## Searching for new fulleride superconductors: Is U<sub>3</sub>C<sub>60</sub> possible?.

Supervisor: Ross H. Colman

Co-supervisors: Doc. L. Havela, J. Custers

Fullerene, the near-spherical molecule of carbon, packs in a face centered cubic lattice when in a solid. When we react  $C_{60}$  with alkali metals like K, Rb, or Cs in a 3:1 ratio, they form  $A_3C_{60}$ , with the  $A^+$  ions (A = K, Rb, Cs) sitting between the  $C_{60}$  balls (figure 1a), and they all become **superconducting** at low temperature. The superconducting transition temperature reaches as high as  $T_c = 38 \text{ K}$  in  $C_{83}C_{60}$ .

The  $C_{60}$  become metallic and then superconducting because of half filling of its  $t_{1u}$  molecular orbital, which happens when we add 3 electrons.

It has been theorised that adding 9 electrons instead of 3 could also lead to metallicity, and possibly superconductivity, but so far no  $[C_{60}]^{9-}$  materials have been prepared experimentally.

The predicted material  $U_3C_{60}$  should have this electronic configuration, but despite previous attempts, no one has ever successfully prepared this material directly from uranium  $+ C_{60}$ . This is likely because the reductive potential (reacticity) of elemental uranium is too high, and instead it causes the C60 to decompose before an intercalation reaction can occur. In this project, the student will attempt to use the softer reagent UH<sub>3</sub> as a source of uranium, to successfully prepare U3C60.

## Methodology:

- The student will prepare mixtures of UH<sub>3</sub> + C<sub>60</sub> whilst working in a protective atmosphere (glove-box), and with the help of the supervisor will seal these mixtures in quartz ampoules. The ampoules will be reacted in a furnace for several days.
- To check for reactions, the products will be analysed by X-ray diffraction.
- To check for superconductivity, any successfully reacted mixtures will be checked in a magnetometer at low temperatures.
- The results will be written up as part of the SFG report.

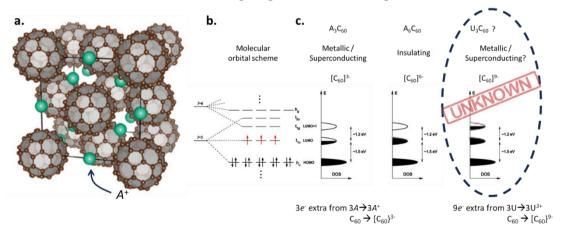



Figure 1a. The FCC lattice of  $C_{60}$  molecules, with ions sitting in the interstitial voids. b. part of the molecular orbital scheme of  $C_{60}$ , showing electron doping. c. Representations of the band filling when reacted with different amounts of electron donors.