 2.2). A decision
tree branches at a node according to the truth value of a variable. Hence
as we travel in the tree from the root to a leaf we collect bigger and bigger
information about the assignment until the truth value of ¢ is determined.
In principle the depth of such a tree must be n, the number of all variables
(cf.Exercise 4.8.1).

We want to somehow simulate a non-existing truth assignment satisfying
- PHP,, and we will do it using a modification of decision trees. These new
trees will not have labels attached to leaves.

Definition 4.2.1 Let D C [n+ 1] and R C [n]. A PHP-tree over D, R is
inductively defined as follows:

1. A single node, a root, is a PH P-tree over any D, R.

2. For every i € D the following is a PHP-tree over D,R: The tree
branches at the root according to all 3 € R, and at a son of the root at
the branch j continues by a PHP-tree over D\ {i}, R\ {j}.

3. For every j € R the following is a PHP-tree over D,R: The tree
branches at the root according to all 1 € D, and at a son of the root at
the branch i continues by a PH P-tree over D\ {i},R\ {j}.

A PHP-tree is a PHP-tree over [n+1],[n]. (We shall often say just "a
tree” instead of "a PHP-tree”.) The height of a tree T is denoted ||T||. A
tree of the height < k is called also a k-tree.

We think of the tree as branching according to queries f(i) =7 and
fEV() =2, where f is a name for a (non-existing) bijection between [n+ 1]
and [n]. Every path in a tree determines a partial 1-to-1 map between [n+ 1]
and [n]; we identify the path with the partial map and the tree with the set
of all such maps corresponding to all paths.

Counsider the simplest example; a tree of depth 1 branching according to
all answers to f(i) =7. A formula V/; p;;, an axiom of =PH P,, is intuitively
true at every leaf of the tree because at any leaf one p;; is made true. On
the other hand, if we think of f as everywhere defined (and, in particular, as
f (@) being defined) then the tree describes all possibilities. Hence the formula
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V pij is "true” in the sense that it holds in all possibilities described by the
tree.

Now consider formula —p;; V =p;; for j # k, another axiom of -PHP,.
A suitable tree to use for the formula is a tree branching first according to
fE1(4) =7 and then, at a branch corresponding to any u € [n+1], according
to f(=V(k) =7 with answers from [n + 1] \ {u}. At every path through the
tree either f(i) # j or f(i) # k and hence the formula is satisfied. As
before, thinking of f as an injective map that is onto, the branching of the
tree describes all possibilities. Hence again the formula is ”true” in the sense
of being true in all situations described by a tree.

Our preliminary strategy is thus the following. We assign to all formulas
a tree and a subset of (the set of paths in) the tree where the formula is true.

A difficulty arises: As there is no bijection f, no tree can decide the truth
of all atoms. This implies that formulas may have different trees attached to
them and we need a way how to compare them. Explaining more informally
would rather obfuscate things so we launch into a formal treatment.

Definition 4.2.2 1. M is the set of all partial bijections between [n + 1]
and [n]. Maps from M are denoted «,f3,7,.... The size of o is the
size of its domain and it is denoted |a.

2. « and  are incompatible, o L B in symbols, iff « U S ¢ M. The fact
that o and 8 are compatible will be denoted a|S.

3. Let H C M and let T be a tree (tacitly a PHP-tree). Tree T refines
set H, H <T in symbols, iff for all o € T either VB € H,a L B or
Jye H,yCa.

4. ForT, S trees, T xS :={aUpB |aecT,p € S}. It is called a common
refinement of T and S.

5. For HC M and S a tree, the projection of H on S is the set S(H) :=
{a eS| Iye HyCa}.

We shall often use the definition of refinment in the following form: H <T
iff whenever an « € T is compatible with some § € H then it contains some
v€E M.

Throughtout this section letters H, K, ... will denote subsets of M while
letters S and T are reserved for trees. As stated earlier, Greek letters «, 3, . . .
denote elements of M.
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Lemma 4.2.3 If |6| < n —||S|| then Iy € S,~||d.

Proof :

Walk through the tree S answering queries according to § whenever it
applies, and arbitrarily but consistently with ¢ otherwise. The assumption
that |6] < n — ||S]| implies that we do not run into a contradiction before
reaching a leaf of S. Map +y is the map determined by the particular path.

q.e.d.
Lemma 4.2.4 Assume ||S||+ ||T|| <n and H<1S<T. Then also H<T.

Proof :

Assume § € T is compatible with some o« € H. We want to show that §
contains some element of H.

By Lemma 4.2.3 39" € S,+'||0. By this, and by S<T, 3y € S,y C 4. Such
7 is necessarily compatible with « and hence, by H < S, 3¢/ € H,a' C +.
Hence o' C § too.

q.e.d.

Lemma 4.2.5 Assume ||S|| + ||T|| < n. Then S x T is a PHP-tree such
that ||S x T|| < ||S|| + ||T]|, and such that S <S8 x T and also T «S x T.

Proof :

The bound to the height of S x T is obvious. We prove that S<1S x T,
the second statement is proved identically.

Assume that U~y € S x T, with § € S and v € T, is compatible with
some « € S. Then necessarily a = 3, i.e. Uy contains an element of S.

q.e.d.

Lemma 4.2.6 Assume ||S|| + ||T|| <n and H<1S<T. Then

2. T(S)=T.

3. S(H)=S iff T(H)=T.
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Proof :

The inclusion T'(S(H)) C T(H) follows from the definition. For the
opposite inclusion assume that 8 € T'(H) because 5 D « for some v € H.
Using Lemma 4.2.3 S <« T implies that do € S,a € . Such g is then
compatible with v and hence, as H <« S, 3y € H,v¥ C a. So we have
v CaCpfandsof € T(S(H)). This proves part 1.

Part 2. follows from part 1. by taking H := {(}. For part 3. assume
first S(H) = S. By parts 2. and 1.: T(S) =T, and T(S(H)) = T(H). So
T = T(H).

Finally, assume that T(H) = T. Let « € S. By Lemma 4.2.3 there
is f € T compatible with c. By the assumption also f € T(H) and so
dy € H,v C . But such v is compatible with a and hence, by H < S,
Iy € H,v' Ca. Soa e S(H) as we wanted to show.

q.e.d.
Lemma 4.2.7 1. S(U; H;) =U; S(H)).
2. If Hy,H, C T and HyN Hy, = 0 then T(Hy) N T(Hy) = 0.
3. If ST, |IS||+||T)| <nand HC S then T(S\ H) =T\ T(H).

Proof :
The first two propositions follow directly from definitions. By Lemma
4.2.6 T(S) =T, hence the last proposition follows from the first two.

q.e.d.

4.3 k-evaluations

We continue with some fixed (and large enough) n > 1 and we shall also fix
a parameter 1 < k < n. Let I" be a set of formulas in the atoms of PHP,
that is closed under subformulas.

Definition 4.3.1 A k-evaluation of I' is a map
pel’ — Hy C S,

assigning to a formula ¢ € I' a k-tree Sy and its subset Hy, such that the
following four conditions are satisfied:
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1. Sy := Sy := {0}, i.e. the tree consisting of the root only. Further
Ho = (Z) and H1 = Sl.

2. Sp;; is the depth 2 tree that first branches according to f(i) =7 and
then according to f(=1(5) =2. Hy,. :={(i,7)}, the only path in Sy, of
length 1.

3. Sy =8y and H4 := Sy \ Hy, whenever ~¢ € I'.

4. Assume ¢ = \/; ¢p; is in I (where the big disjunction abbreviates arbi-
trarily bracketet binary disjunctions). Then

UH¢i < S¢, and H¢, = S¢,(U H¢i)
i i

If Hy = Sy we say that ¢ is "true” w.r.t. to the k-evaluation, (or simply
that it is "true” if the evaluation is fized).

Lemma 4.3.2 Assume that (H,S) is a k-evaluation of all formulas occuring
as subsformulas in an axiom of ~PHP,, and that k < n — 2.
Then the axiom is true” with respect to the evauation.

Proof :

Consider an axiom of the form ¢ = V/; p;; for some fixed i € [n +1]. By
Definition 4.3.1 Hp,, = {(4,5)} and Sy must refine the set H = {(i,7) | j €
[n]}. Note that H itself is a 1-tree and that H(H) = H.

Hence T'(H) = T holds also in the common refinment of H and Sy4 by
Lemma, 4.2.6, and by the same lemma again also Sy = Sy(H) = Hy.

We leave the other axioms to Exercise 4.8.2.

q.e.d.

Now we prove that Frege rules are sound even for the notion of ”true”
w.r.t. a k-evaluation.

Lemma 4.3.3 There exists a constant cp > 1 such that if (H,S) is k-
evaluation of all formulas occuring as subformulas in an instance of an F'-
rule, k < n/cp, and all hypotheses of the instance of the rule are “true”
w.r.t. the evaluation then also the conclusion of the rule is "true”.

The constant cg depends only on the particular rules in F.
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Proof :
Consider an F'-rule of the form

Al(qla"'aqt)a 7As(q17"'7qt)
As-l—l(Qla s 7qt)

Let r be a number bigger than the number of subformulas in the rule.
Assume that (H,S) is a k-evaluation of formulas occuring in some in-
stance

A(By,...,By), ,As(B1,...,By)
Asi1(Bi,...,By)
of the rule, and such that £ < n/r. We also assume that all

A1(By,...,By),...,Ag(By,...,By)
are "true” with respect to the evaluation, i.e.
HAi(Bla---aBt) = SAi(Bla---aBt)’ forl1<i<s.

Let I" be all formulas occuring in the instance, and [y its subset consisting
of formulas C of the form A'(B,...,B;) where A’ is a subformula of some
Ai, 1< s+ 1.

By the choice of r, |I'y| < r, and so there is a common refinement 7" of
all S¢, and ||T|| < “1n (by Lemma 4.2.5). In particular, ||T|| + ||Sc|| < n
for all C € I'y.

Claim: The map defined by C € I'g — T(H¢) is a map of formulas in I'y
into the Boolean algebra of subsetes of T such that:

(a) The negation corresponds to the complement: T(H-¢) = T\T(Hc¢).

(b) The disjunction correspinds to the union: T(Hcyp) = T(He) U
T(Hp).

(¢) All hypotheses C = A;(B1,...,By), i < s, of the instance of the rule
get the value 1 in the Boolean algebra: T(Ho) =T.

For part (a): If -C € I'y, H.c = Sc \ He, and hence T(H-¢) =T\ T(Hc¢)
by Lemma 4.2.7.

For part (b) let C vV D € I'y. We need to consider cases distinguished
by the form of C' and D; we shall treat only the hardest case when both C
and D are themselves disjunctions. Assume C' =/, C, and D =\/, D,.. By
Lemma 4.2.7:

Hovp = Sevo(J He,) U Sevp (| Hp,)
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hence by Lemmas 4.2.6 and 4.2.7:

T(Hovp) = T(Sovp(J He,)) UT(Sovp(|J Hp,)) =

T(JHe,)VT(JHp,) =

T(Sc(JHe,)UT(Sp(JHp,)) =

T(Hc) U T(HD) .
Part (c) follows by Lemma, 4.2.6:

T(H ) =TExm) =T

for 7 < s.
The lemma follows noting that any Frege rule is valid in any Boolean
algebra (cf.Exercise 4.8.3).

q.e.d.

Our strategy for proving Theorem 4.1.2 is now clear. Having an al-
leged Fj-refutation of ~PHP, we take a k-evaluation (with small enough
k) of the set of all formulas occuring in the refutation. This would lead
to contradiction by Lemmas 4.3.2 and 4.3.3. Hence if we manage to con-
struct a k-evaluation of any small set of formulas we can conclude that no
Fy-refutation of ~PH P,, can be small.

4.4 The existence of k-evaluations

This section is devoted to the construction of k-evaluations of small sets of
formulas. The qualification small will mean of size at most 2"6, for suitable
0 >0.

It is quite easy to find small sets which have no k-evaluation with k < n,
cf. Exercise 4.8.4, and that is insufficient for the key Lemmas 4.3.2 and 4.3.3.
This forces us to employ a simplification procedure before trying to find a
k-evaluation with small k. The simplification will be done by a partial truth
assignment.

We shall think of the set M as of the set of partial bijections between a
subset of domain D and range R. D = [n+ 1] and R = [n] at the beginning,
as earlier.
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Definition 4.4.1 Let a,p € M. Define the restriction of o by p to be:

=1 a\p if oflp
undefined if o L p

Further define:

1. HP :={a” | a € H}.
D? := D \ dom(p).
RF:= R\ rng(p).

np = |Rf|(=n — |p]).

e @

Our strategy in the construction of a k-evaluation of a set I' will be the
following. We construct the evaluation in steps. We start by defining the
evaluation for atoms and constants in I': that is canonical by Definition 4.3.1.
At every step we extend the k-evaluation to negations and to disjunctions
of formulas for which it is already defined (hence the number of steps is
bounded by the maximal depth of a formula in I'). The case of negations is
again canonical and only the case of disjunction will cause us a problem. To
extend the definition to disjunctions we will need to apply a restriction by
some p. The following lemma essentialy says that the part of the evaluation
already constructed will still work after the restriction.

We continue using the convention that 5,7, ... denote PH P-trees.

Lemma 4.4.2 Let p € M be arbitrary. Then:
1. IfH4S then H? aT?.
2. If |p| + ||S]| £ n then SP is a PH P-tree over D? and RP.
3. If HaS then SP(H?) = (S(H))".

We leave the proof to the Exercise 4.8.5. The next lemma is the key
technical step in the construction of k-evaluations.

Lemma 4.4.3 Let 0 < 0 < e < 1/5. Let H; C M, fori < s. Assume that
||H;|| <k for alli < s. Assume that

k§n5 and 3§2k

and that n is large enough. Then there exists p € M such that n, = n® and
such that there exist PH P-trees S;, 1 < s, over DP and RP, satisfying
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1. Hip<ISi,
2. |1Sil| < k.
Proof :

Assume first that we have just one H; we shall consider the case of having
s sets H; at the end.

We shall describe a game played by two players with the set H. In the
proof it will be played with H? actually but we consider only H first not to
complicate the notation.

At the beginning player I pick an hy € H. Player I replies my some
01 € M such that dom(hy) C dom(6y), rng(h1) C rng(d1), and such that
no proper submap of §; has this property. It may be that 61 = hy or
that at least 01 2 h, some h € H: In that case the game ends. Otherwise
necessarily 1 L hy and the game moves to the next round. Generally, before
round ¢ > 2, the players have constructed sequences hy,...,h;—1 (the moves
of I) and 0; C ... C ;1 (the moves of IT). At the ¢t-th steps player I
picks some hy € H compatible with d;_1; if no such h; exists the game stops.
Player I then extends d;—1 to some §; € M such that dom(h;) C dom(d;),
rng(hy) C rng(d;), and such that no proper submap of §; containing ;1
has this property. If §; contains some h € H then the game stops, otherwise
the players move to the next round.

The use of this game is described in the following claim which follows
immediately from the definition when the game stops.

Claim 1: For any fized strategy of the player I consider the set
S:={0;| 61 C... Cd; is a finished play in some strategy of 11 }

Then the set S is a PHP-tree and H < S.

To simplify things we shall fix one strategy of I: We fix an ordering h', h?, ...
of H and player I always picks in his move the first A in the ordering compat-
ble with the previous move of 1. We shall call player I using this startegy
Iig.

Let us call the set of all pairs (4,7) in all hy \ 61 the critical pairs of
the play. These are exactky the pairs for which I7 is required to specify f (i)
and f(-1(j). If the number of critical pairs in all finished games against
Itiy is bounded by r then clearly ||S|| < 2r. Hence we would like to show
that the number of critical pairs is bounded by k/2. However, it is easy to
construct a set of small maps from M such that any finished game must
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contain > n/2 critical pairs (cf. Exercise 4.8.6). This is the place where we
employ a restriction by suitable p.

Assume we fix p € M and restrict first H by p, and play the game on
H? (we continue to use the same ordering of elements of H for I fim)- This
is the same as if we defined §y := p and required h; and é; to contain dg.

Claim 2: There exists p € M, n, = n¢, such that every play (tacitly against
Iyi) on HP contains at most k/2 critical pairs.

We shall prove the claim by contradiction. Assume that there is no such
p- Hence for every p there is a play, resulting in the moves §; C ... C d;
of I, that contains at least k/2 + 1 critical pairs. In fact, we will truncate
the play when it reaches the (k/2 + 1)-st critical pair, so we shall assume
that there are exactly k/2 critical pairs (this is only for a simplification of a
computation). Fix one such play for each p.

Now concentrate on one fixed p and the associated fixed play. Note that
all critical pairs are disjoint, and are also also disjoint from p. Hence the
set 7 containing p and all critical pairs is actually an element of M, and
7] = lol + /2.

Having 7 we cannot a priori determine p but we can determine the first
move hf of If;,: It is the first h? € H” that is compatible with 7.

Now note that we can actually encode by a small information the critical
pairs in Af and the first move &; of I1: Critical pairs from hf form one of its
< 2% subsets (here we use that ||H|| < k), and the move of IT is determined
by giving a value (resp. inverse value) of f for every i (resp. j) occuring in
the critical pairs in hf. There is < 2(k/2) = k such i’s and j’s, and at most
n® values to choose from: This is because the values II chooses must be
outside the domain (resp. the range) of 7 and n — || < n — |p| = n°. Hence
there are at most (n€)* possibilities of II’s action on the critical pairs. All
together, we can encode II’s first move §; by a number < (2n°)*.

Once we know d; we replace in 7 by d; all critical pairs in h/, getting
some 7'. But know we can reconstruct also the second move h of I fie: 1t is
the first h” € H? compatible with 7/. Hence we proceed as before: Encode
the II’s second move by a number < (2n€)¥, and replace in 7' all critical
pairs in A by 4y, etc.

There are at most k/2 moves before we get k/2 critical pairs. Hence the
whole (truncated) play can be encoded by 7 togerther with a k/2-tuple of
numbers < (2n°)¥, i.e. by a number < (2n)F*/2,

Because 7 together with the auxiliari information determines p, the num-
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bers

1
a := the number of different p of size n —n® = (n * ) (n) (n —n)!

nE

and
b := the number of different 7 of size n —n® —k/2 =

n+1 n .
(nf — k/2> (nf — k/2> (n—n" = k/2)!

must satisfy the inequality:

a<b- (2715)]“2/2

All this argument was for one set H. However, if we had s of them we
just encode by a number < s which of the sets is the one in which we have,
for a given p, a play with at least k/2 critical pairs. Hence, if no suitable p
existed, we would have to have

a<s-b- (2715)]“2/2

It is not difficult to compute that this inequality does not hold if the param-
eters satisfy the hypotheses of the lemma.

q.e.d.

Now we are going to use a restriction p in order to construct a k-
evaluation. We will need a notion of a formula restricted by p defined as
follows.

1 iedom(p) Ap(i) =3

p=90 {G5)rLp
pij otherwise

and then take for ¢” the formula ¢ with all atoms p;; replaced by pfj.

Lemma 4.4.4 Let 0 < § < € < 5~ Then for sufficiently large n > 1 every
. 5 .

set I' of size at most 2" and closed under subformulas there exists a map p,

lp| = n —n¢, and an n’-evaluation of T*.
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Proof :

Let s = 2" and k = n’. Assume that II'l < s. Pick g > 0 such
that 0 < 0 < ef < ¢p < 572 We shall construct the restriction p and the
k-evaluation of I'” in d steps.

Put pp := 0 and let 14 be the canonical (by Definition 4.3.1) 2-evaluation
of the depth 0 formulas in I', i.e. of the constants and the atoms. In step
1 <t < d we assume that we already have restrictions py C ... C p; 1 with
Ny, = n% and a k-evaluation v;_1 of all depth <t — 1 formulas in I'P¢-1,

To extend the evaluation to depth ¢ formulas we apply Lemma 4.4.3
with n := n,,_, and the parameters ¢ and ¢y fixed earlier. This will give
us a restriction on the universe [n + 1]\ dom(pi—1), [n] \ rng(pi—1), i.e. a
restriction p; 2 pi—1 on [n+1], [n]. By Lemma 4.4.2, v* | will still work for
the depth <t — 1 formulas and this evaluation is extended to an evaluation
v of depth <t formulas in I'’* by the virtue of Lemma 4.4.3.

The final p := pg and v := vy satisfy the requirements of the lemma with

— d
€= €.

q.e.d.

Proof of Theorem 4.1.2:

We are now ready to prove the theorem. For the sake of contradiction
assume that 7 is an Fy-refutation of -PH P, with less than 9"° different
formulas. Let I' be the set of all formulas occuring in 7 as subformulas.

Take the p and the k-evaluation (with k := n?) of I'” provided by Lemma
4.4.4. For large enough n it holds that n® < n/cp, where cp is the constant
from Lemma 4.3.3. By Lemmas 4.3.2 and 4.4.2, the axioms of (-PHP,)’ =
—PHP,, are "true” w.r.t. the evaluation. By Lemma 4.3.3 all steps in 7
are ”true” too. But the last formula, the constant 0, is not ”true”. That is
a contradiction.

4.5 Counting principles

The PHP -principle says that there is no pairing between sets of sizes dif-
fering by 1. More general principles can be considered. Fix m > 2. The
counting modulo m principle says that a set with n elements cannot be par-
titioned into m-element blocks unless its size is divisible by m.
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The propositional formulation of the principle will use atoms ¢., one for
each m-element subset e of [n]. The set of m-element subsetes of [n] will be
denoted simply ([:1])

Definition 4.5.1 The azioms of the ~Count}}, are:

1. =q. V —qy, whever e, f € ([;:L]) are incompatible (denoted e L f); e #
fAenf#0D.

2. Veice 4e, for all i € [n].

Count}, is the disjunction of the negations of all azioms of =Count?,.

We shall leave it as an advanced Exercise (see 4.8.7) for the reader to
modify the machinery of PH P-trees and k-evaluations to Count),. In par-
ticular, Count,,-trees over Hn] branch accoring to queries ¢ €7, each branch
corresponding to one e € ([:1) containing ¢ and consistent with blocks on the
path to the node. Everything will then work analouglsy as in the proof of
Theorem 4.1.2 and we get the following lower bound.

Theorem 4.5.2 For any m > 2 and d > 3 there is § > 0 such that for all
sufficiently large n not divisible by m, in any Fg-refutation of ~Count), must
occur at least 2"° different subformulas. In particular, any such refutation
must have the size at least 2" .

4.6 Relation of PHP and Count,, principles

By Theorems 4.1.2 and 4.5.2 neither PH P principle nor C'ount,, principles
have subexponential Fy-proofs. It is thus natural to study the strength of
F; when augmented by all instances (of a priori bounded depth) of either
PHP or Count,, as extra axioms.

Lemma 4.6.1 For any m > 2 there are d > 2 and ¢ > 1 such that for all
n > 1 there are Fg-proofs of size n® of PH P, from instances of the Count,
principle.

Proof :

Consider the set N cousisting of disjoint copies of [n + 1] and [n], and
further m — 2 disjoint copies of [n]. Hence |N| = m -n + 1. Assume f is a
bijection between [n + 1] and [n]. Then the set of all blocks of the form

{6, f(0),.., f(0)}
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with ¢ € [n+ 1] and f (i)’ taken from all m — 1 copies of [n], form a partition
of [N] into m-element blocks. This violates an instance of the Countl-
principle.

This informal argument can be made formal quite easily (cf. ?? or Ex-
ercise 4.8.8).

q.e.d.
The opposite direction is much more interesting.

Theorem 4.6.2 ([42, 7]) Let m > 2 be fized. For any d > 2 there exists
0 > 0 such that for all n > m large enough and not divisible by m the
following holds:

In any Fq-proof of Count}, from instances of PHP must occur at least
on’ different subformulas. In particular, any such proof must have the size
at least 2.

Proof :

First it is easy to see that several instances of PH P are equivalent, over
Fy by short proofs, to just one instances: Just define the instance by definiton
by cases; it is the first instance in the list for which P H P-fails, or something
trivial otherwise.

Let this one instance be the instance for PH Py for formulas v;; (built
from the atoms of Count;),) replacing the atoms p;; of PHPy. In particular,
i € [N +1]and j € [N].

Let I' be all formulas occuring in an Fy-proof of C'ount;}, from the instance
of PHPy. If " were small there would be p (a partial m-partition of [n]) and
a k-evaluation (H,S) of all formulas in T'” making all axioms of ~Countyy
7true”. Hence also the =P H Py (1;;)" is "true”.

Let T be a Count,,-tree refining all trees S1/’fj’ and define the map:

(Z,]) € [N+ 1] X [N] — Aij = T(S,l/)fj)

We think of A;; simply as of sets of partial m-partitions of n,.

Claim: The following identities hold: U; Aij =T, U; Aij =T, AijNAiy; =
0 if iy #d2, and Ay, N Agjy = 0 if j1 # jo.

The claim follows from the fact that the instances of the PHP is "true”
w.r.t. the k-evaluation.
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The claim leads to a contradiction as counting the size of |J;; A;; first by
rows or by columns leads to two different values: (N + 1) - |T'| and N - |T.
Hence no such k-evaluatin can exists and consequently the proof cannot
contain only a small number of formulas. The particular values of parameters
are the same as in Theorems 4.1.2 or 4.5.2.

q.e.d.

The mutual relation of counting principles with different moduli m is
more complicated.

4.7 Mutual relations of counting principles

We shall look at mutual relations between counting principles in this section.
The first statement simplifies a bit what moduli we need to consider.

Lemma 4.7.1 Let m > 2 and let p1,...,pr be all prime divisors of m.
There there are d > 2 and ¢ > 1 such that

1. Count},, n not divisible by m, can be derived by an Fy-proof of size n®
from instances of Countp,, all i < k.

2. Any County,, n not divisible by p;, can be derived by an Fy-proof of
size n¢ from an instance of County,.

We shall not prove the lemma, here,as it is much easier to formalize via
bounded arithmtic, cf. 77?.

The lemma means that when studying the mutual relation we can concen-
trate just on counting principles with moduli that are primes. The following
theorem has be first prove inthe form of the non-existence of polynomial
upper bound in [4, 6, 43].

Theorem 4.7.2 ([11]) Let p,q > 2 be two fized different primes. For any
d > 2 there exists 6 > 0 such that for alln > q large enough and not divisible
by q the following holds:

In any Fy-proof of County from instances of Count, must occur at least

on’ different subformulas. In particular, any such proof must have the size
at least 2" .

The proof will not be given in this draft.
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4.8 Exercises

Exercise 4.8.1 Show that any formula ¢ decidable by a decision tree of
depth k is equivalent to a k-DNF, i.e. a formula which is a disjunction of
conjunctions, each of size at most k, and that the same holds for —¢.

On the other hand, show that if both ¢ and —¢ are expressible as k-DNF
then ¢ can be decided by a decision tree of depth < k2.

Exercise 4.8.2 Prove that all azioms of ~PHP, are “true” w.r.t. a k-
evaluation, as long as k <n —2. (c¢f. Lemma 4.3.2)

Exercise 4.8.3 Prove that any Frege rule is sound in any Boolean alge-
bra B: If hypotheses of an instance of the rule get value 1z then also the
conclusion of the rule gets value 153.
Exercise 4.8.4 Find small sets, say of size n°()
k-evaluation with k < n.

, of formulas that have no

Exercise 4.8.5 Prove Lemma 4.4.2.

Exercise 4.8.6 Construct a set of constant size maps from M such that
any finished game must contain > n/2 critical pairs (cf. Lemma 4.8.3).

Exercise 4.8.7 Define the notion of County,-tree and the corresponding
notion of k-evaluations, and prove Theorem 4.5.2.

Exercise 4.8.8 Prove Lemma 4.6.1.
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