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We suggest the first method for direct ab initio calculation of adiabatic magnons in complex collinear magnets.
The method is based on the density-functional-theory (DFT) calculation under two different constraints: one
constraint governs the change of the magnetization with respect to the ground state, and the other is the symmetry
constraint responsible for the value of the magnon wave vector. The advantages of the suggested method with
respect to the usual approach of mapping of the electron system on the Heisenberg Hamiltonian of interacting
magnetic moments are discussed. The performance of the method is demonstrated by the application to an
altermagnet MnTe. The altermagnetism introduced as a concept in 2022 is at present an area of highly intensive
research. The characteristic feature of altermagnets is the spin splitting of the electron states in reciprocal k
space. Among the discovered properties of the altermagnets is the chirality splitting of the magnons in wave
vector q space. We suggest an appoach to the study of the symmetry aspects of magnon chirality splitting. We
show that both the chirality splitting of the magnons and the altermagnetic spin splitting of the electron states,
though very different in their physical nature, have identical patterns in the corresponding wave vector spaces.
Since the altermagnetism of MnTe is the consequence of the presence of the Te atoms, adequate attention is
devoted to the symmetry analysis and calculation results for the Te moments induced in the magnon states. In the
calculations, each magnon is characterized by its own electron band structure. We investigate the transformation
of the electron structure in the transition of the material from the collinear ground state to noncollinear magnon
states. We show the connection between the properties of magnon band structures and the chirality properties of
magnons. In the investigation of the chirality splitting as well as in both the formulation and the application of our
method, an important role play the aspects of generalized symmetry based on the application of the spin-space
groups. The symmetry framework connects in one coherent picture different parts of the consideration: (i) the
generalized translational symmetry of the magnons as a crucial condition for their efficient ab initio calculation,
(i) altermagnetic spin splitting of the electron states in the ground state, and (iii) chirality splitting and band

structures of the magnon excitations.
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I. INTRODUCTION

Magnons as low-energy excitations of the magnetic sys-
tems play a central role in the magnetic thermodynamics.
The emerging field of magnonics enhanced further the impor-
tance of the magnons [1-4]. The first-principles study of the
magnons is one of the prominent tasks of the theoretical ap-
proaches to magnetic systems based on the density functional
theory (DFT).

In the adiabatic picture focusing on the dynamics of atomic
magnetic moments, the magnons are presented by the configu-
rations of the moments deviating from the magnetization axis
[5-7]. The structure of a magnon is characterized by the wave
vector and by the angles specifying the deviation of the atomic
moments from the magnetization axis. For an elemental
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ferromagnet (FM) with one magnetic atom per the crystal-
lographic unit cell the structure of the magnons is uniquely
determined by the wave vector [Fig. 1(a)]. The deviation angle
0 is the same for all atoms. Therefore in this case only the
energies of the magnons need to be determined. In more com-
plex systems such as antiferromagnets (AFM) [Figs. 1(b) and
1(c)], ferrimagnets, or ferromagnets with several inequivalent
atoms in the crystallographic unit cell, different atomic mo-
ments deviate differently from the magnetization axis and the
determination of the structure of the magnons is an important
part of the magnon study.

There are different approaches to the DFT based calcula-
tion of magnons. One of the approaches is the calculation of
the dynamic magnetic susceptibility in nonuniform transver-
sal magnetic field [8—14]. A strong feature of this method
is that it allows to investigate not only the structure and
the energy of magnons but also their life time resulting
from the interaction of magnons with single-electron Stoner
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FIG. 1. (a) Schematic presentation of the spin waves in an ele-
mental ferromagnet. (b) Schematic presentation of the ground state
magnetic structure of a two sublattice AFM. Sublattices are marked
by letters A and B. (c) Schematic presentation of the spin waves
in a two sublattice AFM. Angles 6, and 6 give deviations of the
atomic moments of the sublattices from the magnetization axis. (Top)

Magnon of type A with 64 > 0. (Bottom) Magnon of type B with
93 > GA.

excitations. In the case of complex magnetic materials, the
method is very demanding with respect to both computation
techniques and computer resources. A widely used approach
to the theoretical study of the adiabatic magnons is the map-
ping, as an intermediate step, of the electron system on the
Heisenberg Hamiltonian of interacting atomic moments. Such
a mapping is currently a standard procedure consisting in the
DFT based evaluation of the Heisenberg exchange parameters
(see, e.g., Refs. [15-22]). An efficient method of the mapping
was suggested by Liechtenstein ef al. [15] and is based on the
evaluation of the variation of the band energy as the response
to the infinitesimal deviation of the atomic moments from the
magnetization axis. The possibility to replace the variation of
the total energy by the variation of the band energy is based
on so-called magnetic force theorem [15]. A recent review of
the development and applications of the Liechtenstein et al.
method is given in Ref. [23]. In this paper, we suggest a direct
DFT-based method for the magnon calculation that does not
include mapping of the electron system on the Heisenberg
Hamiltonian. To our best knowledge, this is the first method
allowing direct DFT calculations of adiabatic magnons in

complex collinear magnets. The method has important fea-
tures not provided by the standard mapping approach. Among
them are the following. First, the fully self-consistent calcu-
lation of the magnon structure and energy is performed in
contrast to the mapping approach based on the evaluation
of the band energy variation from non-self-consistent calcu-
lation. Second, in the magnon states of complex structures,
the atoms that are equivalent in the ground state may become
inequivalent. The suggested method takes this into account in
a consequent self-consistent manner. Third, in the compounds,
the contribution of the nominally nonmagnetic atoms to the
magnon states is self-consistently taken into account. Forth,
the method allows to estimate the dependence of the magnon
energy on the number of magnons by varying the tilting
angles of the atomic moments from the magnetization axis.
The approach suggested by Liechtenstein et al. considers an
infinitesimal deviation of the moments from the magnetization
axis. Fifth, because of the exact treatment of the generalized
periodicity of the helical magnetic structures with arbitrary
wave vectors our method accounts for the exchange interac-
tions between atoms at arbitrary large distances in contrast to
the mapping calculations that often take into account only a
few nearest neighbor interactions.

Since each magnon presents a different state of the system,
the direct self-consistent calculation of a magnon state within
the DFT framework must include constraints responsible
for the convergence of the calculation to the desired magnetic
state instead of the standard DFT convergence to the ground
state (GS). Two different constraints are simultaneously used
in the method. The first governs the change of the net magne-
tization. The method uses the formula

AE
w=—
Am,

ey

derived in Ref. [7] for the magnon energy in an arbitrary
collinear magnet [24]. Here AE is the increase of the energy
of the magnon state with respect to the GS and Am, is the
magnetization change with respect to the GS magnetization.
Equation (1) correlates with the property that one magnon
changes the magnetization of the system by 1 up. The first
constraint imposes the condition on the magnetization of the
system by means of introduction of an effective magnetic
field.

The second constraint specifies the value of the magnon
wave vector. This is a symmetry type of constraint [25] where
the invariance of the initial Hamiltonian with respect to the
symmetry operation responsible for the desired property re-
produces itself during iterations. The symmetry constraint
does not need a constraining field. It is important to emphasize
that to constrain the magnon wave vector the generalized
translational periodicity described by the machinery of spin
space groups (SSG) must be imposed. The combination of
two different constraints is the characteristic feature of the
method. In the paper, we formulate the method in the form
valid for the study of the magnons in any collinear magnet
without spin-orbit coupling (SOC). The performance of the
method is demonstrated by the application to altermagnets
focusing on MnTe as a representative of this class of materials.
As the notion of an altermagnet is rather new it is worth to
introduce it briefly. The ground state of a two sublattice AFM
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is characterized by two mutually compensating ferromagnetic
sublattices. In terms of the electron structure, the zero net
magnetization of an AFM is the result of the mutual compen-
sation of the spin-up and spin-down electron states which is
the consequence of the symmetry properties of the material.
Importantly, the realization of this spin compensation can be
different for different AFM materials. It can take place either
at each wave vector k of the reciprocal space or, alterna-
tively, between the electron states corresponding to different
k points. Smejkal, Sinova, and Jungwirth [26,27] suggested
the term altermagnet for the materials where the magnetic
compensation takes place between different k points. The
absence of the spin degeneracy at the same k point can be
treated as the spin splitting of the electron states at this point.
This property of altermagnets has important physical conse-
quences attracting enormous research attention to this class of
materials [27-33].

Among the special properties of altermagets is the chirality
splitting of the magnon states [22,29,34-36]. In Ref. [34],
the presence of the magnon chirality splitting is connected
with the properties of the Heisenberg exchange parameters.
A general approach to the chirality splitting applicable in the
DFT-based direct calculations has not yet been suggested.
Also the discussion of the symmetry pattern of the magnon
chirality splitting in the reciprocal wave-vector space and its
relation to the symmetry partern of the exchange splitting in
the ground-state band structure is not available. To give the
answers to these questions is one of the aims of this paper.

Each AFM magnon brings either positive or negative mag-
netization to the system. If in Fig. 1(c) 64 > 65 the magnon
gives negative contribution to the magnetization whereas for
a magnon with 64 < 6p the contribution to the magnetiza-
tion is positive. These two types of magnons have opposite
chiralities. The two types of magnons are obtained in both
Heisenberg model (see, e.g., Ref. [37]) and first-principles
calculation of the dynamical spin susceptibility (see, e.g.,
Ref. [10]). We will refer to these two types of magnons as
magnons of type A and B according to the larger of two
angles 64 and 6. The net magnetization of an AFM at nonzero
temperatures remains zero. This property is the consequence
of the mutual compensation of the magnons of opposite chi-
ralities which results from their symmetry-determined energy
degeneracy. Again there are two possibilities. The chirality
compensation can take place either at each magnon wave
vector q or only between magnons with different wave vec-
tors. The latter situation takes place in altermagnets and may
be referred to as chirality splitting of magnons with a given
wave vector q. The nature of the chirality degeneracy of the
magnons is very different compared to the spin degeneracy of
the electron states discussed above. However, in both cases,
the two symmetry questions to address are similar. First,
which symmetry operations are responsible for the degener-
acy of the magnons with opposite chiralities, and, second,
does the degeneracy take place between the magnons with the
same wave vector or with different wave vectors? As will be
demonstrated, the answers to these questions for magnons are
closely related to those for the electron states.

Our choice of altermagnet MnTe as the object of the
application of the method has following reasons. First,
as a particular case of a two-sublattice AFM containing

FIG. 2. Unit cell of AFM MnTe. Labeling A-D of the sublattices
is used throughout the paper.

nonmagnetic atoms (Fig. 2), it is complex enough to demon-
strate important features of the method. In the case of MnTe,
the altermagnetic properties are the consequences of the pres-
ence of the Te atoms. Indeed, in an assumed material with
removed Te atoms the altermagnetic spin and chirality split-
tings are absent. Due to the crucial role of Te atoms in
altermagnetism, accounting for their self-consistent response
to changes in the Mn subsystem is a key aspect. In this context,
key questions to address include the questions of whether
the Te atoms remain equivalent in the magnon states and of
what symmetry arguments can reveal about the induced Te
moments. The magnon-specific symmetry information about
nonmagnetic atoms, besides its general physical importance,
helps to control and accelerate the convergence of the magnon
calculation. These “technical” advantages from the symmetry
analysis are discussed in Sec. IV D.

Next question addressed in the paper is how the chirality
properties of the magnon states of the system are related to the
properties of the electron band structures of the magnon states.
To our best knowledge, this is the first study of this type. It is
based on the possibility to calculate the band structure of the
magnon states opened by our method. The deep connection
between two different energy characteristics of altermagnets,
magnon energies and magnon electron band structures, is
exposed.

As seen from the above, the symmetry aspects play in the
paper an important role. There are three different parts of
the work where the symmetry arguments are essential: (i) the
formulation of the method of the direct magnon calculation,
(i1) the study of the spin splitting of the electron states in
the GS of an altermagnet, and (iii) the study of the chirality
splitting of the spin waves in an altermagnet. The employment
of the SSG allows both solving these tasks and the integration
of different parts of the study in one coherent physical picture.
We consider this coherent picture uniting very different sides
of the consideration as one of important results of the paper.
As discussed below, in part (ii), the employment of usual
space groups can be technically sufficient. In other parts and
in the formation of a general picture, the use of the generalized
spin-space groups is essential.

The paper is structured as follows. In Sec. II, the method
of direct DFT based calculation of magnon states is presented.
Section III gives the details of the calculations. In Sec. IV, the
symmetry aspects and the results of the calculations are dis-
cussed. This section includes a brief introduction of the SSGs
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(Sec. IV A), discussion of the spin degeneracy and altermag-
netic spin splitting of the electron states in AFM (Sec. IV B),
application to the electron states of MnTe (Sec. IV C), dis-
cussion of the symmetry governed properties of the magnetic
sublattices in the magnon states (Sec. IV D), and of the chiral-
ity splitting of magnons in altermagnets (Sec. IV E), results
of the calculation of magnon dispersion (Sec. IV F), brief
discussion of the noticed instability cases of magnon state en-
ergy with respect to the number of magnons (Sec. IV G), and
the study of the relation between electronic band structures
of the magnon states and chirality properties of these states
(Sec. IV H). Section V is devoted to the conclusions.

II. THE METHOD OF DIRECT DFT-BASED
MAGNON CALCULATION

As mentioned in the introduction, in Ref. [7], it was shown
that for any collinear magnet the magnon energy can be pre-
sented within the framework of the DFT theory in the form
given by Eq. (1) (see also Ref. [24]). The value of Am,
corresponds to the number of magnons with given wave vector
and AE is their energy. It is expected that there is an interval
of Am, where AFE is proportional to Am, and the calculation
for any Am, from this interval gives the value of the spin wave
energy. The both quantities can be considered per unit cell. To
obtain the self-consistent magnon state with a given magneti-
zation m, — Am,, the minimization of the density functional
must be performed under the constraining condition

/drmz(r) =m, — Amy. 2)

Here m, is the ground state magnetization that is zero in the
case of an AFM.
The constrained energy functional takes the form

Econst[n, m] = E[n, m] + h|:/ dr m,(r) — m, + Am{|,
3

where E[n, m] is unconstrained functional, Lagrange param-
eter h plays the role of the z component of an effective
magnetic field h = (0, 0, #). The condition on the magneti-
zation [Eq. (2)] is the same for all magnons independent of
their wave vectors whereas the value of field & corresponding
to a given Am, is q dependent. In systems with well defined
atomic moments considered in the paper, field h governs the
values of the deviations of the moments from the z axis. For
each magnetic atom, the vector of the constraining field h
can be decomposed into two components: one collinear to the
moment and the other orthogonal to it (Fig. 3). The component
collinear to the moment influences the value of the moment.
This influence is weak for well defined atomic moments
since the variation of the value of the moments is energeti-
cally costly. In this case, the orthogonal component plays the
main role governing the deviation of the moments from the
magnetization axis and leading to the desired magnetization
change Am,. The orthogonal components form nonuniform
magnetic field with wavelength identical to the wavelength
of the magnon. The second constraint specifying the wave
vector q of the magnon reflects the generalized periodicity

FIG. 3. Schematic picture of the decomposition of the constrain-
ing field h into two components: one collinear to the moment and the
other, h, , orthogonal to it. The left (right) part of the figure shows the
decomposition for atoms of sublattice A (B). The field is antiparallel
to the z axis and leads to the magnon state assigned to sublattice A.
For magnons of type B, the direction of field h is opposite.

[38] of the helix with given q
{aqn|E|Rn}m(r) = aqnm(r -R) = m(r) 4

Here {ag,|E|R,} are the operators of generalized translations
consisting from the lattice translation R,, accompanied by the
rotation of magnetization by angle qR,, about the z axis. E in
the second position in the symmetry operator means that the
operator does not perform any point transformation besides
the magnetization rotation. The Kohn-Sham equation of a
helical structure in external field h takes the form

a(V+) _ oY+
() =()) ©
with Hamiltonian

N ~(1 O
a-1(} )

+ D U 60, ) Vo @) U, $) + bz, (6)

nv

where T is the operator of kinetic energy, n numbers unit
cells, v numbers atomic sublattices, V,, is two by two potential
of the vth atom in the local atomic spin coordinate system,
r,, =r —a, — R, a, gives the position of the vth atom in
the unit cell, angles 6, and ¢,, specify the direction of the
moment of the nvth atom, ¢, = ¢, + qR,,, UB,,, ¢,,) is the
standard spin-1-rotation matrix, and o, is the Pauli matrix.

2
The action of the generalized translation on the spinor wave

function W(r) = (iﬁ g;) has the form
{ag | E IR JW(r) = Uog)W(r — Ry). (7

The Hamiltonian of a q-magnon [Eq. (6)] commutes with
generalized translations corresponding to given q [39,40]. The
symmetry properties of the Hamiltonian govern the symmetry
properties of the calculated electron states that leads to the
reproduction of the generalized translational symmetry of the
Kohn-Sham Hamiltonian during iterations. Because of this,
the fulfillment of the symmetry constraint [Eq. (4)] does not
require application of a constraining field.

The symmetry with respect to the generalized translations
fulfills the conditions of the generalized Bloch theorem and
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H’

FIG. 4. Brillouin zone and irreducible domain for calculation of
both electronic band structure of the AFM GS in the k space and spin
waves in the q space.

allows an exact reduction of the calculation for the spiral
structure with arbitrary wave vector to the consideration of
the small crystallographic unit cell of the crystal [39].

III. CALCULATION DETAILS

The calculations were performed with the augmented
spherical waves (ASW) method [41,42]. The local density
approximation (LDA) to the exchange-correlation functional
is used [43]. The account for generalized translation symmetry
and external magnetic field have been implemented earlier
[44,45]. Therefore only limited adaptation of the code were
needed. The calculations were performed with three different
k meshes in the Brillouin zone (BZ) of the material (Fig. 4):
nxnxn,n=10, 20, and 30. Here n is the number of the
intervals in which the primitive vectors of the reciprocal lat-
tice were divided. The results of the calculations have shown
that the difference between spin wave energies obtained with
n =20 and 30 is usually small and most of the calculations
reported in the paper were performed with n = 20. In the
calculations, we used experimental lattice parameters [56]
a=4.15Aand c = 6.71 A. As mentioned above, a straight-
forward application of Eq. (1) assumes the existence of an
interval of Am, where energy increase AE is proportional
to magnetization change Am,. Our calculations confirmed
that usually such a linear dependence exists up to rather
large deviation angles of the Mn atomic moments from the
magnetization axis. Figure 5 shows typical characters of the
dependences between calculated quantities and demonstrates
high stability of the calculated magnon energy with respect
to the value of the deviation of the Mn moments from the
magnetization axis. The results of the calculations presented
in the figure were obtained for wave vector q = (0,0,0.3).
Here and in the rest of the paper we give the x and y com-
ponents of the reciprocal space vectors in units of 27” and

the z components in units of 27” We calculated constraining

K T T T T T 08 T T T T T
[(a) ’ - (b) /
10 7 =06 =

&t - 1
I ] E 04 s

M o5 - m L 4
@ [ .

i 1 o2k .
oL 1] I Ly
0 10 20 30 0 10 20 30
0, (deg) 0, (deg)
1 T ] T 0.8 T T ™/ 2
"(0) -(d) ]
— 04| i ~0.6wnla 2 ]

@ > | N
2 | | 1 &
= E o4 412
g 0.2 — = r : )

i | o2l ]
0 L 1 oW 11,
0 10 20 30 0 0.2 0.4
0, (deg) Am, (1)

FIG. 5. The dependence of AE on Am,. Figure shows calcula-
tions performed for magnon with wave vector q = (0,0,0.3). [(a)—(c)]
The dependencies of, respectively, 6, AE, and Am, on 64. (d) The
dependence of energy increase AE (black circles, left energy scala)
and magnon energy w (red squares, right energy scala) on Am,.

field & stabilizing the deviations of the Mn moments of sublat-
tice A at following values: 84 = 5°, 10°, 20°, 30°. Figure 5(a)
gives calculated deviations of the moments of sublattice B,
0p. Figure 5(b) shows corresponding increase in energy AE.
The difference between 64 and 6p is the source of the mag-
netization change Am, shown in Fig. 5(c). In Fig. 5(d), we
present the dependence of AE on Am, which is very close to
a linear one. The ratio of these quantities giving the magnon
energy is with a good accuracy independent of Am,. In most
of the calculations presented in the paper, we used 64 = 20°.
On the other hand, performing model calculations aimed at
testing our method we obtained also the cases where strong
deviation from the simple dependence of AE on the deviation
angle of the Mn atomic moments was registered showing the
capacity of the method to reveal an instability connected with
the deviation of the atomic moments from the magnetization
axis. These results are briefly presented in Sec. IV G. In these
calculations we used the LDA + U approach in the flavor of
Dudareyv et al. [46].

IV. SYMMETRY ASPECTS AND RESULTS
OF CALCULATIONS

A. SSG groups

The standard tool for the analysis of the symmetry prop-
erties of the crystalline materials is the apparatus of space
groups. For magnetic systems an antisymmetry operation
is included into consideration making extension from space
groups to magnetic space groups [47,48]. The antisymmetry
operation that in an abstract treatment can be considered as
changing the color between black and white in the magnetic
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case is responsible for the reversal of the magnetization di-
rection by means of time reversal. However, in the problems
where the influence of the SOC can be neglected, this tool is
not sufficient for the description of the properties of magnetic
systems. In particular, these limitations have been revealed
for both electron band structure calculations and the studies
based on the Heisenberg Hamiltonian of interacting atomic
moments.

The solution of the problem has been found in the con-
cept of SSG whose elements allow different transformation
of the spin and space variables (see, e.g., Refs. [49-51]). In
recent years the interest to SSG has been revived. Reference
[52] reports a detailed analysis of the magnon band topology
within the framework of the Heisenberg and Heisenberg-
Kitaev models of interacting atomic moments. Very recently
several systematic works [53-55] were published devoted to
the classification, properties, and applications of the SSGs.

The action of the SSG operator {ag|og|T} on the magneti-
zation m(r) is defined as

{aslag|Tim(r) = asm([ag] 7] 'r), ®)

where og and g are spin and space rotations respectively,
T is space translation, and we introduced notation [ag|T] =
{E|ag|t}. The action of the SSG operator on the two-
component spinor has the form

{aslag|T}W(r) = Ulas)W(lag|z] ') ©))

The generalized translations [Eq. (7)], crucial for the study
of spiral magnetic configurations, are the operations of the
SSG. The operation of time reversal acting on two-component
spinor takes the form

. 0 -1
o=k = (] )k (10)

where K is the operator of complex conjugation. Since
((1) 701) belongs to the set of unitary matrices U entering

Eq. (9), it already belongs to the SSG as an operation pro-
viding a spin rotation. Therefore the complex conjugation
K is also an allowed SSG operation. This means that the
real form of the Kohn-Sham equations of collinear magnets
[Eq. (6)] and its consequences become within SSGs a part of
a straightforward symmetry treatment.

The effectiveness of applying SSG, compared to space
groups, can be characterized as follows. The neglect of the
SOC leads effectively to the replacement of the actual physical
3D space by the 6D space where spin and orbital variables
are independent and can be transformed separately. The ac-
count for this freedom gives important new information about
the properties of the system. In addition, the SSGs allow a
straightforward establishment of continuity relations between
theoretical results obtained within different approximations,
such as with and without SOC, or between the results obtained
for collinear and helical magnetic configurations. The reason
for this is the property that the SSG of the less symmetric case
is the subgroup of the SSG of the more symmetric case. The
latter feature plays important role in Sec. IV H where we dis-
cuss the transformation path of the electron band structure of
a collinear magnet to the electron band structure of a magnon
with a given wave vector q.

Summarizing the applications in the paper of the symmetry
concepts, we distinguish three different problems. The first
was considered in Sec. II and uses the generalized translations
as a symmetry constraint in the calculation of the magnon
states. The second and third are, respectively, the altermag-
netic spin-splitting of the electron states and chirality splitting
of the magnon states.

B. Degeneracy of the electron states in collinear magnets

The material of this section contributes to making the pa-
per reasonably self-contained and provides the basis for the
comparison with the results on the magnon chirality splitting
discussed in Sec. IVE.

The electronic band structure of collinear magnets has been
calculated already for distinctly more than 50 years (see, e.g.,
Refs. [57,58]). The electron wave functions were treated as
scalar functions labeled with an index specifying the sign of
the spin projection on the selected quantization axis. Respec-
tively, two scalar Schrodinger equations were considered, one
for each spin projection. The symmetry-caused degeneracy of
the electron states arises in the following way. If g = [ag|7] is
a symmetry operation commuting with a scalar Schrodinger
equation, the action of this operation on an eigenstate Y,
gives the eigenstate with the same energy, the same spin
projection o, and wave vector agk. The real form of the equa-
tion additionally gives the degeneracy of the electron states at
points k and —k. The different vectors from the list of all agk
and —agk vectors form the star {k} of vector k [59].

In a FM, the Schrodinger equations for opposite spin pro-
jections are essentially different and, therefore, there is no
symmetry-caused degeneracy of the spin-up and spin-down
states. The spin splitting is the term characterizing this prop-
erty of the electron structure which is valid for each point of
the k space.

On the other hand, in an AFM, there must be degeneracy
between the states with opposite spin projections. This de-
generacy is the reason for the zero net magnetization of the
AFM. To expose the origin of the spin degeneracy we first
notice that in the Schrédinger equation for electrons with a
given spin projection ¢ the electrons see different potentials at
the atoms of different magnetic sublattices. Therefore, at the
first step, only the operations leaving the sublattices invariant
are considered. For each vector k they give star {k}g corre-
sponding to the symmetry group of the sublattices. Next it is
necessary to specify the symmetry operation that transforms
the equations corresponding to different spin projections into
each other. The real-space part of this operation [ |T] must
transform the sublattices into each other and be accompanied
by an “antisymmetry” operation E’ reversing the signs of
the spin indices. The physical nature of this antisymmetry
operation is time reversal. As a consequence of such sym-
metry operation any spin-up state at point k is degenerate
with a spin-down state at oy’ k. This makes the system as a
whole spin-compensated. The answer to the question whether
the spin compensation takes place at each k point of the BZ or
only between different k points depends on the properties of
operation [of|7] transforming the sublattices into each other.
If vector af’k belongs to star {K}sb the degeneracy takes
place at each k € {k};. In the opposite case, we deal with an
altermagnet with spin splitting at all points of the star {k}gp;.
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TABLE I. Point symmetry elements. The following notations are used: E is the unity transformation, I is the space inversion, C' is the
rotation by angle 27 . In the column “axis,” the unit vectors parallel to the rotation axes are given. The two operations presented in each row
have the same rotation axes. Columns headed agr and /agr give the coordinates of the vectors obtained after rotation of vector r = (x, y, z). In
columns headed 7, symbol marks the symmetry operations containing nonprimitive translation T = (0, 0, 0.5). In the columns headed “subl,”
the operations transforming the Mn sublattices into themselves are marked with . For all direct-space vectors, the x and y coordinates are given
in units of lattice parameter a and the z coordinate in units of lattice parameter c.

N  ar axis Rl T subl N  lag Togr T subl
1 E X y z - v 13 1 —x -y -z - v
2 ¢ 00D =Py Patly v - 14 1C, —Ix+%y -Lx-ly 2 v -
3¢ 000 L+ By —Latly ¢ v - 15 I1C5 —ix—Ly Ly Ly o v -
4 ¢ 00D  —ix—By Sty o - 16 1C2 lx+ Ly —Lxtly 2 -
506 00D x4y Lty o - 17 I1c; x-Sy Sixyly 2 - v
6 C (001 —x —y z v - 18 IC} x y -z v -
76 (1,00 x —y - - Y 19 IG —x y : - Y
8 o (LB ke Ly Bigly 2 - v 20 16  Ax—Ly b ly o -
9 G (-1L,8,0 -Lx-Ly -Lyyly - 211G, x+%y Lx-ly 7 - v
10 6 (L1 L+Ly Sty 2 v - 216, —lx-Ly —Litly v -
11 G (0,1,0) —Xx y -z Vv — 23 IC, X —y z N —
12 G (—73,%,0) %x— ?y —?x— %y -z Vv — 24 IC, —%x—}-%y ‘/gx—‘r%y z Ve —

This approach to the symmetry properties of AFMs allows
to reach the description of the electron structure without refer-
ence to the SSG. Its application to MnTe was reported in old
publication Ref. [60]. A very detailed and complete discussion
of the application of this type of approach to the altermagnets
was recently published by Turek [61]. This approach has
shortcomings: Instead of treating the electron wave functions
as spinors it considers them as scalars labeled with a spin in-
dex. This complicates the consideration of the influence on the
electron band structure of the SOC or of the noncollinearity
of the magnetic configuration where the account for spinor
form of the electron wave functions is essential. Therefore this
approach is not sufficient for the purposes of this paper where
noncollinear incommensurate spiral structures are in the focus
of the consideration.

The application of the SSG to the symmetry analysis of the
collinear magnetic structures gives additional useful features.
First, any spin rotation {C,4|E|0} about the z axis is a sym-
metry operation of the spinor Kohn-Sham equation [Egs. (5)
and (6)]. As the consequence of this symmetry the electron
eigenfunctions assume one of the two spinor forms W(r)((l))
or w(r)(?) corresponding to different irreducible representa-
tions (IR) of the SSG group [62]. Therefore the spin-indexing
of the electron functions is now a straightforward conse-
quence of the symmetry of the problem and not the property
imposed on the basis of additional arguments. Another con-
sequence of the description of the collinear magnetic states
in terms of SSG is that these states can be treated as spiral
structures with arbitrary wave vectors q and deviation angles
0 = 0. Indeed, the group of generalized translations T with
any q is a subgroup of the group C, x T where T is the group
of space translations [E|R,] and C; is the group of all spin
rotations C,4 about the z axis. This property will be used in
Sec. IVH to study the transformation path of the electron

structure of the collinear ground state into the electron struc-
ture of the magnon state with a given wave vector.

C. Collinear AFM ground state of MnTe

In MnTe, the space group of the atomic lattice contains
24 point operations listed in Table I: 12 operations of type
I transform the Mn sublattices into themselves whereas other
12 operations of type II transform them into each other. In
the AFM state, the point operations of type II remain the part
of the symmetry operations in combination with spin-index
reversal operation (time reversal operation).

The application of the 12 operations of type I to a
reciprocal-space vector k = (ky, ky, k;) gives the set of 12
vectors with coordinates transformed according to the three
columns of Table I with common heading ogr or Iagr. For
instance, for the operation number 4, the transformed vector
is (—%kx — ‘/7§k‘ ‘?kx — %ky, k). These 12 vectors are not
necessarily different. For the most symmetric I" point k =
(0, 0, 0) all vectors are equal and the corresponding star {K}gp
consists of one vector. On the other hand, for a general point
k all 12 vectors are different. In Fig. 6, the points of the star
{k}sub1 are shown for a general vector kK, = (koy, koy, ko;) and
marked as black circles: 6 points lie in the k, = k., plane and
other 6 points in the k, = —k,, plane. At 12 points of the star
{Kk.}subi thus obtained, for each electron state at point k, there
are equivalent states with the same energy and the same spin
projection.

As a representative of the operations of type Il we will use
the reflection in the xy plane (operation number 18 in Table I).
Action with this operation on the vectors of the star {K,}sup
gives another 12 vectors shown in Fig. 6 as red squares. They
differ from the vectors of the star {K.}sup by the sign of the
z component. The states at these 12 vectors are degenerate
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e spin-up z oz
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FIG. 6. Star {k,} of a general wave vector k,. The star contains
24 points lying in two planes k, = k., [panel (a)] and k, = —k.,
[panel (b)]. For any electron state at k., the points shown by black
circles contain equivalent states with the same spin projection. These
12 points form the star {K. }s,n corresponding to the symmetry group
of the Mn sublattices. The points shown by red squares contain
equivalent electron states with opposite spin projection. At all 24
points there is the altermagnetic spin splitting of the electron states.
As discussed in Sec. IV E, the same figures reflect the properties of
the chirality splitting of the magnons. In this case, the wave vectors
k of the electron states must be replaced by corresponding magnon
wave vectors q and references to spin projections by references to
chiralities.

with the states at k, but have opposite spin projection. All 24
vectors are different and form full star {k.} of vector k.

In general, for any k, we have the star {k}, obtained with
operation leaving magnetic sublattices invariant and the full
star {k} obtained with account for all symmetry operations.
These two sets of vectors are either identical or the number
of vectors in {k} is double. In the former case, the change of
the sign of the z component of the vectors from {k}p does
not change the set of vectors and at all points of the set there
is spin degeneracy of the electron states whereas in the latter
case at all points in {k} there is the altermagnetic spin splitting.

The irreducible domain of the AFM MnTe is the triangular
prism TMKALH that is 5; th of the BZ (Fig. 4). The analysis
of all points of the irreducible domain shows that the altermag-
netic spin splitting takes place at all inner points of the prism
and, additionally, at inner points of the face TMLA. At these
points the calculations should be performed separately for the
spin-up and spin-down states. Alternatively, the calculations
can be performed in the ﬁth of the BZ, prism ALHA'L'H’
(Fig. 4), but for one spin projection only.

In Fig. 7, we show one fragment of the calculated band
structure with spin-degenerate bands and one fragment with
altermagnetic spin-splitting.

D. Magnetic structure of sublattices in magnon states

Let us discuss the properties of the structure of the AFM
magnons that follow from the symmetry arguments. These
results provide important general knowledge about properties
of magnons. Simultaneously, they can be used in setting up
and control of the DFT-based calculations. For example, the
correlation in the directions of the atomic moments of dif-
ferent atoms predicted by symmetry must be present in the
self-consistent solution for the magnon state that provides a

AFM
. (@) k=(0,0.k) (b) k=(0.1,0.2.,k )

E (Ry)

FIG. 7. Two fragments of the band structure of AFM MnTe.
(a) High-symmetry line (0,0,k;) in the reciprocal space. (b) Low-
symmetry line (0.1,0.2,k;) in the reciprocal space. Black (red)
circles present spin-up (spin-down) states. At the points of the high-
symmetry line all states are spin degenerate. In the case of the
low-symmetry line, there is altermagnetic spin splitting at all points
with exception of the center and end points of the interval.

tool for controlling the calculations. On the other hand, such
a correlation can be used from the beginning of calculations
to decrease the number of degrees of freedom and simplify
the process of convergence. In addition, the symmetry-based
knowledge that the magnetic atoms become inequivalent in
the magnon excitations helps to avoid an unphysical assump-
tion of the preserved equivalence of atoms and an erroneous
constraint of the equivalence of magnetic atoms in the
calculations.

We consider the magnon with an arbitrary wave vector
q. The magnetic structure of the magnon is invariant with
respect to the generalized translations corresponding to given
q. As stated above, the direct magnon calculation includes an
effective magnetic field acting on both magnetic sublattices.
This field is collinear to the z axis and therefore parallel to
the magnetization of one sublattice and antiparallel to the
magnetization of the other sublattice [63]. Hence the atoms of
the two sublattices in the magnon state become inequivalent.
On the basis of these conclusions, the magnetic configurations
of the two sublattices in a magnon state can be written in the
following form

myy = my{sin(64) cos[q(as + R,)], sin(64)
x sin[q(as + R,)], cos(64)}, (1)
m,p = mp{sin(w — Op) cos[q(az + R,) + 7 + ],

x sin(wr — Og) sin[q(ag + R,) + 7 + ¢], — cos(6p)}.

12)

Because of the inequivalence of the sublattices it is ex-
pected that my # mp, 04 # Op, and there is an unknown not
symmetry-governed angle ¢ specifying the phase shift be-
tween xy-projections of the moments of the two sublattices.
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The calculations with the suggested method confirmed that
my # mp and 04 # 0. More details on these quantities will
be given below.

However, concerning angle ¢ the results of the calculations
were unexpected: iterations started with an arbitrary selected
¢ # 0 resulted in the self-consistent magnetic configurations
with ¢ = 0. The question arises why the orientations of the
moments of two inequivalent sublattices not connected by
any symmetry operation are in such a strict coordination with
each other. This type of the coordination is expected to be a
symmetry-caused property. The explanation for this property
is the following. The cone spiral structure of sublattice A
[Eq. (11)] for arbitrary q and 6, is invariant with respect to
the SSG operation {©C,,|/|0} that combines space inversion /
and spin transformation ©C,, performing spin reflection in
the xz plane. This operation leaves invariant also the cone
structure of the sublattice B [Eq. (12)] but only in the case of
¢ = 0 or ¢ = . This means that if the calculation is started
with ¢ = 0 the value of ¢ remains zero during iterations since
the symmetry with respect to the operation {©C,,|I|0} must
be preserved. Thus, although there is no symmetry operation
transforming the sublattices into each other there is an oper-
ation that is responsible for preserving ¢ = 0 and makes the
two-sublattice magnetic configuration distinguished by an ad-
ditional symmetry compared with the configurations obtained
by a nonzero relative phase shift ¢ between the sublattices.
Hence, the choice of ¢ = 0 in the starting magnetic configura-
tion imposes another symmetry constraint [25] in the magnon
calculation that is additional to the constraint of generalized
periodicity.

The presence of the symmetry operation effectively con-
necting inequivalent Mn sublattices influences also the
properties of the Te atoms in the magnon states. In contrast
to the Mn sublattices, the atoms of the two Te sublattices
remain equivalent because the space inversion transforms the
Te sublattices into each other. This operation influences also
the directions of the induced Te moments since to keep this
symmetry operation intact the induced atomic moments of
the two Te sublattices must transform into each other. The
straightforward symmetry analysis gives for the Te atoms in
the unit cell

Oc = 0p =07, # 0, (13)

¢c +dp = qRyc, (14)

where lattice vector R;c = ap — Iac. Although the values
of angles 6¢, 6p and ¢c, ¢p cannot be determined by sym-
metry arguments the knowledge of relations (13) and (14)
allows to accelerate the convergence process for the magnon
configurations by adequate preparation of the initial mag-
netic configurations. The calculation process includes the
self-consistent determination of the directions of all atomic
moments. This process can be rather time consuming. The
knowledge of the symmetry relations between the moments
of different atoms allows to decrease the number of the
degrees of freedom and leads to a considerable reduction of
the convergence time.

Here we give some further information concerning the
calculated values of sublattice quantities entering Egs. (11)
and (12). The values of the Mn moments appeared to be very
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FIG. 8. (a) Directions of the projections of the atomic moments
on the xy plane calculated for q = (0,0,0.3) and 6, = 20°. The atomic
labeling is according to Fig. 2. Two unit cells adjacent along the z
axis are presented. (b) For each atom, we show the value of the angle
between the xy projection of its moment and of the moment of the
atom lying next below.

robust and the difference between mu and mp was always
small: for calculations with 8, = 20°, it never exceeded a few
thousandth of Bohr magniton for estimated Mn atomic mo-
ments of ~4.2u;. On the other hand, the difference between
04 and 6 is an essential feature of the magnon states. It is
strongly q-dependent.

For field h antiparallel to the z axis, 84 > 6. Such magnon
states have negative magnetization with respect to the z axis
and is associated with sublattice A. For field h parallel to the
Z axis 64 < Op, the magnetization is positive, and magnon is
associated with sublattice B. The magnons associated with
different sublattices have opposite chiralities.

For completeness we give some results of the calculation
of the values and directions of the induced Te moments. The
both characteristics are q dependent. The induced moments
deviate rather weakly from the z = 0 plane. For magnons of
type A, 6r, > 90° and the z component of the Te moments
is negative. Respectively, for magnons of type B, 67, < 90°
and the z component of the Te moments is positive. If the
constrained deviation of the Mn moment is 20°, the max-
imal deviation of the Te moments from the z = 0 plane is
about 20°. The values of the induced moments in this case
do not exceed a few thousandth of Bohr magniton. There-
fore the contribution of the Te moments to the magnetization
of the magnon states that is collinear to the z axis is weak. On
the other hand, the contribution of the induced moments into
magnon energy can be noticeable. For chirality degenerate
magnons of A and B type, the values of the Te moments and of
their deviations from the z = 0 plane are exactly equal. For the
chirality split magnons at a given q the values are numerically
different though in MnTe this difference is not large.

In Fig. 8(a), we show the directions of the projections of
the moments on the xy plane calculated for q = (0,0,0.3)
and 64 = 20°. Two unit cells adjacent along the z axis are
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presented. The directions of the atomic moments in the second
unit cell rotate by angle qR with respect to the corresponding
moments in the first unit cell. Here R is the lattice vector con-
necting the cells. The relative directions of the Mn moments of
sublattices A and B in the same unit cell are also according to
wave vector q: ¢p-¢4 = q(ag-a,) + 7 that is the consequence
of ¢ = 01in Eq. (12). The directions of the Te moments (atoms
C and D) within one unit cell cannot be uniquely determined
by symmetry. There is, however, symmetry property of equal
angles of the Te moments with respect to the moment of the
Mn atom lying between them. On the other hand, these angles
are different for the Mn atoms of the A and B sublattices re-
flecting their inequivalence in the magnon states. Figure 8(b)
presents for each atom the value of the angle between the
xy projection of its moment and of the moment of the atom
lying next below. As seen in Fig. 8(a), this is always the angle
between the moments of the Mn and Te atoms. These angles
are distinctly different for Mn atoms of the A and B sublattices
confirming again their inequivalence.

E. Chirality splitting of magnons in altermagnets

To study the chirality properties of magnons the approach
to the symmetry analysis must be fundamentally revised
compared to the spin-splitting study of the electron states
discussed above (Sec. IV B). Now the analysis is focused not
on the properties of the electron states of the same magnetic
configuration but on the relation between energies of different
magnetic configurations. If we take an arbitrary SSG opera-
tion {og|ag|t} and transform our magnetic system according
Eq. (8), we obtain the system with the properties directly re-
lated to the properties of the initial system. This conservation
of the properties reflects two factors: first, the homogeneity
and anisotropy of the space where the system is placed and,
second, the invariance under the applied transformation of
the form of the interactions taken into account in the con-
sidered physical model [64]. In particular, the equivalence of
the systems connected by the SSG transformation reflects the
fact that both space shift and space rotation of the system
does not change the energy of the system. To reveal the
magnon states having, for symmetry reasons, equal energies
we will act with operations {«s|ag|T} on a selected magnon
state aiming to determine other magnon states equivalent to
it. Since dealing with the magnon states of the system we
are not interested in the copies of the system obtained by
the displacement of the atomic lattice or by the rotation of the
net sublattice magnetization from the z axis the operations we
consider are restricted to follows: the orbital part [ag|T] of the
transformation belongs to the space group of the crystal and
leaves the lattice unchanged whereas the spin transformation
o keeps the net magnetizations of the sublattices collinear to
the z axis.

If [ag|T] transforms magnetic sublattices into themselves
the spin part must keep the directions of the sublattice mag-
netizations unchanged agse, = e,. Here e, is the unity vector
parallel to the z axis. Respectively, if [ag|T] transforms sub-
lattices into each other the spin part must reverse the directions
of the sublattice magnetizations cge, = —e,. This shows that
the set of the operations we need to consider forms exactly
the SSG of the collinear AFM ground state that is the group
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FIG. 9. Calculation of the spin wave energies in the I'A interval
of the BZ: q = (0,0,4,), ¢; € [0, 0.5]. (a) AE, (b) Am,, (c) spin wave
energy .

used above (Sec. IVB) in the discussion of the altermag-
netic spin splitting of the electronic states of the GS collinear
configuration.

This conclusion reveals a direct analogy between the pat-
tern of the spin splitting of the electron states in the k space
and the pattern of the chirality splitting of the spin waves in the
q space. Indeed, if oy transforms k vector of an electron state
in ogk it transforms q vector of a magnon in agq. And if this
operation reverses spin of the electron state it changes also
the chirality of the magnon. Hence if there is spin-splitting
(spin-degeneracy) of the electron states at point k there is also
the chirality splitting (chirality degeneracy) of the magnon
states for wave vector q = k. Therefore the reciprocal-space
symmetry patterns of the spin splitting in the ground state
electron band structure and chirality splitting of magnons
are identical. In particular, Fig. 6 reflecting spin splitting of
the electron states in the k space is directly applicable to
the analysis of the chirality splitting of the magnons in the
q space.

F. Calculated magnon dispersion

In Fig. 9, we show the results of the calculation of the spin
wave energies in the I'A interval of the BZ: q = (0,0,q,), g, €
[0, 0.5]. Close to the I' point the energy increase AE ~ q2
whereas Am, ~ g,. This gives a linear dependence of the spin
wave energy w on ¢, as expected for the magnons in AFMs
in the region of the I point. In agreement with symmetry
arguments, the magnons of both chiralities are degenerate at
the wave vectors from this interval.

From the symmetry analysis (Sec. IV E), it is expected that
for the wave vectors lying on a less symmetric line we should
obtain chirality splitting of the magnon states. In Fig. 10, we

(99,9
(@) 5 =] b) ¢) B i~
5067 BA ] '}02,(]3) | azi) A
S 04 - 3N A ﬁé r 1
D o2l 18 o1 | \3/1? 7
0 “os % s 0 s
q q q

FIG. 10. Calculation of the spin wave energies in the interval q
=(q,9,9), q €10,0.5]. (a) AE, (b) Am,, (c) spin wave energy w.
Black curves show the results for magnons of type A, red curves for
magnons of type B.
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FIG. 11. Spin wave energies in the interval q = (0.1,0.2,q,), ¢, €
[0, 0.5]. (a) AE, (b) Amy,, (c) spin wave energy w. Black curves show
the results for magnons of type A, red curves for magnons of type B.

show the result of the calculations for interval q = (q, g, q),
q € [0,0.5]. The calculations confirm the prediction of the
symmetry analysis: numerical difference between data for A
and B magnons is obtained for all points of the interval with
exception for the end points. However, the difference is small
and, for a part of the interval, is not noticeable in the figure.

In Fig. 11, we show the result of the calculations for
an interval q = (0.1,0.2,q,), g. € [0, 0.5] in the reciprocal
space. This interval contains general points not invariant with
respect to any symmetry operation. Again the calculations
confirm the results of the symmetry analysis: at all inner
points of the interval there is chirality splitting of the magnon
states. The maximal splitting is ~7% with respect to the
energy of the spin waves at the corresponding q point.

G. Instability of the energy of magnon state
with respect to the number of magnons

While studying the performance of the method we carried
out numerous model calculations. In particular, we investi-
gated the consequences of the relative energy shift of the
Mn 3d and Te 5p states that influences the hybridization
between these states. Since the nonmagnetic atoms, in our
case Te atoms, play crucial role in the formation of altermag-
netism, the character of the hybridization of the electron states
of magnetic and nonmagnetic atoms is an important factor
influencing the character of the altermagnetic effects. As a
convenient tool for varying the energy positions of the Mn 3d
and Te 5p states we employed LDA + U method with various
values of the corresponding U parameters. In these numerical
experiments we used not only parameter Uy, for the Mn 3d
states but also small Uy, parameter for the Te 5p states, the
latter treated as a free parameter assuming both positive and
negative values. In these model calculations, we noticed that
in some cases the spin wave states behave singular as the
function of Am,.

In Fig. 12, we show a typical instability behavior. This
result was obtained for the energy of the magnon states of
type A with wave vector q = (0.1,0.2,0.3) calculated as a
function of constrained angle 64 with parameters Uy, = 0.2
Ry, and Uy, = —0.03 Ry. The increase of 64 can be associated
with increasing number of magnons. Around 6,4 of 20° the
system experiences sharp transformation between two dif-
ferent states. It is straightforward to suppose that in this 6,
region, the increase of 64 leads to the change of the relative
energy positions of different groups of electron states in the
band structure of the system. In the iterations, the conse-
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FIG. 12. Instability of the energy of magnon state with respect to
the number of magnons.

quences of this process are enhanced leading to the sharp
variation of the energy of the magnon state.

A simular unstable behavior we obtained for magnon B as
a function of the constrained angle 05 (not shown). However,
the region of instability was shifted to somewhat smaller an-
gles. As the result, in the instability region we obtained an
enhancement of the chirality splitting effect. Thus, for 64 =
0p = 20°, the difference in energies of the A and B magnon
states is ~0.6 mRy that is about two orders of value larger
than for angles of 15°. Simular instability was obtained in
calculations for other wave vectors q. The presence of such in-
stabilities cannot be noticed applying the standard procedure
of mapping on the Heisenberg Hamiltonian. The possibility to
study such instabilities that are different for different magnon
chirality channels is a useful feature of the suggested method.

H. Relation between electronic band structures of the magnon
states and chirality properties of these states

Both chirality splitting and chirality degeneracy of two
magnons manifest certain relation between the energies of
the magnons. Whether two magnons are equivalent and have
equal energies or are inequivalent and have different energies
must be reflected in the properties of their electron band struc-
tures. In this section, we gain an insight into the connection
between electronic band structures of the magnon states and
chirality properties of these states. Our method includes the
calculation of the electronic band structures of the magnons
as a part of the itiration process.

The concepts of the generalized periodocity [Eq. (4)] and
generalized Bloch theorem [39] will help us to establish the
transformation path from the electronic band structure of
the collinear AFM GS to the electronic band structure of the
magnon with a given wave vector q and given chirality. In
this way, we reveal the features of the electron energy spec-
trum connected with the presence or absence of the chirality
splitting.

We begin with the electron band structure of the ground
state. As pointed out in Sec. IV B, the collinear magnetic
ground state can be treated as a spiral with # = 0 and ar-
bitrary wave vector q. Different q values lead to different
relative shifts of the spin-up and spin-down electron states
in the reciprocal space. This shift is the consequence of the
redefinition of the wave vector of the electron state in the

184436-11



SANDRATSKII, CARVA, AND SILKIN

PHYSICAL REVIEW B 111, 184436 (2025)

case of the generalized Bloch theorem compared to the usual
periodicity and usual Bloch theorem [40]: depending on spin
projection o wave vector of the electron state changes from
k to k — 0q/2. Since in the collinear AFM GS there is no
mixing between spin-up and spin-down electron states the
relative shift of these states in the reciprocal space has no con-
sequences for physically significant characteristics. However,
in the noncollinear magnon state with 6 £ 0, the wave vector
q is uniquely defined. The relative shift by vector q of the
spin-up and spin-down states is the first step in the transfor-
mation of the band structure that brings the wave vectors of
the electron states in agreement with the definition according
to the generalized Bloch theorem, the only possible way to
introduce the wave vector in the case of noncollinear spiral
structures.

The detailed process of the transformation of the shifted
GS electronic band structure to the electronic band structure
of the magnon in a real multiple-band system is complex and
can be obtained only numerically. However, some important
general trends can be distinguished. One of the consequences
of the noncollinearity is the hybridization of the spin-up and
spin-down electron states. The strongest hybridization takes
place in the regions of the intersection of the spin-up and spin-
down bands. From the symmetry point of view, in the collinear
ground state the spin-up and spin-down electron states belong
to different IRs of the SSG group and the corresponding bands
intersect. In the magnon state, the number of the symmetry
operations decreases and spin-up and spin-down states do not
any longer belong to different IRs that leads to their hybridiza-
tion. The hybridization leads to the repulsion of the bands at
the intersection points.

We remark that besides the hybridization repulsion of the
bands with opposite spin projections in the electron structure
of the helical configuration the noncollinearity leads also to
the transformation of the electron bands with a given spin
projection that has the form of mixing of the k — q/2 and
k + q/2 states of the GS electron structure with coefficients
coszg and sinzg (Ref. [39]). This effect is quadratic with
respect to 6 while the spin-mixing effect at the intersection
point is linear in 6.

Since the positions of the band intersections are different
for different q, the process of the hybridization is q dependent
and, therefore, different for different magnons. Let us look
closer at the transformation of the band structure for two
values of the magnon wave vector q: high-symmetry vec-
tor q; = (0,0,0.2) and general vector q; = (0.1,0.2,0.2).
On the basis of both the symmetry analysis and the calcu-
lations discussed in Secs. IVE and IVF, we know that at
q; the magnons are chirality-degenerate whereas at q, they
are chirality split. We begin with q; and consider electron
band structure in the interval [0, 0, k], k, € [-0.5,0.5], in
the k space. On the high-symmetry line (0,0,k;) the GS band
structure is spin degenerate [Fig. 7(a)]. The relative shift by q;
results in spin split bands as shown in Fig. 13(a). The change
of the sign of k, combined with the spin reversal leaves the
band structure in Fig. 13(a) invariant. The band structures of
magnon configurations of both chiralities calculated for wave
vector q; and (0,0,k;) line are presented in Figs. 13(b) and
13(c). For magnon configuration of type A, we used angles
04 = 45 and 6 = 0, for magnon of type B angles 64 = 0 and
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FIG. 13. The transformation of the electron band structure of
the AFM GS to the band structure of magnon states with q; =
(0,0,0.2). (a)—(c) present the bands in the interval [0, 0, k.], k, €
[—0.5, 0.5] of the electron BZ. The usual AFM band structure in this
interval is shown in Fig. 7(a). (a) gives the AFM band structure after
the shift of the bands by %aql. (b) and (c) give the electron bands
for magnon structures of the A and B types. (d)—(f) give the band
structure in the interval [0.1, 0.2, k.], k, € [—0.5, 0.5]. Correspond-
ing usual AFM band structure is shown in Fig. 7(b). (d) gives the
AFM band structure after the shift of the bands by %Gq|. (e) and (f)
give the electron bands for magnon structures of the A and B types.
In (a) and (d), black (red) circles present spin-up (spin-down) states.

0p = 45. Since in noncollinear structures, the electron states
are spin-mixed, all states are shown in the same color. The
band structures of magnons A and B are different and both
of them have lost the symmetry with respect to the reflection
at k, = 0. However, these band structures transform to each
other after reflection at k, = 0 and, therefore, the integrals
over the occupied parts of the spectra for the given k interval
are equal for both magnons.

Let us continue with the consideration of a low-symmetry
interval [0.1, 0.2, k], k, € [—0.5, 0.5]. The bands have alter-
magnetic spin splitting in the collinear AFM configuration
[Fig. 7(b)]. There is the symmetry of the band structure with
respect to simultaneous sign change of both k, and spin pro-
jection similar to the case shown in Fig. 13(a). After the
shift by %Jql [Fig. 13(d)], the symmetry between the spin-
up and spin-down bands remains intact. The calculation for
the A and B magnon configurations for this q gives, sim-
ilar to the (0,0, k,) interval, two different band structures
[Figs. 13(e) and 13(f)] which have lost the reflection sym-
metry. However, they again transform into each other after
reflection at k, = 0. Therefore, also in this case, the integrals
over occupied parts of the band structures of both magnons
are identical. These symmetry properties provide an insight
into why the magnons with opposite chiralities are degenerate
at q; = (0,0,0.2). Now let us consider the magnons with
low-symmetry wave vector q; = (0.1, 0.2,0.3) that is not
invariant with respect to any space group transformation. We
take again the [0.1, 0.2, k.] interval of the BZ. After 1oq,
shift in the GS band structure [Fig. 14(a)], we obtain in this
interval the spin-up and spin-down bands that are essentially
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FIG. 14. The transformation of the electron band structure of
the AFM GS to the band structures of magnon states with wave
vectors q2 = (0.1,0.2,0.3) and q3 = (0.1, 0.2, —0.3). (a)—(c) give
the band structures in the interval [0.1, 0.2, k,], k. € [—0.5, 0.5] of
the electron BZ for wave vector ,. (a) presents the AFM bands
after the shift by %aqz. (b) and (c) give the electron bands for
magnon structures of the A and B type. (d)—(f) show the band
structures in the interval [—0.1, —0.2, k.], k, € [—0.5, 0.5] for wave
vector q3. (d) gives the AFM bands after the shift by %aq3. (e) and
(f) give the electron bands for magnon structures of the A and B type.
In (a) and (d), black (red) circles present spin-up (spin-down) states.

different and cannot be transformed into each other by a sym-
metry operation. Respectively, magnons A and B result in this
case in two essentially different band structures [Figs. 14(b)
and 14(c)] giving different energy contributions to the integral
band energies of the A and B magnons. The difference of the
band structures of the A and B magnons with wave vector q
illustrates the origin of the chirality splitting of the magnons
at this wave vector.

On the other hand, for q; = (0.1,0.2, —0.3) in the
[-0.1, —0.2, k;] interval we obtain the band structures
[Figs. 14(d)—14(f)] very similar to those shown in Figs. 14(a)-
14(c). Figure 14(d) for the AFM GS is identical to Fig. 14(a)
after reversal of the spin projectrions of all electron states. The
band structure of magnon A with wave vector qs [Fig. 14(e)]
is identical to the band structure of magnon B with wave vec-
tor qp [Fig. 14(c)]. The band structure of magnon B with wave
vector q; [Fig. 14(f)] is identical to to the band structure of
magnon A with wave vector q [Fig. 14(b)]. These properties
of the band structures illustrate the band-structure basis of
the chirality degeneracy of the magnons with different wave
vectors and chirality splitting at given wave vectors.

The following point is worth emphasizing: As noted
above, in the band structures of magnons (Figs. 13 and 14)
the electron states are spin mixed and, therefore, all bands
are presented in the same color. However, the contributions
of the spin-up and spin-down components of the spinor
eigenfunctions are different for different states. Some of
the electron states can remain almost spin-up or almost
spin-down. On the other hand, in the regions where spin-up
and spin-down bands intersect in the GS the hybridization

leads to the electron states with large contributions of both
spin projections. For magnons, the integrated spin contribu-
tions of the occupied electron states do not completely com-
pensate each other since each magnon has a nonzero magnetic
moment.

V. CONCLUSIONS

In the paper, we suggest the method for direct ab initio cal-
culation of magnons in complex collinear magnets without the
spin-orbit coupling. The method does not include the mapping
of the electron system on the Heisenberg Hamiltonian of the
interacting atomic moments as an intermediate step.

Each magnon state is obtained in a separate DFT based
self-consistent calculation performed under two different con-
straints. One constraint governs the magnetization change
with respect to the ground state and the other is a symmetry
constraint establishing the value of the magnon wave vector
q. The performance of the method is demonstrated by the ap-
plication to an altermagnet MnTe. The main feature of the GS
of the altermagnets is the spin splitting of the electron states
with a given wave vector k. Also the magnons in altermagnets
have a special feature: chirality splitting of magnons with
the same wave vector q that is the energy difference of the
magnons corresponding to the different magnetic sublattices.
We show that despite different nature of the spin-splitting
of the electron states and chirality splitting of the magnon
states have identical patterns in the corresponding wave vector
spaces. All conclusions based on the symmetry arguments are
confirmed by the results of numerical calculations.

Our method allows investigation of the electron band struc-
ture of individual magnons. We investigate the connection
between the chirality properties of the magnons and the prop-
erties of the electron band structures of the magnons. The deep
connection between these two different energy characteristics
is exposed.

The altermagnetism of MnTe is the consequence of the
presence of the Te atoms. The method allows the study of
the self-consistent response of the nonmagnetic atoms to the
formation of magnon excitations. An adequate attention is
devoted to the analysis of the properties of the Te atoms in
magnons in MnTe. In particular, we show that the Te atoms
remain equivalent in the magnon states though the Mn atoms
beloning to different sublattices became inequivalent. The
information about induced magnetic moments of the Te atoms
obtained in the symmetry analysis besides providing impor-
tant physical information helps to accelerate the numerical
convergence of the magnon states by means of decreasing the
number of degrees of freedom in the self-consistent calcula-
tions.

In the paper, different symmetry aspects are analyzed
within the framework of the spin space groups. These aspects
include the symmetry constraint of generalized periodicity in
the suggested method of the magnon calculations, the spin
splitting of the electron states in the GS, and chirality splitting
of the magnon states. The SSGs that are the generalization of
the usual space groups allow the integration of these different
aspects in one coherent physical picture.

The suggested method accompanied with symmetry argu-
ments on the basis of the spin-space groups provides a new
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tool making possible efficient direct first principles study of
the magnons in complex collinear magnets including emerg-
ing class of altermagnets.

The spin splitting in some of the AFM crystals was known
for many years but only few years ago it became the focus of
intense research efforts within the new research field dubbed
altermagnetism. Possible applications of the altermagnetic
spin splitting are under discussion. On the other hand, the
chiral splitting of the magnon states that is a fundamental fea-
ture of altermagnets has been noticed very recently. Though
important from the theoretical point of view, this splitting
seems to be relatively weak. However, also this feature of
altermagnets can become important for future experimental
studies and practical applications in the field of magnonics.
A necessary step on this path is the search for materials
with large chirality splitting. Our method that self-consistently
takes into account the crucial contribution of the nonmagnetic
atoms provides a useful tool in this search. Also, the ability of
the method to reveal possible chirality-sensitive instabilities of
the magnon excitations can prove itself useful in this respect.

An important question is if the method can be applied
to the systems where the SOC cannot be neglected. The
main problem with the SOC is that it reduces the 6D space
with separate spin and orbital variables to the actual 3D
space where any point transformation acts on both types of
variables. In the presence of SOC, the generalized transla-
tions do not commute with the Kohn-Sham Hamiltonian and
the reduction of the problem, for an arbitrary wave vector
q, to the small crystallographic unit cell cannot be per-
formed. This mathematical problem is the reflection of the
physical reality consisting in the fact that the SOC disturbs
the perfect helical structure of the spin waves by means of the
magnetic anisotropy. However, there is an important class of

materials where the method can potentially be applied in the
presence of the SOC. These are the materials with uniaxial
magnetic anisotropy. If the z axis is an easy axis and the
anisotropy in the xy plane is negligible, the spin rotation by
an arbitrary angle about the anisotropy axis leaves the system
invariant, and the generalized translation symmetry remains
intact. In Ref. [65], the possibility to neglect the in-plane
anisotropy was used to study the Dzyaloshinskii-Moriya inter-
action that is one of the consequences of SOC. The extension
of the direct method suggested in this paper to the case of the
magnets with uniaxial anisotropy is an interesting problem for
the future studies. Another possibility to deal with the SOC
is, first, to perform self-consistent calculation of the magnon
states without SOC and then to take into account the SOC
within the first-order perturbation theory [66].
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