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1 INTRODUCTION
Imagine you want to start a burrito truck business. A survey of the city gives you an estimate of roughly
how much demand to expect from each neighborhood, and you know how much it costs you to produce one
burrito, for howmuch it sells, and howmuch it costs to buy one food truck. Each truck captures an amount of
demand which depends on its proximity to the respective neighborhoods. In order to maximize your profit,
you must strike some balance: if you buy more trucks, you capture more demand, but also incur more costs.
Of course, not just the number of trucks, but even more their placement matters. Moreover, the situation may
develop over time, and you may want to move your trucks (after all, they can drive) to respond to changes
in demand. (An interested reader may try their skill in the cute and educational Burrito Optimization Game
at https://www.gurobi.com/burrito-optimization-game/.)

This is one of a myriad of problems which broadly fall into an area called Operations Research1. Precisely
because there are so many optimization problems, each usually with several variants (e.g., if we were placing
factories instead of trucks, we would not be able to move them around easily as demand changes), attention
has historically focused on certain meta-problems or optimization paradigms which are capable of modeling
a wide range of real-world applications. One of the most important of these is the Integer Programming
problem, which is the main subject of this thesis.

In an integer program, a solution is described by a vector of variables, each of which can take only integer
values. For example, in our burrito truck problem, we may have a variable 𝑥𝑝 for each possible location 𝑝
of a truck, and 𝑥𝑝 would equal 1 if a truck is placed at location 𝑝 and 0 otherwise. Which solution is or is
not feasible is described by a system of linear inequalities. In our example, allowing only the values 0 and
1 for the 𝑥𝑝 variables can be achieved by introducing the inequalities 𝑥𝑝 ≥ 0 and 𝑥𝑝 ≤ 1 for each 𝑝 ∈ 𝑃 ,
where 𝑃 is the set of all possible locations. (If we allowed for fractional values of 𝑥𝑝 , we would be in the
realm of linear programming, which is a much more tractable problem.) Maybe we do not have the capacity
to manage more than 5 trucks; then we would enforce

∑
𝑝∈𝑃 𝑥𝑝 ≤ 5. Finally, the goal of the optimization (in

our case, maximizing profit) is described by an objective function which is to be minimized or maximized.
Expressing profit based on the selected truck locations is a bit more involved, but can be done using the
linear inequalities and additional variables.

Clearly, integer programming is a very general paradigm, capable of capturing many real-world problems.
There is thus great interest both in practically efficient algorithms as well as in getting a solid theoretical
understanding of the problem. Computational complexity theory is the branch of computer science which
studies the inherent difficulty of computational problems, and it is the lens which we will use. The most basic
distinction in computational complexity is between problems which can be solved in polynomial time and
those which likely cannot. (The “likely” part of the previous sentence is the heart of the famous P ≠ NP
problem.) Already since the ’70s, it is known that integer programming falls into the second group and a
universally effective algorithm for it is unlikely to exist.

As such, much effort has been dedicated to identifying conditions as broad as possible under which integer
programming can be solved efficiently. One group of conditions studied since the very beginning of computer
science are programs in which the matrix of coefficients of the inequalities has a block structure, for example,
where deleting a few rows or few columns results in a matrix which is block-diagonal. A stream of papers by
experts in Operations Research published between roughly 2000-2015 has shown increasingly general and
effective algorithms for block-structured integer programs.

This thesis is about how we have unified, further extended, generalized, and popularized this line of study
by connecting it to other areas of theoretical computer science (and the respective communities) such as
parameterized complexity and graph and matroid theory. The result of our work is not only in more effective
algorithms for much more general classes of integer programs, but also in a much clearer understanding of
the boundaries of efficiency, and the true underlying reasons for them.

1We omit references in this first page of the introduction to keep its flow natural and uninterrupted. The remainder of the thesis is fully
referenced, and all references that would have appeared in these first few paragraphs do appear in the later parts of the thesis.

https://www.gurobi.com/burrito-optimization-game/
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1.1 Integer Programming
Formally, the integer programming problem is

min {𝑓 (x) | 𝐴x = b, l ≤ x ≤ u, x ∈ Z𝑛} , (IP)

with 𝐴 an integer𝑚 × 𝑛 matrix, 𝑓 : R𝑛 → R a separable convex function, b ∈ Z𝑚 , and l, u ∈ (Z ∪ {±∞})𝑛 .
(IP) is well-known to be strongly NP-hard (shown by Karp [71]) already in the special case when 𝑓 (x) = wx
is a linear objective function for some vector w ∈ Z𝑛 :

min {wx | 𝐴x = b, l ≤ x ≤ u, x ∈ Z𝑛} . (ILP)

Despite this, it can be often solved efficiently in practice and has become a central optimization paradigm
in many application domains, e.g., problems related to planning [106, 109], vehicle routing [104], process
scheduling [38], packing [84], and network hub location [1]. To get a feeling for the breadth of the applica-
bility of (IP), one can for example visit the Case Studies2 page of the Gurobi solver.

Because of its importance, (IP) has been studied from many perspectives, including heuristics [47], or
practical methods such as cutting planes [86], branch-and-cut [112, Section 9.6], etc. We are interested in
identifying broad subclasses of (IP) which can be solved to exact optimality efficiently. To do so, we take
the perspective of parameterized complexity [20]: given an instance with encoding length 𝐿, we want to
understand how the running time of an algorithm scales with the size of the input 𝐿 and with some additional
parameter 𝑘 of the instance. An algorithm is said to be fixed-parameter tractable (FPT) if its running time
is bounded by 𝑔(𝑘)poly(𝐿) for some computable function 𝑔. A problem which is W[1]-hard parameterized
by 𝑘 is unlikely to admit an FPT algorithm, and in this case, one seeks the weaker notion of a slice-wise
polynomial (XP) algorithm, whose complexity is bounded by 𝐿𝑔 (𝑘 ) . Note that the FPT vs. XP difference
provides a finer distinction between algorithms which are both “polynomial for fixed 𝑘”, a common claim
in the literature, and indeed an important part of our work (not covered here) has been deciphering which
algorithms in the literature are FPT, and which are (only) XP [44]. A problem is unlikely to admit an XP
algorithm if it is para-NP-hard, meaning that it is NP-hard already for some constant value of the parameter.
Another important notion is that of a strongly polynomial algorithm, which is an algorithm that makes a
number of arithmetic operations independent of the magnitude of numbers on input; in the case of (IP), this
means that the number of arithmetic operations is bounded by a function of 𝑛 only.

Before moving on to the tractable classes of (IP) studied by us, let us briefly mention three other important
“islands of tractability” studied in the literature. Already in 1956, Hoffman and Kruskal [62] have shown that
if𝐴 is totally unimodular, that is, all of its subdeterminants are between−1 and 1, then (ILP) coincides with its
continuous relaxation. Combined with the polynomiality of linear programming, this implies that (ILP) can
be solved in polynomial time when 𝐴 is totally unimodular. A natural generalization of totally unimodular
matrices are Δ-modular matrices, whose subdeterminants are between −Δ and Δ for some fixed Δ. Artmann
et al. [3] have shown that (ILP) is strongly polynomial when 𝐴 is 2-modular, and other partial results are
known [37, 49, 89], but the question of whether (ILP) with a Δ-modular matrix is FPT parameterized by Δ
remains open.

A different tractable class of (IP) is formed by instances with a small number 𝑛 of variables, as first shown
by Lenstra [83]. His algorithm was subsequently improved by Kannan [68] and generalized by Grötschel,
Lovász, and Schrijver [119] to optimize any convex function over the integers contained in any convex
set. The state-of-the-art is due to Reis and Rothvoss [98] who have shown that (ILP) can be solved in time
(log𝑛)O(𝑛)poly(𝐿); the important question whether an algorithm with complexity 2O(𝑛)poly(𝐿) exists re-
mains open.

About the same time as Lenstra’s result, Papadimitriou [94] has shown that the textbook dynamic pro-
gramming algorithm for KnapsacK can be generalized to (ILP), achieving complexity (𝑚∥𝐴∥∞)O(𝑚2 )poly(𝐿).
This is FPT parameterized by the combined parameter ∥𝐴∥∞ +𝑚, that is, when 𝐴 has few rows and small
coefficients in absolute value.
2https://www.gurobi.com/case_studies/

https://www.gurobi.com/case_studies/
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Fig. 1. On the left, a schematic multi-stage with three levels is presented. On the right, a schematic tree-fold with 4
layers is pictured. All entries within a rectangle can be non-zero, all entries outside of the rectangles must be zero.

1.2 Block-structured Integer Programs
Our main contribution is in a systematic and thorough study of algorithmic aspects of block-structured (IP).
We have unified a stream of research spanning over two decades and present here time complexity improve-
ments, gneralizations to wider classes, and complementary lower bound results. Besides the results contained
in this thesis, we have also shown how our improved algorithms can be used to obtain efficient algorithms
for problems in scheduling, stringology, graph theory, and computational social choice [34, 44, 74–79, 81].

The purpose of this section is to introduce the classes of block-structured IPs which we study in this thesis,
and briefly explain the motivation and history of their study. Our point of departure are two classes of block-
structured integer programs: 𝑛-fold and 2-stage stochastic IPs. A matrix 𝐴 (𝑛) is 𝑛-fold with blocks 𝐴1, 𝐴2 if
it has the form

𝐴 (𝑛) =

©­­­­­­«

𝐴1 𝐴1 · · · 𝐴1

𝐴2

𝐴2

. . .

𝐴2

ª®®®®®®¬
, (1)

for𝐴1 ∈ Z𝑟×𝑡 and𝐴2 ∈ Z𝑠×𝑡 . To be precise, the above may be called a “uniform” 𝑛-fold matrix, as opposed to
a “generalized” 𝑛-fold matrix in which the blocks may differ. We choose to deal with the uniform case here
because a) it simplifies exposition, b) all presented results developed for the uniform case can be carried over
to the generalized case (with one well-justified exception at the end), and, c) qualitatively and with respect
to the relevant parameterizations (again, with one exception), the uniform case is without loss of generality,
because the generalized case can be reduced to the uniform case by suitable encoding tricks. On the other
hand, we should note that the general case is more appropriate when dealing with applications.

A 2-stage matrix 𝐵 (𝑛) is the transpose of an 𝑛-fold matrix, i.e.,

𝐵 (𝑛) =
©­­«
𝐴1 𝐴2
...

. . .

𝐴1 𝐴2

ª®®¬ , (2)

We will also consider generalizations of both classes, so called tree-fold and multi-stage stochastic IPs,
whose matrices have a recursive structure. For example, a tree-fold matrix has the form (1), except each
block 𝐴2 is itself a tree-fold matrix. For a schematic depiction, see Figure 1
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1.3 𝑁 -fold Integer Programming
𝑁 -fold (IP) was introduced under this name by De Loera et al. [24] in 2008, but programs of this form have
appeared in the literature much earlier. The transportation problem, which asks for an optimal routing from
several sources to several destinations, has been defined by Hitchcock [58] in 1941 and independently studied
by Kantorovich [69] in 1942, and Dantzig [21] showed how the simplex method can be applied to it in 1951.
The transportation problem may be seen as a table problem where we are given𝑚 row-sums and 𝑛 column-
sums and the task is to fill in non-negative integers into the table so as to satisfy these row- and column-
sums. A natural generalization to higher-dimensional tables, calledmultiway tables, has been studied already
in 1947 by Motzkin [88]. It also has applications in privacy in databases and confidential data disclosure of
statistical tables, see a survey by Fienberg and Rinaldo [36] and the references therein.

Specifically, the three-way table problem is to decide if there exists a non-negative integer 𝑙 × 𝑚 × 𝑛
table satisfying given line-sums, and to find the table if there is one. Deciding the existence of such a table
is NP-complete already for 𝑙 = 3 [25]. Moreover, every bounded integer program can be isomorphically
represented in polynomial time for some 𝑚 and 𝑛 as some 3 ×𝑚 × 𝑛 table problem [26]. The complexity
with 𝑙,𝑚 parameters and 𝑛 variable thus became an interesting problem. Let the input line-sums be given by
vectors u ∈ Z𝑚𝑙 , v ∈ Z𝑛𝑙 and w ∈ Z𝑛𝑚 . Observe that the problem can be formulated as an (IP) with variables
𝑥𝑖
𝑗,𝑘

for 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚] and 𝑘 ∈ [𝑙], 𝑓 ≡ 0, and the following constraints:
𝑛∑
𝑖=1

𝑥𝑖𝑗,𝑘 = 𝑢 𝑗,𝑘 ∀𝑗 ∈ [𝑚], 𝑘 ∈ [𝑙],

𝑚∑
𝑗=1

𝑥𝑖𝑗,𝑘 = 𝑣𝑖𝑘 ∀𝑖 ∈ [𝑛], 𝑘 ∈ [𝑙],

𝑙∑
𝑘=1

𝑥𝑖𝑗,𝑘 = 𝑤 𝑖
𝑗 ∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚],

x ≥ 0 .

Written in matrix form, it becomes 𝐴x = b, x ≥ 0 with b = (u, v1,w1, v2,w2, . . . , v𝑛,w𝑛), 𝐼𝑘 the 𝑘 × 𝑘 , 𝑘 ∈ N,
identity matrix, 1𝑘 the all-ones vector of dimension 𝑘 ∈ N, and with

𝐴 =

©­­­­­­«

𝐼𝑚𝑙 𝐼𝑚𝑙 · · · 𝐼𝑚𝑙
𝐽

𝐽
. . .

𝐽

ª®®®®®®¬
, where 𝐽 =

©­­­­«
𝐼𝑙 · · · 𝐼𝑙
1𝑙

. . .

1𝑙

ª®®®®¬
∈ Z(𝑙+𝑚)×𝑚𝑙 .

Here, 𝐽 has𝑚 diagonal blocks 1𝑙 and 𝐴 has 𝑛 diagonal blocks 𝐽 . Thus. 𝐴 can be viewed either as an 𝑛-fold
matrix, or as a tree-fold matrix with 3 levels.

A different implicit appearance of the 𝑛-fold structure is in the famous3 1961 and 1963 papers by Gilmore
and Gomory [45, 46] on solving the Cutting StocK problem. Their work has been essential in regards to
fundamental notions like column generation, cutting planes, and the Configuration LP, whose depiction from
the 1963 paper [46] appears in Figure 2. It is clear that the presented matrix is 𝑛-fold, and we will return to
it in Section 3. In fact, the significance of the 𝑛-fold structure in packing and scheduling problems seems to
have been lost until a brief mention in the paper introducing 𝑛-fold IP [24], and has only been taken up in
earnest [13, 14, 51, 65, 66, 73, 75, 76] in the wake of our paper from 2018 [74]. Let us now briefly describe this
connection.

The problem of uniformly related machines makespan minimization, denoted 𝑄 | |𝐶max in the standard no-
tation, is the following. We are given𝑚 machines, each with speed 0 < 𝑠𝑖 ≤ 1, and 𝑛 jobs, where the 𝑗-th
3Over 2,800 and 1,700 citations, respectively, according to Google Scholar, at the time of submission.
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Fig. 2. A figure from “A Linear Programming Approach to the Cutting-Stock Problem—Part II” by Gilmore and Go-
mory [46] depicting the Configuration LP (not yet under this name) of the “Machine Balance Problem”.

job has processing time 𝑝 𝑗 ∈ N and processing it on machine 𝑖 takes time 𝑝 𝑗/𝑠𝑖 . The task is to assign jobs
to machines such that the time when the last job finishes (the makespan) is minimal, i.e., if 𝑀𝑖 is the set of
jobs assigned to machine 𝑖 , the task is to minimizemax𝑖∈[𝑚]

∑
𝑗∈𝑀𝑖

𝑝 𝑗/𝑠𝑖 . The decision version of the problem
asks whether there is a schedule of makespan 𝐶max ∈ R. We consider the scenario when 𝑝max = max𝑗 𝑝 𝑗 is
bounded by a parameter and the input is represented succinctly by multiplicities 𝑛1, . . . , 𝑛𝑝max of jobs of each
length, i.e., 𝑛ℓ is the number of jobs with 𝑝 𝑗 = ℓ . Letting 𝑥𝑖𝑗 be a variable representing the number of jobs of
length 𝑗 assigned to machine 𝑖 , Knop and Koutecký [74] give the following 𝑛-fold formulation:

𝑚∑
𝑖=1

𝑥𝑖𝑗 = 𝑛 𝑗 ∀𝑗 ∈ [𝑝max], (3)

𝑝max∑
𝑗=1

𝑗 · 𝑥𝑖𝑗 ≤ ⌊𝑠𝑖 ·𝐶max⌋ ∀𝑖 ∈ [𝑚] . (4)

Constraints (3) ensure that each job is scheduled on some machine, and constraints (4) ensure that each
machine finishes before time 𝐶max. This corresponds to an 𝑛-fold formulation with 𝐴1 = 𝐼𝑝max and 𝐴2 =
(1, 2, . . . , 𝑝max) and with ∥𝐴 (𝑛) ∥∞ = 𝑝max.

Another scheduling problem is finding a scheduleminimizing the sum of weighted completion times
∑
𝑤 𝑗𝐶 𝑗 .

Knop and Koutecký [74] show an 𝑛-fold formulation for this problem as well, in particular one which has a
separable quadratic objective. In the context of scheduling, what sets methods based on 𝑛-fold (IP) apart from
other results is that they allow the handling of many “types” of machines (such as above where machines
have different speeds) and also “non-linear” objectives (such as the quadratic objective in the formulation for∑
𝑤 𝑗𝐶 𝑗 ).
Another field where 𝑛-fold (IP) has had an impact is computational social choice. The problem of BRibeRy

asks for a cheapest manipulation of voters which lets a particular candidate win an election. An FPT algo-
rithm was known for BRibeRy parameterized by the number of candidates which relied on Lenstra’s algo-
rithm. However, this approach has two downsides, namely a time complexity which is doubly-exponential in
the parameter, and the fact that voters have to be “uniform” and cannot each have an individual cost function.
Knop et al. [79] resolved this problem using 𝑛-fold (IP) by showing a single-exponential algorithm for many
BRibeRy-type problems, even in the case when each voter has a different cost function.

Lastly, the Dantzig-Wolfe decomposition [22] is an algorithm for solving linear programs with an 𝑛-fold
structure which decomposes the problem into a master problem and a series of subproblems corresponding
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to the individual blocks. One important example of a problem which can be solved by this method is the
Multicommodity Flow problem, where the matrix 𝐴2 of each block corresponds to the incidence matrix of
an input graph𝐺 , and the matrix𝐴1 is the identity matrix. In this way, the “coupling constraints” defined by
the blocks 𝐴1 ensure that the total flow, summed up across all commodities, does not exceed the capacity of
any edge.

1.4 2-stage Stochastic Integer Programming
The motivation for the study of 2-stage stochastic matrices comes from decision making under uncertainty.
Here, one is asked to make a partial decision in a “first stage”, and after realization of some random data, one
has to complete their decision in a “second stage”. The goal is minimizing the “direct” cost of the first-stage
decision plus the expected cost of the second-stage decision. Random data are often modeled by a finite set
of 𝑛 scenarios, each with a given probability. Assume that the scenarios are represented by integer vectors
b1, . . . , b𝑛 ∈ Z𝑡 , their probabilities by 𝑝1, . . . , 𝑝𝑛 ∈ (0, 1], the first-stage decision is encoded by a variable
vector x0 ∈ Z𝑟 , and the second-stage decision for scenario 𝑗 ∈ [𝑛] is encoded by a variable vector x𝑗 ∈ Z𝑠 .
Setting x := (x0, x1, . . . , x𝑛) and b := (b1, . . . , b𝑛) then makes it possible to write this problem as

minw0x0 +
𝑛∑
𝑗=1

𝑝 𝑗w
′x𝑗 : 𝐵 (𝑛)x = b, l ≤ x ≤ u, x ∈ Z𝑟+𝑛𝑠 , where 𝐵 (𝑛) =

©­­«
𝐴1 𝐴2
...

. . .

𝐴1 𝐴2

ª®®¬ , (5)

with 𝐴1 ∈ Z𝑡×𝑟 , 𝐴2 ∈ Z𝑡×𝑠 , and l, u ∈ Z𝑟+𝑛𝑠 some lower and upper bounds. Problem (5) is called 2-stage
stochastic (IP) and finds many applications in various areas, see [9, 57, 67, 96, 99] and references therein.

Similarly to the Dantzig-Wolfe decomposition method for problems with an 𝑛-fold structure, a decompo-
sitional method for problems with a 2-stage structure has been introduced by Benders [6] in 1962. Where
Dantzig-Wolfe introduces new columns in each iteration (leading to “column generation”), Benders intro-
duces new rows (leading to “row generation”). We should note that both decompositional methods have
been originally introduced for continuous problems. Still, for both Dantzig-Wolfe [107] and Benders [103] a
generalization to the (mixed) integer cases have been studied.

Integer programs with block structure have also been the subject of at least two habilitations, that of
Martin [87] and Nowak [91], which containmany other interesting and relevant references.This thesis differs
by taking a more theoretical perspective, in particular through the lens of parameterized complexity.





• 11

2 (STRONGLY) FIXED-PARAMETER TRACTABLE ALGORITHMS FOR (ILP) AND (IP)
This section is based on the papers [H1] and [H2]. Note that even though [H1] has been published in
2018 and [H2] only in 2024, all the results have been obtained in 2017-2018 and both logically as well as
chronologically precede the papers [H3]-[H8].

2.1 State of the Art in 2018
The developments regarding parameterized complexity of block-structured IPs until 2018 were as follows.
Whenever we talk about FPT algorithms in this section, the parameter is the largest coefficient in absolute
value ∥𝐴∥∞, and the sizes of the blocks composing the block-structured matrix at hand. The key notion
behind most of the results reviewed here is the Graver basis of the matrix 𝐴, G(𝐴), which is the set of non-
zero integer vectors g satisfying 𝐴g = 0 that cannot be decomposed into two non-zero integer vectors with
the same sign-pattern (i.e., belonging to the same orthant) satisfying the same equation. These Graver basis
elements are thus called indecomposable, irreducible, or conformal-minimal. The Graver basis allows a simple
iterative augmentation procedure: given a feasible solution x, either x + g for some g ∈ G(𝐴) is feasible and
improves the objective function, or x is already optimal.

2-stage and multi-stage stochastic (IP). Already in 2003, Hemmecke and Schultz have shown that 2-stage
stochastic (IP) is FPT [56], although this FPT bound was not explicit. At the heart of their algorithm is
the following finiteness result about G(𝐴). For a number 𝑛, 2-stage stochastic matrix 𝐵 (𝑛) , and a vector
x = (x0, x1, . . . , x𝑛), call the subvector x0 the global brick, and the subvectors x1, . . . , x𝑛 the local bricks. Then,
there exists a number 𝑛0 such that for every 𝑛 ≥ 𝑛0, the set of possible global and local bricks that appear in
any g ∈ G(𝐵 (𝑛) ) is fixed and independent of 𝑛. Moreover, they provide an algorithm to compute this finite
set of bricks. A simple branching algorithm then allows one to “guess” the global brick, compute, for each
block, the optimal “matching” local brick, and in this way find an optimal Graver basis element. Combining
this with the iterative augmentation procedure then yields an FPT algorithm. (This algorithm may take a
long time to converge, but improving convergence is a separate and independent topic which we leave aside
for now.) Since the aforementioned finiteness result is obtained by a saturation argument [85] and does not
provide an explicit upper bound, there was no explicit upper bound on the complexity of the algorithm.
This result, using an analogous technique, was extended to multi-stage stochastic (IP) by Aschenbrenner and
Hemmecke [4].

𝑁 -fold and tree-fold (IP). The story was more complicated for 𝑛-fold (IP). Call the subvectors x1, . . . , x𝑛 of
an 𝑛𝑡-dimensional vector x bricks. 𝑁 -fold (IP) has been introduced by De Loera et al. [24] in 2008, and it is in
this paper where the fundamental structural result about G(𝐴 (𝑛) ) has been stated: the number of non-zero
bricks of any g ∈ G(𝐴 (𝑛) ) is independent of 𝑛, and so are their values. The arguments needed for this claim
have been already developed in 2003 (by Santos and Sturmfels [100]) and 2007 (by Hoşten and Sullivant [63]).
A particularly ingenious trick appears in the paper by Santos and Sturmfels [100], where they show that the
structure of the Graver basis of G(𝐴 (𝑛) ) can be understood through what is essentially the Graver basis of
the Graver basis of 𝐴2: G(𝐴1G(𝐴2)). Quoting from [100], “The phrase ‘the Graver basis of the Graver basis’ is
not a typo but it is the punchline”.

Still, the 2008 algorithm of [24] only had complexity𝑛𝑔 (𝐴1,𝐴2 )poly(𝐿), where𝑔 is some computable function,
so this is an XP, not FPT, algorithm. A breakthroughwas achieved by Hemmecke, Onn, and Romanchuk [55]
in 2013, where they combined the ideas from [24] with a KnapsacK-like dynamic programming algorithm (in
the spirit of Papadimitriou [94]) to obtain a first FPT algorithm for𝑛-fold (IP).This algorithmwas highlighted
in the textbook of Downey and Fellows [28], and it attracted much attention after we have shown its wide
applicability in scheduling [74], computational social choice [79], and other areas [78]. Spurred by these
results, Chen and Marx [13] have introduced tree-fold (IP) in early 2018, and have shown that it is FPT as
well.

Graph Parameters. The notion of sparsity has enjoyed tremendous success in graph theory [90, 95], and it
is natural to ask about its applicability to (IP). We focus on two graphs which can be associated with 𝐴:
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• the primal graph 𝐺𝑃 (𝐴), which has a vertex for each column and two vertices are connected if there
exists a row such that both columns are non-zero, and,

• the dual graph 𝐺𝐷 (𝐴) = 𝐺𝑃 (𝐴⊺), which is the above with rows and columns swapped.
Two standard parameters of structural sparsity are the treewidth (measuring the “tree-likeness” of a graph)
and the more restrictive treedepth (measuring its “star-likeness”). We focus on the latter here: the treedepth of
a graph𝐺 denoted td(𝐺) is the smallest height of a rooted forest 𝐹 such that each edge of𝐺 is between vertices
which are in a descendant-ancestor relationship in 𝐹 . The primal treedepth of 𝐴 is td𝑃 (𝐴) := td(𝐺𝑃 (𝐴)), and
analogously the dual treedepth of𝐴 is td𝐷 (𝐴) := td(𝐺𝐷 (𝐴)). We will not define treewidth, but we shall denote
the treewidth of𝐺𝑃 (𝐴) and𝐺𝐷 (𝐴) by tw𝑃 (𝐴) and tw𝐷 (𝐴), respectively, and we note that bounded treedepth
implies bounded treewidth but not vice versa.

It follows from Freuder’s algorithm [40] and was reproven by Jansen and Kratsch [64] that (IP) is FPT
parameterized by the primal treewidth tw𝑃 (𝐴) and the largest variable domain ∥u− l∥∞. Regarding the dual
graph𝐺𝐷 (𝐴), the parameters td𝐷 (𝐴) and tw𝐷 (𝐴) were only recently considered by Ganian et al. [43]. They
show that even deciding feasibility of (IP) is NP-hard on instances with tw𝐼 (𝐴) = 3 (tw𝐼 (𝐴) denotes the
treewidth of the incidence graph; tw𝐼 (𝐴) ≤ tw𝐷 (𝐴) + 1 always holds). Furthermore, they show that (IP) is
FPT parameterized by tw𝐼 (𝐴) and parameter Γ, which is an upper bound on any prefix sum of 𝐴x for any
feasible solution x. Dvořák et al. [29] introduce the parameter fracture number. Having a bounded variable
fracture number 𝔭𝑉 (𝐴) implies that deleting a few columns of𝐴 breaks it into independent blocks of small size,
similarly for constraint fracture number 𝔭𝐶 (𝐴) and deleting a few rows. Having a bounded𝔭𝑉 (𝐴) is essentially
equivalent to having a generalized 𝑛-fold structure, and similarly having a bounded 𝔭𝐶 (𝐴) corresponds to 𝐴
being a generalized 2-stage stochastic. Indeed, the algorithms presented by [29] are based on reducing the
problem to the 𝑛-fold and 2-stage cases and applying the algorithms reviewed above.

2.2 Unified Approach and Treedepth
Denote by ⟨𝐴, 𝑓 , b, l, u⟩ the binary encoding length of an (IP) instance. (We define the encoding length of
𝑓 to be the length of 𝑓gap, which is the difference between the maximum and minimum values of 𝑓 on the
domain.) The function 𝑓 is given by an oracle. A glaring question left open by Ganian and Ordyniak [42] is
that of the complexity of (IP) parameterized by ∥𝐴∥∞ and td𝑃 (𝐴) or td𝐷 (𝐴). In [H1], we have fully settled
this with the following result:

TheoRem 1. There exists a computable function 𝑔 such that problem (IP) can be solved in time

𝑔(∥𝐴∥∞, 𝑑)poly(𝑛, 𝐿), where 𝑑 := min{td𝑃 (𝐴), td𝐷 (𝐴)} and 𝐿 := ⟨𝐴, 𝑓 , b, l, u⟩ .

Note that for our algorithm to be fast it suffices if at least one of td𝑃 (𝐴) and td𝐷 (𝐴) is small. Also, all the
presented results hold for (IP) whose constraints are given in the inequality form 𝐴x ≤ b: introducing slack
variables leads to (IP) in standard form with a constraint matrix 𝐴𝐼 := (𝐴 𝐼 ), with min{td𝑃 (𝐴𝐼 ), td𝐷 (𝐴𝐼 )} ≤
min{td𝑃 (𝐴) + 1, td𝐷 (𝐴)}.

Our result is qualitatively optimal in the following sense. Already for ∥𝐴∥∞ = 1 or 𝑑 = 1 (ILP) is NP-hard:
by the natural reduction from SAT in the former case, and similarly by the natural modeling of KnapsacK
in the latter. Moreover, the two arguably most important tractable classes of (IP) are formed by instances
whose constraint matrix is either totally unimodular or has small number 𝑛 of columns, yet our results are
incomparable with either: the class of totally unimodular matrices might have large 𝑑 , but has ∥𝐴∥∞ = 1,
and the matrices considered here have variable 𝑛.

Furthermore, treedepth cannot be replaced with the more permissive notion of treewidth, since (IP) is
NP-hard already when min{tw𝑃 (𝐴), tw𝐷 (𝐴)} = 2 and 𝑎 = 2 [32]. Second, the parameterization cannot be
relaxed by removing the parameter ∥𝐴∥∞: (IP) is para-NP-hard parameterized by td𝑃 (𝐴) [29, Thm 21] and
strongly W[1]-hard parameterized by td𝐷 (𝐴) [79, Thm 5] alone. Third, the requirement that 𝑓 is separable
convex cannot be relaxed since (IP) with a non-separable convex or a separable concave function are NP-hard
even for small values of our parameters [32]. Let us now sketch our approach towards proving Theorem 1.
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Treedepth is Equivalent to Block Structure. The first important ingredient is showing that, assuming small
∥𝐴∥∞, matrices with small primal treedepth are essentially equivalent to multi-stage stochastic matrices,
and similarly that matrices with small dual treedepth are essentially equivalent to tree-fold matrices. Thus,
in a certain sense, it suffices to restrict our attention to the (more rigidly structured) classes of multi-stage
stochastic and tree-fold matrices.

Graver-best Augmentation. The second ingredient is an abstraction of an iterative augmentation procedure
used in [55] and elsewhere: a Graver-best oracle for a matrix𝐴 is one which, when queried on an (IP) instance
(𝐴, 𝑓 , b, l, u) and a feasible solution x, returns a feasible step h which is at least as good as any feasible step
𝜆g where g ∈ G(𝐴) and 𝜆 ∈ N. Given such an oracle, we can solve (IP) quickly by iteratively querying it on
the current solution and adding the returned step to the solution. Thus, constructing efficient Graver-best
oracles is a key to obtaining efficient algorithms for (IP).

Norm Bounds and Local Search. We identify that constructing efficient Graver-best oracles requires two
components.Thefirst are bounds on the norms of Graver basis elements. Denote by𝑔∞ (𝐴) = maxg∈G(𝐴) ∥g∥∞,
and similarly 𝑔1 (𝐴) = maxg∈G(𝐴) ∥g∥1. We show that the structural result of Aschenbrenner and Hem-
mecke [4] can be interpreted as saying that𝑔∞ (𝐴) is bounded by a function of ∥𝐴∥∞ and td𝑃 (𝐴), and similarly
that the work of Chen and Marx [13] implies that 𝑔1 (𝐴) is bounded by a function of ∥𝐴∥∞ and td𝐷 (𝐴).

Given these norm bounds, it becomes apparent that computing Graver-best steps boils down to solving a
local search problem. This second component can be obtained by a relatively simple branching algorithm in
the case of td𝑃 (𝐴), and by a more involved dynamic programming algorithm in the case of td𝐷 (𝐴).

2.3 Strongly Polynomial Framework
A fundamental question regarding problems involving large numbers is whether there exists an algorithm
whose number of arithmetic operations does not depend on the length of the numbers involved; recall that
if this number is polynomial, this is a strongly polynomial algorithm [102]. For example, the ellipsoid method
or the interior-point method which solve LP take time which does depend on the encoding length, and the
existence of a strongly polynomial algorithm for LP remains a major open problem. Until 2018, the only
strongly polynomial (ILP) algorithms existed for totally unimodular (ILP) [61], bimodular (ILP) [3], so-called
binet (ILP) [2], and 𝑛-fold (ILP) with constant block dimensions [23]. All remaining results, such as Lenstra’s
famous algorithm or the FPT algorithm for 𝑛-fold of Hemmecke et al. [55], are not strongly polynomial.

A second major contribution of [H1] besides Theorem 1 is the development of an algorithmic framework
among others suitable for obtaining strongly polynomial algorithms, and as a consequence of Theorem 1 we
show a strongly polynomial algorithm for (ILP) in the same parameter regime:

TheoRem 2. There exists a computable function 𝑔 such that problem (ILP) can be solved with an algorithm
whose number of arithmetic operations is bounded by

𝑔(∥𝐴∥∞, 𝑑)poly(𝑛), where 𝑑 := min{td𝑃 (𝐴), td𝐷 (𝐴)} .

The proof of Theorem 2 proceeds in four steps:
1. LP relaxation: the LP relaxation can be solved in time poly(𝑛 · ⟨𝐴⟩) by Tardos’ algorithm [102], obtaining

a fractional optimum x∗.
2. Proximity: the integer optimum z∗ which we seek is at an ℓ∞-distance at most O(𝑔∞ (𝐴)𝑛) from x∗, thus

we may reduce the lower and upper bounds l, u to some l′, u′ which are bounded by O(𝑔∞ (𝐴)𝑛), and
subsequently also reduce the right hand side b to some b′ which is bounded by 𝑔∞ (𝐴)poly(𝑛).

3. Objective reduction: since we now know that the integer optimum z∗ lies in a “small” box [l′, u′], we can
apply the coefficient reduction technique of Frank and Tardos [39] to obtain an equivalent objective
w′ with log ∥w′∥∞ = poly(𝑔∞ (𝐴)𝑛).

4. Convergence: because the length of all numbers on input is now polynomial in 𝑛, the algorithm of The-
orem 1 runs in strongly polynomial time.
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A nice and somewhat surprising property of this approach is that, since 𝑓 is given by an oracle and since
step 3 reduces it to an equivalent function, this step is actually irrelevant and we may proceed to step 4
directly. Thus, the algorithm boils down to solving the LP relaxation, reducing the lower and upper bounds
and right hand side in a straightforward manner, and running the algorithm of Theorem 1. The fact that step
3 is unnecessary is in fact substantial, because while the algorithm of Frank and Tardos [39] is polynomial,
the degree of this polynomial is quite large and would dominate the complexity of the algorithm overall. We
have expanded on these ideas in [31] by showing that if the equivalent objective need not be computed, then
stronger bounds on ∥w′∥∞ can be obtained, leading to better bounds on the algorithm itself. Furthermore,
we have shown reducibility upper bounds on not just linear but also separable convex functions, and also
almost matching lower bounds.

2.4 Simplified and Self-contained
The main contribution of [H2] over [H1] is that it presents a streamlined and self-contained version of
the proof of Theorem 1. With the benefit of hindsight, we have replaced Graver-best augmentation with a
cheaper so-called halfling augmentation, and we have derived all results (norm bounds, local search pro-
grams) directly in the most general setting of bounded treedepth. The whole paper is only 16 pages long
including references, and is an ideal entry point into the area for any newcomer, including graduate and
even undergraduate students.
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3 HIGH-MULTIPLICITY 𝑛-FOLD (IP)
Much research following [H1] has focused on reducing the run-time dependency on the number of bricks
𝑛, making it almost linear in the case of optimizing a linear objective [18, 19]. Our interest in this section
is on 𝑛-fold (IP) models of applications where many bricks are of the same type, that is, they share the
same bounds, right-hand side, and objective function. For those applications, it is natural to encode an 𝑛-
fold (IP) instance succinctly by describing each brick type by its constraint matrix, bounds, right-hand side,
and objective function, and giving a vector of brick multiplicities. When the number of brick types 𝜏 is much
smaller than the number 𝑛 of bricks, e.g., if 𝑛 ≈ 2𝜏 , this succinct instance is (much) smaller than the “explicit”
encoding of 𝑛-fold (IP), and an algorithm running in time polynomial in the size of the succinct instance may
be (much) faster than current algorithms. We call the 𝑛-fold (IP) where the instance is given succinctly the
huge (or high multiplicity) 𝑛-fold (IP) problem, and in [H3] we present a fast algorithm for it:

TheoRem 3. Huge 𝑛-fold (IP) with any separable convex objective can be solved in time

(∥𝐴∥∞𝑟𝑠)O(𝑟 2𝑠+𝑟𝑠2 )poly(𝜏, 𝑡, log ∥l, u, b, 𝑛, 𝑓gap∥∞),

where 𝑟, 𝑠 are the numbers of rows of the blocks 𝐴1, 𝐴2, respectively, and 𝑡 is the number of columns of 𝐴1.

A natural application of Theorem 3 are scheduling problems. In many scheduling problems, the number
𝑁 of jobs that must be assigned to machines, as well as the number𝑚 of machines, are very large, whereas
the number of types of jobs and the number of kinds of machines are relatively small. An instance of such a
scheduling problem can thus be compactly encoded by simply stating, for each job type and machine kind,
the number of jobs with that type and machines with that kind together with their characteristics (like
processing time, weight, release time, due date, etc.), respectively. This key observation was made by several
researchers [17, 97], until Hochbaum and Shamir [60] coined the term high-multiplicity scheduling problem.
Clearly, many efficient algorithms for scheduling problems, where all jobs are assumed to be distinct, become
exponential-time algorithms for the corresponding high-multiplicity problem.

Let us shortly demonstrate howTheorem 3 allows designing algorithms which are efficient for the succinct
high-multiplicity encoding of the input. Inmodern computational clusters, it is common to have several kinds
of machines differing by processing unit type (high single- or multi-core performance CPUs, GPUs), storage
type (HDD, SSD, etc.), network connectivity, etc. However, the number of machine kinds 𝜏 is still much
smaller (perhaps 10) than the number of machines, which may be in the order of tens of thousands or more.
Many scheduling problems have 𝑛-fold (IP) models [76] where 𝜏 is the number of machine kinds and 𝑛 is the
number of machines. On these models, Theorem 3 would likely outperform the currently fastest 𝑛-fold (IP)
algorithms.

Proof Ideas. To solve a high-multiplicity problem, one needs a succinct way to argue about solutions. The
fundamental and widely influential notion of Configuration IP (ConfIP) introduced by Gilmore and Go-
mory [45] describes a solution (e.g., a schedule) by a list of pairs “(machine schedule 𝑠 , multiplicity 𝜇 of
machines with schedule 𝑠)”. The linear relaxation of ConfIP, called the Configuration LP (ConfLP), can often
be solved efficiently, and is known to provide solutions of strikingly high quality in practice [105]; for exam-
ple, the optimum of the ConfLP for Bin PacKing is conjectured to have value 𝑥 such that an optimal integer
packing uses ≤ ⌈𝑥⌉ + 1 bins [101]. However, surprisingly little is known in general about the structure of
solutions of ConfIP and ConfLP, and how they relate to each other.

We define the Configuration IP and LP of an𝑛-fold (IP) instance, and show how to solve the ConfLP quickly
using the property that the ConfLP and ConfIP have polynomial encoding length even for huge 𝑛-fold (IP).
Our main technical contribution is a novel proximity theorem about 𝑛-fold (IP), showing that a solution of its
relaxation corresponding to the ConfLP optimum is very close to the integer optimum. Thus, the algorithm
of Theorem 3 proceeds in three steps:

(1) It solves the ConfLP via the standard approach of considering the dual and its separation problem,
which in this case turns out to be an efficiently solvable (IP),
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(2) It uses the novel proximity theorem to construct a “residual” 𝑛′-fold instance with 𝑛′ upperbounded
by (∥𝐴∥∞𝑟𝑠)O(𝑟𝑠 ) , and

(3) it solves the residual instance by an existing 𝑛-fold (IP) algorithm such as Theorem 1.
Precisely defining the Configuration LP of a huge 𝑛-fold (IP) is non-trivial and requires some care. How-

ever, the technical heavy lifting is done in the proof of the proximity theorem, and the theorem itself provides
insight into the fundamental notion of Configuration LP. Intuitively, it means the following: there is an inte-
ger optimum of the Configuration LP which agrees with the continuous optimum on “most” configurations,
and where it differs, it only deviates to configurations which are not “too far”. In other words, an optimum
of the Configuration LP which only uses few configurations implies the existence of an integer optimum
which puts “most” weight on these configurations, and puts the remaining weight in “small” balls around
these configurations. (Note that a continuous optimum using only few configurations can be found efficiently
whenever some optimum can be found at all.)

We highlight the proximity theorem also because the strongly near-linear algorithm of Cslovjecsek et
al. [18] uses a special case of our relaxation of an 𝑛-fold (IP) in order to obtain a similarly tight proximity
result as we do, however, their result only holds for linear objectives, and this seems inherent. Our proof
is longer (thought not necessarily more complex), but the result is more general in this way. Because our
proximity theorem holds also for separable convex objectives, it allowed us in a subsequent work [75] to
show efficient preprocessing algorithms (kernels) for certain scheduling problems, including those whose
models involve separable convex objectives.
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4 MIXED (ILP) AND (IP)
Consider again the celebrated result of Lenstra [83] that (ILP) is FPT parameterized by the number of vari-
ables 𝑛. Lenstra’s brilliant (and short) paper also shows an extension of this result to Mixed ILP where both
integer and non-integer variables are allowed:

min {wx | 𝐴x = b, l ≤ x ≤ u , x ∈ Z𝑧 × R𝑞} , (MILP)
with𝐴 ∈ Z𝑚×(𝑧+𝑞) , l, u,w ∈ Z𝑧+𝑞 and b ∈ Z𝑚 . Specifically, Lenstra showed that (MILP) is FPT parameterized
by the number of integer variables 𝑧, so the number of continuous variables 𝑞 is allowed to be variable.
(MILP) is a prominent modelling tool widely used in practice. For example, Bixby [10] says in his famous
analysis of LP solver speed-ups, “[I]nteger programming, and most particularly the mixed-integer variant, is
the dominant application of linear programming in practice.” Given the fact that Lenstra’s result extends to
the mixed case, it is natural to ask whether the FPT algorithm of Theorem 1 about (IP) with small treedepth
and small coefficients can too be extended to the (MILP) case.This is the subject of [H4]. In [H5], we explore
the more general setting of Mixed IP with separable convex objectives.

4.1 Linear Optimization
The main result of [H4] is the following:

TheoRem 4. There exists a computable function 𝑔 such that problem (MILP) can be solved in time

𝑔(∥𝐴∥∞, 𝑑)poly(𝑛, 𝐿), where 𝑑 := min{td𝑃 (𝐴), td𝐷 (𝐴)}, and 𝐿 := ⟨𝐴, 𝑓 , b, l, u⟩ .

We note that our result again extends to the inequality form of (MILP) with constraints of the form𝐴x ≤ b
by the fact that introducing slack variables does not increase treedepth too much. Also, by the techniques of
Theorem 2, the algorithm of Theorem 4 can be made strongly FPT.

Proof Ideas. The proof goes by reducing an (MILP) instance to an (ILP) instance whose parameters do not
increase toomuch, and then applying the existing algorithms (e.g.,Theorem 2) for (ILP). A key technical result
concerns the fractionality of an (MILP) instance, which is the minimum of the maxima of the denominators
in optimal solutions. For example, it is well-known that the natural LP for the VeRtex CoveR problem has
half-integral optima, that is, there exists an optimum with all values in {0, 12 , 1}.

Before we delve into the details, let us discuss alternative approaches to obtaining algorithms for (MILP).
Lenstra [83] showed how to solve (MILP) with few integer variables using the fact that a projection of a poly-
tope is again a polytope; applying this approach to our case would require us to show that if 𝑃 is a polytope
described by inequalities with small treedepth, then a projection of 𝑃 also has an inequality description of
small treedepth; this is unclear. Hemmecke [53] has studied already in 2003 a mixed-integer analogue of the
Graver basis. It is unclear how to apply his approach, however, because it requires bounding the norm of
elements of the mixed Graver basis, where the bound obtained by (a strengthening of) [53, Lemma 6.2],[52,
Lemma 2.7.2], is polynomial in 𝑛, too much to obtain an FPT algorithm. In fact, in [H5] we show stronger
upper bounds for the mixed Graver basis when𝑚 and ∥𝐴∥∞ are small, and for 2-stage matrices, but we also
specifically rule out that the mixed Graver basis could be used to prove Theorem 4.

The usual way to go about proving fractionality bounds is via Cramer’s rule and a sufficiently good bound
on the determinant. As witnessed by any proper integer multiple of the identity, determinants can grow
large even for matrices of very benign structure. (For example, the determinant of the 𝑛 × 𝑛 matrix 2𝐼 is 2𝑛 .)
Kotnyek [80] characterised 𝑘-integral matrices, i.e., matrices whose solutions have fractionality bounded by
𝑘 , however it is unclear how his characterisation could be used to show the required bound, so we take a
different route. Instead, we analyse carefully the structure of the inverse of the appearing invertible sub-
matrices, allowing us to show that an (MILP) instance with a constraint matrix 𝐴 has an optimal solution x
whose largest denominator is bounded by (∥𝐴∥∞)𝑑! (𝑑!)𝑑!/2, where 𝑑 = min{td𝑃 (𝐴), td𝐷 (𝐴)}. Intuitively, this
means that an LP or (MILP) with small treedepth and coefficients has vertices which are not “too fractional”,
that is, its vertices lie on the superlattice 1

𝑠 Z
𝑧+𝑞 (more precisely Z𝑧 × 1

𝑠 Z
𝑞) with 𝑠 not too large. We are not

aware of any prior work which lifts a positive result for (ILP) to a result for (MILP) in this way.
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Wealso explore the limits of approaching the problem by bounding the fractionality of inverses: Other (ILP)
classes with parameterized algorithms involve constraint matrices with small primal treewidth [64], small
incidence treewidth [43], small signed clique-width [30] and 4-block 𝑛-fold matrices [54]. Here, we obtain
a negative answer: For each of these parameters, there exist families of (MILP) instances with constant pa-
rameters, but unbounded fractionality. The produced families also show that our fractionality upper bound
is almost optimal: there is an (MILP) instance with td𝑃 (𝐴), td𝐷 (𝐴) = 𝑑 , ∥𝐴∥∞ = 2, and fractionality 22

𝑑 .
Compare this with our upper bound 22

𝑑+log𝑑+log log𝑑 .
The fractionality technique behind Theorem 1 cannot be used to handle separable convex objectives in

general, but we show that for one important class of separable convex objectives, the fractionality does not
increase, specifically piece-wise linear functions with integer breakpoints. For this case we show an FPT
result analogous to Theorem 4.

Finally, a fascinating connection has emerged between fractionality bounds, and bounds on the norms of
the circuits of a matrix 𝐴, which are a subset of the Graver basis. Ekbatani et al. [33] show that if, for any
integral b, the polytope {x | 𝐴x ≤ b} is not too fractional, then the norm of the circuits of 𝐴 is not too
large, and vice versa. Since the circuits are a subset of G(𝐴), and we already have good bounds on G(𝐴)
in the considered regime, the result of Ekbatani et al. implies a fractionality bound; however, our approach
yields a tighter bound. The connection can be viewed from the other side as well: our upper bound on the
fractionality can be used to show a circuit norm upper bound.

4.2 Separable Convex Optimization
Lenstra’s famous algorithm [83] can also be extended, e.g. using [119, Theorem 6.7.9], to the setting of arbi-
trary convex objective functions, and, by the same arguments as with the step from (ILP) to (MILP), it can
be shown that (MIP), which is the problem

min {𝑓 (x) | 𝐴x = b, l ≤ x ≤ u , x ∈ Z𝑧 × R𝑞} , (MIP)

with 𝑓 convex is also FPT parameterized by 𝑧. Giving attention to objective functions beyond linear is well
justified: Bertsimas et al. note in their spectacular work [8] on the notorious subset selection problem in
statistical learning that, over the past decades, algorithmic and hardware advances have elevated convex
(and therefore, in particular, non-linear) mixed-integer optimization to a comparable level of relevance in
applications. Given the encouraging results of [H4], we ask whether the FPT algorithm ofTheorem 1 can be
extended to themixed-integer, separable convex case.The a priori intuition leans positive: in 1990, Hochbaum
and Shanthikumar [61] have published an influential paper titled “Convex separable optimization is notmuch
harder than linear optimization” which shows that this is true in the case of (IP) with a totally unimodular
𝐴. Similarly, Chubanov’s algorithm [15] reduces (purely continuous) separable convex optimization to a
polynomial number of linear optimization problems.

In [H5], we go directly against this intuition, in fact, we show that the mixed integer separable convex
case exhibits unexpected behavior both when compared to the fully integer cases, and to the linear cases.
We begin by focusing on the regime of few rows and small coefficients, which was first solved in the purely-
integer case by Papadimitriou [94]. Our main positive result is an algorithm for (MIP) with few rows and
small coefficients:

TheoRem 5. The problem (MIP) can be solved in single-exponential time (𝑚∥𝐴∥∞)O(𝑚2 ) · R, where R is the
time needed to solve the continuous relaxation of any (MIP) with the constraint matrix 𝐴.

This improves the current state-of-the-art, double-exponential bound formixed-integer programswith few
rows and small coefficients to single-exponential, even when the target function is non-linear. Until now, the
best way to solve a (MIP) with few rows and small coefficients would be to remove duplicate columns from
𝐴 in a preprocessing step, and then use Lenstra’s algorithm [83]. Since there are 2∥𝐴∥∞ + 1 numbers of
absolute value at most ∥𝐴∥∞, the preprocessing ensures that there are at most (2∥𝐴∥∞ + 1)𝑚 columns in 𝐴.
This, however, leads to a double-exponential running time in terms of𝑚.
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The structural result behind Theorem 5 is an upper bound on the elements of the mixed Graver basis of
𝐴. We show this bound using a “packing lemma”, powered by an old result from additive combinatorics [92]
recently highlighted by Paat et al. [93]. Our bound has the useful property that it leads to a proximity result
which intuitively says that, for any continuous or integer optimum, there is a mixed-integer optimum which
may require several mixed-integer Graver steps to get to, but only one of those steps will be non-zero in the
integer part. (Interestingly, this also means that the remaining steps will be circuits of the matrix 𝐴, but we
do not use this fact in any way.) Thus, an integer or continuous optimum is always “almost correct” in the
integer part.This is significant because once the integer part is correctly assigned, we get a purely continuous
residual problem, which is polynomial-time solvable.

Set X = Z𝑧 × R𝑞 . We next use the algorithm of Theorem 5 as a starting point for developing a novel
algorithm for an intermediate problem. Namely, we now allow the bounds l, u ∈ X and right-hand side
b ∈ R𝑚 to be fractional, that is, we consider the problem

min{wx : 𝐸x = b, l ≤ x ≤ u, x ∈ X}. (MILPfrac)
Already deciding feasibility of this variant has been shown to be NP-hard for totally unimodular matrices
[16]. In a way, (MILPfrac) can be seen as a special case of (MIP) (even with integer b, l, u), because a separable
convex objective 𝑓 can be used to model non-integer lower bounds and right-hand sides.

We are interested in the case of small treedepth and coefficients, in particular in 𝑛-fold and 2-stage stochas-
tic matrices with small block sizes. For the case of 2-stage stochastic constraints, we give an XP algorithm:

TheoRem 6. The problem (MILPfrac) where 𝐴 is a 2-stage stochastic matrix whose two blocks have 𝑟 and 𝑠
columns, and both have 𝑡 rows, can be solved in time 𝑔(𝑟, 𝑠, ∥𝐴∥∞) · 𝑛𝑟 , for some computable function 𝑔.

This result turns out to be likely optimal, as we show that (MIP) with integral data is W[1]-hard when
𝐴 is a 2-stage stochastic matrix with blocks of size bounded by a parameter and ∥𝐴∥∞ = 1 already for
linear objective functions. In particular, under the common parameterized complexity assumption that FPT
≠ W[1]-hard holds, this rules out algorithms for (MIP) with running times of the form 𝑔(∥𝐴∥∞, 𝑑) · poly(𝑛)
with 𝑑 the larger of the number of columns of the two blocks. Such a (double exponential) algorithm does
exist for the pure integer case as implied by Theorem 1.

Moreover, we show that the algorithm from Theorem 6 cannot be extended to the related case of 𝑛-fold
constraint structure: (MILPfrac) with integral bounds but fractional right hand sides is NP-hardwhen𝐴 is an
𝑛-fold matrix with blocks of constant dimensions and ∥𝐴∥∞ = 1.

Interestingly, the above hardness results demonstrate that the relationship between 𝑛-fold and 2-stage
stochastic programs in the mixed case is different from purely-integer case: In the purely integer case, 𝑛-
fold (IP) is solvable faster than 2-stage stochastic (IP) (single- vs. double-exponential time, respectively), while
in the mixed-integer case, the situation seems to be reversed (NP-hard vs W[1]-hard for 𝑛-fold and 2-stage
stochastic (MIP), respectively).

Results on Mixed Graver Bases. Themixed Graver basis was introduced by Hemmecke [53] already in 2003,
but not understood well enough to be used. On our way to showing Theorem 6, we prove several results
about the mixed Graver basis which are of independent interest, and disprove the typical intuitions gained
by studying the ordinary integral Graver basis. First, all elements of the integral Graver basis of an 𝑛-fold
matrix with bounded block-dimension also have entries of bounded absolute value, whence they derive their
algorithmic usefulness. We show that this is not true for the mixed Graver basis: there is an 𝑛-fold matrix 𝐴
with constant-sized blocks and ∥𝐴∥∞ = 1 such that the mixed Graver basis of 𝐴 contains an element with
1-norm of size Ω(𝑛).

On the other hand, for 2-stage stochastic matrices, the ∞-norm of its elements can be bounded by a func-
tion of the block-dimensions and ∥𝐴∥∞. This bound also implies a proximity result: for any integer optimum
z∗, there is a nearby mixed optimum x∗. Thus, we can first find z∗ (which can be done efficiently), and then
only search in a small neighborhood around z∗.

Until now, a bound 𝑔(𝐴) on (some) norm of the Graver elements has always led to an algorithm with a
corresponding running time 𝑔′ (𝐴)poly(𝑛). However, in the mixed case, such an algorithm is ruled out by
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the W[1]-hardness of 2-stage stochastic (MILPfrac). This shows that, in the mixed case, the common intuition
of good bounds on the Graver norm directly leading to fast algorithms fails.
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5 SPARSITY BEYOND TREEDEPTH
All of the algorithms discussed so far assume that the input matrix is sparse in the traditional sense – it only
has few non-zero entries, and they are arranged in a particularly structured way. The motivation for [H6]
and [H7] is the simple observation that there are matrices which are not sparse, but can be transformed to
become sparse by row operations. For example, the matrix on the left below, whose dual tree-depth is 5, can
be transformed by row operations to the matrix with dual tree-depth 2 given on the right.

©­­­­­«
2 2 1 2 1 3 1
2 1 1 1 2 1 1
2 2 2 2 2 2 1
2 1 1 2 2 1 1
2 2 1 2 1 3 2

ª®®®®®¬
→

©­­­­­«
2 1 0 1 1 2 1
0 1 1 0 0 1 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 2 0 1

ª®®®®®¬
Could the positive results of the previous sections be extended to matrices which exhibit this kind of “hidden”
sparsity? Put differently, the transformation of an input matrix 𝐴 is a matrix 𝐵 which is a preconditioner as
it changes the input matrix 𝐴 to an equivalent one 𝐴′ = 𝐵𝐴 that is computationally more tractable. The
usefulness of this is that instead of solving

min{wx | 𝐴x = b, l ≤ x ≤ u, x ∈ Z𝑛},
we can solve

min{wx | 𝐵𝐴x = 𝐵b, l ≤ x ≤ u, x ∈ Z𝑛},
since 𝐴x = b and 𝐵𝐴x = 𝐵b are satisfied by exactly the same vectors x, and 𝐴 may be dense but 𝐵𝐴 be
sparse. Our question is: under what conditions does such a preconditioner to sparsity exist, and how can it
be computed efficiently? [H7] answers such questions to a significant degree. The results contained in [H7]
build on and subsume the results of [H6], so we will not refer to [H6] much further.

Preconditioning a matrix to make the problem computationally simpler is a ubiquitous preprocessing
step in mathematical programming solvers. In this section, we are concerned with the existence and efficient
computability of preconditioners to sparsity of matrices. Let us define the natural notions of optimal treedepth
of a matrix: the optimal primal treedepth td∗𝑃 (𝐴) is the minimum primal tree-depth of a matrix𝐴′ which can
be obtained from 𝐴 by elementary row operations, and similarly for optimal dual treedepth td∗𝐷 (𝐴) and
optimal incidence treedepth td∗𝐼 (𝐴).

It turns out that the “deeper” notions capable of capturing the “hidden” sparsity, or, equivalently, the
optimal treedepth parameters defined above, are structural parameters of the column matroid 𝑀 (𝐴) of the
matrix 𝐴. We deal with three parameters of 𝑀 := 𝑀 (𝐴):

• The deletion-depth, dd(𝑀), introduced by DeVos et al. [27],
• the contraction∗-depth, c*d(𝑀), introduced by Kardoš et al. [70] under the name branch-depth, however,

since there was a competing notion of branch-depth [27], we decided to use a different name for this
depth parameter to avoid confusion, and

• the contraction∗-deletion-depth, c*dd(𝑀), introduced in [H7] itself.
The structural results of [H7] can be summarized as follows:

TheoRem 7. For every matrix 𝐴, it holds that
• td∗𝑃 (𝐴) = dd(𝑀 (𝐴)),
• td∗𝐷 (𝐴) = c*d(𝑀 (𝐴)), and
• td∗𝐼 (𝐴) = c*dd(𝑀 (𝐴)) + 1.

The first two (primal and dual) results can also be made efficient:

TheoRem 8. For every rational matrix 𝐴 ∈ Q𝑚×𝑛 and any integers 𝑑 and 𝑎, there exists an algorithm which
• either decides that 𝐴 is not equivalent to any matrix 𝐴′ with primal or dual treedepth at most 𝑑 and

∥𝐴′∥∞ ≤ 𝑎, or
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• computes a matrix 𝐴′ equivalent to 𝐴 with primal or dual treedepth at most 𝑑 and ∥𝐴′∥∞ ≤ 𝑔(𝑎, 𝑑) for
some computable function 𝑔.

The proof idea behind Theorem 8 is to use monadic second-order logic to express the existence of a matrix
𝐴′ with primal or dual treedepth at most 𝑑 , and to apply the algorithm of Hliněný [59] to 𝑀 (𝐴) to decide
this sentence. However, this is not directly possible as Hliněný’s algorithm is for matroids representable over
finite fields, and its complexity requires the order of the field to be a parameter; however, 𝑀 (𝐴) is defined
via linear independence of the columns of 𝐴 over the rationals. We overcome this by showing that 𝑀 (𝐴) is
isomorphic to a matroid representable over a finite field, and a key ingredient in this step are our fractionality
bounds from [H4].

The immediate consequence ofTheorem 8 is that all the thus far developed algorithms for (ILP), (IP), (MILP),
and (MIP), namely Theorems 1–6, can be extended to the case where the input matrix is not necessarily of
small primal or dual treedepth nor has small coefficients, but is equivalent to one which is. To summarize
the most important corrolaries:

CoRollaRy 9 (Efficient Optimization via MatRoid SpaRsity). Let 𝐴 be a matrix with 𝑑 the smaller of
the optimal primal or dual treedepth, and let 𝑎 be an upper bound on ∥𝐴′∥∞ of any row-equivalent matrix 𝐴′.
Then

• (ILP) and (MILP) can be solved in strongly-FPT time 𝑔(𝑎,𝑑)poly(𝑛), and
• (IP) with a separable convex objective can be solved in FPT time 𝑔(𝑎,𝑑)poly(𝑛, 𝐿),

for some computable function 𝑔, and with 𝐿 = ⟨𝐴, 𝑓 , b, l, u⟩.

Another important result which we show in [H7] is the relationship between td∗𝐷 (𝐴), 𝑔1 (𝐴), and 𝑐1 (𝐴),
which is the largest ℓ1-norm of any circuit of 𝐴. Informally speaking, we show that the following statements
are equivalent for every matrix 𝐴:

• The matrix 𝐴 is equivalent to a matrix with bounded dual tree-depth and bounded entry complexity.
• The contraction∗-depth of the matroid 𝑀 (𝐴) is bounded, and the matrix 𝐴 is equivalent to a matrix

with bounded coefficients (with any dual tree-depth).
• The ℓ1-norm of every circuit of 𝐴 is bounded.
• The ℓ1-norm of every element of the Graver basis of 𝐴 is bounded.

This affirmatively resolved a question posed during the Dagstuhl workshop 19041 “New Horizons in Param-
eterized Complexity”, about whether (IP) is FPT when parameterized by 𝑔1 (𝐴). Moreover, it shows that in
the case of the ℓ1-norm, the Graver elements cannot be much larger than the circuits, which is not known to
be true in general.

We also remark that while, in the case of dual treedepth, if a matrix 𝐴 has small coefficients and is equiv-
alent to a matrix with dual tree-depth 𝑑 , then there exists an equivalent matrix with dual treedepth 𝑑 and
coefficients bounded by a function of 𝑑 and ∥𝐴∥∞, this is not true in the case of primal treedepth. The largest
coefficient of every matrix with primal treedepth equal to one that is equivalent to the following matrix 𝐴 is
exponential in the number of rows of 𝐴, quite in a contrast to the case of dual treedepth.

©­­­­­­­­­­­­­«

1 2 0 0 · · · 0 0 0 0
0 1 2 0 · · · 0 0 0 0
0 0 1 2 · · · 0 0 0 0
...

...
. . .

. . .
...

...
...

...
. . .

. . .
...

...
0 0 0 0 · · · 1 2 0 0
0 0 0 0 · · · 0 1 2 0
0 0 0 0 · · · 0 0 1 2

ª®®®®®®®®®®®®®¬
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6 BEYOND SMALL COEFFICIENTS AND GRAVER BASES – COMING FULL CIRCLE
The two most prominent classes of constraint matrices we have been considering are 2-stage stochastic and
𝑛-fold matrices. Intuitively, 2-stage stochastic matrices have few “global” columns, and 𝑛-fold matrices have
few “global” rows, whose deletion makes the matrix block-diagonal, respectively. It is natural to consider
the combination of both: a matrix which has few rows and few columns which are “global” is called a 4-
block 𝑛-fold matrix. Hemmecke et al. [54] have introduced this class and shown an XP algorithm for (IP)
with such matrices, when parameterizing by the block dimensions and ∥𝐴∥∞. The arguably most important
open problem in the area of block-structured integer programming is whether this algorithm is qualitatively
optimal, that is, whether 4-block 𝑛-fold (IP) is W[1]-hard, or whether it can be solved in FPT time.

Let us point out that this open problem has an elegant phrasing from the perspective of the structural
parameter topological height introduced in [H2]: (IP) parameterized by the incidence treedepth td𝐼 (𝐴) is
NP-hard in general, but FPT if the topological height is 1 (because it reduces to (IP) in fixed dimension), and
XP if the topological height is 2 – precisely because this corresponds to 4-block 𝑛-fold matrices.

It is not difficult to see that, by employing standard encoding tricks, any 2-stage stochastic (IP) and any
𝑛-fold (IP) instance with small block sizes but containing entries bounded by poly(𝑛) in its “global” parts
can be reduced to a 4-block 𝑛-fold (IP) instance with small coefficients and small block sizes. Thus, if 4-block
𝑛-fold (IP) is FPT, then at least the aforementioned two generalizations of 2-stage stochastic and 𝑛-fold (IP)
are FPT as well. The goal of [H8] is to investigate this question.

Our Contribution. We prove that both the feasibility problem for 2-stage stochastic programs and the op-
timization problem for uniform 𝑛-fold programs (that is, where all the global blocks are the same) can be
solved in fixed-parameter time when parameterized by the dimensions of the blocks and the maximum ab-
solute value of any entry appearing in the diagonal blocks. That is, we allow the entries of the global blocks
to be arbitrarily large, and in the case of 𝑛-fold programs, we require that all global blocks are equal. The
statements below summarize our results. 𝐿 is the bitsize of the input program, as usual.

TheoRem 10.
(1) The feasibility of a generalized (i.e., blocks may differ) 2-stage stochastic (ILP) can be solved in time

𝑔(𝑘,max𝑖 ∥𝐴𝑖2∥∞) ·𝐿 for a computable function 𝑔, where 𝑘 is the largest number of columns of any block,
and 𝐴𝑖2, 𝑖 ∈ [𝑛], are the diagonal blocks.

(2) 𝑛-fold (ILP) with all global blocks identical can be solved in time 𝑔(𝑘,max ∥𝐴𝑖2∥∞) · poly(𝐿) for a com-
putable function 𝑔, where 𝑘 is the largest number of rows and columns of any block, and 𝐴𝑖2, 𝑖 ∈ [𝑛], are
the diagonal blocks.

Theuniformity condition (all global blocks identical) for𝑛-fold (ILP) inTheorem 10 is necessary (unless P =
NP), as one can very easily reduce Subset Sum to the feasibility problem for 𝑛-fold (ILP) with 𝑘 = 2 and the
diagonal blocks being {0, 1}-matrices. Indeed, given an instance of Subset Sum consisting of positive integers
𝑎1, . . . , 𝑎𝑛 and a target integer 𝑡 , we canwrite the following𝑛-fold (ILP) on variables𝑦1, . . . , 𝑦𝑛, 𝑦′1, . . . , 𝑦′𝑛 ∈ Z𝑛 :
𝑦𝑖 + 𝑦′𝑖 = 1 for all 𝑖 = 1, . . . , 𝑛 and

∑𝑛
𝑖=1 𝑎𝑖𝑦𝑖 = 𝑡 .

Notice that in the algorithm for 𝑛-fold (ILP), the maximum number of columns of a block is required to be
a parameter, and this is heavily exploited, setting our approach apart from the previous work.

Further, observe that the algorithm for 2-stage stochastic (ILP) applies only to the feasibility problem. We
actually do not know whether this positive result can be extended to the linear or even separable-convex
optimization problem as well, and we consider determining this an outstanding open problem. Also, notice
that this algorithm seems to be the first one for feasibility of 2-stage stochastic (ILP) that achieves truly
linear dependence of the running time on the total input size; the earlier algorithm of [19] had at least some
additional polylogarithmic factors.

Finally, note that the algorithms ofTheorem 10 are not strongly polynomial (i.e., the running time depends
on the total bitsize of the input, rather than is counted in the number of arithmetic operations), while the
previous algorithms of [H1] and [18, 19] for the stronger parameterization are. This is justified because no
strongly polynomial algorithm is known, and none is suspected to exist, for the greatest common divisor
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problem, which is an instance of (ILP) with two variables. Given integers 𝑎,𝑏, computing gcd(𝑎,𝑏) is equiva-
lent to finding integers 𝑝, 𝑞 such that 𝑎𝑝 + 𝑏𝑞 is positive but as small as possible. This is an (ILP) min𝑎𝑝 + 𝑏𝑞
subject to 𝑎𝑝+𝑏𝑞 ≥ 1, 𝑝, 𝑞 ∈ Z, which is a special case of the problem solved by the second part ofTheorem 10.
Similarly, fixed-dimension (ILP) feasibility is not known to be strongly FPT, and suspected not to be, and
this is a special case of the problem solved by the first part of Theorem 10.

Proof Ideas. The two parts of Theorem 10 each rely on different techniques, and, not surprisingly, they
significantly depart from the by now standard approach through Graver bases. They are based on entirely
new ideas, with some key Graver-based insight needed in the case of the algorithm for 𝑛-fold (ILP). In both
cases, the problem is ultimately reduced to (mixed) integer programmingwith a bounded number of (integral)
variables, which we then solve using Lenstra’s algorithm [83] (or any of its newer strengthenings [68, 98]),
and this allows us to cope with large entries on input.

We find this connection to fixed-dimension (ILP) fascinating, and as if we have come full circle – from
the oldest tractable class of small dimension programs, through the newer and seemingly unrelated class
of block-structured programs, back to programs with small dimension. Still, while the present techniques
suffice for 𝑛-fold programs with linear objectives, they do not seem to extend to the case of separable convex
objectives. We suspect that there the analogy ends and such programs cannot reasonably be “embedded” in
fixed-dimension. We believe this is an important open problem.

The first part of Theorem 10 is based on a new structural result about integer cones, which eventually
allows us tomark all but a few blocks as “irrelevant” and remove them, leaving uswith a fixed-dimension (ILP)
feasibility problem.

The second part of Theorem 10 uses a new insight that, for each brick 𝑖 ∈ [𝑛], the right hand side b𝑖 can
be decomposed into two vectors (b𝑖 )′ and (b𝑖 )′′ such that b𝑖 = (b𝑖 )′ + (b𝑖 )′′, (b𝑖 )′, (b𝑖 )′′ are in the same
orthant as b𝑖 and below it, and, most importantly, they have the property that every solution x𝑖 satisfying
𝐴x𝑖 = b𝑖 can be decomposed into x𝑖 = (x𝑖 )′ + (x𝑖 )′′ such that 𝐴(x𝑖 )′ = (b𝑖 )′ and 𝐴(x𝑖 )′′ = (b𝑖 )′′. Iteratively
applying this decomposition, we can reduce the problem to a high-multiplicity 𝑛-fold (ILP) with few brick
types, since eventually each right hand side becomes small. Note that because of the large coefficients in the
global constraints, this instance is not solvable by Theorem 3. Still, with a few more insights, this instance
can be massaged to a form solvable by Lenstra’s algorithm. An interesting subproblem we brushed over is
how to efficiently decompose each brick’s right hand side b𝑖 into the, possibly many, smaller bricks. It turns
out that the desired property can be expressed in Presburger arithmetic, and the decomposition can be found
using Cooper’s algorithm, whose parameterized complexity we analyzed in another work [81].

Recall the 𝑛-fold model of the makespan minimization on uniformly related machines (𝑄 | |𝐶max) problem
introduced in Section 1.3. This is a program with many bricks which only differ by their right hand sides.
Applying the decomposition technique can then be interpreted as replacing one fast machinewith two slower
machines, and the result of iterating this process is that there are “few” different machines, and each has a
“small” capacity. This seems to be the gist of an argument carried out by Brinkop and Jansen [12], so their
result can be seen as a particular instance of the decomposition insight above. Also, the fact that 𝑄 | |𝐶max is
FPT parameterized by 𝑝max can now either be shown by a direct application to 𝑛-fold (ILP) (as we have done
in [74]), or by the argument above and then solving the resulting fixed-dimension (ILP) instance using, e.g.,
the algorithm of Reis and Rothvoss [98]. This second approach gives a worse complexity bound, but provides
a useful new perspective.
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7 CONCLUSIONS AND OPEN PROBLEMS
We have taken a solid foundation of results built by researchers primarily from the mathematical program-
ming community between roughly 2000-2015, and connected it to the theories of parameterized complexity
and graph and matroid sparsity, together with the respective communities. Many interesting open problems
and research directions remain, and we list a few of those that seem the most important to us.

4-block 𝑛-fold (IP). The arguably most important open problem is the complexity of 4-block 𝑛-fold (IP). It
is known to be XP [54], but it is not known whether it is W[1]-hard or FPT. In [H8], we have shown that
completely new techniques are necessary, but also within reach, in order to make progress on this problem.
The nearest open question seems to be the complexity of 2-stage stochastic (ILP) with large coefficients in
the global blocks: recall that [H8] resolves the complexity of the feasibility problem, but the optimization
problem remains open. Intuitively, linear optimization corresponds to adding one global constraint, so it
constitutes a natural first step towards 4-block 𝑛-fold (ILP), which is equivalent to 2-stage stochastic (ILP)
with 𝑘 additional linear constraints.

Another question related to 4-block 𝑛-fold (IP) stems from [H7]. What is the complexity of computing the
optimal incidence treedepth td∗𝐼 (𝐴), or equivalently the matroid parameter c*dd(𝑀 (𝐴))? A similar problem
which is likely to be easier and is still open is the following: given a matrix 𝐴 and an integer 𝑘 , decide
whether 𝐴 is row-equivalent to a 4-block 𝑛-fold matrix 𝐴′ with block sizes bounded by 𝑘 . A “yes”-instance
of this problem is a matrix 𝐴 with 𝑔∞ (𝐴) ≤ 𝑛𝑔 (𝑘,∥𝐴∥∞ ) for some function 𝑔, which is a stronger bound on
𝑔∞ (𝐴) than available in general for matrices with small c*dd(𝑀 (𝐴)). Still, it is not strong enough, e.g., to
allow showing that𝑀 (𝐴) is isomorphic to a matroid representable over a finite field of a small enough order
to efficiently run Hliněný’s algorithm.

Configuration (IP). Thestructural results of [H3] are related to the seminalwork of Goemans and Rothvoss [48]
on the polynomiality of Bin PacKing with few item types. Their technique yields FPT algorithms for many
important scheduling problems, yet it is inherently limited to models with linear objectives, and thus, for
example, does not lead to efficient algorithms for ℓ2-norm minimization or minimization of sum of weighted
completion times. Consequently, the complexity of problems like 𝑃 | |ℓ2 or 𝑃 | |∑𝑤 𝑗𝐶 𝑗 parameterized by the
number of job types 𝑑 remain open, even in the regime when the largest processing time 𝑝max is bounded
by a polynomial of the input length. Because the techniques of [H3] do apply to the non-linear, separable
convex setting, we believe that the complexity of the aforementioned scheduling problems may be tackled
using some novel approach building on [H3].

2-stage (MIP). In [H4], we have shown that 2-stage stochastic (MILP) with integral data is FPT, and
in [H5], we have shown that 2-stage stochastic (MILPfrac) is XP and W[1]-hard. This result crucially re-
lies on the linearity of the objective (namely the fact that an optimum is attained at a vertex of the mixed
integer hull), so it is unclear whether 2-stage stochastic (MIP) is also XP, and how to show this.

Practical Sparsity: Automatic Decomposition. The original work on block-structured (IP) assumes that the
block structure is given as part of the input. In [H2], we point out that the treedepth-decomposition of the
relevant graphs can be computed in FPT time, and the block structure can be obtained from it. This suggests
an automatic way to decompose a given matrix into a block-structured one, which is a problem that has long
been studied in practice [5, 7, 11, 35, 41, 72, 108, 110, 111]. It would be interesting to verify how practically
useful might treedepth-based decompositional methods be in practice. This seems within reach: thanks to
the PACE challenge [82], there are now efficient implementations of treedepth algorithms, and the block
structure can be obtained from the decomposition in linear time.

A much more challenging problem is employing the matroid-based methods of [H6] and [H7]. No prac-
tical methods for computing the relevant matroid parameters have been suggested, much less implemented.
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Abstract
The theory of n-fold integer programming has been recently emerging as an important tool in
parameterized complexity. The input to an n-fold integer program (IP) consists of parameter A,
dimension n, and numerical data of binary encoding length L. It was known for some time that
such programs can be solved in polynomial time using O(ng(A)L) arithmetic operations where
g is an exponential function of the parameter. In 2013 it was shown that it can be solved in
fixed-parameter tractable time using O(f(A)n3L) arithmetic operations for a single-exponential
function f . This, and a faster algorithm for a special case of combinatorial n-fold IP, have led to
several very recent breakthroughs in the parameterized complexity of scheduling, stringology, and
computational social choice. In 2015 it was shown that it can be solved in strongly polynomial
time using O(ng(A)) arithmetic operations.

Here we establish a result which subsumes all three of the above results by showing that n-
fold IP can be solved in strongly polynomial fixed-parameter tractable time using O(f(A)n6 logn)
arithmetic operations. In fact, our results are much more general, briefly outlined as follows.

There is a strongly polynomial algorithm for integer linear programming (ILP) whenever a
so-called Graver-best oracle is realizable for it.
Graver-best oracles for the large classes of multi-stage stochastic and tree-fold ILPs can be
realized in fixed-parameter tractable time. Together with the previous oracle algorithm, this
newly shows two large classes of ILP to be strongly polynomial; in contrast, only few classes
of ILP were previously known to be strongly polynomial.
We show that ILP is fixed-parameter tractable parameterized by the largest coefficient ‖A‖∞
and the primal or dual treedepth of A, and that this parameterization cannot be relaxed,
signifying substantial progress in understanding the parameterized complexity of ILP.
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Related Version A full version of the paper is available at https://arxiv.org/abs/1802.
05859.

1 Introduction

In this article we consider the general linear integer programming (ILP) problem in standard
form,

min {wx | Ax = b , l ≤ x ≤ u , x ∈ Zn} . (ILP)

with A an integer m× n matrix, b ∈ Zm, w ∈ Zn, l,u ∈ (Z ∪ {±∞})n. It is well known to
be strongly NP-hard, which motivates the search for tractable special cases.

The first important special case is ILP in fixed dimension. In the ’80s it was shown by
Lenstra and Kannan [17, 20] that (ILP) can be solved in time nO(n)L, where L is the length
of the binary encoding of the input. Secondly, it is known that if the matrix A is totally
unimodular (all subdeterminants between −1 and 1), all vertices of the feasible region are
integral and thus applying any polynomial algorithm for linear programming (LP) suffices.
Later, Veselov and Chirkov [25] have shown that the more general class of bimodular ILP is
also polynomial-time solvable. Other results exploit certain structural properties of A. These
include the large classes of n-fold [13], tree-fold [4], 2-stage and multi-stage stochastic [3],
and 4-block n-fold [12] ILPs, as well as algorithms for ILPs with bounded treewidth [11],
treedepth [10] and fracture number [7] of certain graphs related to the matrix A.

A fundamental question regarding problems involving large numbers is whether there
exists an algorithm whose number of arithmetic operations does not depend on the length of
the numbers involved; if this number is polynomial, this is a strongly polynomial algorithm [24].
For example, the ellipsoid method or the interior-point method which solve LP take time
which does depend on the encoding length, and the existence of a strongly polynomial
algorithm for LP remains a major open problem. So far, the only strongly polynomial ILP
algorithms we are aware of exist for totally unimodular ILP [14], bimodular ILP [2], so-called
binet ILP [1], and n-fold IP with constant block dimensions [6]. All remaining results, such
as Lenstra’s famous algorithm or the fixed-parameter tractable algorithm for n-fold IP which
has recently led to several breakthroughs [4, 16, 18, 19], are not strongly polynomial.

1.1 Our Contributions
To clearly state our results we introduce the following terminology. The input to a problem
will be partitioned into three parts (α, β, γ), where α is the parametric input, β is the
arithmetic input, and γ is the numeric input. A strongly fixed-parameter tractable (FPT)
algorithm for the problem is one that solves it using f(α)poly(β) arithmetic operations and
g(α)poly(β, γ) time, where f, g are some computable functions. If such an algorithm exists,
we say that the problem is strongly fixed-parameter tractable (FPT) parameterized by α. Thus,
such an algorithm both demonstrates that the problem is FPT parameterized by α because
it runs in FPT time g(α)poly(β, γ), and provides a strongly polynomial algorithm for each
fixed α. Having multiple parameters α1, . . . , αk simultaneously is understood as taking the
aggregate parameter α = α1 + · · · + αk. If the algorithm involves oracles then the oracle
queries are also counted as arithmetic operations and the answers to oracle queries should
be polynomial in (β, γ). Each part of the input may have several entities, which may be
presented in unary or binary, where 〈e〉 denotes the encoding length of an entity e presented
in binary. For the parametric input the distinction between unary and binary is irrelevant.

https://arxiv.org/abs/1802.05859
https://arxiv.org/abs/1802.05859
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ILP abounds in natural parameters: the dimension n, number of inequalities m, largest
coefficient ‖A‖∞, largest right-hand side ‖b‖∞, various structural parameters of A, etc. Here,
we are interested in algorithms which are both strongly polynomial and FPT.

Recently it was shown that, if we have access to the so-called Graver basis of A, the
problem (ILP) is polynomial time solvable even for various nonlinear objective functions [5, 21].
We show that all of these results can be extended to be strongly polynomial with only 〈A〉
as the arithmetic input.

I Theorem 1. The problem (ILP) with arithmetic input 〈A〉 and numeric input 〈w,b, l,u〉,
endowed with a Graver-best oracle for A, is solvable by a strongly polynomial oracle algorithm.

The existence of Graver-best oracles is thus of prime interest. We show such oracles for
the wide classes of multi-stage stochastic and tree-fold ILPs; for precise definitions of these
classes cf. Section 3.1.2. See Table 1 for a summary of improvements over the current state
of the art.

I Theorem 2. Multi-stage stochastic ILP with blocks B1, . . . , Bτ , Bi ∈ Zl×ni , is strongly
FPT parameterized by l + n1 + · · ·+ nτ and ‖A‖∞.

I Theorem 3. Tree-fold ILP with blocks A1, . . . , Aτ , Ai ∈ Zri×t, is strongly FPT parame-
terized by r1 + · · ·+ rτ and ‖A‖∞.

This improves on the algorithm for tree-fold ILP [4] not only by making it strongly FPT, but
also by leaving the block length t out of the parameter. Similarly, the following algorithm
for the special case of n-fold ILP greatly improves both on the previous results of Hemmecke
et al. [13] and Knop et al. [18] and is the currently fastest algorithm for this problem:

I Theorem 4. n-fold ILP with blocks A1 ∈ Zr×t and A2 ∈ Zs×t can be solved in time
aO(r2s+rs2)(nt)6 log(nt) + L(〈A〉), where L(〈A〉) is the runtime of a strongly polynomial LP
algorithm.

Next, we turn our attention to structural parameters of the constraint matrix A. We
focus on two graphs which can be associated with A:

the primal graph GP (A), which has a vertex for each column and two vertices are
connected if there exists a row such that both columns are non-zero, and,
the dual graph GD(A) = GP (Aᵀ), which is the above with rows and columns swapped.

Two standard parameters of structural sparsity are the treewidth (measuring the “tree-likeness”
of a graph) and the more restrictive treedepth (measuring its “star-likeness”). We denote the
treewidth of GP (A) and GD(A) by twP (A) and twD(A); for treedepth we have tdP (A) and
tdD(A). Note that bounded treedepth implies bounded treewidth but not vice versa.

We show that ILP parameterized by tdP (A) + ‖A‖∞ and tdD(A) + ‖A‖∞ can be reduced
to the previously mentioned classes, respectively, implying (ILP) with these parameters is
strongly FPT.

I Theorem 5. (ILP) is strongly FPT parameterized by tdP (A) and ‖A‖∞.

This improves in two ways upon the result of Ganian and Ordyniak [10] who show that (ILP)
with w ≡ 0 (i.e. deciding the feasibility) is FPT parameterized by tdP (A) + ‖A,b‖∞ [10].
First, we use the smaller parameter ‖A‖∞ instead of ‖A,b‖∞, and second, we solve not
only the feasibility but also the optimization problem. An analogous result holds for the
parameter tdD(A), for which previously nothing was known at all.

I Theorem 6. (ILP) is strongly FPT parameterized by tdD(A) and ‖A‖∞.
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Table 1 Run time improvements implied by this paper. We denote by L the binary length of the
numeric input b, l, u, w, i.e., L = 〈b, l, u, w〉, and consider 〈A〉 to be part of the arithmetic input.
We denote by a = max{2, ‖A‖∞}, by r, s, t the relevant block dimensions (cf. Section 3.1), and by
L(〈A〉) the runtime of a strongly polynomial LP algorithm [24].

Type of instance Previous best run time Our result

n-fold ILP aO(rst+st2)n3L [13]
aO(r2s+sr2)(nt)6 log(nt) + L(〈A〉) Thm 4

n-fold ILP nf1(a,r,s,t) [6]

n-fold ILP tO(r)(ar)r2
n3L if A2 = (1 1 · · · 1) [18] aO(r2)(nt)6 log(nt) + L(〈A〉) Thm 4

tree-fold ILP ftf′(a, n1, . . . , nτ , t)n3L [4] ftf(a, n1, . . . , nτ )(nt)3 + L(〈A〉) Thm 3

Multi-stage stochastic ILP fmss(a, n1, . . . , nτ , l)n3L [3] fmss(a, n1, . . . , nτ , l)n3 + L(〈A〉) Thm 2

Bounded dual treedepth Open whether fixed-parameter tractable fD(a, tdD(A)(nt)3 + L(〈A〉) Thm 6

Bounded primal treedepth fP ′(a, ‖b‖∞, tdP (A))nL [10] fP (a, tdP (A))n3 + L(〈A〉) Thm 5

We emphasize that the parameterizations cannot be relaxed neither from treedepth to
treewidth, nor by removing the parameter ‖A‖∞: (ILP) is NP-hard already on instances
with twP (A) = 3 and ‖A‖∞ = 2 [10, Thm 12], and it is strongly W[1]-hard parameterized
by tdP (A) alone [10, Thm 11]; the fact that a problem is W[1]-hard is strong evidence that
it is not FPT. Similarly, deciding feasibility is NP-hard on instances with twD(A) = 3 and
‖A‖∞ = 2 (Lemma 18) and strongly W[1]-hard parameterized by tdD(A) alone [19, Thm 5].

1.2 Interpretation of Results
We believe our approach also leads to several novel insights. First, we make it clear that
the central question is finding Graver-best oracles; provided these oracles, Theorem 1 shows
that tasks such as optimization and finding initial solutions can be handled under very mild
assumptions. Even though we show these tasks are routine, they have been reimplemented
repeatedly [4, 12, 13, 18].

Second, we show that the special classes of highly uniform block structured ILPs, namely
multi-stage stochastic and tree-fold ILPs, are in some sense universal for all ILPs of bounded
primal or dual treedepth, respectively. Specifically, we show that any ILP with bounded
primal or dual treedepth can be embedded in an equivalent multi-stage stochastic or tree-fold
ILP, respectively (Lemmas 25 and 26).

Third, we show that, besides bounded primal or dual treedepth, the crucial property
for efficiency is the existence of augmenting steps with bounded `∞- or `1-norms, respec-
tively (Lemmas 19 and 21). This suggests that for ILPs whose primal or dual graph is
somehow “sparse” and “shallow”, finding augmenting steps of bounded `∞- or `1-norm might
be both sufficient for reaching the optimum and computationally efficient.

1.3 Related Work
We have already covered all relevant work regarding strongly polynomial algorithms for ILP.

Let us focus on structural parameterizations. It follows from Freuder’s algorithm [9] and
was reproven by Jansen and Kratsch [15] that (ILP) is FPT parameterized by twP (A) and
the largest domain ‖u− l‖∞. Regarding the dual graph GD(A), the parameters tdD(A) and
twD(A) were only recently considered by Ganian et al. [11]. They show that even deciding
feasibility of (ILP) is NP-hard on instances with twI(A) = 3 (twI(A) denotes the treewidth
of the incidence graph; twI(A) ≤ twD(A) + 1 always holds) and ‖A‖∞ = 2 [11, Theorem 12].
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Furthermore, they show that (ILP) is FPT parameterized by twI(A) and parameter Γ, which
is an upper bound on any prefix sum of Ax for any feasible solution x.

Dvořák et al [7] introduce the parameter fracture number; having a bounded variable
fracture number pV (A) implies that deleting a few columns of A breaks it into independent
blocks of small size; similarly for constraint fracture number pC(A) and deleting a few rows.
Because bounded pV (A) implies bounded tdP (A) and bounded pC(A) implies bounded
tdD(A), our results generalize theirs. The remaining case of mixed fracture number p(A),
where deleting both rows and columns is allowed, reduces to the 4-block n-fold ILP problem,
which is not known to be either FPT or W[1]-hard. Because bounded p(A) implies bounded
tdI(A), ILP parameterized by tdI(A) + ‖A‖∞ is at least as hard as 4-block n-fold ILP,
highlighting its status as an important open problem.

Organization. The paper contains three main parts. In Section 2, we provide the proof of
Theorem 1, showing the existence of a strongly polynomial algorithm whenever a Graver-best
oracle is provided. Then, in Section 3, we provide Graver-best oracles for multi-stage stochastic
and tree-fold ILPs and discuss n-fold ILP, and prove Theorems 2, 3 and 4. Finally, in Section 4
we show how to embed any instance of bounded primal or dual treedepth into a multi-stage
stochastic or tree-fold ILP without increasing the relevant parameters, proving Theorems 5
and 6. Due to space restrictions the proofs of our technical statement and other supplementary
material are moved to the full version available at https://arxiv.org/abs/1802.05859;
the statements whose proofs are presented there are marked with (*) .

2 The Graver-best Oracle Algorithm

2.1 Preliminaries
For positive integers m,n, m ≤ n, we set [m,n] = {m, . . . , n} and [n] = [1, n]. We write
vectors in boldface (e.g., x,y) and their entries in normal font (e.g., the i-th entry of x
is xi). If A is a matrix, Ar denotes its r-th column. For an integer a ∈ Z, we denote by
〈a〉 = 1 + log2 a the binary encoding length of a; we extend this notation to vectors, matrices
and tuples of these objects. For example, 〈A,b〉 = 〈A〉+ 〈b〉, and 〈A〉 =

∑
i,j〈aij〉. For a

graph G we denote by V (G) its set of vertices.

Graver bases and augmentation. Let us now introduce Graver bases and discuss how they
are used for optimization. We define a partial order v on Rn as follows: for x,y ∈ Rn we
write x v y and say that x is conformal to y if xiyi ≥ 0 (that is, x and y lie in the same
orthant) and |xi| ≤ |yi| for i ∈ [n]. It is well known that every subset of Zn has finitely many
v-minimal elements.

I Definition 7 (Graver basis). The Graver basis of an integer m× n matrix A is the finite
set G(A) ⊂ Zn of v-minimal elements in {x ∈ Zn : Ax = 0, x 6= 0}.

We say that x is feasible for (ILP) if Ax = b and l ≤ x ≤ u. Let x be a feasible solution
for (ILP). We call g a feasible step if x + g is feasible for (ILP). Further, call a feasible
step g augmenting if w(x + g) < w(x). An augmenting step g and a step length α ∈ Z
form an x-feasible step pair with respect to a feasible solution x if l ≤ x + αg ≤ u. An
augmenting step h is a Graver-best step for x if w(x + h) ≤ w(x + λg) for all x-feasible
step pairs (g, λ) ∈ G(A)×Z. The Graver-best augmentation procedure for (ILP) with a given
feasible solution x0 works as follows:
1. If there is no Graver-best step for x0, return it as optimal.
2. If a Graver-best step h for x0 exists, set x0 := x0 + h and go to 1.
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I Proposition 8 ([21, Lemma 3.10]). Given a feasible solution x0 for (ILP), the Graver-best
augmentation procedure finds an optimum of (ILP) in at most (2n− 2) logF steps, where
F = wx0 −wx∗ and x∗ is any minimizer of wx.

I Definition 9 (Graver-best oracle). A Graver-best oracle for an integer matrix A is one that,
queried on w,b, l,u and x feasible to (ILP), returns a Graver-best step h for x.

2.2 The Algorithm
It follows from Proposition 8 that given a Graver-best oracle, problem (ILP) can be solved in
time which is polynomial in the binary encoding length 〈A,w,b, l,u〉 of the input. We now
show that, in fact, given such an oracle, the problem admits a strongly polynomial algorithm.
In the next theorem the input has only arithmetic and numeric parts and no parametric part.

I Theorem 1. The problem (ILP) with arithmetic input 〈A〉 and numeric input 〈w,b, l,u〉,
endowed with a Graver-best oracle for A, is solvable by a strongly polynomial oracle algorithm.

I Remark. The partition of the input to the arithmetic input 〈A〉 and the numeric input
〈w,b, l,u〉 is the same as in the classical results for linear programming [8, 24].

Proof. The algorithm which demonstrates the theorem consists of several steps as follows.

Step 1: Reducing b, l, u. Apply the strongly polynomial algorithm of Tardos [24] to
the linear programming relaxation min {wy | y ∈ Rn, Ay = b, l ≤ y ≤ u}; the algorithm
performs L(〈A〉) = poly(〈A〉) arithmetic operations. If the relaxation is infeasible then so is
(ILP) and we are done. If it is unbounded then (ILP) is either infeasible or unbounded too,
and in this case we set w := 0 so that all solutions are optimal, and we proceed as below and
terminate at the end of step 3. Suppose then that we obtain an optimal solution y∗ ∈ Rn
to the relaxation, with round down by∗c ∈ Zn. Let a := max{2, ‖A‖∞}. Let C(A) ⊆ G(A)
be the set of circuits of A, which are those c ∈ G(A) with support which is a circuit of the
linear matroid of A. Let c∞ := maxc∈C(A) ‖c‖∞. We have c∞ ≤ n

n
2 an [21, Lemma 3.18].

We now use the proximity results of [12, 14] which assert that either (ILP) is infeasible or
it has an optimal solution x∗ with ‖x∗−y∗‖∞ ≤ nc∞ and hence ‖x∗−by∗c‖∞ ≤ n

n
2 +1an+1.

Thus, making the variable transformation x = z + by∗c, problem (ILP) reduces to following,

min
{

w(z + by∗c) | z ∈ Zn , A(z + by∗c) = b , l ≤ z + by∗c ≤ u , ‖z‖∞ ≤ n
n
2 +1an + 1

}
,

which is equivalent to the program

min
{

wz | z ∈ Zn , Az = b̄ , l̄ ≤ z ≤ ū
}

(1)

where

b̄ := b−Aby∗c, l̄i := max{li−by∗i c,−(nn2 +1an+1)}, ūi := min{ui−by∗i c, n
n
2 +1an+1} .

If some l̄i > ūi then (1) is infeasible and hence so is (ILP), so we may assume that

−(nn2 +1an + 1) ≤ l̄i ≤ ūi ≤ n
n
2 +1an + 1, for all i .

This implies that if z is any feasible point in (1) then ‖Az‖∞ ≤ na(nn2 +1an + 1) and so
we may assume that ‖b̄‖∞ ≤ na(nn2 +1an + 1) else there is no feasible solution. So we have

‖b̄‖∞, ‖̄l‖∞, ‖ū‖∞ ≤ 2O(n logn)aO(n) and hence 〈b̄, l̄, ū〉 is polynomial in 〈A〉 .
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Step 2: Solving the system of equations. We first search for an integer solution to the
system of equations Az = b̄. This can be done by computing the Hermite normal form of A,
see [23], using a number of arithmetic operations polynomial in 〈A〉 and time polynomial
in 〈A, b̄〉 which is polynomial in 〈A〉, and hence strongly polynomially in our original input.
Then either we conclude that there is no integer solution to Az = b̄ and hence (1) is infeasible,
or we find a solution z ∈ Zn with 〈z〉 polynomially bounded in 〈A, b̄〉 and hence also in 〈A〉.

Step 3: Finding a feasible point. Define relaxed bounds by

l̂i := min{l̄i, zi}, ûi := max{ūi, zi}, i ∈ [n] .

Now for i ∈ [n] iterate the following. If l̄i ≤ zi ≤ ūi then simply increment i and repeat. If
zi < l̄i (and hence l̂i = zi and ûi = ūi) then consider the following auxiliary integer program,

max
{
xi | x ∈ Zn , Ax = b̄ , l̂ ≤ x ≤ û

}
. (2)

Starting from the point z feasible in (2), and using the Graver-best oracle for A, we can
solve program (2) using Proposition 8 in polynomial time and in a number of arithmetic
operations and oracle queries which is polynomial in n and logF (recall F = z∗i − zi for some
minimizer z∗i ), which is bounded by log(ûi − l̂i) = log(ūi − zi), thus polynomial in 〈A〉.

Let x be an optimal solution of (2). If xi < l̄i then (1) is infeasible and we are done.
Otherwise (in which case l̄i ≤ xi ≤ ūi) we update l̂i := l̄i and z := x, increment i and repeat.
The last case zi > ūi is treated similarly where in (2) we minimize rather than maximize xi.

Thus, strongly polynomially we either conclude at some iteration i that program (1) is
infeasible or complete all iterations and obtain l̂ = l̄, û = ū, and a point z feasible in (1).

Step 4: Reducing w. Let N := 2n(nn2 +1an + 1) + 1. Now apply the strongly polynomial
algorithm of Frank and Tardos [8], which on arithmetic input n, 〈N〉 and numeric input
〈w〉, outputs w̄ ∈ Zn with ‖w̄‖∞ ≤ 2O(n3)NO(n2) such that sign(wx) = sign(w̄x) for all
x ∈ Zn with ‖x‖1 < N . Since 〈N〉 = O(logN) = O(n logn+ n log a) is polynomial in 〈A〉,
this algorithm is also strongly polynomial in our original input. Now, for every two points
x, z feasible in (1) we have ‖x− z‖1 < 2n(nn2 +1an + 1) + 1 = N , so that for any two such
points we have wx ≤ wz if and only if w̄x ≤ w̄z, and therefore we can replace (1) by the
equivalent program

min
{

w̄z : z ∈ Zn , Az = b̄ , l̄ ≤ z ≤ ū
}
, (3)

where

‖w̄‖∞ = 2O(n3 logn)aO(n3) and hence 〈w̄, b̄, l̄, ū〉 is polynomial in 〈A〉 .

Step 5: Finding an optimal solution. Starting from the point z which is feasible in (3),
and using the Graver-best oracle for A, we can solve program (3) using again Proposition 8
in polynomial time and in a number of arithmetic operations and oracle queries which is
polynomial in n and in logF , which is bounded by log

(
n‖w̄‖∞‖ū− l̄‖∞

)
, which is polynomial

in 〈A〉, and hence strongly polynomially. J

I Remark. In fact, the reduced objective w̄ in step 4 need not be constructed: already its
existence implies that (1) is solved in the same number of iterations as (3).
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3 Multi-stage Stochastic and Tree-fold ILP

In this section we prove Theorems 2 and 3. We first formalize a common construction for a
Graver-best oracle: one constructs a set of relevant step lenghts Λ and then for each λ ∈ Λ
finds a λ-Graver-best step. A step with the best improvement among these is then guaranteed
to be a Graver-best step. Thus, we reduce our task to constructing a Λ-Graver-best oracle.

Both algorithms for multi-stage stochastic ILP and tree-fold ILP follow the same pattern:
1. show that all elements of G(A) have bounded norms (`∞ and `1, respectively),
2. show that A has bounded treewidth (primal and dual, respectively),
3. apply existing algorithms for (ILP) which are FPT parameterized by ‖A‖∞, max ‖x‖∞

and max ‖x‖1, and twP (A) and twD(A), respectively.

3.1 Preliminaries

3.1.1 Relevant Step Lengths
We say that h ∈ {x ∈ Zn | Ax = 0} is a λ-Graver-best step if λh is a feasible step and
λwh ≤ λwg for any g ∈ G(A) such that λg is a feasible step. We denote by g1(A) =
maxg∈G(A) ‖g‖1 and g∞(A) = maxg∈G(A) ‖g‖∞. The following lemma states that provided
a bound on g∞(A), in order to find a Graver-best step, it is sufficient to find a λ-Graver-best
step for all λ ∈ Λ for some not too large set Λ.

I Definition 10 (Graver-best step-lengths). Let x be a feasible solution to (ILP). We say
that λ ∈ N is a Graver-best step-length for x if there exists g ∈ G(A) with x + λg feasible,
such that ∀λ′ ∈ N and ∀g′ ∈ G(A), x + λ′g′ is either infeasible or w(x + λg) ≤ w(x + λ′g′).
We denote by Λ(x) ⊆ N the set of Graver-best step-lengths for x.

I Lemma 11 (Polynomial Λ ⊇ Λ(x)). (*) Let x be a feasible solution to (ILP), let M ∈ N be
such that g∞(A) ≤M . Then it is possible to construct in time O(Mn) a set Λ ⊆ N of size
at most 2Mn such that Λ(x) ⊆ Λ.

With this Λ at hand, in order to realize a Graver-best oracle, it suffices to realize an
oracle which finds a λ-Graver-best step for a given λ:

I Definition 12 (Λ-Graver-best oracle). A Λ-Graver-best oracle for an integer matrix A is one
that, queried on w,b, l,u, x feasible to (ILP), and an integer λ ∈ N, returns a λ-Graver-best
step h for x.

I Lemma 13 (Λ-Graver-best oracle ⇒ Graver-best oracle). (*) Let A be an integer matrix
and let M ∈ N satisfy g∞(A) ≤ M . Then a Graver-best oracle for A can be realized with
2Mn calls to a Λ-Graver-best oracle for A.

3.1.2 Multi-stage Stochastic and Tree-fold Matrices
Let the height of a rooted tree or forest be the maximum root-to-leaf distance in it (i.e., the
number of edges along the root-to-leaf path). In the following we let T be a rooted tree of
height τ − 1 ∈ N whose all leaves are at depth τ − 1, that is, the length of every root-leaf
path is exactly τ − 1. For a vertex v ∈ T , let Tv be the subtree of T rooted in v and let
`(v) denote the number of leaves of T contained in Tv. Let B1, B2, . . . , Bτ be a sequence of
integer matrices with each Bs having l ∈ N rows and ns columns, where ns ∈ N, ns ≥ 1. We
shall define a multi-stage stochastic matrix TP (B1, . . . , Bτ ) inductively; the superscript P
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refers to the fact that TP (B1, . . . , Bτ ) has bounded primal treedepth tdP , as we will later
see.

For a leaf v ∈ T , TPv (Bτ ) := Bτ . Let d ∈ N, 0 ≤ d ≤ τ − 2, and assume that for all
vertices v ∈ T at depth d + 1, matrices TPv (Bτ−d, . . . , Bτ ) have been defined. For s ∈ N,
1 ≤ s ≤ τ , we set TPv (B[s:τ ]) = TPv (Bs, . . . , Bτ ). Let v ∈ T be a vertex at depth d with δ
children v1, . . . , vδ. We set

TPv (B[τ−d−1:τ ]) :=

 Bτ−d−1,`(v1) TPv1
(B[τ−d:τ ]) · · · 0

...
...

. . .
...

Bτ−d−1,`(vδ) 0 · · · TPvδ(B[τ−d:τ ])


where, for N ∈ N, Bs,N =

(
Bs
...
Bs

)
consists of N copies of the matrix Bs.

The structure of a multi-stage stochastic matrix makes it natural to partition any solution
of a multi-stage stochastic ILP into bricks. Bricks are defined inductively: for TPv (Bτ ) there
is only one brick consisting of all coordinates; for TPv (B[s:τ ]) the set of bricks is composed of
all bricks for all descendants of v, plus the first ns coordinates form an additional brick.

I Example 14. For τ = 3 and T with root r of degree 2 and its children u and v of

degree 2 and 3, we have TPu (B2, B3) =
(
B2 B3
B2 B3

)
, TPv (B2, B3) =

(
B2 B3
B2 B3
B2 B3

)
, and

TP (B1, B2, B2) = TPr (B1, B2, B2) =

B1 B2 B3
B1 B2 B3
B1 B2 B3
B1 B2 B3
B1 B2 B3

, with a total of 8 bricks.

Tree-fold matrices are essentially transposes of multi-stage stochastic ILP matrices. Let
T be as before and A1, . . . , Aτ be a sequence of integer matrices with each As ∈ Zrs×t, where
t ∈ N, rs ∈ N, rs ≥ 1. We shall define TD(A1, . . . , Aτ ) inductively; the superscript D refers
to the fact that TD(A1, . . . , Aτ ) has bounded dual treedepth. The inductive definition is the
same as before except that, for a vertex v ∈ T at depth d with δ children v1, . . . , vδ, we set

TDv (A[τ−d−1:τ ]) :=


Aτ−d−1,`(v1) Aτ−d−1,`(v2) · · · Aτ−d−1,`(vδ)
TDv1

(A[τ−d:τ ]) 0 · · · 0
0 TDv2

(A[τ−d:τ ]) · · · 0
...

...
. . .

...
0 0 · · · TDvδ (A[τ−d:τ ])


where, for N ∈ N, As,N = (As · · ·As) consists of N copies of the matrix As. A solution x of
a tree-fold ILP is partitioned into bricks (x1, . . . ,xn) where n is the number of leaves of T ,
and each xi is a t-dimensional vector.

3.1.3 Structural Parameters
We consider two graph parameters, namely treewidth tw(G) and treedepth td(G). We postpone
the definition of treewidth to the full version as it is not central for us.

I Definition 15 (Treedepth). The closure cl(F ) of a rooted forest F is the graph obtained
from F by making every vertex adjacent to all of its ancestors. The treedepth td(G) of a
graph G is one more than the minimum height of a forest F such that G ⊆ cl(F ).

It is known that tw(G) ≤ td(G). The treedepth td(G) of a graph G with a witness forest
F can be computed in time ftd(td(G)) · |V (G)| for some computable function ftd [22].
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I Definition 16 (Primal and dual graph). Given a matrix A ∈ Zm×n, its primal graph
GP (A) = (V,E) is defined as V = [n] and E = {{i, j} ∈

([n]
2
)
| ∃k ∈ [m] : Ak,i, Ak,j 6= 0}. In

other words, its vertices are the columns of A and two vertices are connected if there is a
row with non-zero entries at the corresponding columns. The dual graph of A is defined as
GD(A) = GP (Aᵀ), that is, the primal graph of the transpose of A.

I Definition 17 (Matrix treewidth). Given a matrix A, its primal treewidth twP (A) is defined
as the treewidth of its primal graph, i.e., tw(GP (A)), and its dual treewidth twD(A) is
tw(GD(A)). Similarly, we define the primal and dual treedepth as tdP (A) = td(GP (A)) and
tdD(A) = td(GD(A)), respectively.

Using a proof of Ganian et al. [11, Theorem 12] we show that we cannot hope to relax
the parameter tdD(A) to twD(A), even if ‖A‖∞ was a constant.

I Lemma 18. (*) (ILP) is NP-hard already when twD(A) = 3, ‖A‖∞ = 2, and w = 0.

3.2 Multi-stage Stochastic ILP is strongly FPT
To prove Theorem 2, we need two ingredients: a bound on g∞(A), and an algorithm for (ILP)
with bounded twP (A) and max ‖x‖∞.

I Lemma 19 (Multi-stage stochastic⇒ bounded g∞(A)).(*) Let A = TP (B1, . . . , Bτ ). Then
g∞(A) ≤ fmss-norm(a, n1, . . . , nτ , l) for some computable function fmss-norm.

I Lemma 20. (*) Let X ∈ N. Problem (ILP) with the additional constraint ‖x‖∞ ≤ X can
be solved in time (X + 1)O(twP (A)) · (n+m).

Proof of Theorem 2. Let A = TP (B1, . . . , Bτ ) be a multi-stage stochastic matrix. By
Lemma 19, g∞(A) is bounded by M = fmss-norm(a, n1, . . . , nτ , l). We show how to construct
a Λ-Graver-best oracle. Given an integer λ ∈ N, use Lemma 20 to solve

min{λwh | Ah = 0, l ≤ x + λh ≤ u, ‖h‖∞ ≤M} .

This returns a λ-Graver-best step, because any optimal solution satisfies λh ≤ λg for all
g ∈ G(A). Using a simple induction and the inductive construction of A, one gets that A has
twP (A) ≤ tdP (A) ≤ n1 + · · ·+nτ + 1 and thus the oracle is realized in FPT time. Lemma 13
then yields a Graver-best oracle, which, combined with Theorem 1, finishes the proof. J

3.3 Tree-fold ILP is strongly FPT
As before, to prove Theorem 3, we need two ingredients: a bound on g1(A), and an algorithm
for (ILP) with bounded twD(A) and max ‖x‖1.

I Lemma 21 (Tree-fold ⇒ bounded g1(A)). (*) Let Ai ∈ Zri×t for i ∈ [τ ] with a =
max{2,maxi∈[τ ] ‖Ai‖∞}, r =

∑τ
i=1 ri. Let A = TD(A1, . . . , Aτ ). There exists a computable

function ftf-norm(a, r1, . . . , rτ ) such that g1(A) ≤ ftf-norm(a, r1, . . . , rτ ).

Proof sketch. Chen and Marx [4] prove a similar result under the assumption that t is also
a parameter; thus, the remaining problem are essentially duplicitous columns. However, De
Loera et al. [5] show that repeating columns of any matrix A′ does not increase g1(A′), and
thus we can take A, delete duplicitous columns, apply the result of Chen and Marx, and our
Lemma follows.

I Lemma 22. (*) Let X ∈ N. Problem (ILP) with the additional constraint ‖x‖1 ≤ X can
be solved in time (aX)O(twD(A)) · n, where a = max{2, ‖A‖∞}.
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Proof sketch. Lemma 22 is proved by reformulating the nonlinear constraint ‖x‖1 ≤ X

by “splitting” each variable xi into two non-negative variables xi = x+
i − x

−
i , imposing the

constraint
∑n
i=1(x+

i +x−i ) ≤ X, and showing that this does not increase twD(A) much; then,
a recent dynamic programming algorithm of Ganian et al. [11, Theorem 6] does the job.

Proof of Theorem 3. Let A = TD(A1, . . . , Aτ ) be a tree-fold matrix. By Lemma 21 we
have that g1(A) ≤ ftf-norm(a, r1, . . . , rτ ) =: M We show how to construct a Λ-Graver-best
oracle. Given an integer λ ∈ N, solve min{λwh | Ah = 0, l ≤ x + λh ≤ u, ‖h‖1 ≤M}
using Lemma 22; clearly the result is a λ-Graver-best step. Using a simple induction and the
inductive construction of A, one gets that A has twD(A) ≤ tdD(A) ≤ r1 + · · ·+ rτ + 1 and
thus the oracle is realized in FPT time. Lemma 13 then yields a Graver-best oracle, which,
combined with Theorem 1, finishes the proof. J

n-fold ILP. A special case of tree-fold ILP is n-fold ILP, obtained by taking T to be the
star with n leaves and A = TD(A1, A2), where A1 ∈ Zr×t and A2 ∈ Zs×t.

Proof of Theorem 4. Before we apply Lemma 22, we need to bound g1(A). It follows from
the proof of [13, Lemma 6.1] that there is a number g(A) = maxv∈G(A1G(A2)) ‖v‖1 such that
g1(A) ≤ g(A) · g1(A2).

Let d2 ≤ (2a+ 1)s be the number of distinct columns of A2. De Loera et al. [5] give a
bound on g1(A) in terms of the number of distinct columns of a matrix A:

I Lemma 23 ([5, Corollary 3.7.4]). Let A ∈ Zm×n be a matrix of rank r, let d be the number
of different columns in A, and let a = max{2, ‖A‖∞}. Then g1(A) ≤ (d− r)(r+ 1)(

√
ma)m .

Thus, g1(A2) ≤ (d2 − s)(s + 1)(
√
sa)s ≤ (as)O(s). Let G2 be a matrix whose columns are

elements of G(A2). We have that ‖A1G2‖∞ ≤ a · (as)O(s) ≤ (as)O(s). Moreover, since
A1G2 has r rows, it has at most d1 =

(
(as)O(s))r = (as)O(rs) distinct columns. Again,

by Lemma 23 we have that g(A) = g1(A1G2) ≤ (d1 − r)(r + 1)(
√
ras)O(s))r ≤ (ars)O(rs).

Combining, we get g1(A) ≤ (ars)O(rs) · (as)O(s) ≤ (ars)O(rs) =: M .
We have twD(A) ≤ r + s+ 1 and thus running the algorithm of Lemma 22 once takes

time
(
(ars)O(rs))r+s

nt ≤ (ars)O(r2s+rs2)nt and finds the λ-Graver-best step. Lemma 13
then yields a Graver-best oracle. The reduced objective function w̄ in Step 4 of the proof of
Theorem 1 satisfies ‖w̄‖∞ ≤ (ant)O((nt)3) and thus the number of calls to the Graver-best
oracle is bounded by (nt)3 log(nt), concluding the proof. J

4 Primal and Dual Treedepth

We prove Theorems 5 and 6 by showing that an ILP with bounded primal (dual) treedepth can
be embedded into a multi-stage stochastic (tree-fold) ILP without increasing the parameters
too much. The precise notion of how one ILP is embedded in another is captured as follows.

I Definition 24 (Extended formulation). Let n′ ≥ n, m′ ∈ N, A ∈ Zm×n, b ∈ Zm, l,u ∈
(Z ∪ {±∞}n and A′ ∈ Zm′×n′ , b′ ∈ Zm′ , l′,u′ ∈ (Z ∪ {±∞})n′ . We say that A′(x,y) =
b′, l′ ≤ (x,y) ≤ u′ is an extended formulation of Ax = b, l ≤ x ≤ u if {x | Ax = b, l ≤ x ≤
u} = {x | ∃y : A′(x,y) = b′, l′ ≤ (x,y) ≤ u′}.

We note that from here on we always assume that if tdP (A) = k or tdD(A) = k, then
there is a tree (not a forest) F of height k − 1 such that GP (A) ⊆ cl(F ) or GD(A) ⊆ cl(F ),
respectively. Otherwise GP (A) is not connected and each component corresponds to a subset
of variables which defines an ILP that can be solved independently; similarly for GD(A).
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4.1 Primal Treedepth
I Lemma 25 (Bounded primal treedepth ⇒ multi-stage stochastic). Let A,b, l and u as
in (ILP) be given, let a = max{2, ‖A‖∞} and τ + 1 = tdP (A). Then there exists C ∈ Zm′×n′ ,
b′ ∈ Zm′ and l′,u′ ∈ (Z∪{±∞})n′ , n′ ≤ nτ , m′ ≤ (2a+1)τ2 , which define an integer program
C(x,y) = b′, l′ ≤ (x,y) ≤ u′, which is an extended formulation of Ax = b, l ≤ x ≤ u.
Moreover, there exist matrices B1, . . . , Bτ−1 ∈ Z(2a+1)τ

2
×τ and Bτ ∈ Z(2a+1)τ

2
×
(
τ+(2a+1)τ

2)
and a tree T such that C = TP (B1, . . . , Bτ ) is a multi-stage stochastic constraint matrix, and
all can be computed in time fP-embed(a, tdP (A)) · n2 for some computable function fP-embed.

Proof. Let F be a rooted tree of height τ such that GP (A) ⊆ cl(F ) (recall that it can be
computed in time ftd(tdP (A)) · |V (GP (A))|).

Step 1: Dummy columns. We make F structured by adding dummy columns. Observe
that every root-leaf path is of length at most τ and thus contains at most τ branching vertices.
Unless F is a path, obtain a matrix A′ from A by inserting zero columns into A in order
to make the path between any two branching vertices of length τ ; a special case is the root
which we force to be in distance τ − 1 from the closest branching vertex. Set lower and upper
bounds on the corresponding new variables to 0. A zero column is an isolated vertex in the
primal graph and thus can be inserted to an arbitrary path of the tree F . Moreover, if any
leaf is at depth less than τ2 − 1, insert zero columns in the same way to make it be at depth
exacty τ2 − 1. Now there exists a rooted tree F ′ of height τ2 − 1 such that GP (A′) ⊆ cl(F ′),
all branching vertices are in distances 0, τ − 1, 2τ − 1, . . . , (τ − 1)τ − 1 from the root, and all
leaves are at depth exactly τ2 − 1. We call all vertices at depth 0 or iτ − 1, for i ∈ [τ ], frets,
including the root and leaves.

Step 2: Multi-stage stochastic extended formulation. Consider a root-leaf path P in F ′:
its vertex set V (P ) corresponds to a certain subset of the columns of A′, with |V (P )| ≤ τ2.
Furthermore, any row a of A′ with supp(a) ⊆ V (P ) can be written as a vector (a1, . . . ,aτ ) ∈
Zτ2 with ai ∈ Zτ for each i ∈ [τ ], and with ‖a‖∞ ≤ a. The bricks ai correspond to segments
between frets (including the end fret, i.e., the fret farthest from the root; segments adjacent
to the root also contain the root). Also, for any row a of A′, there exists some root-leaf path
P such that supp(a) ⊆ V (P ).

This inspires the following construction: let B ∈ Z(2a+1)τ
2
×τ2 be the matrix whose

columns are all the possible vectors a ∈ Zτ2 with ‖a‖∞ ≤ ‖A‖∞. Let Bi ∈ Z(2a+1)τ
2
×τ , for

i ∈ [τ ], be the submatrix of B formed by rows (i− 1)τ + 1, . . . , iτ and modify the last such
submatrix Bτ by putting Bτ := (Bτ | I) where I ∈ Z(2a+1)τ

2
×(2a+1)τ

2

is the identity matrix;
the variables corresponding to columns of I will play the role of slack variables. Let T be
the tree of height τ obtained from F ′ by contracting all paths between frets.

Now, let C = TP (B1, . . . , Bτ ). Obtain F̃ from F ′ by appending a leaf to every leaf, and
observe that GP (TP (B1, . . . , Bτ )) ⊆ cl(F̃ ); the new leaves correspond to the slack variables
in Bτ . Our goal now is to construct a right hand side vector b′ and lower and upper bounds
l′,u′ to enforce exactly the constraints present in Ax = b. For every root-leaf path P in F ′
there is a corresponding root-leaf path P̃ in F̃ such that P̃ is P with an additional leaf. Fix
a root-leaf path P in F ′. For every row a of A′ with supp(a) ⊆ V (P ) and right hand side β,
there exists a unique row c of C with supp(c) ⊆ V (P̃ ) such that c = (a, 1), and we set the
right hand side of row c to β.

For every row c of C which was not considered in the previous paragraph, set the right
hand side to 0 and for the slack variable of this row set the lower bound to −∞ and the



M. Koutecký, A. Levin, and S. Onn 85:13

upper bound to ∞. Let us remark in passing that we are not limited by using the standard
equality form of ILP: transforming an instance Ax ≤ b into the standard equality form by
adding slack variables only possibly increases the treedepth by 1. J

4.2 Dual Treedepth
I Lemma 26 (Bounded dual treedepth ⇒ tree-fold). (*) Let A,b, l and u be as in (ILP),
a = max{2, ‖A‖∞} and τ + 1 = tdD(A). Then there exists D ∈ Zm′×n′ , b′ ∈ Zm′ and
l′,u′ ∈ (Z ∪ {±∞})n′ , n′ ≤ nt, t ≤ n, m′ ≤ m · τ , which define an extended formulation of
Ax = b, l ≤ x ≤ u. Moreover, there exist matrices A1, . . . , Aτ ∈ Zτ×t and a tree T such
that D = TD(A1, . . . , Aτ ) is a tree-fold constraint matrix, and all can be computed in time
fD-embed(a, tdD(A)) · n2 for some computable function fD-embed.
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Abstract. We study the general integer programming problem where the number of 
variables n is a variable part of the input. We consider two natural parameters of the 
constraint matrix A: its numeric measure a and its sparsity measure d. We present an algo
rithm for solving integer programming in time g(a, d)poly(n, L), where g is some com
putable function of the parameters a and d, and L is the binary encoding length of the 
input. In particular, integer programming is fixed-parameter tractable parameterized 
by a and d, and is solvable in polynomial time for every fixed a and d. Our results also 
extend to nonlinear separable convex objective functions.
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the Technion. M. Koutecký is partially supported by Charles University project UNCE 24/SCI/ 
008, and by the project 22-22997S of the Grantová Agentura České Republiky (GA ČR). 
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1. Introduction
Our focus is on the integer (linear) programming (I(L)P) problem in standard form

min{f (x) |Ax � b, l ≤ x ≤ u, x ∈ Zn}, and (IP) 

min{wx |Ax � b, l ≤ x ≤ u, x ∈ Zn}, (ILP) 

with A an integer m× n matrix, f : Rn→ R a separable convex function, b ∈ Zm, and l, u ∈ Zn. Note that in this work, 
we assume that the bounds l, u are finite.

(IP) is well known to be strongly NP-hard already in the special case (ILP) when f (x) �wx is a linear objective 
function for some vector w ∈ Zn. In spite of that, in this paper we identify broad natural and useful conditions 
under which (IP) can be solved in polynomial time, even when the number of variables n is a variable part of the 
input. Parameterized complexity (Cygan et al. [16], Downey and Fellows [18]) offers a framework for studying 
such efficient algorithms for hard problems. Specifically, a fixed-parameter tractable algorithm for problem P with 
input length n and parameter k is one that runs in time g(k)poly(n), where g is some computable function and 
poly(n) is a polynomial of degree independent of k (as opposed to a much less desirable running time of the form 
ng(k)). A problem P admitting a fixed-parameter algorithm is said to be fixed-parameter tractable (FPT) parameterized by k.

Here, we consider two natural parameters of the constraint matrix A: its numeric measure a and its sparsity mea
sure d defined as follows. The numeric measure depends only on the values of the entries of the matrix A and is 
essentially the largest absolute value of any coefficient: specifically, we define a to be a :�max{2, ‖A‖∞}. On the 
other hand, the sparsity measure d depends only on the structure of nonzeroes of A, and we use the notion of pri
mal and dual treedepth to capture it. These are defined as follows. Let GP(A) denote the primal graph of A, which 
has {1, : : : , n} as its vertex set, and an edge between vertices i and j exists if A contains a row which is nonzero in 
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coordinates i and j. The dual graph of A is GD(A) :� GP(A⊤). (These notions are the exact analogues of the variable 
and constraint graphs, respectively, from areas like constraint satisfaction, artificial intelligence (AI), SAT (satisfia
bility) solving, etc. (Rossi et al. [52]).) The treedepth of a graph denoted td(G) is the smallest height of a rooted forest 
F such that each edge of G is between vertices which are in a descendant-ancestor relationship in F (Nešetřil and 
Ossona de Mendez [46] and Pilipszuk et al. [50]). For example, the treedepth of any star is two, of the path on n ver
tices is ⌈log2(n+ 1)⌉, and of the n-vertex complete graph Kn is n. The primal treedepth of A is tdP(A) :� td(GP(A)), and 
analogously the dual treedepth of A is tdD(A) :� td(GD(A)). Then, the sparsity measure d is defined as d :�

min{tdP(A), tdD(A)}.
Denote by 〈A, f , b, l, u〉 the binary encoding length of an (IP) instance. Here, we define the encoding length of f to 

be the length of fgap, which is the difference between the maximum and minimum values of f on the domain. We 
assume that f (x) ∈ Z whenever x ∈ Zn. The function f is given by a comparison oracle, and we assume one compari
son has a unit cost.

Our main result is stated as follows.

Theorem 1. There exists a computable function g such that problem (IP) can be solved in time

g(a, d)poly(n, L), where d :� min{tdP(A), tdD(A)} and L :� 〈A, f , b, l, u〉:

In other words, (IP) is FPT parameterized by a and d. Note that for our algorithm to be fast, it suffices if at least one 
of tdP(A) and tdD(A) is small. We note that our results cannot be improved in multiple senses (see Eisenbrand et al. 
[23] for details); for example, we focus on separable convex objective functions because both nonseparable convex 
and separable concave functions lead to NP-hardness, already when A is empty or just a row of 1’s, respectively 
(Eisenbrand et al. [23, proposition 107]). Observe that already for a�1 or d�1 (ILP) is NP-hard (Eisenbrand et al. 
[23]). Moreover, arguably the two most important tractable classes of (IP) are formed by instances whose constraint 
matrix either is totally unimodular or has a small number n of columns, yet our results are incomparable with 
either: the class of totally unimodular matrices might have large d, but has a�1, and the matrices considered here 
have variable n.

Our results also hold for (IP), whose constraints are given in the inequality form Ax ≤ b: introducing slack vari
ables leads to (IP) in standard form with a constraint matrix AI :� (A I), with min{tdP(AI), tdD(AI)} ≤ min{tdP(A)
+ 1, tdD(A)}.

1.1. Related Work
In the literature there are some FPT algorithms for special cases of our settings. However, they do not capture all 
cases in which a, d are relatively small. We distinguish work prior to 2018 when the conference papers (Eisenbrand 
et al. [22] and Koutecký et al. [43]) forming the basis of our work were published, and subsequent results. We wish 
to highlight that a major contribution of this paper, besides the main result itself, is its self-contained, unified, and 
streamlined presentation.

1.2. Work Prior to 2018
In the 1980s it was shown by Lenstra [45] and Kannan [38] that (ILP) can be solved in time nO(n)L, where L is the 
length of the binary encoding of the input. Other large tractable classes are n-fold (Hemmecke et al. [34]), tree-fold 
(Chen and Marx [8]), and two-stage and multistage stochastic (Aschenbrenner and Hemmecke [1]), as well as algo
rithms for ILPs with bounded treewidth (Ganian et al. [27]), treedepth (Ganian and Ordyniak [26]) and fracture 
number (Dvořák et al. [19]) of graphs related to the matrix A. The class of 4-block n-fold IPs has an algorithm with 
time complexity ng(k) (Hemmecke et al. [33]) where k is the maximum of the largest absolute value of a coefficient 
and the largest dimension, and is not known to be solvable in time g(k)poly(n). (IP) is FPT parameterized by the pri
mal treewidth twP(A) together with the largest domain ‖u� l‖∞ (Freuder [25] and Jansen and Kratsch [36]). The 
parameters tdD(A) and twD(A) were only recently considered by Ganian et al. [27]. They show that (IP) is FPT 
parameterized by twI(A), the incidence treewidth, together with the parameter Γ, which is an upper bound on any 
prefix sum of Ax for any feasible solution x.

1.3. Subsequent Work
Knop et al. [41] gave lower bounds for (ILP) with few rows and also (ILP) parameterized by tdD(A). On the side of 
hardness, Eiben et al. [20] have shown that (ILP) is NP-hard already when the more permissive incidence treedepth 
tdI(A) is five and ‖A‖∞ � 2. Chen et al. [9] study the complexity of 4-block n-fold IPs with blocks of constant size, 
but possibly containing large coefficients. Hunkenschröder et al. [35] show near-optimal lower bounds for the 
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parameters a, tdP(A), tdD(A) studied here. They show that the complexity grows from single- to double- 
exponential as one increases the number of levels in a treefold IP, and similarly from double- to triple-exponential 
for multistage IPs.

Based on the parametric search framework and using new formulations and proximity theorems, strongly poly
nomial near-linear algorithms for (ILP) parameterized by a and d have been devised by Cslovjecsek et al. [13] and 
Cslovjecsek [14]. Chen et al. [11] show a faster algorithm for 4-block n-fold IPs. Chen et al. [10] show an FPT algo
rithm for a subclass of 4-block n-fold IPs which can be used to model certain scheduling problems. Knop et al. [42] 
give an algorithm for a high-multiplicity variant of the n-fold IP problem. Brand et al. [3] show that the mixed ILP 
problem where some variables are allowed to be continuous is still FPT in the same regime as the (purely) integer 
problem (ILP). However, the linearity of the objective and integrality of bounds are crucial, because removing 
either quickly leads to hardness, as shown in Brand et al. [4]. Chan et al. [7] and Briański et al. [5] consider generali
zations of the parameter d: for a matrix A to be viewed as sparse, it suffices that its column matroid is sparse in 
some well-defined sense, because then one can formulate an equivalent auxiliary problem with a matrix A′ which 
has small d and a and use, for example, the algorithms described here. Klein and Reuter [40] improve the function 
g(k) in the case of primal treedepth tdP(A). Cslovjecsek et al. [15] study the complexity of n-fold and two-stage sto
chastic IPs which contain large coefficients, but only in the horizontal or vertical blocks, respectively, and show 
FPT algorithms. Notably, to accomplish their results, they develop a new approach which does not use either itera
tive augmentation or proximity techniques. Eisenbrand et al. [24] consider when a (linear or separable convex) 
objective function can be replaced by a simpler one, and show lower and upper bounds.

1.4. Organization
In Section 2, we set the notation, terminology, and definitions. In Section 3, we show how the general problem (IP) 
can be reduced to a polynomial number of instances of a simpler subproblem corresponding to finding augment
ing steps. In Section 4, we characterize the block structure of matrices of small treedepth. Finally in Section 5, we 
first prove bounds on the norms of augmenting steps, and then show how the problem of finding them can be effi
ciently solved for the matrices of interest, concluding the proof of Theorem 1.

2. Preliminaries
We write vectors in boldface (e.g., x, y) and their entries in normal font (e.g., the i-th entry of x is xi). For positive 
integers m ≤ n we set [m, n] :� {m, : : : , n} and [n] :� [1, n], and we extend this notation for vectors: for l, u ∈ Zn with 
l ≤ u, [l, u] :� {x ∈ Zn |l ≤ x ≤ u}. If A is a matrix, Ai, j denotes the j-th coordinate of the i-th row, Ai,• denotes the 
i-th row, and A•, j denotes the j-th column.

We use log :� log2. For an integer a ∈ Z, 〈a〉 :� 1+ ⌈log( |a | + 1)⌉ denotes the binary encoding length of a; we 
extend this notation to vectors, matrices, and tuples of these objects. For example, 〈A, b〉 � 〈A〉 + 〈b〉, and 
〈A〉 �

P
i, j〈Ai, j〉. Let nnz(A) be the number of nonzeroes of A.

For a function f : Zn→ Z and two vectors l, u ∈ Zn, we define f [l, u]
gap :�maxx, x′∈[l, u] | f (x)� f (x′) | ; if [l, u] is clear 

from the context, we omit it and write just fgap. This quantity provides an upper bound on the optimality gap of our 
iterative algorithm, that is, on the difference between the value of the current iterate and the optimum.

We assume that f : Rn→ R is a separable convex function; that is, it can be written as f (x) �
Pn

i�1 fi(xi)where fi is 
a convex function of one variable, for each i ∈ [n]. Moreover, we require that for each x ∈ Zn, f (x) ∈ Z. Because we 
do not want to assume that the values of f are given as a list, we use the standard assumption of f being given as a 
comparison oracle: that is, an oracle which for any two points x, y ∈ Zn answers the query “f (x) < f (y)?”.

We use ω to denote the smallest number such that matrix multiplication of n× n matrices can be performed in 
time O(nω). The current best bound is ω ≤ 2:371552 (Williams et al. [56]); for more context, see the references 
therein. We say that a system of equations Ax � b is pure if the rows of A are linearly independent. The next state
ment follows easily by Gaussian elimination; hence, we assume m ≤ n throughout the paper.

Proposition 1 (Purification (Gr€otschel et al. [32, Theorem 1.4.8])). Given A ∈ Zm×n and b ∈ Zm in time O(min{n, m}nm), 
one can either declare Ax � b infeasible or output a pure equivalent subsystem A′x � b′; that is, A′x � b′ is pure, its rows 
are a subset of Ax � b, and ∀x : Ax � b � A′x � b′.

For a graph G we denote by V(G) its set of vertices.

2.1. Introduction to Iterative Augmentation
Let us introduce Graver bases and discuss how they are used for optimization. We define a partial order ⊑ on Rn as 
follows: for x, y ∈ Rn we write x ⊑ y and say that x is conformal to y if, for each i ∈ [n], xiyi ≥ 0 and |xi | ≤ |yi | . For a 
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matrix A ∈ Zm×n we write kerZ(A) � {x ∈ Zn |Ax � 0}. It is well known that every subset of Zn has finitely many 
⊑-minimal elements (Gordan’s lemma [30]; for a modern proof see Bruns and Gubeladze [6]). Using these notions, 
we define the Graver basis as follows.

Definition 1 (Graver Basis [31]). The Graver basis of an integer m× n matrix A is the finite set G(A) ⊂ Zn of ⊑-mini
mal elements in kerZ(A) \ {0}.

The Graver basis G(A) can be also equivalently defined as the union of the Hilbert bases of the orthant cones 
intersected with ker(A); see De Loera et al. [17, lemma 3.2.2]. One important property of G(A) is the following 
“positive sum property.”

Proposition 2 (Positive Sum Property (Onn [48, Lemma 3.4])). Let A ∈ Zm×n. For any x ∈ kerZ(A), there exists an n′ ≤
2n� 2 and a decomposition x �

Pn′
j�1λjgj with λj ∈ N and gj ∈ G(A) for each j ∈ [n′], and with gj ⊑ x.

We say that x ∈ Zn is feasible for (IP) if Ax � b and l ≤ x ≤ u. Let x be a feasible solution for (IP). We call g a feasible 
step if x+ g is feasible for (IP). Further, call a feasible step g augmenting if f (x+ g) < f (x). An important implication 
of Proposition 2 is that if any augmenting step exists, then there exists one in G(A) (De Loera et al. [17, lemma 
3.3.2]).

Example 1 (Simple Iterative Procedure). Consider the task of minimizing a linear function w over the integers of 
a box [l, u]. In this case, the constraint matrix A is empty; thus, G(A) is the set of n unit vectors. Let ej ∈ Zn be the 
j-th unit vector. Starting from the (feasible) solution x0 :� l, the smallest point in the box, a simple iterative proce
dure would be to, in step i � 0, 1, : : : , choose any ej with wej < 0 and with (xi + ej) ∈ [l, u] (i.e., feasible), and set 
xi+1 :� xi + ej. When no such ej exists, xi is optimal.

A clear weakness of this procedure is that it can make as many as ‖u� l‖1 steps to converge. An easy fix is to 
take “long steps”: whenever wej < 0, apply ej exhaustively; that is, find the largest λ ∈ N such that xi +λej is fea
sible, and set xi+1 :� xi +λej. (Notice that in this example we will always have λ � uj� lj, and (xi+1)j � uj.) This 
will inform our next development in Section 3.

2.2. Standard Properties of the Graphs of A
Recall that GP(A) denotes the primal graph of A, which has V(GP(A)) � [n] and E(GP(A)) � {ij |∃r ∈ [m] s:t: Ar, i ≠ 0 ∧ 

Ar, j ≠ 0}, and the dual graph of A is GD(A) :� GP(A⊤). From this point on we always assume that GP(A) and GD(A)
are connected; otherwise A has (up to row and column permutations) a diagonal structure A �

�A1
⋱

Ad

�
and solv

ing (IP) amounts to solving d smaller (IP) instances independently.

Definition 2 (Treedepth). The closure cl(F) of a rooted tree F is the graph obtained from F by making every vertex 
adjacent to all of its ancestors. We consider both F and cl(F) as undirected graphs. The height of a tree F denoted 
height(F) is the maximum number of vertices on any root-leaf path. The treedepth td(G) of a connected graph G 
is the minimum height of a tree F such that G ⊆ cl(F); namely, every edge of G belongs to the edge set of cl(F)
where the vertex set of F is the same as the one of G. A td-decomposition of G is a tree F such that G ⊆ cl(F). A 
td-decomposition F of G is optimal if height(F) � td(G).

Computing td(G) is NP-hard, but fortunately can be done quickly when td(G) is small:

Proposition 3 (Reidl et al. [51]). The treedepth td(G) of a graph G with an optimal td-decomposition F can be computed in 
time 2td(G)2 · |V(G) | .

We define the primal treedepth of A to be tdP(A) :� td(GP(A)) and the dual treedepth of A to be tdD(A) :� td(GD(A)). 
For an example, see Figure 1.

We often assume that an optimal td-decomposition is given because the time required to find it is dominated by 
other terms. Moreover, in many applications a small td-decomposition of GP(A) or GD(A) is clear from the way A 
was constructed.

By definition, a graph G has at most td(G)2 |V(G) | edges because the closure of each root-leaf path of a td-decom
position of G contains at most td(G)2 edges, and there are at most |V(G) | leaves. Thus, when assuming that tdP(A)
or tdD(A) is small, as we do here, constructing GP(A) or GD(A) can be done in linear time if A is given in its sparse 
representation. Throughout we shall assume that GP(A) or GD(A) is given.

3. Refined Augmentation Procedures
Our algorithm is based on the approach of augmentation procedures. These are iterative algorithms that start with 
a feasible solution, and at each step the algorithm tries to improve the current solution until it converges to an opti
mal solution.
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Example 1 demonstrates this in a very simple setting; however, in the full generality of solving (IP), several chal
lenges arise. First, the directions that are easily considered (e.g., axis parallel directions) may lead to infeasible solu
tions; thus, we need to consider directions in the Graver basis. However, the set G(A) may be too large to 
enumerate directly. Second, an optimal step-length may be difficult to determine, particularly when f is not linear 
but separable convex. Third, in our example it was trivial to obtain an initial feasible solution, but in general this 
may be much harder. In the following, we will gradually show how to reduce the general task of solving (IP) to 
polynomially many instances of a related but easier subproblem.

An augmenting step g and a step-length λ ∈ N form an x-feasible step pair if l ≤ x+λg ≤ u. An augmenting step h 
is a Graver-best step for x if f (x+h) ≤ f (x+λg) for all x-feasible step pairs (g,λ) ∈ G(A) × N. A slight relaxation of a 
Graver-best step that we introduce here for the first time is a halfling: an augmenting step h is a halfling for x if 
f (x)� f (x+h) ≥ 1

2 (f (x)� f (x+λg)) for all x-feasible step pairs (g,λ) ∈ G(A) × N. A halfling augmentation procedure for 
(IP) with a given feasible solution x0 works as follows. Let i :� 0. 

1. If there is no halfling for xi, return it as optimal.
2. If a halfling hi for xi exists, set xi+1 :� xi +hi, i :� i+ 1, and go to step 1.
Say that the algorithm has made i steps if xi�1 is returned as optimal in step 1.

Lemma 1 (Halfling Convergence). Given a feasible solution x0 for (IP), the halfling augmentation procedure finds an opti
mum of (IP) in at most two steps if f (x0)� f (x∗) ≤ 1, and in at most 3n log(f (x0)� f (x∗)) ≤ 3n log(f [l, u]

gap ) steps otherwise.

Before we prove the lemma, we need a useful proposition about separable convex functions:

Proposition 4 (Separable Convex Superadditivity (De Loera et al. [17, Lemma 3.3.1])). Let f (x) �
Pn

i�1 fi(xi) be separable 
convex, let x ∈ Rn, and let g1, : : : , gk ∈ R

n be vectors with the same sign pattern from {≤ 0, ≥ 0}n; that is, they belong to a 
common orthant of Rn. Then

f x+
Xk

j�1
αjgj

0

@

1

A� f (x) ≥
Xk

j�1
αj(f (x+ gj)� f (x)) (1) 

for arbitrary integers α1, : : : ,αk ∈ N.

Proof of Lemma 1. Let x∗ be an optimal solution of (IP). If x0 is optimal, the halfling augmentation procedure 
terminates with x0, that is, in one step. If f (x0)� f (x∗) � 1, then the procedure will terminate after two steps 
because any augmenting step (in particular, any halfling) improves the objective by one. Thus, assume that 
f (x0)� f (x∗) ≥ 2. By Proposition 2 we may write x∗ � x0 �

Pn′
j�1λjgj such that gj ⊑ x∗� x0, gj ∈ G(A), and λj ∈ N for 

all j ∈ [n′], and n′ ≤ 2n� 2. We apply Proposition 4 to x0 and the n′ vectors λjgj with αj :� 1, so by (1) we have

0 ≥ f (x∗)� f (x0) � f x0 +
Xn′

j�1
λjgj

0

@

1

A� f (x0) ≥
Xn′

j�1
(f (x0 +λjgj)� f (x0)), 

and multiplying by �1 gives 0 ≤ f (x0)� f (x∗) ≤
Pn′

j�1(f (x0)� f (x0 +λjgj)). By an averaging argument, there must 
exist an index ℓ ∈ [n′] such that

f (x0)� f (x0 +λℓgℓ) ≥
1
n′ (f (x0)� f (x∗)): (2) 

Figure 1. The primal graph GP(A) of the matrix A on the left is the cycle of length six. On the right, F and F′ are two different 
td-decompositions of GP(A). To see that they are indeed td-decompositions of GP(A), it suffices to verify that the edges of GP(A)
(dashed) only occur between vertices which are in an ancestor-descendant relationship. The height of a decomposition is the 
length of the longest root-leaf path. In both F and F′, this is three, as witnessed by the path from the root (1) to a furthest leaf (6, 
marked by a square). 
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Consider a halfling h for x0: by definition, it satisfies f (x0)� f (x0 +h) ≥ 1
2 (f (x0)� f (x0 +λℓgℓ)) ≥ 1

2n′ (f (x0)� f (x∗)). 
Say that the halfling augmentation procedure required s iterations, and recall that n′ ≤ 2n� 2. We apply the 
same reasoning as developed above for x∗� x0 to each x∗� xi, i ∈ [s� 1], as we have applied to x∗ � x0 (yielding 
different decompositions each time) to show that

f (xi)� f (x∗) ≤ 1� 1
4n� 4

� �

(f (xi�1)� f (x∗)) � 4n� 5
4n� 4 (f (xi�1)� f (x∗))

and, by repeated application of this inequality, f (xi)� f (x∗) ≤ 4n�5
4n�4
� �i

(f (x0)� f (x∗)). Because i is not the last iteration, 
f (xi)� f (x∗) ≥ 1 by the integrality of f. Take t :� 4n� 4 and compute an upper bound on i. We start with 1 ≤

t�1
t

� �i
(f (x0)� f (x∗)). Taking the natural logarithm gives 0 ≤ i ln t�1

t
� �

+ ln(f (x0)� f (x∗)) and moving terms around 
then gives �i ln t�1

t
� �

� i ln t
t�1
� �

≤ ln(f (x0)� f (x∗)). Dividing by ln t�1
t

� �
, we obtain i ≤ ln t

t�1
� �� ��1ln(f (x0)� f (x∗)). 

Now Taylor expansion gives for t ≥ 3 that ln 1+ 1
t�1

� �
≥ 1

t�1�
1

2(t�1)2
. From this it follows for all t ≥ 3 that 

ln 1+ 1
t�1

� �� ��1
≤ t. Plugging back t :� 4n� 4, we get that for all n ≥ 2 we have t ≥ 3 and hence

i ≤ (4n� 4)ln(f (x0)� f (x∗)) � (4n� 4) · ln 2 · log2(f (x0)� f (x∗)), 

and the number of iterations is at most one unit larger. Because f (x0)� f (x∗) ≤ fgap and ln(2) � 0:693147: : : ≤ 3=4, 
we have that the number of iterations is at most 3n log(fgap). w

Clearly, we would like to find halflings quickly using the following lemma.

Lemma 2 (Powers of Two). Let Γ2 � {1, 2, 4, 8, : : : } and x be a feasible solution of (IP). If h satisfies f (x+h) ≤ f (x+λg)
for each x-feasible step pair (g,λ) ∈ G(A) × Γ2, then h is a halfling.

Proof. Consider any Graver-best step pair (g∗,λ∗) ∈ G(A) × N, let λ :� 2⌊logλ∗⌋, and choose 1=2 < γ ≤ 1 in such a 
way that λ � γλ∗. Convexity of f yields

f (x0)� f (x0 +λg∗) ≥ f (x0)� [(1� γ)f (x0) + γf (x0 +λ
∗g∗)]

� γ(f (x0)� f (x0 +λ
∗g∗))

≥
1
2 (f (x0)� f (x0 +λ

∗g∗)):

Thus, λg∗ is a halfling, and by the definition of h, f (x+h) ≤ f (x+λg∗) and so h is also a halfling. w

Therefore, the main task is to find, for each λ ∈ Γ2, a step h which is at least as good as any feasible λg with 
g ∈ G(A). We use the notion of a best solution:

Definition 3 (S-Best Solution). Let S, P ⊆ Rn. We say that x∗ ∈ P is a solution of

(S-best) S-best{f (x) |x ∈ P}

if f (x∗) ≤ min{f (x) |x ∈ P ∩ S}. If P ∩ S is empty, we say S-best{f (x) |x ∈ P} has no solution.
In other words, x∗ has to belong to P and be at least as good as any point in P ∩ S. Note that to define the notion 

of an S-best solution to be a “no solution” if P ∩ S � ∅ might look unnatural as one might require any x ∈ P if 
P ∩ S � ∅. However, this would make (S-best) as hard as finding some x ∈ P (just take S � ∅), but we want (S-best) 
to be an easier problem if S is somehow “simpler” than P. The following is a central notion in our development.

Definition 4 (Augmentation IP). For an (IP) instance (A, f , b, l, u), its feasible solution x ∈ Zn, and an integer λ ∈ N, 
the Augmentation IP problem is to solve

G(A)-best{f (x+λg) |Ag � 0, l ≤ x+λg ≤ u, g ∈ Zn}: (AugIP) 

Let (A, f , b, l, u) be an instance of (IP), x a feasible solution, and λ ∈ N. We call the pair (x,λ) an (AugIP) instance 
for (A, f , b, l, u). If clear from the context, we omit the (IP) instance (A, f , b, l, u).

By Lemma 2 we obtain a halfling by solving (AugIP) for each λ ∈ Γ2 and picking the best solution. Given an 
initial feasible solution x0 and a fast algorithm for (AugIP), we can solve (IP) quickly:

Lemma 3 (((AugIP) and x0) ) (IP)). Given an initial feasible solution x0 to (IP), (IP) can be solved by solving

3n(log‖u� l‖∞ + 1)log(f (x0)� f (x∗)) ≤ 3n(log‖u� l‖∞ + 1)log(f [l, u]
gap )

instances of (AugIP), where x∗ is any optimum of (IP).
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Proof. Observe that no λ ∈ Γ2 � {1, 2, 4, : : : } greater than ‖u� l‖∞ results in a nonzero x-feasible step pair. Thus, 
by Lemma 2, to compute a halfling for x, it suffices to solve (AugIP) for all λ ∈ Γ2, λ ≤ ‖u� l‖∞, and there are at 
most log‖u� l‖∞ + 1 of these. By Lemma 1, 3n log(f (x0)� f (x∗)) ≤ 3n log(fgap) halfling augmentations suffice and 
the claim follows. w

3.1. Feasibility
Our goal now is to satisfy the requirement of an initial solution x0.

Lemma 4 ((AugIP) ) x0). Given an instance of (IP), it is possible to compute a feasible solution x0 for (IP) or decide that 
(IP) is infeasible by solving O(n log(‖A, b, l, u, n‖∞)

2
) many (AugIP) instances, plus O(nω) time needed to compute an inte

gral solution of Az � b. Moreover, 〈x0〉 ≤ poly〈b〉.

Proof. We first compute an integer solution to the system of equations Az � b. This can be done by computing 
the Hermite normal form of A in time O(nω�1m) ≤ O(nω) (Storjohann and Labahn [55]) (using m ≤ n). Then 
either we conclude that there is no integer solution to Az � b and hence (IP) is infeasible, or we find a solution 
z ∈ Zn with encoding length polynomially bounded in the encoding length of A, b.

Next, we will solve an auxiliary IP. Define new relaxed bounds by l̂ i :�min{li, zi} and ûi :�max{ui, zi} for all 
i ∈ [n], and define an objective function f̂ :�

Pn
i�1 f̂i as, for each i ∈ [n], f̂i(xi) :� dist(xi, [li, ui]), which is zero if xi ∈

[li, ui] and max{li � xi, xi� ui} otherwise. This function has at most three linear pieces, the first decreasing, the sec
ond constantly zero, and the third increasing, and thus each f̂i is convex and f̂ is separable convex. Moreover, a 
solution x has f̂ (x) � 0 if and only if l ≤ x ≤ u.

By Lemma 1, an optimum x0 of min{f̂ (x) |Ax � b, l̂ ≤ x ≤ û, x ∈ Zn} can be computed by solving 3n(log‖û� l̂‖ +
1)log(f̂

[l̂, û]
gap ) instances of (AugIP). Because ‖l̂ , û‖∞ is polynomially bounded in ‖A, b, n‖∞ and ‖l, u‖∞ and, by defini

tion of f̂ , f̂
[l̂, û]
gap is bounded by n · ‖l̂, û‖∞, we have that the number of times we have to solve (AugIP) is bounded by 

O(n log(‖A, b, l, u, n‖∞)
2
). Finally, if f̂ (x0) � 0, then x0 is a feasible solution of (IP) and otherwise (IP) is infeasible. w

As a corollary of Lemmas 4 and 1, we immediately obtain that a polynomial (AugIP) algorithm is sufficient for 
solving (IP) in polynomial time:

Corollary 1 ((AugIP) ) (IP)). Problem (IP) can be solved by solving O(nL2) instances of (AugIP), where L :� log(‖A, fgap, 
b, l, u, n‖∞), plus time O(nω +min{n, m}nm).

4. Block-Structured Matrices
To facilitate our proofs and to provide more refined complexity bounds, we introduce for the first time a parameter 
called topological height. This notion is useful in our analysis and proofs, and furthermore it plays a crucial role in 
complexity estimates of (IP) (Eisenbrand et al. [23]).

Definition 5 (Topological Height). A vertex of a rooted tree F is degenerate if it has exactly one child, and nondegene
rate otherwise (i.e., if it is a leaf or has at least two children). The topological height of F, denoted th(F), is the maxi
mum number of nondegenerate vertices on any root-leaf path in F. Equivalently, th(F) is the height of F after 
contracting each edge from a degenerate vertex to its unique child. Clearly, th(F) ≤ height(F). Note that when F 
is an optimal td-decomposition of GP(A) or GD(A), then height(F) � tdP(A) or height(F) � tdD(A), respectively. 
For a graph G, the value minF:height(F)�td(G)th(F) can be intuitively thought of as a notion of complexity of G among 
other graphs of the same treedepth. For example, a graph has vertex integrity (Barefoot et al. [2], Gima and Otachi 
[28], Gima et al. [29]) k precisely when it admits a td-decomposition of depth k and topological height 2.

For a root-leaf path P � (vb(0), : : : , vb(1), : : : , vb(2), : : : , vb(e)) with e nondegenerate vertices vb(1), : : : , vb(e) (potentially 
vb(0) � vb(1)), define k1(P) :� |{vb(0), : : : , vb(1)} | , ki(P) :� |{vb(i�1), : : : , vb(i)} | � 1 for all i ∈ [2, e], and ki(P) :� 0 for all i> e. 
For each i ∈ [th(F)], define ki(F) :�maxP:root-leaf pathki(P). We call k1(F), : : : , kth(F)(F) the level heights of F. See Figure 2(a).

Definition 6 (Block-Structured Matrix). Let A ∈ Zm×n and F be a td-decomposition of GP(A). We say that A is block- 
structured along F either if th(F) � 1, or if th(F) > 1 and the following holds. Let v be the first nondegenerate vertex 
in F on a path from the root, r1, : : : , rd be the children of v, Fi be the subtree of F rooted in ri, and ni :� |V(Fi) | , for 
i ∈ [d], and

A �
A1 A1

⋮ ⋱
Ad Ad

0

B
@

1

C
A, (block-structure) 
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where, for i ∈ [d], Ai ∈ Zmi×k1(F) where k1(F) is the first-level height of F and mi ∈ N, Ai ∈ Zmi×ni , and Ai is block- 
structured along Fi. Note that th(Fi) ≤ th(F)� 1, height(Fi) ≤ height(F)� k1(F), for i ∈ [d].

Whenever A and F are given, we will assume throughout this paper that A is block-structured along F. The fol
lowing lemma shows that this is without loss of generality as we can always efficiently put A in this format. To 
attain the complexity stated below, we assume A is represented as a column-indexed array of lists of values, that 
is, A[i] is a list of (row, value) pairs encoding the nonzeroes of column i. We also assume there are no zero col
umns in A. Because the vertices of F are the column indices of A, we interchangeably speak about vertices of F 
and columns of A. For example, for v ∈ V(F), the nonzero rows of v are those rows of A which are nonzero in the 
column whose index is v, or for a S ⊆ V(F), we speak of the columns S, and mean the columns of A whose indices 
are S.

Lemma 5 (Primal Decomposition). Let A ∈ Zm×n, GP(A), and a td-decomposition F of GP(A) be given, where n, m ≥ 1. 
There exists an algorithm which in time O(nnz(A)) returns a permutation πrows : [m] → [m] of the rows and a permutation 
πcols : [n] → [n] of the columns of A such that the resulting matrix A′ is block-structured along F.

Proof. The algorithm is recursive, proceeds in two passes, and uses three global arrays and two global integers 
to construct the permutations. Specifically, in the beginning initialize πcols to be an empty array of length n, and 
πrows,π�1

rows to be two empty arrays of length m. We will maintain that for every i, j ∈ [m], we have πrows[i] �
j �π�1

rows[j] � i. Also initialize r and c to be global integers equaling zero. The output is a labeling of all nonde
generate vertices of F with information encoding the blocks as follows. For a nondegenerate vertex v of F, say 
that its boss, denoted boss(v), is either the root of F if no ancestor of v is nondegenerate, or the unique vertex u 
which is a child of the nondegenerate vertex closest to but distinct from v on the path from v to the root of F. The 
inverse mapping boss�1 is defined for each vertex u which is either a degenerate root or a child of a nondegene
rate vertex, and assigns to it a vertex boss�1

(u) which is the first nondegenerate vertex on a path from u to any 
leaf which is a descendant of u; clearly then boss(boss�1

(u)) � u. Let Fv be the subtree of F rooted in a vertex v. 
Then the algorithm assigns to each nondegenerate vertex v a label (rv

start, rv
end) such that columns V(Fboss(v)) and 

rows [rv
start, rv

end] form a block in the matrix A permuted according to πrows,πcols.

First Pass. Let us define a function BLOCKSTRUCTURE which takes as an argument a vertex v ∈ V(F). This function 
will perform the first pass. The second pass is much simpler and only serves to fix up possible inconsistencies 
which may occur because of rows which are nonzero in the Ai block but zero in the Ai blocks.

Figure 2. Illustration of Definitions 2 and 5 (a) and Lemmas 5 and 6 (b). (a) Two optimal td-decompositions F and F′ of the cycle 
on six vertices (in dashed edges). Nondegenerate vertices are enlarged. The trees obtained by contracting edges outgoing from 
vertices with only one child are pictured below. Notice that even though both F and F′ are optimal td-decompositions, their topo
logical height differs. Dashed lines depict “levels” of F and F′, and we have k1(F) � k2(F) � k1(F′) � 2 and k2(F′) � k3(F′) � 1. (b) 
The situation of Lemma 5: a td-decomposition F of GP(A) pictured in the matrix A, the decomposition into smaller blocks 
A1, : : : , Ad, A1, : : : , Ad derived from F and their td-decompositions F1, : : : , Fd, and a td-decomposition F̂d of GP(Âd) (Lemma 6). 

(a) (b)

Eisenbrand et al.: Sparse Integer Programming Is Fixed-Parameter Tractable 
8 Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2024 INFORMS 



BLOCKSTRUCTURE(v) starts by walking from v (which, at the top of the recursion, is the root of F) to the first nonde
generate vertex u. Let P be the path from v to u. As the algorithm visits the vertices of P, it incrementally numbers 
the columns, using the global index c, in this way constructing the permutation πcols. It also constructs a set Prows of 
rows which are nonzero in the columns of the path P, as follows. In v, it initializes Prows to be an empty set (imple
mented as a hash table), and in each visited vertex w, it adds each row which is nonzero in column w to Prows. The 
complexity of this step depends on the number of nonzeroes of each particular column, but because each nonzero 
is encountered exactly once, in total this step takes time O(nnz(A)).

After reaching u, we distinguish two cases. If u is a leaf, then the columns of P correspond to a block, and Prows is 
the set of nonzero rows of this block. Thus, we incrementally number them using the global index r, and we label 
the leaf u with the starting and ending indices of its rows (rstart, rend).

On the other hand, if u is a branching vertex, we remember the current value of r as rstart, and we make a recur
sive call BLOCKSTRUCTURE(w) on each child w of u. After finishing these calls, we note the value of r�1 (the last used 
index) as rend, obtaining an interval [rstart, rend] of rows which are nonzero in the blocks corresponding to the chil
dren of u. However, we cannot yet label u with (rstart, rend) because the columns of P may contain some additional 
nonzero rows. To account for these, we go over the rows in Prows and for each check, using the array π�1

rows, whether 
it has already received an index, and if not, we use the global index r to index it. Because this step, over the run of 
the algorithm, handles each nonzero of A exactly once, it takes in total O(nnz(A)) time. Now we are ready to label v 
with (rstart, r� 1).

Second Pass: Fixing Inconsistencies. Let x be the root of F. We call BLOCKSTRUCTURE(x) to perform a first pass over 
F and assign a certain row range to every nondegenerate vertex. The reason we are not done yet is the following. 
Consider a nondegenerate vertex v with d children u1, : : : , ud, let vi � boss�1

(ui) for each i � 1, : : : , d, and let 
(ru

start, ru
end) for u ∈ {v, v1, : : : , vd} be the label assigned to u. The problem occurs when the columns on the path from 

boss(v) to v contain some nonzero rows which are zero in the blocks of all the children. We will (correctly) have 
rv

start � rv1
start and the intervals [rvi

start, rvi
end] are consecutive (i.e., rvi

end + 1 � rvi+1
start for i � 1, : : :d� 1), but (incorrectly) 

rvd
end < rv

end. This is incorrect because in Definition 6 the number of rows of Ad and Ad needs to be the same. How
ever, we also cannot simply fix this problem locally by setting rvd

end to rv
end, because vd potentially has its own chil

dren who would in turn become misaligned. What we need is another pass.
The second pass is performed by a function BLOCKSTRUCTURE2, which takes one optional integer argument rend. In 

the main call of this function, this argument is set to the number of rows m. The second pass traverses F in the same 
order as the first pass; when it encounters a nondegenerate vertex v, it replaces its original label (rv

start, rv
end) with 

(rv
start, rend) if the argument rend was defined, and keeps the original label otherwise. Assume d is the number of chil

dren of v. The algorithm then calls itself with no argument on the first d�1 of its children, and calls itself with argu
ment rv

end on the last child. Clearly this accomplishes that for every nondegenerate vertex v with children 
u1, : : : , ud, rv

end � rboss�1(ud)
end as desired.

Complexity. The algorithm visits each node of F O(1) times, and for any column i spends O(#nonzero rows 
of column i) time processing it. Because nnz(A) ≥ n because there are no all-zero columns, the algorithm runs in 
time O(nnz(A)).

Correctness. As in the beginning of the proof, let u be the first nondegenerate vertex on any root-leaf path, and 
u1, : : : , ud its children, and let A′ be the matrix A with rows and columns permuted according to πrows and πcols, 
respectively. What is left is to argue is that A′ has the form (block-structure), in particular, that there is no overlap 
between the blocks A1, : : : , Ad. Note that Ai has columns V(Fui) and rows [rboss(ui)

start , rboss(ui)
end ]. The lack of overlap 

between Ai, Aj for i ≠ j follows simply from the fact that by the definition of treedepth there are no edges between 
any two wi ∈ Fui , wj ∈ Fuj for i ≠ j, and thus, by definition of GP(A), there is no row containing a nonzero at both 
indices wi and wj; see Figure 2(b). w

Note that given an (IP), the primal decomposition naturally partitions the right-hand side b � (b1, : : : , bd) accord
ing to the rows of A1, : : : , Ad, and each object of length n (such as bounds l, u, a solution x, any step g, or the objec
tive function f) into d+1 objects according to the columns of A1, A1, : : : , Ad with indices 0, 1, : : : , d (written as 
superscripts). For example, we write x � (x0, x1, : : : , xd).

By considering the transpose of A we get an analogous notion and a corollary for the dual case:

Definition 7 (Block-Structured Matrix (Dual)). Let A ∈ Zm×n and F be a td-decomposition of GD(A). We say that A is 
dual block-structured along F either if th(F) � 1, or if th(F) > 1 and the following holds. Let v be the first nondegene
rate vertex in F on a path from the root, r1, : : : , rd be the children of v, Fi be the subtree of F rooted in ri, and 
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mi :� |V(Fi) | , for i ∈ [d], and

A �

A1 A2 ⋯ Ad

A1

A2

⋱
Ad

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

, (dual-block-structure) 

where d ∈ N, and for all i ∈ [d], Ai ∈ Zk1(F)×ni , and Ai ∈ Zmi×ni , ni ∈ N, and Ai is block-structured along Fi. Note that 
th(Fi) ≤ th(F)� 1, height(Fi) ≤ height(F)� k1(F), for i ∈ [d].

Corollary 2 (Dual Decomposition). Let A ∈ Zm×n, GD(A), and a td-decomposition F of GD(A) be given, where n, m ≥ 1. 
There exists an algorithm which in time O(nnz(A)) returns a permutation πrows : [m] → [m] of the rows and a permutation 
πcols : [n] → [n] of the columns of A such that the resulting matrix A′ is block-structured along F.

Again, the dual decomposition naturally partitions the right-hand side b � (b0, b1, : : : , bd) according to the rows 
of A1, A1, : : : , Ad, and each object of length n into d objects according to the columns of A1, : : : , Ad.

Lemma 6. Let A ∈ Zn×m, a td-decomposition F of GP(A) (or GD(A)), and Ai, Ai, Fi, for all i ∈ [d], be as in Definition 6

(or 7). Let Âi :� (Ai Ai)
�

or Âi :�
�Ai

Ai

�
, respectively

�
and let F̂i be obtained from Fi by appending a path on k1(F) new ver

tices to the root of Fi, and the other endpoint of the path is the new root. Then F̂i is a td-decomposition of Âi, th(F̂i) < th(F), 
and height(F̂i) ≤ height(F).

Proof. Consider Figure 2(b). The construction of F̂i can be equivalently described as taking F and deleting all Fj, 
j ≠ i. Thus, F̂i has the claimed properties, in particular th(F̂i) < th(F) because v was nondegenerate in F but is 
degenerate in F̂i. The dual case follows by transposition. w

5. An FPT Algorithm for (IP)
Our goal now is to show that (AugIP) can be solved quickly when the largest absolute value of a coefficient in A, 
‖A‖∞, and the primal or dual treedepth tdP(A) or tdD(A), respectively, are small. Together with Corollary 1, this 
implies an efficient algorithm. To that end, we need two key ingredients. The first are algorithms solving (AugIP) 
quickly when ‖A‖∞ and tdP(A) or tdD(A) are small and when restricted to solutions of small ℓ∞- or ℓ1-norm, respec
tively. The second are theorems showing that this is in fact sufficient because the elements of G(A) have bounded 
ℓ∞- and ℓ1-norms, respectively. We start with the second ingredient.

5.1. Norm Bounds
For a matrix A ∈ Zm×n, let

g1(A) :� max
g∈G(A)

‖g‖1 and g∞(A) :� max
g∈G(A)

‖g‖∞:

Note that previously we have used “gi” to refer to the i-th coordinate of a vector g; however, no confusion should 
arise with g1(A) because this quantity always has a matrix as an argument. We begin by using the Steinitz Lemma 
to obtain a basic bound on g1(A).

The first application of the Steinitz Lemma to show structural results about integer programs comes from Eisen
brand and Weismantel [21], who give several applications, such as improving the dynamic program of Papadimi
triou [49] or tightening the proximity bound of Cook et al. [12]. Many other applications and extensions have been 
devised since then (Chen et al. [10], Jansen and Rohwedder [37], Klein [39], Klein and Reuter [40], Lee et al. [44], 
Oertel et al. [47]). It is worth noting that there are two different formal and corresponding intuitive phrasings of the 
Steinitz Lemma. The one below says that each vector walk which begins and ends in 0 can be rearranged to stay in 
a small box. The alternative one (see, e.g., Eisenbrand and Weismantel [21, equation (5)]) states that any vector 
walk from 0 to b can be rearranged to stay within a narrow “tube” around the 0�b line.

Proposition 5 (Sevastjanov and Banaszczyk [53], Steinitz [54]). Let ‖ · ‖ be any norm, and let x1, : : : , xn ∈ Rd be such that 
‖xi‖ ≤ 1 for i ∈ [n] and 

Pn
i�1 xi � 0. Then there exists a permutation π such that for each k ∈ [n], ‖

Pk
i�1 xπ(i)‖ ≤ d.

Lemma 7 (Base Bound). Let A ∈ Zm×n. Then g1(A) ≤ (2m‖A‖∞ + 1)m.
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Proof. Let g ∈ G(A). We define a sequence of vectors in the following manner. If gi ≥ 0, we add gi copies of the 
i-th column of A to the sequence, and if gi < 0 we add |gi | copies of the negation of column i to the sequence, 
either way obtaining vectors vi

1, : : : , vi
|gi |

.
Clearly, the vectors vi

j sum up to 0 as g ∈ kerZ(A) and their ℓ∞-norm is bounded by ‖A‖∞. Using the Steinitz 
Lemma, there is a reordering u1, : : : , u‖g‖1 (i.e., vi

j � uπ(i, j) for some permutation π) of this sequence such that each 
prefix sum pk :�

Pk
j�1 uj is upper bounded by m‖A‖∞ in the l∞-norm. Clearly

| {x ∈ Zm |‖x‖∞ ≤ m‖A‖∞}| � (2m‖A‖∞ + 1)m:

Next, assume for contradiction that ‖g‖1 > (2m‖A‖∞ + 1)m. Then, by the pigeonhole principle, two of these prefix 
sums are the same, say, pα � pβ with 1 ≤ α < β ≤ ‖g‖1. Obtain a vector g′ from the sequence u1, : : : , uα, uβ+1, : : : , 
u‖g‖1 as follows: begin with g′i :� 0 for each i ∈ [n], and for every uℓ in the sequence, set

g′i :�
g′i + 1 if π�1(ℓ) � (i, j) and gi ≥ 0
g′i � 1 if π�1(ℓ) � (i, j) and gi < 0:

(

Similarly obtain g′′ from the sequence uα+1: : : , uβ. We have Ag′′ � 0 because pα�pβ � 0 and thus g′′ ∈ kerZ(A), 
and thus also g′ ∈ kerZ(A). Moreover, both g′ and g′′ are nonzero and satisfy g′, g′′ ⊑ g. This is a contradiction 
with ⊑-minimality of g; hence, ‖g‖1 ≤ (2m‖A‖∞ + 1)m, finishing the proof. w

5.1.1. Norm of Primal Treedepth 
Theorem 2 (Primal Norm). Let A ∈ Zm×n, and F be a td-decomposition of GP(A). Then there exists a constant α ∈ N such 
that

g∞(A) ≤ 22 : :
:2(2‖A‖∞)

2th(F) ·α·tdP (A)
2

|{
z}

th(
F)
�

1 

We will use the following result due to Klein [39].

Proposition 6 (Klein [39]). Let T1, : : : , Tn ⊆ Zd be multisets all belonging to one orthant where all elements t ∈ Ti have 
bounded size ‖t‖∞ ≤ C and where

X

t∈T1

t �
X

t∈T2

t �⋯�
X

t∈Tn

t:

Then there exists a constant α ∈ N and nonempty submultisets S1 ⊆ T1, : : : , Sn ⊆ Tn of bounded size |Si | ≤ (dC)dCαd2 

such 
that

X

s∈S1

s �
X

s∈S2

s �⋯�
X

s∈Sn

s:

Before proceeding with the proof of the theorem, let us give a high-level proof idea of Klein’s result above. The key 
fact is that a vector path in d-dimensional space can be seen as a linear combination of “simpler” paths. We say a 
path is “simple” if it can be generated by an integer cone having a basis with small entries. Using this linear combi
nation, without loss of generality, we can restrict ourselves to a simpler path. Having those simpler vector paths at 
hand, an intersecting point can be determined by examining the intersection of the corresponding integer cones. 
The proposition is proven by considering the generating set of such integer cones.

Proof of Theorem 2. We will proceed by induction on th(F). In the base case when th(F) � 1, GP(A) is a path and 
thus A has tdP(A) columns. Observe that the number of rows of A is bounded by tdP(A) as we assume Ax � b to 
be pure. By Lemma 7 we then have that

g∞(A) ≤ g1(A) ≤ (2‖A‖∞tdP(A) + 1)tdP(A) ≤ 22α·tdP(A)2+log 2‖A‖∞ :

In the inductive step, we assume without loss of generality that A is block-structured along F. Let Âi � (Ai Ai) ∈

Zmi×k′+ni and F̂i be this block structure, and let ĝ∞ :�maxi∈[d]g∞(Âi). Note that tdP(Âi) ≤ tdP(A). Because F̂i is a 
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td-decomposition of GP(Âi) and th(F̂i) < th(F), we may apply induction on Âi, showing

ĝ∞ ≤ 22 : :
:2(2‖A‖∞)

2th(F) ·α·tdP (A)
2

:|{
z}

th(
F)
�

2 (3) 

Consider g � (g0, g1, : : : , gd) ∈ G(A). For each i ∈ [d], decompose (g0, gi) �
PNi

j�1(h
0
j , hi

j) with (h0
j , hi

j) ∈ G(Âi) by the 
positive sum property (Proposition 2). Let Ti :� {h0

j | j ∈ [Ni]} and observe that maxt∈Ti‖t‖∞ ≤ g∞(Âi) ≤ ĝ∞. 
If applying Proposition 6 to T1, : : : , Td yielded sets S1, : : : , Sd such that Si ( Ti for some i ∈ [d], then g was not 
⊑-minimal, a contradiction. Let k1 :� k1(F). Thus Proposition 6 implies, for each i ∈ [d],

|Ti | ≤ (k1ĝ∞)
k1ĝ

αk2
1
∞ � 22αk2

1+log(k1 ĝ∞)+log log(k1 ĝ∞)
≤ 222αk2

1+log ĝ∞

and ‖(g0, gi)‖∞ ≤ ĝ∞ |Ti | , which in turn means that ‖g‖∞ ≤ ĝ∞maxi∈[d] |Ti | . Note that 222αk2
1+log ĝ∞ ĝ∞ ≤ 222αk2

1+log ĝ∞+log log ĝ∞ . 
To simplify, let ζ :� 2αk2

1 + log ĝ∞ + log log ĝ∞ so that the expression reads 22ζ . Plugging in the bound (3) for ĝ∞
then gives

ζ � 2αk2
1 + log ĝ∞ + log log ĝ∞ ≤ 2αk2

1 + 2 log ĝ∞ ≤

2αk2
1 + 2 · 2 : :

:2(2‖A‖∞)
2th(F)�3 ·α·tdP (A)

2

|{
z}

th(
F)
�

3 ≤ 2 : :
:2(2‖A‖∞)

2th(F)·α·tdP (A)
2

, and thus,
|{
z}

th
(F
)�

3 

22ζ ≤ 222 : :
:2(2‖A‖∞)

2th(F)·α·tdP (A)
2

|{
z}

th
(F
)�

3

≤ g∞(A) ≤ 22 : :
:2(2‖A‖∞)

2th(F)·α·tdP (A)
2

: w|{
z}

th(
F)
�

1 

5.2. Norm of Dual Treedepth
The dual case is quite different than the primal case above, and there is no prior work on which we could base our 
approach. Essentially, the proof is a recursive extension of the proof of the Base bound (Lemma 7).

Theorem 3 (Dual Norm). Let A ∈ Zm×n, F be a td-decomposition of GD(A), and let K :�maxP:root-leaf path in F
Qth(F)

i�1 
(ki(P) + 1). Then g1(A) ≤ (3‖A‖∞K)K�1.

Proof. The proof will proceed by induction over th(F). In the base case we have th(F) � 1 and thus GD(A) is a 
path with height(F) vertices, meaning A has height(F) rows. Now we use the Base bound of Lemma 7 to get that 
g1(A) ≤ (2‖A‖∞height(F) + 1)height(F), which is at most (3‖A‖∞K)K�1, where K � height(F) + 1 � k1(F) + 1. (Note that 
k1(F) � k1(P) for all root-leaf paths P in F because all paths share an identical segment from the root to the first 
nondegenerate vertex.)

For the inductive step, assume that the claim holds for all trees of topological height less than th(F). Let g ∈
G(A) and K′ :�maxP:root-leaf path in F

Qth(F)
i�2 (ki(P) + 1). For each i ∈ [d], gi has a decomposition into elements gi

j of 
G(Ai), and by induction we have ‖gi

j‖1 ≤ g1(Ai) ≤ (3‖A‖∞K′)K
′�1 ≕ ĝ1. Construct a sequence of vectors as follows: 

for each i ∈ [d] and each gi
j in the decomposition of gi, insert vi

j :� Aigi
j into the sequence. Note that 

‖vi
j‖∞ ≤ ‖A‖∞ĝ1. Denote the resulting sequence u1, : : : , uN.
Applying the Steinitz Lemma (Proposition 5) to this sequence, we obtain its permutation uπ(1), : : : , uπ(N) such 

that the ℓ∞-norm of each of its prefix sums is at most k1(F)‖A‖∞ĝ1. As in the proof of Lemma 7, we will prove 
that no two prefix sums are the same; thus, N ≤ (2k1(F)‖A‖∞ĝ1 + 1)k1(F) and subsequently ‖g‖1 ≤ Nĝ1 ≤ ĝ1(2k1(F)
‖A‖∞ĝ1 + 1)k1(F). Plugging in ĝ1 � (3‖A‖∞K′)K

′�1
≤ (3‖A‖∞K)K

′�1 and simplifying yields

‖g‖1 ≤ (3‖A‖∞K)K
′�1
· (3‖A‖∞K)k1(F)K′ � (3‖A‖∞K)K�1

:

Assume to the contrary that some two prefix sums pα and pβ, for α < β, are identical. Then the sequence 
uα+1, : : : , uβ sums up to zero and we may “work backward” from it to obtain an integer vector ḡ ⊏ g, which is a 
contradiction to g ∈ G(A). Specifically, ḡ can be obtained by initially setting ḡ � 0 and then, for each γ ∈ [α+ 1,β], 
if π�1(γ) � (i, j), setting ḡi :� ḡi + gi

j. w

Remark 1. Our definition of K allows us to recover the currently best-known upper bounds on g1(A) from Theo
rem 3. Specifically, Knop et al. [41, lemma 10] show that g1(A) ≤ (2‖A‖∞ + 1)2

tdD (A)�1. This pertains to the worst 
case when th(F) � height(F) � tdD(A). Then, we have K �

Qth(F)
i�1 (ki(P) + 1) � 2tdD(A) and our bound essentially 
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matches theirs. On the other hand, our bound is better in scenarios when th(F) < height(F) and K is attained by 
some path with ki(P) > 1 for some i ∈ th(F). A particular example of this are N-fold and treefold matrices dis
cussed in Eisenbrand et al. [23].

5.3. Solving (AugIP) Quickly When ‖A‖‘ and tdP(A) or tdD(A) Are Small and When Restricted to Solutions 
of Small Norms

We would like to define more specifically our next goal. Denote by B∞(ρ) and B1(ρ) the ℓ∞- and ℓ1-norm balls, 
respectively, of appropriate dimension and of radius ρ, centered at the origin, that is, Bp(ρ) � {x | ‖x‖p ≤ ρ} for 
p ∈ {1, +∞}. Observe that if S ⊆ S′, then an S′-best solution is certainly also an S-best solution. Because G(A) ⊆
B∞(g∞(A)) and G(A) ⊆ B1(g1(A)), it follows that a B∞(g∞(A))-best solution or a B1(g1(A))-best solution of (AugIP) is 
also a G(A)-best solution. This implies that solving (AugIP) roughly amounts to solving an instance of (IP) with an 
additional norm bound. We first consider the primal treedepth case and later the dual treedepth case.

Lemma 8 (Primal Lemma). Problem (AugIP) can be solved in time tdP(A)2(2ρ+ 1)tdP(A)n for any ρ ≥ g∞(A).

Proof. Let F be an optimal td-decomposition of GP(A). The proof proceeds by induction on th(F) ≤ tdP(A). For 
that, we prove a slightly more general claim:

Claim 1. Given ρ ∈ N, there is an algorithm running in time tdP(A)2(2ρ+ 1)tdP(A)n which solves

B∞(ρ)-best{f (g) |Ag � b, l ≤ g ≤ u, g ∈ Zn}

for any separable-convex function f.

The statement of the lemma is obtained by the following substitution. For a given (AugIP) instance (x,λ), solve 
the auxiliary problem above with ρ :� g∞(A), f (g) :� f (x+λg), b :� 0, l :� ⌈l�x

λ ⌉
, and u :� ⌊u�x

λ ⌋. If f of (IP) was sepa
rable convex, then the newly defined f is also separable convex. The returned solution is a solution of (AugIP) 
because G(A) ⊆ B∞(g∞(A)). Thus, it remains to prove the claim.

As the base case, if th(F) � 1, then F is a path, meaning that A has tdP(A) columns. An optimal solution is found 
simply by enumerating all (2ρ+ 1)tdP(A) integer vectors g ∈ [�ρ,ρ]tdP(A) ∩ [l, u], for each checking Ag � b and evalu
ating f, and returning the best feasible one. Because the number of rows of A is at most its number of columns, 
which is tdP(A), checking whether Ag � b takes time at most tdP(A)2 for each g.

As the induction step, we assume A is block-structured along F (otherwise apply Lemma 5); hence, we have 
matrices A1, : : : , Ad, A1, : : : , Ad for some d and td-decompositions F1, : : : , Fd for GP(A1), : : : , GP(Ad), respectively, 
with, for each i ∈ [d], Ai having k1(F) columns, Fi having th(Fi) < th(F), and tdP(Ai) ≤ tdP(A)� k1(F). Now iterate 
over all vectors g0 ∈ Zk1(F) in [�ρ,ρ]k1(F) ∩ [l0, u0] and for each use the algorithm which exists by induction to com
pute d vectors gi, i ∈ [d], such that gi is a solution to

B∞(ρ)-best{f (gi) |Aigi ��Aig0 +bi, li ≤ gi ≤ ui, gi ∈ Zni}: (4) 

Finally return the vector (g0, : : : , gd)which minimizes 
Pd

i�0 f (gi). If gi is undefined for some i ∈ [d] because the sub
problem (4) has no solution, report that the problem has no solution.

Let k :� tdP(A)� k1(F). There are (2ρ+ 1)k1(F) choices of g0, and computing the solution (g1, : : : , gd) for each takes 
time at most 

Pd
i�1 k2(2ρ+ 1)kni � k2(2ρ+ 1)kn. For each choice we also need to compute the product �Aig0, which is 

possible in time k1(F) · tdP(A) because the number of rows of Ai is at most tdP(A). The total time needed is 
thus (2ρ+ 1)k1(F) · (tdP(A) · k1(F) + k2(2ρ+ 1)k)n ≤ tdP(A)2(2ρ+ 1)tdP(A)n. w

Lemma 9 (Dual Lemma). Problem (AugIP) can be solved in time (2‖A‖∞ρ+ 1)O(tdD(A))n for any ρ ≥ g1(A).

Proof. We solve an auxiliary problem analogous to the one in Lemma 8: given ρ ∈ N and a separable convex func
tion f, solve

B1(ρ)-best{f (g) |Ag � b, l ≤ g ≤ u, g ∈ Zn}:

The lemma then follows by the same substitution described at the beginning of the proof of Lemma 8. We 
assume that ‖b‖∞ ≤ ρ‖A‖∞ because otherwise there is no solution within B1(ρ).

Let F be an optimal td-decomposition of GD(A). We define the algorithm recursively over th(F). If th(F) ≥ 2, we 
assume A is dual block-structured along F (otherwise apply Corollary 2) and we have, for every i ∈ [d], matrices 
Ai, Ai, Âi and a tree F̂i (see Lemma 6) with the claimed properties, and a corresponding partitioning of b, l, u, g, 
and f. If th(F) � 1, let d :� n and Âi :� A•, i, for all i ∈ [d], be the columns of A, and let b1, : : : , bn be empty vectors 
(i.e., vectors of dimension zero).
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The crucial observation is that for every solution g of Ag � b with ‖g‖1 ≤ ρ and each i ∈ [d], both Aigi and 
Pi

j�1 Ajgj belong to R :� [�ρ‖A‖∞,ρ‖A‖∞]
k1(F). For every i ∈ [d] and every r ∈ R, solve

B1(ρ)-best{f i(gi) |Âigi � (r, bi), li ≤ gi ≤ ui, gi ∈ Zni}: (5) 

In the base case when Âi has only one column, we simply enumerate all gi ∈ [li, ui] ∩ [�ρ,ρ], check whether the 
equality constraints are satisfied, and return the best feasible choice. If th(F) > 1, then we use recursion to solve 
(5). The recursive call is well defined, because, for all i ∈ [d], th(F̂i) < th(F) and F̂i is a td-decomposition of 
GD(Âi). Next, we show how to “glue” these solutions together.

Let r ∈ R and denote by gi
r a solution to the subproblem (5); by slight abuse of notation, when the subproblem 

has no solution, we define f i(gi
r) :� +∞. Now we need to find such r1, : : : , rd ∈ R that 

Pd
i�1 ri � b0 and 

Pd
i�1 f i(gi

ri
) is 

minimized. This is actually a form of the (min,+)-convolution problem. For us it suffices to say that this problem 
can be easily solved using dynamic programming (DP) in d stages: our DP table D shall have an entry D(i, r) for 
i ∈ [d] and r ∈ R whose meaning is the minimum 

Pi
j�1 f j(gj

rj) where 
Pi

j�1 rj � r. To compute D, set D(0, r) :� 0 for 
r � 0 and D(0, r) :� +∞ otherwise, and for i ∈ [d], set

D(i, r) :� min
r′, r′′∈R :
r′+r′′�r

D(i� 1, r′) + f i(gi
r′′):

The value of the solution is D(d, b0), and the solution g � (g1, : : : , gd) itself can be computed easily with a bit more 
bookkeeping in the table D. If D(d, b0) � +∞, report that the problem has no solution. Another important obser
vation is this: in the DP above we computed the solution of the auxiliary problem not only for the right-hand 
side b, but for all right-hand sides of the form (r, b1, : : : , bd) where r ∈ R and b1, : : : , bd are fixed. We store all of 
these intermediate results in an array (an approach also known as “memoization”). When the algorithm asks for 
solutions of such instances, we simply retrieve them from the array of intermediate results instead of recomput
ing them. This is important for the complexity analysis we will describe now.

The recursion tree has th(F) levels, which we number 1, : : : , th(F), with level 1 being the base of the recursion. 
Let us compute the time required at each level. In the base case th(F) � 1, recall that the matrix Âi in subproblem 
(5) is a single column with height(F) rows, and solving (5) amounts to trying at most 2ρ+ 1 feasible valuations of 
gi (which is a scalar variable) satisfying li ≤ gi ≤ ui and returning the best feasible one. Because there are n col
umns in total, computing the solutions of (5) takes time (2ρ+ 1)n. Let N1 be the number of leaves of F, and let αj, 
j ∈ [N1], denote the number of columns corresponding to the j-th leaf. “Gluing” the solutions is done by solving 
N1 DP instances with α1, : : : ,αN1 stages, where 

PN1
i�1 αi � n. This takes time 

PN1
i�1 |R |2 ·αi ≤ (2‖A‖∞ρ+ 1)tdD(A) · n, 

because a td-decomposition of each column is a path on tdD(A) vertices. In total, computing the first level of 
recursion takes time (2‖A‖∞ρ+ 1)tdD(A)n.

Consider a recursion level ℓ ∈ [2, th(F)] and subproblem (5). The crucial observation is that when the algorithm 
asks for the answer to (5) for one specific r′ ∈ R, an answer for all r ∈ R is computed; recall that the last step of the 
DP is to return D(d, r′) but the table contains an entry D(d, r) for all r ∈ R. Thus, the time needed for the computa
tion of all gi

r has been accounted for in lower levels of the recursion and we only have to account for the DP at 
the level ℓ. Let R′ be the analogue of R for a specific subproblem at level ℓ, and let A′ be the corresponding sub
matrix of A and F′ ⊆ F be a td-decomposition of GD(A′). We have that |R′ | ≤ (2‖A‖∞ρ+ 1)k1(F′), with k1(F′) ≤
tdD(A). Note that the levels here are defined bottom up, hence all leaves are at level 1, and an inner node of F is 
at level ℓ if ℓ� 1 is the largest level of its children; in particular a level does not correspond to the distance from 
the root. Let Nℓ be the number of vertices of F at level ℓ. The number of subproblems on level ℓ is exactly Nℓ, so 
computation of the ℓ-th level takes time at most |R |2 ·Nℓ ≤ (2‖A‖∞ρ+ 1)tdD(A)Nℓ. Adding up across all levels, we 
get that the total complexity is at most (n+

Pth(F)
ℓ�2 Nℓ) · (2‖A‖∞ρ+ 1)tdD(A) where 

Pth(F)
ℓ�2 Nℓ < n because F has n 

leaves and each level corresponds to a vertex with degree at least two. The lemma follows. w

5.4. The Algorithm
We are now ready to conclude our main result.

Theorem 1 (Repeated). There is an algorithm solving (IP) in time g(a, d)poly(n, L), for some computable function g; that 
is, (IP) is fixed-parameter tractable parameterized by a and d.

Proof. We run two algorithms in parallel, terminate when one of them terminates, and return its result. In the 
primal algorithm, let G(A) � GP(A), td(A) � tdP(A), and p �∞. In the dual algorithm, let G(A) � GD(A), td(A) �
tdD(A), and p�1. The description of both algorithms is then identical.
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First, run the algorithm of Proposition 3 on G(A) to obtain its optimal td-decomposition. By Lemma 7 there is a 
computable function g′ such that the maximum ℓp-norm of elements of G(A) is bounded by g′(‖A‖∞, td(A)). By 
Lemmas 8 and 9, there is a computable function g′′ such that (AugIP) is solvable in time g′′(g′(td(A), ‖A‖p), 
‖A‖p, td(A))n and thus in time g(‖A‖p, td(A))n for some computable function g. Then, solve (IP) using the algo
rithm of Corollary 1 in the claimed time. w
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0[4] Brand C, Koutecký M, Lassota A, Ordyniak S (2024) Separable convex mixed-integer optimization: Improved algorithms and lower bounds. 

Chan T, Fischer J, Iacono J, eds. 32nd Annual Eur. Sympos. Algorithms (ESA 2024), LIPIcs, vol. 308 (Schloss Dagstuhl - Leibniz-Zentrum für 
Informatik, Wadern, Germany), 32:1–32:18.
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[19] Dvořák P, Eiben E, Ganian R, Knop D, Ordyniak S (2021) The complexity landscape of decompositional parameters for ILP: Programs with 

few global variables and constraints. Artificial Intelligence 300:103561.
[20] Eiben E, Ganian R, Knop D, Ordyniak S, Pilipczuk M, Wrochna M (2019) Integer programming and incidence treedepth. Lodi A, Nagarajan 

V, eds. Integer Programming Combin. Optim. 20th Internat. Conf. (IPCO 2019), Lecture Notes in Computer Science, vol. 11480 (Springer, 
Berlin), 194–204.

[21] Eisenbrand F, Weismantel R (2020) Proximity results and faster algorithms for integer programming using the Steinitz lemma. ACM Trans. 
Algorithms 16(1):1–14.
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Abstract
N -fold integer programs (IPs) form an important class of block-structured IPs for
which increasingly fast algorithms have recently been developed and successfully
applied. We study high-multiplicity N -fold IPs, which encode IPs succinctly by pre-
senting a description of each block type and a vector of block multiplicities. Our goal
is to design algorithms which solve N -fold IPs in time polynomial in the size of the
succinct encoding,whichmaybe significantly smaller than the size of the explicit (non-
succinct) instance.We present the first fixed-parameter algorithm for high-multiplicity
N -fold IPs, which even works for convex objectives. Our key contribution is a novel
proximity theorem which relates fractional and integer optima of the Configuration
LP, a fundamental notion by Gilmore and Gomory [Oper. Res., 1961] which we gen-
eralize. Our algorithm for N -fold IP is faster than previous algorithms whenever the
number of blocks is much larger than the number of block types, such as in N -fold IP
models for various scheduling problems.
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1 Introduction

The fundamental Integer Programming (IP) problem is to solve:

min f (x) : Ax = b, l ≤ x ≤ u, x ∈ Z
n, (IP)

where f : Rn → R, A ∈ Z
m×n , b ∈ Z

m , and l,u ∈ (Z ∪ {±∞})n . Any IP instance
with infinite bounds l,u can be reduced to an instancewith finite bounds using standard
techniques (solving the continuous relaxation and using proximity bounds to restrict
the relevant region), so that from now on we will assume finite bounds l,u ∈ Z

n . We
denote fmax = max

x∈Zn :
l≤x≤u

| f (x)|.

Integer Programming is a fundamental problem with vast importance both in
theory and practice. Because it isNP-hard alreadywith a single row (by reduction from
Subset Sum) or with A a 0/1-matrix (by reduction from Vertex Cover), there is
high interest in identifying tractable subclasses of IP. One such tractable subclass is
N -fold IPs, whose constraint matrix A is defined as

A := E (N ) :=

⎛
⎜⎜⎜⎜⎜⎝

E1
1 E2

1 · · · EN
1

E1
2 0 · · · 0
0 E2

2 · · · 0
...

...
. . .

...

0 0 · · · EN
2

⎞
⎟⎟⎟⎟⎟⎠

. (1)

Here, r , s, t, N ∈ N, E (N ) is an (r + Ns) × Nt-matrix, Ei
1 ∈ Z

r×t and Ei
2 ∈ Z

s×t ,

i ∈ [N ], are integer matrices. We define E :=
(

E1
1 E2

1 ··· EN
1

E1
2 E2

2 ··· EN
2

)
, and call E (N ) the

N -fold product of E . The structure of E (N ) allows us to divide any Nt-dimensional
object, such as the variables of x, bounds l,u, or the objective f , into N bricks of size t ,
e.g. x = (x1, . . . , xN ). We use subscripts to index within a brick and superscripts to
denote the index of the brick, i.e., xij is the j-th variable of the i-th brick with j ∈ [t]
and i ∈ [N ]. Problem (IP) with A = E (N ) is known as N -fold integer programming
(N -fold IP).

Such block-structured matrices have been the subject of extensive research stretch-
ing back to the ’70s [3–5, 15, 16, 28, 42, 44, 45], as this special structure allows
applying methods like the Dantzig-Wolfe decomposition and others, leading to sig-
nificant speed-ups in practice. On the theoretical side, the term “N -fold IP” has been
coined by De Loera et al. [9], and since then increasingly efficient algorithms have
been developed and applied to various problems relating to N -fold IPs [2, 6, 25, 26, 29,
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32]. This line of research culminated with an algorithm by Eisenbrand et al. [13] which
solves N -fold IPs in time (‖E‖∞rs)O(r2s+rs2) ·N log N ·log ‖u−l‖∞·log fmax for all
separable convex objectives f (i.e., when f (x) = ∑n

i=1 fi (xi ) and each fi : R → R

is convex).

1.1 Our contribution

Previous algorithms for N -fold IP have focused on reducing the run-time dependency
on N down to almost linear. Instead, our interest here is on N -fold IPs which model
applications where many bricks are of the same type, that is, they share the same
bounds, right-hand side, and objective function. For those applications, it is natural to
encode an N -fold IP instance succinctly by describing each brick type by its constraint
matrix, bounds, right-hand side, and objective function, and giving a vector of brick
multiplicities. When the number of brick types τ is much smaller than the number N
of bricks, e.g., if N ≈ 2τ , this succinct instance is (much) smaller than the previously
studied encoding of N -fold IP, and an algorithm running in time polynomial in the
size of the succinct instance may be (much) faster than current algorithms. We call the
N -fold IP where the instance is given succinctly the huge N -fold IP problem, and we
present a fast algorithm for it:

Theorem 1 Huge N-fold IP with any separable convex objective can be solved in time

(‖E‖∞rs)O(r2s+rs2) poly(τ, t, log ‖l,u,b, N , fmax‖∞) .

A natural application of Theorem 1 are scheduling problems. In many scheduling
problems, the number n of jobs that must be assigned to machines, as well as the num-
berm of machines, are very large, whereas the number of types of jobs and the number
of kinds of machines are relatively small. An instance of such a scheduling problem
can thus be compactly encoded by simply stating, for each job type and machine
kind, the number of jobs with that type and machines with that kind together with
their characteristics (like processing time, weight, release time, due date, etc.), respec-
tively. This key observation was made by several researchers [7, 37], until Hochbaum
and Shamir [20] coined the term high-multiplicity scheduling problem. Clearly, many
efficient algorithms for scheduling problems, where all jobs are assumed to be distinct,
become exponential-time algorithms for the corresponding high-multiplicity problem.

Let us shortly demonstrate how Theorem 1 allows designing algorithms which are
efficient for the succinct high-multiplicity encoding of the input. In modern computa-
tional clusters, it is common to have several kinds of machines differing by processing
unit type (high single- or multi-core performance CPUs, GPUs), storage type (HDD,
SSD, etc.), network connectivity, etc. However, the number of machine kinds τ is still
much smaller (perhaps 10) than the number of machines, which may be in the order
of tens of thousands or more. Many scheduling problems have N -fold IP models [31]
where τ is the number of machine kinds and N is the number of machines. On these
models, Theorem1would likely outperform the currently fastest N -fold IP algorithms.
Proof ideas. To solve a high-multiplicity problem, one needs a succinct way to argue
about solutions. In 1961, Gilmore and Gomory [17] introduced the fundamental and
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widely influential notion of Configuration IP (ConfIP)which describes a solution (e.g.,
a schedule) by a list of pairs “(machine schedule s, multiplicity μ of machines with
schedule s)”. The linear relaxation of ConfIP, called the Configuration LP (ConfLP),
can often be solved efficiently, and is known to provide solutions of strikingly high
quality in practice [41]; for example, the optimum of the ConfLP for Bin Packing
is conjectured to have value x such that an optimal integer packing uses ≤ 	x
 + 1
bins [38]. However, surprisingly little is known in general about the structure of
solutions of ConfIP and ConfLP, and how they relate to each other.

We define the Configuration IP and LP of an N -fold IP instance, and show how
to solve the ConfLP quickly using the property that the ConfLP and ConfIP have
polynomial encoding length even for huge N -fold IP. Our main technical contribution
is a novel proximity theorem about N -fold IP, showing that a solution of its relaxation
corresponding to the ConfLP optimum is very close to the integer optimum. Thus, the
algorithm of Theorem 1 proceeds in three steps: (1) it solves the ConfLP, (2) it uses
the proximity theorem to create a “residual” N ′-fold instance with N ′ upperbounded
by (‖E‖∞rs)O(rs), and (3) it solves the residual instance by an existing N -fold IP
algorithm.

1.2 Related work

Besides the references mentioned already, we point out that solving ConfLP is com-
monly used as subprocedure in approximation algorithms, e.g. [1, 14, 22, 27]. Jansen
and Solis-Oba use a mixed ConfLP to give a parameterized OPT + 1 algorithm for
bin packing [24]; Onn [36] gave a weaker form of Theorem 1 which only applies to
the setting where Ei

1 = I and Ei
2 is totally unimodular, for all i . Jansen et al. [25]

extend the ConfIP to multiple “levels” of configurations. An extended version [31] of
this paper shows how to model many scheduling problems as high multiplicity N -fold
IPs, so that an application of Theorem 1 yields new parameterized algorithms for these
problems. Knop and Koutecký [30] use our new proximity theorem to show efficient
preprocessing algorithms (kernels) for scheduling problems.

There are currently several “fastest” algorithms for N -fold IP with standard (non-
succinct) encoding. First, we have already mentioned the algorithm of Eisenbrand et
al. [13]. Second, the algorithm of Jansen et al. [26] has a better parameter dependency
of (‖E‖∞rs)O(r2s+s2) (as compared with (‖E‖∞rs)O(r2s+rs2) of the previous algo-
rithm), but has a slightlyworse dependence on N of N log5 N , and onlyworks for linear
objectives. Third, a recent algorithmofCslovjecsek et al. [8] again onlyworks for linear
objectives and runs in time (‖E‖∞s)O(s2) poly(r)N log2(Nt) log2(‖l,u,b, fmax‖∞)+
(‖E‖∞rs)O(r2s+s2)Nt . While the authors claim that this constitutes the currently
fastest algorithm, it seems that it is only potentially faster than prior work in a narrow
parameter regime.

The third paper, by Cslovjecsek et al. [8], is the closest to ours in its approach:
it solves a strong relaxation of N -fold IP which coincides with the ConfLP if each
brick is of a distinct type, and which is generalized by the ConfLP (in our work)
otherwise. The authors show that this relaxation can be solved in near-linear time,
and then develop a proximity theorem similar to ours (but using different techniques)
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and a dynamic program, which allows them to construct and solve a residual instance
in linear time. An earlier version of our paper [31] stated a worse proximity bound
than that of Cslovjecsek et al. [8], but our bound applies to separable convex objective
whereas theirs [8] does not. Presently, we adapt one of their lemmas ( [8, Lemma 3])
(Lemma 5) and a modeling idea (Sect. 3.4) to obtain the same proximity bound as they
have [8], but which also works for separable convex objectives. It is likely that the
complexity of our algorithm to solve the ConfLP could be improved along the lines of
their work [8]. Despite these similarities, we highlight that only our algorithm solves
the high-multiplicity version of N -fold IP.

2 Preliminaries

For positive integers m, n with m ≤ n we set [m, n] = {m,m + 1, . . . , n} and [n] =
[1, n]. We write vectors in boldface (e.g., x, y) and their entries in normal font (e.g.,
the i-th entry of x is xi or x(i)). For α ∈ R, �α
 is the floor of α, 	α
 is the ceiling
of α, and we define {α} = α − �α
, similarly for vectors where these operators are
defined component-wise.

We call a brick of x integral if all of its coordinates are integral, and fractional
otherwise.
Huge N-fold IP. The huge N -fold IP problem is an extension of N -fold IP to the high-
multiplicity scenario, where there are potentially exponentially many bricks. This
requires a succinct representation of the input and output. The input to a huge N -fold
IP problem with τ brick types is defined by matrices Ei

1 ∈ Z
r×t and Ei

2 ∈ Z
s×t ,

i ∈ [τ ], vectors l1, . . . , lτ , u1, . . . ,uτ ∈ Z
t , b0 ∈ Z

r , b1, . . . ,bτ ∈ Z
s , functions

f 1, . . . , f τ : Rt → R satisfying ∀i ∈ [τ ], ∀x ∈ Z
t : f i (x) ∈ Z and given by

evaluation oracles, and integers μ1, . . . , μτ ∈ N such that
∑τ

i=1 μi = N . We say that
a brick is of type i if its lower and upper bounds are li and ui , its right hand side is bi ,
its objective is f i , and the matrices appearing at the corresponding coordinates are Ei

1
and Ei

2. The task is to solve (IP) with a matrix E (N ) which has μi bricks of type i
for each i . Onn [35] shows that for any solution, there exists a solution which is at
least as good and has only few (at most τ · 2t ) distinct bricks. In Sect. 3 we show new
bounds which do not depend exponentially on t .

2.1 Graver bases and the Steinitz lemma

Let x, y be n-dimensional vectors. We call x, y sign-compatible if they lie in the same
orthant, that is, for each i ∈ [n], xi · yi ≥ 0. We call

∑
i g

i a sign-compatible sum
if all gi are pair-wise sign-compatible. Moreover, we write y � x if x and y are
sign-compatible and |yi | ≤ |xi | for each i ∈ [n]. Clearly, � imposes a partial order,
called “conformal order”, on n-dimensional vectors. For an integer matrix A ∈ Z

m×n ,
its Graver basis G(A) is the set of �-minimal non-zero elements of the lattice of A,
kerZ(A) = {z ∈ Z

n | Az = 0}. A circuit of A is an element g ∈ kerZ(A) whose
support supp(g) (i.e., the set of its non-zero entries) is minimal under inclusion and
whose entries are coprime. We denote the set of circuits of A by C(A). It is known
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that C(A) ⊆ G(A) [34, Definition 3.1 and remarks]. We make use of the following
two propositions:

Proposition 1 (Positive Sum Property [34, Lemma 3.4]) Let A ∈ Z
m×n be an integer

matrix. For any integer vector x ∈ kerZ(A), there exists an n′ ≤ 2n − 2 and a decom-
position x = ∑n′

j=1 α jg j with α j ∈ N for each j ∈ [n′], into a sum of g j ∈ G(A).
For any fractional vector x ∈ ker(A) (that is, Ax = 0), there exists a decomposition
x = ∑n

j=1 α jg j into g j ∈ C(A), where α j ≥ 0 for each j ∈ [n].
Proposition 2 (Separable convex superadditivity [10, Lemma 3.3.1]) Let f (x) =∑n

i=1 fi (xi ) be separable convex, let x ∈ R
n, and let g1, . . . , gk ∈ R

n be vectors with
the same sign-pattern from {≤ 0,≥ 0}n, that is, belonging to the same orthant of Rn.
Then

f

⎛
⎝x +

k∑
j=1

α jg j

⎞
⎠ − f (x) ≥

k∑
j=1

α j
(
f (x + g j ) − f (x)

)
(2)

for arbitrary integers α1, . . . , αk ∈ N.

Our proximity theorem relies on the Steinitz Lemma, which has recently received
renewed attention [11, 12, 23].

Lemma 1 (Steinitz [40], Sevastjanov, Banaszczyk [39]) Let ‖·‖ denote any norm, and
let x1, . . . , xn ∈ R

d be such that ‖xi‖ ≤ 1 for i ∈ [n] and ∑n
i=1 xi = 0. Then there

exists a permutation π ∈ Sn such that for all k = 1, . . . , n, the prefix sum satisfies∥∥∥∑k
i=1 xπ(i)

∥∥∥ ≤ d.

For an integer matrix A, we define g1(A) = maxg∈G(A) ‖g‖1. When it could make
a difference, we will state our bounds both in terms of ‖E‖∞ (worst-case, when we
have no other information) and in terms of g1(E2) := maxi g1(Ei

2), e.g. in Lemma 10
and Theorem 2.

3 Proof of Theorem 1

We first give a relatively high-level description of the proof, before we present all its
details.

3.1 Proof overview and ideas

3.1.1 Configuration LP and IP

Given an input to the huge N -fold IP, we first reformulate it as another IP, which we
refer to as the Configuration IP. We then consider its fractional relaxation, the so-
called Configuration LP. Our approach is to (efficiently) solve the Configuration LP,
and bound the distance of its LP optimum to the integer optimum (of the Configuration
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IP).Weuse this bound to reduce the input to the huge N -fold IP fromahigh-multiplicity
input to an input of a standard N -fold IP which is small both in terms of the number of
bricks and size of the bounding box. This small input we then solve using an existing
N -fold IP algorithm. On this way, there are several non-trivial obstacles that we need
to overcome.

Wewill refer to huge N -fold IP asHugeIP, its corresponding fractional relaxation as
HugeCP (this is a convex program if the objective f is convex), the Configuration LP
of the HugeIP as ConfLP, and to its integer version as ConfIP. We define a mapping ϕ

from the solutions of ConfLP to the solutions of HugeCP which, for every variable yc
of the ConfLP introduces �yc
 brickswith configuration c, and then introduces∑

c{yc}
bricks with configuration 1∑

c{yc}
∑

c{yc} · c (i.e., an “average” configuration). We call

a solution x∗ of HugeCP “conf-optimal” if it is the image ϕ(y∗) of some ConfLP
optimumy∗.Onewouldhope that then theobjective valueof a conf-optimal solutionx∗
in HugeCP and of y∗ in ConfLP were identical. While this is true for any linear
objective f , it need not be true for a convex objective f . To overcome this impediment,
we introduce an auxiliary objective f̂ which preserves the values of optima of ConfLP
and conf-optimal solutions of HugeCP.

3.1.2 Proximity theorem

The bulk of our work is showing that for each conf-optimal solution x∗ of the HugeLP,
there is an optimum z∗ of the HugeIP whose �1-distance from x∗ is bounded by
P := (‖E‖∞rs)O(rs). We will show that we can obtain a ConfLP optimum y with
support of size at most r + τ , and by the definition of ϕ (recall that x∗ = ϕ(y)), this
means that x∗ has at most r + τ + 1 distinct bricks (the +1 is due to ϕ creating an
additional “average configuration” brick type). This, in turn, means that our bound on
the �1-distance between z∗ and x∗ says something about ConfLP and ConfIP: for any
ConfLP optimum y there is a ConfIP optimum y∗ in �1-distance at most P where any
configuration c in the support of y∗ is at most P far from some configuration c′ in the
support of y. As far as we know, this is a unique result about the Configuration LP.

Away of bounding the distance between some types of optima in an integer program
has been introduced by Hochbaum and Shanthikumar [21] and adapted to the setting
of N -fold IP by Hemmecke at al. [19]. A somewhat different approach was later devel-
oped by Eisenbrand and Weismantel [11] in the setting of IPs with few rows, and was
adapted to the setting of N -fold IPs soon after [12, 13]. The idea is as follows. Let x∗
be a HugeCP optimum, and z∗ be a HugeIP optimum, We call a non-zero integral
vector p � x∗ − z∗, i.e., which is sign-compatible (i.e., has the same sign-pattern)
with x∗ − z∗ and which is smaller in absolute value than x∗ − z∗ in each coordinate, a
cycle of x∗ − z∗. If z∗ minimizes ‖x∗ − z∗‖1, it can be shown that no cycle of x∗ − z∗
exists. Moreover, if a cycle exists, then a cycle of �1-norm at most B exists, which
implies ‖x∗ − z∗‖1 ≤ B.

Notice that the previous argument assumes x∗ to be a HugeCP optimum: this cannot
be replaced with a conf-optimal solution for the following reason. The existence of a
cycle p leads to a contradiction because either z∗ + p is also a HugeIP optimum (but
closer to x∗) or x∗ −p is also a HugeCP optimum (but closer to z∗). But if x∗ is a conf-

123



206 D. Knop et al.

optimal solution, we have no guarantee that x∗−p is again a configurable solution, and
the argument breaks down. This means that we need to restrict our attention to cycles
with the property that if x∗ is a configurable solution, then x∗ −p is also configurable.

We call such a p a configurable cycle. The next task is an analogy of the argument
above: if x∗ is conf-optimal and z∗ is a HugeIP optimum, then the existence of a con-
figurable cycle p of x∗ − z∗ leads to a contradiction. For that, we need the separability
and convexity of the objective f and a careful use of the configurability of p. With this
argument at hand, we have reduced our task to bounding the norm of any configurable
cycle (Lemma 7).

However, the main existing tool for showing proximity is by ruling out cycles. To
overcome this, we develop new tools to deal with configurable cycles.

3.1.3 The algorithm

It remains to use our proximity bound P . As already hinted at, if two solutions differ
in �1-norm by at most P , then they may differ in at most P bricks. This means that
we may fix all but P bricks for each configuration appearing in the ConfLP optimum.
Since the size of the support of the ConfLP optimum is small (r + τ ), the total number
of bricks to be determined is also small, and can be done using a standard N -fold IP
algorithm in the required time complexity (Proof of Theorem 1)

To recap, the algorithm works in the following steps.

1. We solve the ConfLP and obtain its optimum y by solving its Dual LP using a
separation oracle. The separation oracle is implemented using a fixed-parameter
algorithm for IP with small coefficients.

2. We use the ConfLP optimum y to fix the solution on all but (r + τ)P bricks.
3. The remaining instance can be encoded as an N -fold IP with at most (r + τ)P

bricks and solved using an existing algorithm.

Let us now go back to a detailed proof of Theorem 1.

3.2 Configurations of huge N-fold IP

Fix a huge N -fold IP instance with τ types. Recall thatμi denotes the number of bricks
of type i , and μ = (μ1, . . . , μτ ). We define for each i ∈ [τ ] the set of configurations
of type i as

Ci =
{
c ∈ Z

t | Ei
2c = bi , li ≤ c ≤ ui

}
.

Here we are interested in four instances of convex programming (CP) and convex
integer programming (IP) related to huge N -fold IP. First, we have the Huge IP

min f (x) : E (N )x = b, l ≤ x ≤ u, x ∈ Z
Nt , (HugeIP)

and the Huge CP, which is a relaxation of (HugeIP),

min f̂ (x) : E (N )x = b, l ≤ x ≤ u, x ∈ R
Nt . (HugeCP)
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We shall define the objective function f̂ later, for now it suffices to say that for
all integral feasible x ∈ Z

Nt we have f (x) = f̂ (x) so that indeed the optimum
of (HugeCP) lower bounds the optimum of (HugeIP) and that f̂ is convex. Then,
there is the Configuration LP of (HugeIP), that is, the following linear program:

min vy = min
τ∑

i=1

∑

c∈Ci

f i (c) · y(i, c) (3)

τ∑
i=1

Ei
1

∑

c∈Ci

cy(i, c) = b0,

∑

c∈Ci

y(i, c) = μi ∀i ∈ [τ ],

y ≥ 0 . (4)

Letting B be its constraint matrix and d =
(

b0
μᵀ

)
be the right hand side, we can shorten

(3)–(4) as
min vy : By = d, y ≥ 0 . (ConfLP)

Finally, by observing that By = d implies y(i, c) ≤ ‖μ‖∞ for all i ∈ [τ ], c ∈ Ci ,
defining C = ∑

i∈[τ ] |Ci |, leads to the Configuration ILP,

min vy : By = d, 0 ≤ y ≤ (‖μ‖∞, . . . , ‖μ‖∞)ᵀ, y ∈ N
C . (ConfILP)

A solution x of (HugeCP) is configurable if, for every i ∈ [τ ], each brick x j of
type i is a convex combination of Ci , i.e., x j ∈ conv(Ci ). We shall define a map-
ping from solutions of (ConfLP) to configurable solutions of (HugeCP) as follows.
For every solution y of (ConfLP) we define a solution x = ϕ(y) of (HugeCP) to
have �y(i, c)
 bricks of type i with configuration c and, for each i ∈ [τ ], let fi =∑

c∈Ci {y(i, c)} and let x have fi bricks with value ĉi = 1
fi

∑
c∈Ci {y(i, c)}c. (Because∑

c∈Ci y(i, c) = μi and
∑

c∈Ci �y(i, c)
 is clearly integral, fi = μi −∑
c∈Ci �y(i, c)


is also integral.) Note that ϕ(y) has at most as many fractional bricks as y has frac-
tional entries since each fi < 1 and the number of non-zero fi is at most the number
of fractional entries of y. Call a solution x of (HugeCP) conf-optimal if there is an
optimal solution y of (ConfLP) such that x = ϕ(y).

We are going to introduce an auxiliary objective function f̂ , but we first want to
discuss our motivation in doing so. The reader might already see that for any integer
solution y ∈ Z

C of (ConfILP), vy = f (ϕ(y)) holds, as we shall prove in Lemma 4.
Our natural hope would be that for a fractional optimum y∗ of (ConfLP) we would
have vy∗ = f (ϕ(y∗)). However, by convexity of f and the construction of ĉi it only
follows that vy∗ ≥ f (ϕ(y∗)). Even worse, there may be two conf-optimal solutions x
and x′ with f (x)< f (x′). To overcome this, we define an auxiliary objective function f̂
with the property that for any conf-optimal solution x∗ of (HugeCP) and any optimal
solution y∗ of (ConfLP), vy∗ = f̂ (x∗).
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Fix a brick x j of type i . We say that a multiset Γ j ⊆ (Ci ×R≥0) is a decomposition
of x j andwrite x j = ∑

Γ j if x j = ∑
(c,λc)∈Γ j λcc and

∑
(c,λc)∈Γ j λc = 1.We define

the objective f̂ (x) for all configurable solutions as f̂ (x) = ∑N
j=1 f̂ i (x j ), where

f̂ i (x j ) = min
Γ j :∑Γ j=x j

∑

(c,λc)∈Γ j

λc · f i (c) . (5)

In a sense, f̂ (x) is the value of the minimum (w.r.t. f ) interpretation of x
as a convex combination of feasible integer solutions. Correspondingly, we call a
decomposition Γ j of x j f̂ -optimal if it is a minimizer of (5). Formally, we let
f̂ i (x j ) = f i (x j ) for a non-configurablex j in order tomake the definition of (HugeCP)
valid; however, we are never interested in the value of f̂ for non-configurable bricks
in the following.

Lemma 2 Let x be a configurable solution of (HugeCP), and x j be a brick of type i .
Then f i (x j ) ≤ f̂ i (x j ). If x j is integral, then f i (x j ) = f̂ i (x j ).

Proof By convexity of f i we have

f i (x j ) = f i

⎛
⎝ ∑

(c,λc)∈Γ j

λcc

⎞
⎠ ≤

∑

(c,λc)∈Γ j

λc f
i (c),

for any decomposition Γ j of x j . If x j is integral, then Γ j = {(x j , 1)} is its optimal
decomposition (not necessarily unique1), concluding the proof. ��

Moreover, for each x j there is an f̂ -optimal decomposition Γ j with |Γ j | ≤ t + 1
since f̂ -optimal decompositions correspond to optima of a linear program with t + 1
equality constraints, namely

min
∑

c∈Ci

λc f
i (c) s.t.

∑

c∈Ci

λcc = x j , ‖λ‖1 = 1, λ ≥ 0 . (6)

Let us describe the relationship of the objective values of the various formulations.

Lemma 3 For any feasible solution ỹ of (ConfLP),

vỹ ≥ f̂ (ϕ(ỹ)) . (7)

Proof Let x̃ = ϕ(ỹ). We can decompose f̂ (ϕ(ỹ)) = U1 +U2, whereU1 is the cost of
integer bricks of ϕ(ỹ) and U2 is the cost of its fractional bricks. It is easy to see that
U1 = v�ỹ
 by the equality of f i and f̂ i , for all i ∈ [τ ], over integer vectors. We shall
further decompose the valueU2 into costs of fractional bricks of each type. For each i ∈
[τ ], the cost of each fractional brick of type i is atmost 1

fi

∑
c∈Ci {ỹ(i, c)} f i (c) because

1 e.g., potentially x j = 1
2 ((x j + c) + (x j − c)) for some c, and Γ j is optimal for any linear objective.
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the decomposition
{(

c, 1
fi

{ỹic}
) ∣∣∣c ∈ Ci

}
of ĉi (recall that ĉi = 1

fi

∑
c∈Ci {ỹ(i, c)}c)

is merely a feasible (not necessarily optimal) solution of (6) Summing this estimate
up over all fi fractional bricks of type i gives fi · 1

fi

∑
c∈Ci {ỹ(i, c)} f i (c) = vi {ỹi },

concluding the proof. ��
Lemma 4 Let ŷ be an optimum of (ConfILP), z∗ be an optimum of (HugeIP), y∗ be an
optimum of (ConfLP), x̃ = ϕ(y∗), and x∗ be a configurable optimum of (HugeCP).
Then

f̂ (z∗) = f (z∗) = f (ϕ(ŷ)) = vŷ ≥ vy∗ = f̂ (x̃) = f̂ (x∗) .

Proof Wehave f̂ (z∗) = f (z∗) by equality of f̂ and f on integer solutions (Lemma 2),
and f (z∗) = f (ϕ(ŷ)) = vŷ by the definition of ϕ and the fact that ŷ is an integer
optimum. Clearly, vŷ ≥ vy∗, because (ConfLP) is a relaxation of (ConfILP) and thus
the former lower bounds the latter.

Let us construct a mapping φ for any configurable solution x of (HugeCP). Start
with φ(x) = y = 0. For each brick x j of type i let Γ j be a f̂ -optimal decomposition
of x j and update yic := yic + λc for each (c, λc) ∈ Γ j . Now it is easy to see that

vφ(x∗) = f̂ (x∗) . (8)

Our goal is to argue that vy∗ = f̂ (x̃) = f̂ (x∗). We have f̂ (x̃) = f̂ (ϕ(y∗)) ≤ vy∗
by (7), but by optimality of y∗ and (8) it must be that vφ(x̃) = f̂ (x̃) ≥ vy∗ and hence
vy∗ = f̂ (x̃). Similarly,

f̂ (x∗) = vφ(x∗) ≥ vy∗ ≥ f̂ (ϕ(y∗))

with the “=” by (8), the first “≥” by optimality of y∗, and the second “≥” by (7).
However, since f̂ (ϕ(y∗)) ≥ f̂ (x∗) by optimality of x∗, all inequalities are in fact
equalities and thus vy∗ = f̂ (x∗). ��
Remark 1 We only need the properties of f̂ that we have proved so far. To gain a little
bit more intuition, consider the dual of the LP (6). Notice that the set of right hand
sides x j whose optimum is attained by a particular set of configurations supp(λ) is a
polyhedron. Call such a set a cell. This means that f̂ is a convex function which is
linear in each cell. Another observation is that f̂ is non-separable.

We do not have a more intuitive explanation of f̂ . It would be tempting to think
that f̂ is the piece-wise linear approximation of f in which, for every i ∈ [Nt], we
replace each segment of fi between two adjacent integers k, k+1 by the affine function
going through the points (k, fi (k)) and (k + 1, fi (k + 1)). However, this turns out to
be incorrect: for example, say that f1(x1) = |x1 − 1| (thus f1(0) = f1(2) = 1 and
f1(1) = 0) and that we set x1 = 2x2 for a new integer variable x2. This constraint
ensures that x1 only takes on even values. Thus, x1 never attains the value 1 and
f̂1(1) ≥ 1 even though the piece-wise linear approximation of f1 has value 0 at 1.
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Bounding the number of fractional coordinates.

Lemma 5 (Adaptation of [8, Lemma 4.1]) An optimal vertex solution y∗ of (ConfLP)
has at most 2r fractional coordinates.

Proof Notice that if a brick (y∗)i is a vertex of the set Qi := conv{yi ∈ R
Ci | 1yi =

μi , yi ≥ 0}, then it is integral. Thus, any brick of y∗ which is fractional cannot be a
vertex of Qi and hence there exists a direction ei ∈ KerZ(1) and a length λi > 0 such
that (y∗)i ±λiei ∈ Qi . For the sake of contradiction, assume there are r+1 bricks of y∗
which contain a fractional coordinate and I is the index set of such bricks. Hence we
have ei , λi as above for each i ∈ I . We abuse the notation and treat Ci as a matrix
whose columns are the configurations. Consider the vectors Ei

1Ciλiei ∈ R
r : because

there are r + 1 of them, they are linearly dependent, and, by rescaling, there must be
coefficients λ̄ such that |λ̄i | ≤ λi for each i ∈ I and

∑
i∈I Ei

1Ci λ̄iei = 0. Define
e ∈ R

C (recall that C is the total number of configurations) such that its i-th brick
is equal to λ̄iei if i ∈ I , and is 0 otherwise. Then y∗ ± e are both feasible solutions
of (ConfLP), and thus y∗ is not a vertex solution—a contradiction.

So far, we have shown there are at most r fractional bricks of y∗. Notice that all we
needed for that was r+1 linearly dependent vectors which can be added to some brick
in both directions while preserving feasibility. Because ei ∈ KerZ(1) for each i ∈ I ,
we can decompose ei into elements of G(1), which are exactly vectors with one 1 and
one −1. Hence, to avoid the contradiction above, there can be at most r vectors ei ,
and, additionally, all of them must belong to G(1). Thus, the resulting vector e has
support of size at most 2r , and y∗ has at most 2r fractional coordinates. ��

Finding a conf-optimal solution with small number of fractional bricks.
Our goal is to show that the proximity of any conf-optimal solution x∗ of (HugeCP)

from an integer optimum z∗ of (HugeIP) depends on the number of fractional bricks.
This number, by definition of ϕ, depends on the number of fractional coordinates of the
corresponding solution y of (ConfLP). The following lemma shows how to produce
optima of (ConfLP) with small support. We emphasize that our proximity theorem
does not require that the fractional solution be optimal but rather conf-optimal.

Lemma 6 There is an algorithm that finds an optimal vertex solution y∗ of (ConfLP)
with |supp(y∗)| ≤ r + τ and at most 2r fractional coordinates, and a conf-
optimal solution x∗ = ϕ(y∗) of (HugeCP) with at most 2r fractional bricks, in time
g1(E2)

O(s) poly(r tτ log ‖ fmax, l,u,b,μ, E‖∞).

Proof The proof has three parts. First,we describe how tofind an optimal basic solution
of the dual of (ConfLP). Next, we identify r + τ inequalities of this dual which fully
determine the optimal dual LP solution. Finally, we show how to use this information
to solve (ConfLP) itself.

Recall that τ is the number of brick types in the huge N -fold instance. Since
(ConfLP) has exponentially many variables, we take the standard approach and solve
the dual LP of (ConfLP) by the ellipsoid method and the equivalence of optimization
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and separation. The Dual LP of (ConfLP) in variables α ∈ R
r , β ∈ R

τ is:

max b0α +
τ∑

i=1

μiβ i

s.t. (αEi
1)c − f i (c) ≤ −β i ∀i ∈ [τ ], ∀c ∈ Ci . (9)

To verify feasibility of (α,β), we need, for each i ∈ [τ ], to maximize the left-hand
side of (9) over all c ∈ Ci and check if it is at most −β i . This corresponds to finding
integer variables c which for given (α,β) solve

min
(
f i (c)−(αEi

1)c
)
=−max

(
(αEi

1)c − f i (c)
)

: Ei
2c=bi , li ≤c ≤ ui , c ∈ Z

t .

This programcanbe solved in timeT ′′′ ≤g1(E2)
O(s)t3·poly(log ‖bi , li ,ui , ‖E‖∞‖∞)

[33, Theorem 4].
Grötschel et al. [18, Theorem 6.4.9] show that an optimal solution of an LP

(even one which is a vertex [18, Remark 6.5.2]) can be found in a number of
calls to a separation oracle which is polynomial in the dimension and the encoding
length of the inequalities returned by a separation oracle. Clearly the inequali-
ties (9) have encoding length bounded by log ‖ fmax, l,u,b,μ‖∞ and thus T =
poly(r tτ log ‖ fmax, l,u,b,μ, E‖∞) calls to a separation oracle are sufficient to find
an optimal vertex solution, which amounts to T · T ′′′ arithmetic operations.

Next, we will identify r + τ inequalities determining the previously found optimal
vertex solution of the dual of (ConfLP). Observe that the dimension of the dual LP
is the number of rows of the primal LP, which is r + τ . Since each point in (r + τ)-
dimensional space is fully determined by r+τ linearly independent inequalities, there
must exist a subset I of r + τ inequalities among the T inequalities considered by
the ellipsoid method which fully determines the dual optimum. We can find them as
follows.

We initialize I to be the empty set. Taking the T considered inequalities one by
one, we process the inequality if it is satisfied as equality by the given optimal basic
solution for the dual LP, and we discard other inequalities. If we process the current
inequality and either some inequality of I or the present inequality is dominated2 by
an inequality that can be obtained as a non-negative linear combination of the others,
discard it; otherwise, include it in I and continue. Testingwhether an inequalitydz ≤ e′
is dominated by a non-negative combination of a system of inequalities Dz ≤ e can
be decided by solving

min αe s.t. αᵀD = d, α ≥ 0, (10)

and checking whether the optimal value is at most e′. If it is, then the solution α

encodes a non-negative linear combination of the inequalities Dz ≤ e which yields
an inequality dominating dz ≤ e′, and if it is not, then such a combination does

2 An inequality ax ≤ b is dominated by cx ≤ d if for every x such that cx ≤ d we also have ax ≤ b.
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not exists. Thus, when a new inequality is considered, we solve (10) for at most
r + τ inequalities (the new one and all less than r + τ already selected ones),
and there are at most T inequalities considered. The time needed to solve (10) is
poly(r + τ, log ‖l,u,b, fmax, E‖∞) because its dimension is at most r + τ and its
encoding length is at most log ‖l,u,b, fmax, E‖∞. Altogether, we need time

T · (r + τ) · poly(r + τ, log ‖l,u,b, fmax, E‖∞)

≤ poly(r tτ log ‖ fmax, l,u,b,μ, E‖∞) =: T ′.

Finally, let the restricted (ConfLP) be the (ConfLP) restricted to the variables
corresponding to the inequalities in I . We claim that an optimal solution to the
restricted (ConfLP) is also an optimal solution to (ConfLP). To see that, use LP duality:
the optimal objective value of the dual LP restricted to inequalities in I is the same as
one of the dual optima, and thus an optimal solution of the restricted (ConfLP) must
be an optimal solution of (ConfLP). We solve the restricted (ConfLP) using any poly-
nomial LP algorithm in time T ′′ ≤ poly((r + τ), log ‖ fmax, l,u,μ,b0, E‖∞). The
resulting total time complexity is thus T ·T ′′′ +T ′ to construct the restricted (ConfLP)
instance and time T ′′ to solve it, T · T ′′′ + T ′ + T ′′ total, which is upper bounded by
g1(E2)

O(s) poly(r tτ log ‖ fmax, l,u,b,μ, E‖∞), as claimed.
Let y∗ be an optimum of (ConfLP) we have thus obtained. Since |I | ≤ r + τ ,

the support of y∗ is of size at most r + τ . By Lemma 5, y∗ has at most 2r fractional
coordinates. Now setting x∗ = ϕ(y∗) is enough, since we have already argued (see
definition of ϕ) that x∗ has at most as many fractional bricks as y∗ has fractional
coordinates and x∗ can be computed from y∗ in O(r + τ) time. ��

3.3 Proximity theorem

Let us give a plan for the next subsection.Wewish to prove that for every conf-optimal
solution x∗ of (HugeCP) there is an integer solution z∗ of (HugeIP) nearby. In the
following, let x∗ be a conf-optimal solution of (HugeCP) and z∗ be an optimal solution
of (HugeIP) minimizing ‖x∗ − z∗‖1. A technique for proving proximity theorems
which was introduced by Eisenbrand and Weismantel [11] works as follows. A vector
h ∈ Z

Nt is called a cycle of x∗ − z∗ if h �= 0, E (N )h = 0, and h � x∗ − z∗. It is
not too difficult to see that if x′ is an optimal (not necessarily conf-optimal) solution
of (HugeCP) with the objective f , then there cannot exist a cycle of x′ − z∗ (cf. proof
of Lemma 9). Based on a certain decomposition of x′ − z∗ into integer and fractional
smaller dimensional vectors and by an application of the Steinitz Lemma, the existence
of a cycle is proven unless ‖x′ − z∗‖1 is roughly bounded by the number of fractional
bricks of x′. However, we cannot apply this technique directly as an optimal solution x′
of (HugeCP) might have many fractional bricks. At the same time, an existence of a
cycle h of x∗ − z∗ does not necessarily contradict that ‖x∗ − z∗‖1 is minimal, because
x∗ +hmight not be a configurable solution, which is an essential part of the argument.

All of this leads us to introduce a stronger notion of a cycle. We say that h ∈ Z
Nt

is a configurable cycle of x∗ − z∗ (with respect to x∗) if (1) h is a cycle of x∗ − z∗, (2)
for each brick j ∈ [N ] of type i ∈ [τ ] there exists an f̂ -optimal decomposition Γ j of
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(x∗) j such that we may write h j = ∑
(c,λc)∈Γ j λchc, and (3) for each (c, λc) ∈ Γ j

we have hc � c − (z∗) j and hc ∈ KerZ(Ei
2). Soon we will show that if ‖x∗ − z∗‖1

is minimal, x∗ − z∗ does not have a configurable cycle. The next task becomes to
show how large must ‖x∗ − z∗‖1 be in order for a configurable cycle to exist. Recall
that the technique of Eisenbrand and Weismantel [11] can be used to rule out an exis-
tence of a (regular) cycle, not a configurable cycle. To overcome this, we “lift” both
x∗ and z∗ to a higher-dimensional space and show that a cycle in this space corre-
sponds to a configurable cycle in the original space. Only then are we ready to prove
a proximity bound using the aforementioned technique.

Lemma 7 If h is a configurable cycle of x∗ − z∗, then x∗ − h is configurable.

Proof Fix j ∈ [N ]. Letp be the brick (x∗−h) j and let i ∈ [τ ] be its type. Nowp can be
written as p = ∑

(c,λc)∈Γ j λc(c−hc). Furthermore, we have Ei
2(c−hc) = Ei

2c = b j ,
and, by h � x∗ − z∗, we also have l ≤ x∗ − h ≤ u. ��
We now need a technical lemma:

Lemma 8 Let x∗ be a conf-optimal solution of (HugeCP), let z∗ be an optimum
of (HugeIP), and let h∗ be a configurable cycle of x∗ − z∗. Then

f̂ (z∗ + h∗) + f̂ (x∗ − h∗) ≤ f̂ (z∗) + f̂ (x∗) . (11)

Proof We begin by a simple observation: let g : R → R be a convex function, x ∈ R,
z ∈ Z, and r ∈ Z be such that r � x − z (that is, there is some ρ, 0 ≤ ρ ≤ 1, such
that r = ρ · (x − z)). By convexity of g we have that

g(z + r) + g(x − r) ≤ g(z) + g(x) . (12)

Fix j ∈ [N ] and z = (z∗) j , x = (x∗) j , h = (h∗) j , and let i be the type of brick j .
Since h∗ is a configurable cycle there exists an f̂ -optimal decomposition Γ of x
such that, for each (c, λc) ∈ Γ , there exists a hc � c − z, hc ∈ KerZ(Ei

2), and
h = ∑

(c,λc)∈Γ λchc. Due to separability of f we may apply (12) independently to
each coordinate, obtaining for each c

f i (z + hc) + f i (c − hc) ≤ f i (z) + f i (c) .

Since all arguments of f i are integral, we immediately get

f̂ i (z + hc) + f̂ i (c − hc) ≤ f̂ i (z) + f̂ i (c) .

Aggregating according to Γ , we get (recall that we have
∑

(c,λc)∈Γ λc = 1)

∑
(c,λc)∈Γ

λc

(
f̂ i (z + hc) + f̂ i (c − hc)

)
≤

∑
(c,λc)∈Γ

λc

(
f̂ i (z) + f̂ i (c)

)

= f̂ i (z) +
∑

(c,λc)∈Γ

λc f̂
i (c),
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where by f̂ -optimality of Γ the right-hand side is equal to f̂ i (z) + f̂ i (x). As for the
left-hand side, observe that decompositions Γ ′ = {(z + hc, λc) | (c, λc) ∈ Γ } and
Γ ′′ = {(c − hc, λc) | (c, λc) ∈ Γ } satisfy ∑

Γ ′ = z + h and
∑

Γ ′′ = x − h but are
only feasible (not necessarily optimal) solutions of (6). Thus, we have

f̂ i (z + h) + f̂ i (x − h) ≤
∑

(c,λc)∈Γ

λc

(
f̂ i (z + hc) + f̂ i (c − hc)

)
.

Combining over Γ then yields

f̂ i (z + h) + f̂ i (x − h) ≤ f̂ i (z) + f̂ i (x),

and since we have proven this claim for every brick j , aggregation over bricks con-
cludes the proof of the main claim (11). ��
Let us show that if x∗ and z∗ are as stated, then there is no configurable cycle of x∗−z∗.

Lemma 9 Let x∗ be a conf-optimal solution of (HugeCP) and let z∗ be an optimal
solution of (HugeIP) such that ‖x∗ − z∗‖1 is minimal. Then there is no configurable
cycle of x∗ − z∗.

Proof For the sake of contradiction, suppose that there exists a configurable cycle h∗
of x∗ − z∗. By Lemma 8, one of two cases must occur:

Case 1: f̂ (z∗ + h∗) ≤ f̂ (z∗). Then z∗ + h∗ is an optimal integer solution (by h �
x∗ − z∗ we have l ≤ z∗ +h ≤ u and by h∗ ∈ kerZ

(
E (N )

)
we have E (N )(z∗ +h) = b)

which is closer to x∗, a contradiction to minimality of ‖x∗ − z∗‖1.
Case 2: f̂ (x∗ − h∗) < f̂ (x∗). Since h∗ is a configurable cycle, Lemma 7 states that
x∗ − h∗ is configurable, so we have a contradiction with conf-optimality of x∗. ��

Overview of the remainder of the proof

In order to use existing proximity arguments to bound the norm of a cycle, our plan is to
move into an extended (higher-dimensional) spacewhich corresponds to decomposing
each brick xi of x∗ into configurations as xi = ∑

c λcc – each summand becomes a
new brick in the extended space.

We denote this new higher-dimensional representation of x∗ with respect to Γ

as ↑x∗ and call it the rise of x∗, and define similarly the rise of z∗ (with respect to a
given decomposition of each brick of x∗). The situation gets very delicate at this point.

First, we require that each decomposition of a brick of x∗ is optimal with respect
to the auxiliary objective f̂ so that we can use the argument about non-existence of
a cycle. Second, because the proximity bound depends on the number of fractional
bricks of ↑x∗, we require that the decomposition of each brick is small, i.e., into only
few elements. Third, we require that each coefficient λc is of the form 1/qc for an
integer qc, because we need to ensure that, for a corresponding cycle brick hc, λ−1

c hc
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is an integer vector, so λ−1
c has to be an integer. To ensure the second and third

condition simultaneously, we first show that there is a decomposition of each brick of
size at most t + 1 and with each coefficient bounded by P , and then show that each
fraction p/q can be written as an Egyptian fraction p/q = 1/a1 + 1/a2 + · · · 1/ac
with c ≤ 2 log2 q (Lemmas 10–12). (Bounds on the length of Egyptian fractions have
been studied in the past and our bound is not the best possible, but in order to use our
proximity theorem, we need exact and not merely asymptotic bounds, so we prove
this worse but exact bound of 2 log2 q.) We call a decomposition of a brick satisfying
all three criteria given above a small scalable decomposition.

Fix a small scalable decomposition for each brick of x∗, and let ↑x∗ be the rise of x∗
with respect to this decomposition. Since this decomposition is small, ↑x∗ has at most
poly(‖E‖∞, r , s) fractional bricks. Moreover, the other properties above allow us to
say the following: if r is a cycle of ↑x∗− ↑z∗, then the compression of r back to the
original space is a configurable cycle of x∗ − z∗ (Lemma 14). So in order to bound
‖x∗ − z∗‖1, it suffices (by triangle inequality) to bound ‖↑x∗− ↑z∗‖1. We do this by
adapting the approach of Eisenbrand and Weismantel [11] to bound the length of any
cycle r of ↑x∗− ↑z∗.

The remainder of the proof

We say that |Γ | is the size of the decomposition. Let us show that for each brick, there
exists an f̂ -optimal decomposition whose coefficients have small encoding length,
and its size is small. For any matrix A, define g∞(A) = maxg∈G(A) ‖g‖∞.

Lemma 10 Each brick of x∗ of type i has an f̂ -optimal decomposition Γ

1. of size at most t + 1, and
2. max(c,λc=pc/qc)∈Γ {pc, qc} ≤ (t + 1)!((2t − 2)g∞(Ei

2))
t+1 ≤ (t + 1)(t+1)

(g1(E2))
(t+2) ≤ (t + 1)(t+1)(s‖Ei

2‖∞ + 1)(s+1)(t+2).

Proof An f̂ -optimal decomposition corresponds to a solution of the LP (6). We will
argue that there is a solution whose support is composed of columns which do not
differ by much, which corresponds to a solution of an LP with small coefficients, and
the claimed bound can then be obtained by Cramer’s rule.

Specifically, we claim that there exists an f̂ -optimal decomposition Γ which cor-
responds to an optimal solution λ of (6) such that there exists a point ζ ∈ Z

t and
if c ∈ supp(λ), then ‖c − ζ‖∞ ≤ (t − 1)g∞(Ei

2). For a solution λ of (6), define
R′ := maxc,c′∈supp(λ) ‖c − c′‖∞ to be the longest side of the bounding box of all
c ∈ supp(λ). For a point ζ ∈ Z

t , say, for c ∈ supp(λ), that a coordinate j ∈ [t] is tight
if c j = ζ j−	 R′

2 
or c j = ζ j+	 R′
2 
, and define S = ∑

c∈supp(λ)

∑t
j=1 λc[ j is tight in c]

(where “[X ]” is an indicator of the statement X ) to be the weighted number of tight
coordinates. Now let ζ ∈ Z

t be any point which is an integer center of the bound-
ing box (i.e., ‖c − ζ‖∞ ≤ 	 R′

2 
 for all c ∈ supp(λ)) and which minimizes S. For
contradiction assume that λ is an optimal solution of (6) which minimizes R′ and S
(lexicographically in this order) and R′ > (2t − 2)g∞(Ei

2). Assuming Γ is a decom-
position of a brick of type i , we have c, c′ ∈ Ci = {c̃ ∈ Z

t | Ei
2c̃ = bi , li ≤ c̃ ≤ ui }
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and thus c − c′ ∈ KerZ(Ei
2). By Proposition 1 we may write c − c′ = ∑2t−2

j=1 γ jg j

with g j ∈ G(Ei
2) and g j � c − c′ for all j ∈ [2t − 2]. Note that because

‖c − c′‖∞ > R := (2t − 2)g∞(Ei
2), we have that there exists j ∈ [2t − 2] such that

γ j > 1. Hence g := ∑2t−2
j=1 � γ j

2 
g j satisfies g �= 0. Let c̄ := c − g, and c̄′ := c′ + g.

First, because c̄ − c̄′ = (c − c′) − 2g = ∑2t−2
j=1 (γ j − 2� γ j

2 
)gi , we may bound

‖c̄− c̄′‖∞ ≤ (2t−2)g∞(Ei
2) = R. Second, by the conformality of the decomposition,

c̄, c̄′ ∈ Ci . Third, by separable convex superadditivity (Proposition 2), we have that
f (c) + f (c′) ≥ f (c̄) + f (c̄′). Fourth, there exist a coordinate j ∈ [t] such that
|c j − c′

j | = R′ but, since ‖c̄ − c̄′‖∞ ≤ R, |c̄ j − c̄′
j | ≤ R < R′ and thus j is no

longer a tight coordinate for either c̄ or c̄′ (or both), and no new tight coordinates can
be introduced because R < R′. Without loss of generality, let λc ≤ λc′ . Now initialize
λ′ := λ and modify it by setting λ′̄

c, λ
′
c̄′ := λc, λ′

c := 0, λ′
c′ := λc′ − λc. By our

arguments above, λ′ is another optimal solution of (6) but the weighted number S of
tight coordinates has decreased by the fourth point, a contradiction.

Thus, there exists a point ζ ∈ Z
t and an optimal solution λ of (6) such that for

each c ∈ supp(λ), it holds that ‖c − ζ‖∞ ≤ R/2 = (t − 1)g∞(Ei
2). We obtain the

following reduced LP from (6) by deleting all columns c with ‖c − ζ‖∞ > R/2, and
denote the remaining set of columns by C̄i :

min
∑

c∈C̄i

λc f
i (c) s.t.

∑

c∈C̄i

λcc = x j , ‖λ‖1 = 1, λ ≥ 0 . (13)

This LP is equivalent to one obtained by subtracting ζ from all columns and the right
hand side:

min
∑

c∈C̄i

λc f
i (c) s.t.

∑

c∈C̄i

λc(c − ζ ) = (x j − ζ ), ‖λ‖1 = 1, λ ≥ 0 . (14)

Now, this LP has t + 1 rows and its columns have the largest coefficient bounded by
R/2 in absolute value. A basic solution λ has |supp(λ)| ≤ t +1 and, by Cramer’s rule,
the denominator of each λc is bounded by (t + 1)! times the largest coefficient to the
power of t + 1, thus bounded by

(t + 1)!(R/2)(t+1) ≤ (t + 1)!((t − 1)g∞(Ei
2))

(t+1) ≤ (t + 1)(t+1)(g1(E2))
(t+2).

In the worst case, we can bound this as

(t + 1)(t+1)(s‖Ei
2‖∞ + 1)s(t+2),

where we use

g∞(Ei
2) ≤ ‖Ei

2‖∞(2s‖Ei
2‖∞ + 1)s

[12, Lemma 2]. ��

123



High-multiplicity N-fold IP via configuration… 217

Next, we will need the notion of an Egyptian fraction. For a rational number p/q,
p, q ∈ N, its Egyptian fraction is a finite sum of distinct unit fractions such that

p

q
= 1

q1
+ 1

q2
+ · · · + 1

qk
,

for q1, . . . , qk ∈ N distinct. Call the number of terms k the length of the Egyptian frac-
tion. Vose [43] has proven that any p/q has an Egyptian fraction of lengthO(

√
log q).

Since our algorithm requires an exact bound, we present the following weaker yet
exact result:

Lemma 11 (Egyptian Fractions) Let p, q ∈ N, 1 ≤ p < q. Then p/q has an Egyptian
fraction of length at most 2(log2 q) + 1 and all denominators are at most q2.

Proof Let a = 2k be largest such that a < q, so k = 	(log2 q) − 1
 < log2 q. Write
ap = bq + r , 0 ≤ r < q. Note that p < q �⇒ b < a and q ≤ 2a �⇒ r < 2a.
Now let (bk−1, . . . , b1, b0) be the binary representation of b < a so b = ∑k−1

i=0 2
i bi

and e(rk, . . . , r1, r0) be that of r < 2a so r = ∑k
i=0 ri2

i . Then we have

p

q
= ap

aq
= bq + r

aq
= b

a
+ 1

q

r

a
=

k−1∑
i=0

bi
2k−i

+
k∑

i=0

ri
q · 2k−i

,

where bi , ri ∈ {0, 1}, so a sum of at most 2k + 1 ≤ 2(log2 q) + 1 terms with all
denominators di ≤ q2k = qa ≤ q2. Moreover, all denominators in the first sum are
distinct and at most 2k , and all in the second sum are distinct and at least q > 2k ,
hence all distinct, so this is an Egyptian fraction of p/q of length 2(log2 q) + 1 and
denominators are at most q2. ��

Recall that our goal is to obtain a configurable cycle. However, for that we also
need a special form of a decomposition. Say that Γ is a scalable decomposition of a
brick (x∗) j of type i if it is a f̂ -optimal decomposition, and for each (cγ , λγ ) ∈ Γ ,
λγ is of the form 1/qγ for some qγ ∈ N. We note that in what follows we do not
need an algorithm computing a scalable decomposition, only the following existence
statement.

Lemma 12 Each brick of x∗ has a scalable decomposition of size at most κ1 ·
t3 log(t‖E2‖∞), where κ1 = 52.

Proof Fix j ∈ [N ]. Let x = (x∗) j be a brick of x∗ of type i . By Lemma 10, there exists
an f̂ -optimal decomposition of x of size t + 1 where each coefficient λc = pc/qc
satisfies pc, qc ≤ (t+1)(t+1)(s‖Ei

2‖∞+1)(s+1)(t+2). For each c in the decomposition
now express λc as an Egyptian fraction:

λc = pc
qc

= 1

a1
+ 1

a2
+ · · · + 1

ae
.
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By Lemma 11,

e ≤ 2(log2 qc) + 1 = 2
(
log

(
(t + 1)(t+1)(s‖Ei

2‖∞ + 1)(s+1)(t+2)
))

+ 1

≤ 25st log(st‖Ei
2‖∞) .

Thus, the resulting decomposition is of size at most (t + 1)25st log(st‖Ei
2‖∞) ≤

2 · 26t3 log(t‖Ei
2‖∞) (by s ≤ t this justifies the deletion of s in the log() at the cost of

a factor of 2, so the last bound holds) and is scalable, since each coefficient is of the
form 1/qγ for some qγ ∈ N. ��

We will now show that we are guaranteed a configurable cycle of x∗ − z∗ if there
exists an analogue of a regular cycle of a certain “lifting” of x∗ and z∗.

Fix for each brick of x∗ a scalable decomposition Γ j . Let ↑x∗ be the rise of x∗
defined as a vector obtained fromx∗ bykeeping every integer brick (x∗) j , and replacing
every fractional brick (x∗) j with |Γ j | terms λγ cγ , one for each (cγ , λγ ) ∈ Γ j .
Observe that each brick of ↑x∗ is of the form λcc for some configuration c and some
coefficient 0 ≤ λc ≤ 1. Thus, for a brick λcc we say that c is its configuration, λc is its
coefficient, and its type is identical to the type of brick it originated from; in particular,
bricks which originated from an integer brick p = (x∗) j are of the form λpp with
λp = 1. Let N ′ be the number of bricks of ↑x∗ and define a mapping ν : [N ′] → [N ]
such that if a brick j ∈ [N ′] of ↑x∗ was defined from brick � ∈ [N ] of x∗, then
ν( j) = �. The natural inverse ν−1 is defined such that, for � ∈ [N ], ν−1(�) is the set
of bricks of ↑x∗ which originated from (x∗)�.

Lemma 13 The vector ↑x∗ has at most κ2 · r · t3 log(t‖E1
2 , . . . , E

τ
2‖∞) fractional

bricks, where κ2 = 2κ1.

Proof By Lemma 6 there is a conf-optimal x∗ with at most 2r fractional bricks. By
Lemma 12 for each fractional brick of x∗ of type i there is a scalable decomposition
of size at most κ1 · t3 log(t‖Ei

2‖∞) ≤ κ1 · t3 log(t‖E1
2 , . . . , E

τ
2‖∞). Thus, ↑x∗ has at

most κ1 · t3 log(t‖E1
2 , . . . , E

τ
2‖∞) fractional bricks for each fractional brick of x∗, of

which there are at most 2r , totaling 2κ1 ·r · t3 log(t‖E1
2, . . . , E

τ
2‖∞) fractional bricks.

��
Denote by ↑z∗ ∈ R

N ′t the rise of z∗ (with respect to x∗) defined as follows. Let
j ∈ [N ′], � = ν( j), and λ be the coefficient of the j-th brick of ↑x∗. Then the j-th
brick of↑z∗ is (↑z∗) j := λ(z∗)�. Observe that ‖↑x∗− ↑z∗‖1 ≥ ‖x∗−z∗‖1 by applying
triangle inequality to each brick and its decomposition individually and aggregating.

For any vector x ∈ R
N ′t , define the fall of x as a vector ↓x ∈ R

Nt such that for
� ∈ [N ], (↓x)� = ∑

j∈ν−1(�) x
j . We see that ↓(↑x∗) = x∗ and ↓(↑z∗) = z∗. Say that

r is a cycle of ↑x∗− ↑z∗ if r �↑x∗− ↑z∗ and r ∈ KerZ(E (N ′)).3

Lemma 14 If r is a cycle of ↑x∗− ↑z∗, then ↓ r is a configurable cycle of x∗ − z∗.

3 Recall that E(N ′) is the N ′-fold matrix formed from blocks E , see Eq. (1).
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Proof To show that ↓r is a configurable cycle, we need to show that (1) ↓r ∈
KerZ(E (N )) and, (2) for each brick x = (x∗) j of x∗, there is an f̂ -optimal decom-
position of x such that h = (↓r) j decomposes accordingly. For the first part, ↓r is
integral because it is obtained by summing bricks of r, which is integral. Denote by
i( j) the type of a brick j (we abuse this notation; note that i( j) for j ∈ [N ] may
differ from i( j) for j ∈ [N ′], but context always makes clear what we mean). By the
fact that r ∈ KerZ(E (N ′)) and the definition of ↓r, we have 0 = ∑N ′

j=1 E
i( j)
1 r j =∑N

j=1 E
i( j)
1 (↓r) j , and, for each � ∈ [N ], 0 = ∑

j∈ν−1(�) E
i( j)
2 r j = Ei(�)

2 (↓r)�, thus
↓r ∈ KerZ(E (N )).

To see the second part, fix a brick j ∈ [N ] of type i and let x = (x∗) j , z =
(z∗) j and h = (↓r) j . We need to show that h = ∑

γ∈ν−1( j) hγ can be written as∑
c∈Ci λchc with hc � c − z and hc ∈ KerZ(Ei

2). By definition of ↑x∗ and r, there
is a scalable decomposition Γ of x (namely the one used to define ↑x∗) such that
for each γ ∈ ν−1( j), hγ � λγ (cγ − z) and hγ ∈ KerZ(Ei

2). Thus we may write
h = ∑

γ∈ν−1( j) λγ · (λ−1
γ hγ ) with λ−1

γ hγ � cγ − z and λ−1
γ hγ integral by the fact

that λγ = 1/qγ with qγ ∈ N, concluding the proof. ��

We are finally ready to use the Steinitz Lemma to derive a bound on ‖x∗ − z∗‖1.
Theorem 2 Let x∗ be a conf-optimal solution of (HugeCP) with at most 2r fractional
bricks. Then there exists an optimal solution z∗ of (HugeIP) such that

‖z∗ − x∗‖1 ≤
(
κ2t

4 log(t‖E1
2 , . . . , E

τ
2‖∞)

)
(2r‖E1‖∞g1(E2)))

r+2

≤
(
κ2t

4 log(t‖E1
2 , . . . , E

τ
2‖∞)

)
(2r)r+2(‖E‖∞s)3rs .

Proof Denote by Ē1 the first r rows of the matrix E (N ). Let z∗ be an optimal integer
solution such that ‖z∗ − x∗‖1 is minimal, let ↑x∗ be the rise of x∗ with at most
κ2 · r · t3 log(t‖E1

2, . . . , E
τ
2‖∞) fractional bricks (see Lemma 13), let ↑z∗ be the rise

of z∗ with respect to x∗, and let q =↑x∗− ↑z∗.
Wewant to get into the setting of the Steinitz Lemma, that is, to obtain a sequence of

vectors with small �1-norm and summing up to zero. To this end, we shall decompose
Ē1q in the following way; we stress that we have Ē1q = 0. For every integral brick qi

of type � ∈ [τ ] we have its decomposition qi = ∑
j g

i
j into elements of G(E�

2) by the

Positive SumProperty (Proposition 1); for each gij append E
�
1g

i
j into the sequence. For

every fractional brick qi of type � ∈ [τ ] we have its decomposition qi = ∑t
j=1 α jgij ,

α j ≥ 0 for each j , into elements of C(E�
2); for each gij append �α j
 copies of E�

1g
i
j

into the sequence, and finally append E�
1{α j }gij . Observe that since ↑x∗ has at most

κ2 · r · t3 log(t‖E1
2 , . . . , E

τ
2‖∞) fractional bricks (Lemma 13), so does q, and thus we

have appended f ≤ t ·κ2 ·r ·t3 log(t‖E1
2 , . . . , E

τ
2‖∞) ≤ κ2 ·r ·t4 log(t‖E1

2 , . . . , E
τ
2‖∞)

fractional vectors into the sequence. Now we have a sequence

o1, . . . , om,pm+1, . . . ,pm+f (15)
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withm integer vectors o1, . . . , om and f fractional vectors pm+1, . . . ,pm+f. Moreover,
since, for each i ∈ [τ ], C(Ei

2) ⊆ G(Ei
2),

each vector has �∞-norm of ‖E1
1 , . . . , E

τ
1‖∞·g1(E2) and they sumup to 0. Observe

that (m+f) ·g1(E2) ≥ ‖q‖1 = ‖ ↑x∗− ↑z∗‖1 ≥ ‖x∗−z∗‖1.We now focus on bound-
ing m + f. The Steinitz Lemma (Lemma 1) implies that there exists a permutation π

such that the sequence (15) can be re-arranged as

v1, . . . , vm+f, (16)

where vi is oπ−1(i) if i ∈ [1,m] and pπ−1(i) if i ∈ [m + 1,m + f], respectively, and
for each 1 ≤ k ≤ m + f the prefix sum tk := ∑k

i=1 vi satisfies

‖tk‖∞ ≤ r‖E1‖∞g1(E2) .

We will now argue that there cannot be indices 1 ≤ k1 < · · · < kf+2 ≤ f + m with

tk1 = · · · = tkf+2 , (17)

which implies that f + m is bounded by f + 1 times the number of integer points of
norm at most r‖E1‖∞g1(E2) and therefore,

‖x∗ − z∗‖1 ≤ ‖ ↑ x∗− ↑ z∗‖1 ≤ (f + 1) (2r‖E1‖∞g1(E2) + 1)r · g1(E2)

≤ κ2 · t4 log(t‖E1
2 , . . . , E

τ
2‖∞) · r (2r‖E1‖∞g1(E2) + 1)r · g1(E2)

≤
(
κ2t

4 log(t‖E1
2, . . . , E

τ
2‖∞)

)
(2r‖E1‖∞g1(E2)))

r+2 .

Assume for contradiction that there exist f+2 indices 1 ≤ k1 < · · · < kf+2 ≤ f+m
satisfying (17). By the pigeonhole principle, there is an index k� such that all the vectors
vk�+1, . . . , vk�+1 from the rearrangement (16) correspond to integer vectors oπ−1(p)
for p ∈ [k� + 1, k�+1]. We will show that this collection of vectors corresponds to a
cycle h of ↑x∗− ↑z∗ which by the minimality of ‖x∗ − z∗‖1 and Lemmas 9 and 14
is impossible. To obtain the cycle, for each p ∈ [k� + 1, k�+1], let i(p), j(p), and
�(p) be such that oπ−1(p) = E�(p)

1 gi(p)j(p). Initialize h := 0 ∈ Z
N ′t and, for each

p ∈ [k� + 1, k�+1], let hi(p) := hi(p) + gi(p)j(p). Now we check that h is, in fact, a cycle.

First, to see that E (N ′)h = 0, we have E�
2h

i = 0 for every brick i ∈ [N ′] of type � by
the fact that hi is a sum of gij ∈ G(E�

2) ⊆ KerZ(E�
2), and we have Ē1h = 0 by the

fact that tk�
= tk�+1 and thus

∑
p∈[m+f] E

�(p)
1 gi(p)j(p) = 0. Second, h � q because, for

every brick i ∈ [N ′], hi is a sign-compatible sum of elements gij � qi . ��

3.4 Improving the proximity theoremwhen I has identical columns

In this section we will show how to construct a huge n-fold instance I ′ from any input
instance I such that the number of columns of I ′ per brick is at most (2‖E‖∞ +1)r+s ,
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and in some sense I and I ′ are equivalent. Specifically, we will show a mapping
between the solutions of I and I ′ which maps integer or configurable optima of I
to integer or configurable optima of I ′ and vice versa, respectively, and such that
proximity bounds from I ′ can be transferred to I . This will eventually allow us to
show that even if I has very large t , we can bound the distance between a configurable
optimum and some integer optimum of I by a function independent of t .

Construction of I′.

Note that (2‖E‖∞ + 1)r+s is the number of distinct (r + s)-dimensional integer
vectors with entries bounded by ‖E‖∞ in absolute value, hence the number of possible
distinct columns per brick. We will show how to “join” variables corresponding to
identical columns. Consider any IP with a separable convex objective where columns
corresponding to variables x1 and x2 are identical. Let f1 and f2 be the objective
functions corresponding to x1 and x2, and l1, l2 and u1, u2 be their lower and upper
bounds, respectively. Let x12 be a new variable which replaces x1, x2 in I ′. Set the
lower bound of x12 to be l12 = l1 + l2, upper bound u12 = u1 + u2, and define its
objective function as the (min,+)-convolution of f1 and f2:

f12(x12) = min
x1,x2∈Z, x12=x1+x2

(l1,l2)≤(x1,x2)≤(u1,u2)

f1(x1) + f2(x2) . (18)

Note that if f1 and f2 are convex, then f12 is also convex. Extend f12 to fractional
values as a linear interpolation, that is, for x12 = �x12
+ {x12} fractional, let f12(x12)
be f12(�x12
) + {x12}( f12(	x12
) − f12(�x12
)). The value f12(x12) can be obtained
by binary search on x1 (which determines x2 = x12 − x1) in O(log(u12 − l12)) calls
to evaluation oracles for f1 and f2. When merging a set S of more than 2 variables,
one would compute fS(xS) as the solution of the corresponding integer program
whose objective is

∑
i∈S fi (xi ) and its constraints are

∑
i∈S xi = xS and appropriate

lower and upper bounds; by [13], this is solvable in time poly(|S|) log( fmax, uS − lS).
However, our goal here is to strengthen our proximity result for I by studying I ′,
without actually attempting to solve I ′.

For a solution x of I (not necessarily integral), we define σ(x) to be a solution
of I ′ where x1 and x2 are replaced by x12 = x1 + x2. Clearly, for integer x, the
value of σ(x) under the objective of I ′ is at most the value of x under f , and if x
is an integer optimum of I , then σ(x) will be an integer optimum of I ′ because we
then have f12(x12) = f1(x1) + f2(x2). We abuse the notation and for an integer x′
defineσ−1(x′) to be some integralmember x of the setσ−1(x′)which satisfies f1(x1)+
f2(x2) = f12(x ′

12). For a configurable solution x′ we define σ−1(x′) by taking an f̂ -
optimal decomposition Γ ′ of the brick of x′ containing x12 and applying σ−1 to
the configurations in Γ ′; this defines a decomposition Γ and thus a brick

∑
Γ of a

solution x of I . The next lemma shows that this construction preserves the value of
the solution.

Lemma 15 If x is an integer optimum of I , then σ(x) is an integer optimum of I ′,
respectively. Similarly, if x is a configurable optimum of I , then σ(x) is a configurable
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optimum of I ′. Analogously, if x′ an integer optimum of I ′, then σ−1(x′) is an integer
optimum of I , and if x′ is a configurable optimum of I ′, then σ−1(x′) is a configurable
optimum of I .

Proof It follows from the definition of f12 that for any integer solution of I we get
an integer solution of I ′ which is at least as good, and for any integer solution of I ′
we get an integer solution of I with the same value. For configurable solutions we
apply the observation above to each configuration in some f̂ -optimal decomposition
and use the fact that f̂ is defined via f12. ��
This approach generalizes readily to any number of variables. For the sake of simplicity
we continue with the example of “joining” two variables whose columns in E (N ) are
identical.

We are left to argue about proximity. While we believe that it holds in general that
any proximity bound between integer and configurable optima of I ′ transfers to I , we
only need this for our specific bound, so we take a less general route.

Lemma 16 Let x be a configurable optimum of I with at most 2r fractional bricks,
x′ = σ(x) a configurable optimum of I ′, z′ an �1-closest integer optimum of I ′, and
z = σ−1(z′) an integer optimum of I . Let P be the bound of Theorem 2 on ‖x′ − z′‖1.
Then ‖x − z‖1 ≤ P.

Proof Consider the proof of Theorem 2. In it, we create a sequence of vectors
v1, . . . , vm+f. Each of these vectors corresponds to some E�

1λ j gij . The crucial obser-
vation is that the sequence (vi )i obtained from x, z is identical to the sequence obtained
from x′, z′, so if ‖x′ − z′‖1 ≤ P , then also ‖x − z‖1 ≤ P . ��
The next corollary is now immediate:

Corollary 1 Let x∗ be a conf-optimal solution of (HugeCP) with at most 2r fractional
bricks. Then there is an optimal solution z∗ of (HugeIP) such that

‖z∗ − x∗‖1 ≤
(
κ2(r + s)(2‖E‖∞ + 1)4s

)
(2r‖E1‖∞g1(E2)))

6r

≤ (2‖E‖∞ + 1)O(s)(2r‖E‖∞g1(E2))
O(r) ≤ (‖E‖∞rs)O(rs) .

3.5 Algorithm

Recall the statement of the theorem we are proving: Theorem 1.Huge N -fold IP with
any separable convex objective can be solved in time

(‖E‖∞rs)O(r2s+rs2) poly(τ, t, log ‖l,u,b, N , fmax‖∞) .

Proof We first give a description of the algorithm which solves huge N -fold IP, then
show its correctness, and finally give a time complexity analysis.
Description of the algorithm. First, obtain an optimal solution y of (ConfLP) and from
it a conf-optimal solution x∗ = ϕ(y) with at most 2r fractional bricks by Lemma 6.
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Applying Corollary 1 to x∗ guarantees the existence of an integer optimum z∗ satis-
fying

‖x∗ − z∗‖1 ≤ P :=
(
(r + s)(2‖E‖∞ + 1)4s

)
(2r‖E1‖∞g1(E2)))

6r . (19)

Together with the fact that there are at most 2r fractional bricks, this implies that z∗
differs from x∗ in at most P ′ = P +2r bricks. The idea of the algorithm is to “fix” the
value of the solution on “almost all” bricks and compute the rest using an auxiliary
N̄ -fold IP problem with a polynomial N̄ .

Formally, our goal is to compute an optimal solution z of (HugeIP) represented
succinctly bymultiplicities of configurations, or in otherwords, as a solution ζ of (Con-
fILP). Denote by y−P ′ the vector whose coordinates are defined by setting, for every
type i ∈ [τ ] and every configuration c ∈ Ci , y−P ′(i, c) = max{0, �y(i, c)
− P ′} This
leaves us with ‖y‖1 −‖y−P ′ ‖1 ≤ |supp(y)|P ′ ≤ (r + τ)P ′ =: P̄ bricks to determine.
Let ζ̄ = y − y−P ′ , define μ̄ by setting, for each i ∈ [τ ], μ̄i := ∑

c∈Ci ζ̄ (i, c), let
x̄ = ϕ(ζ̄ ), and let N̄ = ‖ζ̄‖1 = ‖μ̄‖1 ≤ P̄ . Construct an auxiliary N̄ -fold IP instance
with the same blocks Ei

1, E
i
2, i ∈ [τ ], by, for each brick x̄ j of type i , setting

− f̄ j = f i , − b̄ j = bi , − l̄ j = li , − ū j = ui .

We say that such a brick was derived from type i . Lastly, let b̄0 = b0 −∑τ
i=1

∑
c∈Ci ζ(i, c)Ei

1c.
After obtaining an optimal solution z̄ of this instance we update ζ as follows. For

each brick z̄ j derived from type i , increment ζ(i, z̄ j ) by one.
Correctness.By (19), it is correct to assume that there exists a solution ζ of (ConfILP)
which has ζ(i, c) ≥ max{0, �y(i, c)
 − P ′} for each i ∈ [τ ] and c ∈ Ci . Thus
we may do a variable transformation of (ConfILP) ζ = ζ̄ + y−P ′ , obtaining an
auxiliary (ConfILP) instance

min v(ζ̄ + y−P ′) : B(ζ̄ + y−P ′) = d, 0 ≤ ζ̄ .

The auxiliary huge N̄ -fold instance is simply the instance corresponding to the above,
and the final construction of ζ corresponds to the described variable transformation.
Complexity. Since ‖ζ̄‖1 ≤ P̄ , we can obtain an optimal solution z̄ of the auxiliary
instance in time (‖E‖∞rs)O(r2s+rs2)(t P̄) log(t P̄) log ‖ fmax, b̄, l̄, ū‖2∞ [13, Corollary
91]. Let us now compute the time needed altogether. To solve (ConfLP), we need time
(Lemma 6)

‖E‖O(s2)∞ poly(r tτ log ‖ fmax, l,u,b,μ‖∞) .

To solve the auxiliary instance above, we need time

(‖E‖∞rs)O(r2s+rs2)(t P̄) log(t P̄) log ‖ fmax, b̄, l̄, ū‖2∞,
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where P̄ = (r + τ)P ′ ≤ τ(2‖E‖∞ + 1)O(s)(2r‖E‖∞g1(E2))
O(r) .

Hence we can solve huge N -fold IP in time at most

(‖E‖∞rs)O(r2s+rs2) poly(tτ log ‖ fmax, l,u,b,μ‖∞) .

��

4 Concluding remarks

At this point onemaywonder why bother with the ConfLP rather than solvingHugeCP
and showing that its optima are close to those of HugeIP. The reason is that even though
handling optima of HugeCP is much easier than handling conf-optimal solutions, and
even though solving HugeCP is easier than solving ConfLP,4 a HugeCP optimum can
be very far from a HugeIP optimum [8, Proposition 1]. In other words, ConfLP is
a stronger relaxation than HugeCP: consider a brick p of a HugeCP optimum and a
brick q of a conf-optimal solution; then

q ∈ conv{c ∈ Z
d | E2c = 0, li ≤ c ≤ ui } ⊂ {p′ ∈ R

d | E2p′ = 0, li ≤ p ≤ ui } .

In plain language, while q lies in the integer hull of all configurations, p only lies in
the fractional relaxation of this hull.

Another obstacle is that even though Configuration LP is a standard tool, it is
typical that the separation problem is merely approximated rather than solved exactly,
leading to approximate solutions of ConfLP. But, we require an exact solution, and
so we use a parameterized exact algorithm for IP to solve the separation problem. It
is an interesting question when a k-approximate solution of ConfLP, i.e., a solution
whose value is at most k · OPT , may be used to obtain an h(k)-accurate configurable
solution of HugeCP, i.e., a configurable solution which is at �1-distance at most h(k)
from a configurable optimum. An approximate solution of ConfLP might be much
easier to obtain, and yet it may be almost as good as an exact solution for our purposes
here.

Another interesting question is a tight complexity bound for the algorithm of
Lemma 6. It seems likely that the recent approach of Cslovjecsek et al. [8] could
also apply in our high-multiplicity setting, which would yield a near-linear fixed-
parameter algorithm. Notice that the iterative augmentation algorithms for standard

4 We only outline the reason.We claim that an optimal solution of HugeCP can be obtained in the following
way: construct an auxiliary τ -fold CP with bricks x̄1, . . . , x̄τ where the i-th brick x̄i , i ∈ [τ ], represents
the μi bricks of type i in the original instance. This is achieved by setting the bounds to μi li and μiui , the
right hand side to μibi , and the objective to μi f i (x̄i /μi ). Given an optimum x̄ of this τ -fold CP, we set
each brick of type xi to the value x̄i /μi , and claim that x is an optimum of HugeCP. Thus, while HugeCP
can be solved in polynomial time, the separation subproblem needed to solve ConfLP can be NP-hard, in
this sense making ConfLP harder.
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N -fold IP have a strong combinatorial flavor and use no “black boxes”. Could the
ellipsoid method behind Lemma 6 be replaced by a (more) combinatorial algorithm,
at least for some important problems which have huge N -fold IP models, such as the
scheduling problems studied by Knop et al. [31]?
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Abstract

Solving (mixed) integer (linear) programs, (M)I(L)Ps for short,
is a fundamental optimisation task with a wide range of ap-
plications in artificial intelligence and computer science in
general. While hard in general, recent years have brought
about vast progress for solving structurally restricted, (non-
mixed) ILPs: n-fold, tree-fold, 2-stage stochastic and multi-
stage stochastic programs admit efficient algorithms, and all
of these special cases are subsumed by the class of ILPs of
small treedepth.
In this paper, we extend this line of work to the mixed case, by
showing an algorithm solving MILP in time f(a, d) poly(n),
where a is the largest coefficient of the constraint matrix, d is
its treedepth, and n is the number of variables.
This is enabled by proving bounds on the denominators (frac-
tionality) of the vertices of bounded-treedepth (non-integer)
linear programs. We do so by carefully analysing the inverses
of invertible sub-matrices of the constraint matrix. This allows
us to afford scaling up the mixed program to the integer grid,
and applying the known methods for integer programs.
We then trace the limiting boundary of our “bounded frac-
tionality” approach both in terms of going beyond MILP (by
allowing non-linear objectives) as well as its usefulness for
generalising other important known tractable classes of ILP.
On the positive side, we show that our result can be gener-
alised from MILP to MIP with piece-wise linear separable
convex objectives with integer breakpoints. On the negative
side, we show that going even slightly beyond such objectives
or considering other natural related tractable classes of ILP
leads to unbounded fractionality.
Finally, we show that restricting the structure of only the inte-
gral variables in the constraint matrix does not yield tractable
special cases.

Introduction
Integer Linear Programming (ILP) is a fundamental hard
problem as well as a widely used and highly successful
framework for solving difficult computational problems in
AI, e.g., problems related to planning (van den Briel, Vossen,
and Kambhampati 2005; Vossen et al. 1999), vehicle rout-
ing (Toth and Vigo 2001), process scheduling (Floudas and
Lin 2005), packing (Lodi, Martello, and Monaci 2002), and
network hub location (Alumur and Kara 2008) that can often

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

be solved efficiently using a translation to ILP. This natu-
rally motivates the search for tractable classes for ILP. In
the ’80s, Lenstra and Kannan (Kannan 1987; Lenstra 1983)
and Papadimitriou (Papadimitriou 1981) have shown that the
classes of ILPs with few variables or few constraints and
small coefficients, respectively, are polynomially solvable.
A line of research going back almost 20 years (Hemmecke,
Onn, and Romanchuk 2013; Chen and Marx 2018; Eisen-
brand, Hunkenschröder, and Klein 2018; Aschenbrenner and
Hemmecke 2007; Hemmecke, Köppe, and Weismantel 2014;
Ganian, Ordyniak, and Ramanujan 2017; Ganian and Ordy-
niak 2018; Dvorák et al. 2017) has recently culminated with
the discovery of another tractable class of ILPs (Eisenbrand
et al. 2019; Koutecký, Levin, and Onn 2018), namely ILPs
with small treedepth and coefficients. The obtained results
already found various algorithmic applications in areas such
as scheduling (Knop and Koutecký 2018; Chen et al. 2017;
Jansen et al. 2018), stringology and social choice (Knop,
Koutecký, and Mnich 2017a,b), and the travelling salesman
problem (Chen and Marx 2018).

The language of “special tractable cases” has been de-
veloped in the theory of parameterized complexity (Cy-
gan et al. 2015). We say that a problem is fixed-parameter
tractable (FPT) parameterized by k if it has an algorithm
solving every instance I in time f(k) poly(|I|) for some
computable function f , and we call this an FPT algorithm.
Say that the height of a rooted forest is its largest root-leaf
distance. A graph G = (V,E) has treedepth d if d is the
smallest height of a rooted forest F = (V,E′) in which
each edge of G is between an ancestor-descendant pair in
F , and we write td(G) = d. The primal graph GP (A) of
a matrix A ∈ Rm×n has a vertex for each column of A,
and two vertices are connected if an index k ∈ [m] =
{1, . . . ,m} exists such that both columns are non-zero in
row k. The dual graph GD(A) is defined as GD(A) :=
GP (Aᵀ). Define the primal treedepth of A to be tdP (A) =
td(GP (A)), and analogously tdD(A) = td(GD(A)). The
recent results state that there is an algorithm solving ILP in
time f(‖A‖∞,min{tdP (A), tdD(A)}) poly(n), hence ILP
is FPT parameterized by ‖A‖∞ and min{tdP (A), tdD(A)}.
Besides this class, other parameterizations of ILP have been
successfully employed to show tractability results, such as
bounding the treewidth of the primal graph and the largest
variable domain (Jansen and Kratsch 2015), the treewidth of
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the incidence graph and the largest solution prefix sum (Ga-
nian, Ordyniak, and Ramanujan 2017), or the signed clique-
width of the incidence graph (Eiben et al. 2018).

It is therefore natural to ask whether these tractability
results can be generalised to more general settings than ILP.
In this paper we ask this question for Mixed ILP (MILP),
where both integer and non-integer variables are allowed:

min {cx | Ax = b, l ≤ x ≤ u ,x ∈ Zz ×Qq} , (1)

with A ∈ Zm×z+q , l,u, c ∈ Zz+q and b ∈ Zm.
MILP is a prominent modelling tool widely used in prac-

tice. For example, Bixby (Bixby 2002) says in his famous
analysis of LP solver speed-ups, “[I]nteger programming,
and most particularly the mixed-integer variant, is the domi-
nant application of linear programming in practice.” Already
Lenstra has shown that MILP with few integer variables is
polynomially solvable, naturally extending his result on ILPs
with few variables. Analogously, we seek to extend the recent
tractability results from ILP to MILP, most importantly for
the parameterization by treedepth and largest coefficient. Our
main result is as follows:

Theorem 1. MILP is FPT parameterized by ‖A‖∞ and
min{tdP (A), tdD(A)}.

We note that our result also extends to the inequality form
of MILP with constraints of the form Ax ≤ b by the fact
that introducing slack variables does not increase treedepth
too much (Eisenbrand et al. 2019, Lemma 56).

The proof goes by reducing an MILP instance to an ILP
instance whose parameters do not increase too much, and
then applying the existing algorithms for ILP. A key technical
result concerns the fractionality of an MILP instance, which
is the minimum of the maxima of the denominators in optimal
solutions. For example, it is well-known that the natural LP
for the VERTEX COVER problem has half-integral optima,
that is, there exists an optimum with all values in {0, 1

2 , 1}.
The usual way to go about proving fractionality bounds

is via Cramer’s rule and a sufficiently good bound on the
determinant. As witnessed by any proper integer multiple of
the identity, determinants can grow large even for matrices
of very benign structure. Instead, we need to analyse much
more carefully the structure of the inverse of the appearing
invertible sub-matrices, allowing us to show:

Theorem 2. A MILP instance with a constraint matrixA has
an optimal solution x whose largest denominator is bounded
by (‖A‖∞)d!(d!)d!/2, where d = min{tdP (A), tdD(A)}.

We are not aware of any prior work which lifts a positive
result for ILP to a result for MILP in this way.

We also explore the limits of approaching the problem by
bounding the fractionality of inverses: Other ILP classes with
parameterized algorithms involve constraint matrices with
small primal treewidth (Jansen and Kratsch 2015), small in-
cidence treewidth (Ganian, Ordyniak, and Ramanujan 2017),
small signed clique-width (Eiben et al. 2018) and 4-block
n-fold matrices (Hemmecke, Köppe, and Weismantel 2014).
Here, we obtain a negative answer: For each of these param-
eters, there exist families of MILP-instances with constant
parameters, but unbounded fractionality. This is detailed in

Lemma 18 below. The produced families also show that The-
orem 2 is almost optimal:

Corollary 3. There is a MILP instance with
tdP (A), tdD(A) = d, ‖A‖∞ = 2, and fractionality
22d

.

Compare this with our upper bound 22d+log d+log log d

. Next,
we consider extending the positive result of Theorem 1 to
separable convex functions, which is the regime considered
in (Eisenbrand et al. 2019). We show that merely bounding
the fractionality will unfortunately not suffice, which is de-
tailed in Lemma 20 below. However, we show that for one
important class of separable convex objectives, the fractional-
ity does not increase, specifically: piece-wise linear functions
with integer breakpoints. Let f be any separable convex func-
tion, and define f ′ to agree with f on integer points, and to
be linear between them. In a sense, f ′ is an approximation of
f which has a simpler structure. Using f ′ as a proxy for f is
thus common in practice (Bazaraa, Sherali, and Shetty 2013;
Lin et al. 2013). Moreover, functions of this form appear in
applications of IPs with small treedepth (Knop, Koutecký,
and Mnich 2017a; Bredereck et al. 2020).

Theorem 4. MIP is FPT parameterized by ‖A‖∞ and
min{tdP (A), tdD(A)} if the objective function is piece-wise
linear separable convex with integer breakpoints.

By appropriate scaling, the integrality of breakpoints in
the preceding theorem can be relaxed to requiring only break-
points with fractionality bounded in the parameters.

Finally, we consider a different way to extend tractable
ILP classes to MILP. Divide the constraint matrix A of an
MILP instance in two parts corresponding to the integer
and continuous variables as A = (AZ AQ). What structural
restrictions have to be placed onAZ andAQ in order to obtain
tractability of MILP? We show a general hardness result in
this direction, which is made precise in Lemma 21. Note that
the main reason for intractability is that we allow arbitrary
interactions between the integer and the non-integer variables
of the instance. Thus, Lemma 21 implies that this interaction
between integral and fractional variables has to be restricted
in some way in order to obtain a tractable fragment of MILP.

Related Work
We have already mentioned related work on structural pa-
rameterizations of ILP. The closest work to ours was done
by Hemmecke (Hemmecke 2003) in 2003 when he studied a
mixed-integer test set related to the Graver basis, which is the
engine behind all recent progress on ILPs of small treedepth.
It is unclear how to apply his approach, however, because
it requires bounding the norm of elements of the mixed-
integer test set, where the bound obtained by (a strengthening
of) (Hemmecke 2003, Lemma 19),(Hemmecke 2001, Lemma
2.7.2), is polynomial in n, too much to obtain an FPT al-
gorithm. Kotnyek (Kotnyek 2002) characterised k-integral
matrices, i.e., matrices whose solutions have fractionality
bounded by k, however it is unclear how his characterisation
could be used to show Theorem 2, so we take a different
route. Lenstra (Lenstra 1983) showed how to solve MILPs
with few integer variables using the fact that a projection
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of a polytope is again a polytope; applying this approach to
our case would require us to show that if P is a polytope de-
scribed by inequalities with small treedepth, then a projection
of P also has an inequality description of small treedepth.
This is unclear. In a vein somewhat similar to our bounded-
fractionality approach, ideas related to half-integrality have
recently led to improved FPT algorithms (Iwata, Wahlstrom,
and Yoshida 2016; Iwata, Yamaguchi, and Yoshida 2018;
Guillemot 2011), some of which have been experimentally
evaluated (Pilipczuk and Ziobro 2018). More fundamentally,
half-integrality of two-commodity flow (Hu 1963; Karzanov
1998) and VERTEX COVER (Nemhauser and Trotter 1974)
has been known and made use of for half a century.

Preliminaries
We consider zero a natural number, i.e., 0 ∈ N. We write
vectors in boldface (e.g., x,y) and their entries in normal
font (e.g., the i-th entry of x is xi). For positive integers
m ≤ n we set [m,n] := {m, . . . , n} and [n] := [1, n]. The
following Proposition is well-known, but crucial.

Proposition 5. Let A ∈ Zn×n be a full rank square matrix.
Then, frac(A−1) ≤ (‖A‖∞)nnn/2.

Proof. Let adj(A) be the adjugate matrix of A (which has
certain subdeterminants of A as entries.) Cramer’s rule states
that A−1 = 1

det(A) · adj(A) holds. Hadamard’s bound on
| det(A)| can be derived from the fact that | det(A) is the
volume of the parallelepiped spanned by the columns Ai of
A. This in turn has the product of their lengths as an upper
bound, attained precisely on pairwise orthogonal columns.
Therefore, | det(A)| ≤

∏n
i=1 ||Ai||2, whence the Proposition

easily follows.

The proof makes it clear what makes it necessary to go
beyond Cramer’s rule: | det(A)| might be prohibitively large,
while cancellations in adj(A)/ det(A) may lead to low frac-
tionality in A−1 nonetheless.

Reducing MILP to ILP
Assume that an MILP instance is given and that some opti-
mum x = (xZ,xQ) exists whose set of denominators is D,
and we know M = maxD. Recall lcm(D) is the least com-
mon multiple of the elements ofD, and lcm(D) ≤M ! =: M̃ .
Then lcm(D)xQ is an integral vector. Our idea here is to re-
strict our search among all optima of (1) to search among
those optima with small fractionality, that is, with small de-
nominators. Consider the integralized MILP instance:

min{(M̃cZ cQ)z : z ∈ Zz+q, (M̃ ·AZ AQ)z = M̃ · b,
(lZ, M̃ lQ) ≤ (zZ, zQ) ≤ (uZM̃uQ)}

(2)

We claim that the optimum of (1) can be recovered from the
optimum of (2):

Lemma 6. Let M be the fractionality of (1) and (zZ zQ) ∈
Zz+q be an optimum of (2). Then x = (zZ

1
M̃
zQ) is an

optimum of (1).

Proof. It is clear that there is a bijection between solutions
x of (1) where xQ has all entries with a denominator M̃ and
solutions z of (2). The optimality of x then follows from M
being the fractionality of (1) and M ! always being divisible
by lcm(D).

The Graphs of A and Treedepth

We assume thatGP (A) andGD(A) are connected, otherwise
A has (up to row and column permutations) a block diago-
nal structure and solving (1) amounts to solving smaller (1)
instances (for each block) independently.

Definition 7 (Treedepth). The closure cl(F ) of a rooted tree
F is the graph obtained from F by making every vertex
adjacent to all of its ancestors. The height of a tree F denoted
ht(F ) is the maximum number of vertices on any root-leaf
path. We denote by dtF (v) the depth of vertex v in F , i.e.,
the number of vertices on the path from v to the root of F .
A td-decomposition of G is a tree F such that G ⊆ cl(F ).
The treedepth td(G) of a connected graph G is the minimum
height of its td-decompositions.

To facilitate the analysis of our results we use two parame-
ters called topological height (introduced by Eisenbrand et
al. (Eisenbrand et al. 2019)) and topological length:

Definition 8 (Topological height and Topological length). A
vertex of a rooted tree F is degenerate if it has exactly one
child, and non-degenerate otherwise (i.e., if it is a leaf or has
at least two children). The topological height of F , denoted
th(F ), is the maximum number of non-degenerate vertices on
any root-leaf path in F . The topological length of F , denoted
tl(F ), is the maximum number of consecutive degenerate
vertices on any root-leaf path in F . Clearly, th(F ), tl(F ) ≤
ht(F ).

F

k

F1 Fd

Figure 1: The treedepth decomposition F of GP (A) for the
situation in Lemma 9.

We also need a lemma from (Eisenbrand et al. 2019); refer
also to Figure 1 for an illustration.

Lemma 9 (Primal Decomposition (Eisenbrand et al. 2019,
Lemma 19)). Let A ∈ Zm×n, GP (A), and a td-
decomposition F of GP (A) be given, where n,m ≥ 1. Then
there exists an algorithm computing in time O(n) a decom-
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position of A

A =

 Ā1 A1

...
. . .

Ād Ad

 , (block-structure)

and td-decompositions F1, . . . , Fd of
GP (A1), . . . , GP (Ad), respectively, where d ∈ N,
Āi ∈ Zmi×k, Ai ∈ Zmi×ni , th(Fi) ≤ th(F ) − 1,
ht(Fi) ≤ ht(F ) − k, k ≤ tl(F ), for i ∈ [d],
n1, . . . , nd,m1, . . . ,md ∈ N.

Fractionality of Bounded-Treedepth Matrices
This section is devoted to a proof of our main tractability
result stated in Theorem 1, i.e., showing that MILP (like
ILP) is fixed-parameter tractable parameterized by ‖A‖∞
and d = min{tdP (A), tdD(A)}. The main ingredient for
the proof is Theorem 2 providing a bound on the fractionality
of an optimal solution for MILP:

Theorem 2. A MILP instance with a constraint matrix A
has an optimal solution x whose largest denominator (frac-
tionality) is bounded by (‖A‖∞)d!(d!)d!/2.

We start by observing that the fractionality of an optimal
solution of a MILP instance can be obtained from the frac-
tionality of the inverse of some full rank square sub-matrix
of the non-integer part of the constraint matrix A. Consider
any optimal solution (x∗Z,x

∗
Q) of (1). The fractional part x∗Q

is necessarily an optimal solution of the linear program

min{cxQ : AQxQ = b−AZx
∗
Z,

lQ ≤ xQ ≤ uQ,xQ ∈ Qq} . (3)

To bound the fractionality of (1), it therefore suffices to
consider the fractionality of (3), and we shall hence assume
that A = AQ.

Let us now recall some basic facts about vertices of poly-
topes adapted to the specifics of our situation. Consider a
vertex of the polytope described by the solutions of the sys-
tem of

Ax = b, l ≤ x ≤ u , (4)

withA,b,x, l,u as usual. Let x be any solution of (4). Being
a vertex means satisfying n linearly independent constraints
with equality. Without loss of generality (Eisenbrand et al.
2019, Proposition 4), A has full rank.

Since these first m equations necessarily hold for any so-
lution x, we have m linearly independent constraints sat-
isfied, and there remain n − m of the in total 2n upper
and lower bounds to be satisfied. Without loss of gener-
ality, we may assume that it is indeed the first n − m
lower bound constraints that are met with equality, that is,
x1 = l1, . . . , xn−m = ln−m holds. Let

xN = (x1, . . . , xn−m) ∈ Qn−m,

xB = (xn−m+1, . . . , xn) ∈ Qm ,

and partition accordingly the n columns of A as A =
(AN AB). Letting b′ = b − ANxN , the solution x =
(xN ,xB) satisfies

ABxB = b′. (5)

Observe that AB ∈ Zm×m is a square matrix with trivial
kernel (that is, Ax = 0 only for x = 0), thus invertible.
Therefore, xB = A−1

B b′. (Otherwise, there is a direction
y in the kernel such that both x + εy and x − εy are fea-
sible, hence x was not a vertex.) Hence, in order to bound
the fractionality of the vertex x, it is enough to bound the
fractionalities of the entries of A−1

B . Therefore, to bound the
fractionality of (1), it is sufficient to bound the fractional-
ity of the inverse of any full rank square sub-matrix of the
constraint matrix A. We will denote with frac(A) the frac-
tionality ofA, meaning the maximum denominator appearing
over all entries, represented as fractions in lowest terms, of
A. We will start by showing Theorem 2 for the case of primal
treedepth, i.e., taking into account the discussion thus far
(together with the fact that the treedepth of any sub-matrix of
A is bounded by the treedepth of A) it is sufficient to show
that:

Lemma 10. Let A be a square matrix with full
rank having a td-decomposition F of GP (A).
Then, frac(A−1) is at most (‖A‖∞)bbb/2, where
b = min{tl(F )th(F )+1(th(F )!), ht(F )!}.
Remark 11. Note that to show the bound stated in Theo-
rem 2, it is sufficient to show the lemma for b = (ht(F )!).
However, the bound given in Lemma 10 allows us to ob-
tain better bounds for important special cases. For instance,
for the case of 2-stage stochastic and n-fold ILP, we obtain
that frac(A−1) ≤ (‖A‖∞)2t3(2t3)t

3

since th(F ) = 2 and
t = tl(F ) is the block size.

The main idea for the proof of Lemma 10 is to show that
the matrix A contains a small sub-matrix A′ with at most
b columns and rows such that the fractionality of A−1 is
at most the fractionality of (A′)−1, which can be bounded
using Proposition 5. Towards showing this, we will employ a
pruning procedure that works along the td-decomposition F
of GP (A) in a bottom-up manner. The crucial ingredient of
this procedure is given in Lemma 13 that in essence allows
us to remove all but at most dtF (v) many children (together
with the columns and rows induced by the variables contained
in the sub-trees below those children) of any non-degenerate
vertex v of F . The following lemma shows a general property
for the fractionality of the inverse of a matrix that makes this
pruning step possible.

Lemma 12. Let A ∈ Zn×n be a square matrix with full rank

of the form
(
B 0
R AD

)
, whereAD is a block diagonal matrix.

Then, there is a block AB in AD such that frac(A−1) ≤
frac(A−1

R ), where AR is obtained from A after removing all
columns and rows from A that are in AD but not in AB .

Proof. Note that bothB andAD are full rank square matrices
because AD is a square matrix and A is a full rank square
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matrix. By elementary matrix calculus, the inverse of A is

given by
(
B−1 0
R′ A−1

D

)
, where R′ = −A−1

D ·R ·B−1.

Let e be an entry of A−1 with the maximum fractionality
(among all entries in A−1). If e is contained in B−1, then
setting AB to an arbitrary block of AD satisfies the claim of
the lemma. If e is in A−1

D , then setting AB to be the block in
AD containing e satisfies the lemma. This is because AD is
block diagonal, and therefore the inverse of AD is the block
diagonal matrix of the inverses of the blocks. Finally, if e is
contained in R′, then because R′ = −A−1

D · R · B−1, the
entry e of R′ is obtained by multiplying a row r of A−1

D with
a column of R · B−1. Therefore and because R has only
integer entries, setting AB to be the block of AD having a
non-zero entry at row r satisfies the claim of the lemma.

For a set of variables V , the sub-matrix of A induced on
V contains all columns that correspond to a variable in V
projected onto all rows of A that have a non-zero entry in at
least one column in V .

Lemma 13. Let A ∈ Zn×n be a square matrix with full
rank having a td-decomposition F of GP (A), let v be a non-
degenerate vertex of F and let Cv be the set of all children of
v in F . Then there is a setC of at most dtF (v) children of v in
F such that the sub-matrix AP of A obtained after removing
all rows and columns in the sub-matrix of A induced on the
set of all variables occurring in any sub-tree of F rooted at a
child in Cv \ C, satisfies:

• AP is a square matrix with full rank,
• frac(A−1) ≤ frac(A−1

P ).

Proof. Let Av be the sub-matrix of A induced on all vari-
ables occurring in the sub-tree of F rooted at v. Then A

is of the form
(
B 0
R Av

)
, since all rows not in Av only

have zero entries at all columns in Av. Let r be the num-
ber of non-zero columns in R. Note that r ≤ dtF (v) − 1
and because of Lemma 9, we obtain that Av is of the form
(block-structure), with d = |C|, and where Āj only con-
tains the column corresponding to the variable v. Consider a
block Aj with dimensions mj × nj . Since A has full rank,
mj ≥ nj . Otherwise, the columns of Aj would not be lin-
early independent in A. Because A has full rank, we also
obtain that r + 1 +

∑|C|
j=1 nj =

∑|C|
j=1mj . Therefore, the

number r′ of different values for j such that mj > nj is at
most r + 1. W.l.o.g., we can assume that the first r′ inequali-

ties are strict and consequently Av has the form
(
B′ 0
R′ AD

)
,

whereAD is a block diagonal square matrix (consisting of the
blocks Ar′+1, . . . , A|C|) and B′ consists only of the blocks

A1, . . . , Ar′ . Note that A now has the form
(
B 0
R AD

)
and

satisfies the conditions in Lemma 12. Let Ak be the block
of AD, whose existence is ensured by Lemma 12. We claim
that setting C to the children corresponding to the blocks
A1, . . . , Ar′ , Ak satisfies the statement of the lemma. Indeed,
|C| ≤ r′ + 1 ≤ dtF (v). Moreover, AP is a square matrix

with full rank because so is A and the removed blocks Aj are
squares. Finally, frac(A−1) ≤ frac(A−1

P ) by Lemma 12.

The following lemma now shows how to apply the reduc-
tion given in Lemma 13 along the td-decomposition F , to
obtain a sub-matrix of A with at most b columns and rows.

Lemma 14. Let A ∈ Zn×n be a square matrix with
full rank having a td-decomposition F of GP (A). Then
there exists a sub-matrix AP of A having at most b =
min{tl(F )th(F )+1(th(F )!), ht(F )!} columns and rows such
that frac(A−1) ≤ frac(A−1

P ).

Proof. Note that Lemma 13 allows us to reduce the size
of A while not decreasing the fractionality of its inverse as
long as F contains a non-degenerate vertex v with more than
dtF (v) children. To see this let AP be the sub-matrix of A
obtained after applying the lemma for some non-degenerate
vertex v of F . Then AP together with the td-decomposition
obtained from F after removing the sub-trees rooted by a
child in Cv \ C again satisfy the conditions in the state-
ment of the lemma and moreover frac(A−1) ≤ frac(A−1

P ).
Let AP be the sub-matrix obtained from A after apply-
ing the reduction rule given by Lemma 13 exhaustively
and let FP be the td-decomposition of GP (AP ). Then
frac(A−1) ≤ frac(A−1

P ) and moreover every vertex v in
FP has at most dtF (v) children, which implies that FP has
at most b = min{tl(F )th(F )+1(th(F )!), ht(F )!} vertices.
Therefore, AP has at most b columns (and rows) and satisfies
the statement of the lemma.

We are now ready to show Lemma 10.

Proof of Lemma 10. Let AP be the sub-matrix of A, whose
existence is ensured by Lemma 14. Because frac(A−1) ≤
frac(A−1

P ), it suffices to provide the bound for frac(A−1
P ).

Recall that AP has at most b columns and rows. Therefore,
by Proposition 5, the fractionality of the inverse of AP is at
most (‖A‖∞)bbb/2, as required.

The following corollary shows that the fractionality can be
bounded in the same manner in terms of the treedepth of the
dual graph.

Corollary 15. Let A be a square matrix with full
rank having a td-decomposition F of GD(A).
Then, frac(A−1) is at most (‖A‖∞)bbb/2, where
b = min{tl(F )th(F )+1(th(F )!), ht(F )!}.

Proof. Because GP (Aᵀ) = GD(A), we obtain that F is a
td-decomposition of GP (Aᵀ). Therefore, Lemma 10 implies
that frac((Aᵀ)−1) is at most (‖A‖∞)bbb/2. The corollary
now follows because (A−1)ᵀ = (Aᵀ)−1.

Theorem 2 now follows immediately from Lemma 10 and
Corollary 15, which allows us to conclude with the proof of
our main tractability result of this section.

Proof of Theorem 1. Theorem 2 gives us an exact bound M ′
on the largest coefficient of the (2) instance, and it is clear
that the structure of non-zeroes (hence the primal and dual
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graphs) of the constraint matrix of (2) is identical to that of
A.

Hence, by Lemma 6, (1) can be solved by solv-
ing (2), which can be done (by the results of (Eisenbrand
et al. 2019)) in FPT time parameterized by ‖A‖∞ and
min{tdP (A), tdD(A)}). (To be precise, we need to solve (2)
for every 1 ≤ M̃ ≤M ′.)

Piece-wise Linear Separable Convex
Objectives

A generalisation of (1) to non-linear objectives is

min {f(x) | Ax = b, l ≤ x ≤ u ,x ∈ Zz ×Qq} , (6)

and here we focus on the case when f is separable convex,
meaning f(x) =

∑n
i=1 fi(xi) with fi : R → R univariate

convex for each i ∈ [n]. Moreover, we assume that f is piece-
wise linear with breakpoints at integer points, i.e., for every
a ∈ R and i ∈ [n], fi(a) = {a}fi(bac) + (1−{a})fi(dae),
where {a} = a− bac.

We adapt a variable transformation of Hochbaum and Shan-
tikumar (Hochbaum and Shantikumar 1990) to show that (6)
admits a linearization that retains the fractionality of the orig-
inal linear instance. This transformation was originally used
to show that integer separable convex minimisation can be
reduced to integer linear minimisation when A has small
sub-determinants, but our use differs in three aspects: our
variables are mixed integer, the matrix A may have large sub-
determinants, and most importantly, we only use it to obtain
a fractionality bound; we never need to solve the newly con-
structed instance. Specifically, we will transform an input (6)
into a (1) whose parameters we define next:

min
{
cy | Ây = b̂, 0 ≤ y ≤ 1, y ∈ Zẑ ×Qq̂

}
(7)

The hatted data are obtained as follows: For each i ∈
[z + q], replace the variable xi with ui − li variables yji , j ∈
[ui− li]. Hence, in (7), and the number of integer variables is
ẑ =

∑z
i=1 ui− li, the number of continuous variables is q̂ =∑z+q

i=z+1 ui− li. We define the column of Â corresponding to
the variable yji .The lower and upper bound for all variables is
0 and 1, respectively. Let the right-hand side be b̂ = b−Al =∑z+q

i=1 Aili . Finally, the coefficient in the objective function
c for variable yji is the slope of fi between points li + (j− 1)

and li + j. Specifically, cji = fi(li + j) − fi(li + (j − 1)).
Define a mapping ϕ : Zz × Qq → Zẑ × Qq̂, as follows:
given x ∈ Zz × Qq, ϕ(x) = y, where for each i ∈ [z + q],
j ∈ [ui − li], yji = max{0,min{1, xi − li − (j − 1)}}.
Lemma 16. 1. A vector x is feasible in (6) iff ϕ(x) is feasi-

ble in (7).
2. If l ≤ x ≤ u, then f(x) = cϕ(x) +

∑z+q
i=1 fi(li).

3. Let x∗ be an optimum of (6). Then ϕ(x∗) is an optimum
of (7).

The proof amounts to careful checking of the construction,
and is deferred to the full version.

Lemma 17. Every square sub-matrix A′ of Â of full rank
has tdP (A′) ≤ tdP (A) and tdD(A′) ≤ tdD(A).

Proof. For A′ to have full rank, it cannot contain duplicate
columns. Hence, A′ is also a square sub-matrix of A, a case
in which we have already shown the claim to hold.

Proof of Theorem 4. By this lemma, the fractionality M
of (7) is bounded by frac(A), and by Lemma 16 and the
definition of ϕ, frac(A) is also a fractionality bound on (1)
when f is separable convex piece-wise linear with integer
breakpoints. Let f̂ be defined component-wise from f as
follows: for i ∈ [1, z], let f̂i = fi, and for i ∈ [z + 1, z + q],
let f̂i(xi) = fi(xi/M). Then, to solve (1) in this regime, it
is enough to optimise f̂ over (2).

Limits of the “Bounded Fractionality”
Approach

In this section, we show the limits of our “bounded frac-
tionality” approach. We start by showing its limits for vari-
ous important known tractable classes of ILP, i.e., the class
of small primal treewidth and domain (Jansen and Kratsch
2015), small incidence treewidth and largest solution prefix
sum (Ganian, Ordyniak, and Ramanujan 2017), small signed
clique-width of the incidence graph (Eiben et al. 2018), and
the class of 4-block n-fold matrices (Hemmecke, Köppe, and
Weismantel 2014). We show that all these classes exhibit
unbounded fractionality.

Lemma 18. For every n ∈ N, there are MILP instances I1
and I2 with constraint matrices A1 and A2, such that A1 has
constant primal, dual, and incidence treewidth and signed
incidence clique-width and ‖A1‖∞ = 2, and A2 is 4-block
n-fold with all blocks being just (1), and the fractionality is
2Ω(n) for I1 and Ω(n) for I2.

Proof. Consider the n× n matrix

A1 =


2 −1 0 · · · 0
0 2 −1 · · · 0
...

. . .
...

0 0 · · · 2

 ,

It is easy to verify that the matrix B with Bij = 2i−j−1 for
i ≤ j and Bij = 0 otherwise is the inverse of A1. Moreover,
the primal, dual, incidence treewidth of A1 is at most 1,
the signed incidence clique-width of A1 is at most 2, and
‖A1‖∞ = 2.

It is again easy to verify that below are A2 and its inverse,
both n × n, with n′ = n − 2, and A2 is a 4-block n-fold
matrix with all blocks of size 1:
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A2 =


1 1 1 · · · 1
1 1 0 · · · 0
1 0 1 · · · 0
...

. . .
1 0 0 · · · 1

 ,

A−1
2 =


− 1

n′
1
n′

1
n′ · · · 1

n′
1
n′

n′−1
n − 1

n′ · · · − 1
n′

1
n′ − 1

n′
n′−1
n · · · − 1

n′

...
. . .

1
n′ − 1

n′ − 1
n′ · · · n′−1

n

 .

Because for each vertex x of a polyhedron there exists an
objective vector c such that (1) is uniquely optimal in x, and
the fact that we have demonstrated inverses with high frac-
tionality, there must exist vertices of high fractionality and
corresponding objectives, which give the desired instances I1
and I2.

Remark 19. The Ω(n) fractionality lower bound in part 2
of Lemma 18 may be seen as mild given that for 4-block
n-fold we would seek an algorithm running in time nf(k),
for f some function and k largest block size, and that (the
more permissive) n-fold IP problem has such an algorithm
even when its entries are polynomial in n. However, this
is not true for the 2-stage stochastic IP problem, which is
NP-hard with polynomially bounded coefficients already with
constant-size blocks (Dvorák et al. 2017). Because 4-block
n-fold IP is at least as hard as 2-stage stochastic IP, the
bounded fractionality approach cannot work for giving an
nf(k) algorithm for 4-block n-fold MILP.

We now show the limits of our approach for generalising
our results from MILP to MIP for certain types of separable
convex functions.

Lemma 20. There are MIP instances with the following
properties:

1. A = (1 · · · 1), b = 1, f(x) =
∑

i(xi)
2, tdD(A) = 1,

fractionality n,

2. dimension 1, no constraints, f(x) = (x− 1
k )2, fractionality

k,

3. dimension 1, no equality constraints, 0 ≤ x ≤ 1, f(x) =
x3 + 2x2 − x univariate cubic convex, unbounded frac-
tionality (minimum is

√
7

3 −
2
3 ).

Proof. All instances have unique optima, and it is straight-
forward to verify that in part 1 of the Lemma, it is the point
x = ( 1

n , . . . ,
1
n ), in part 2 it is x = 1

k , for any k, and in part
3, the minimum is irrational x =

√
7

3 −
2
3 , hence fractionality

is unbounded. The objective f(x) = x3 + 2x2 − x is not
convex on R, but it is between 0 and 1.

The Limits of Tractability for Structured
MILPs

It is well-known that MILP is fixed-parameter tractable pa-
rameterized by the number of integer variables. It is therefore
natural to ask, whether for our Theorem 1 it could be suffi-
cient to only put restrictions on the integer part of the instance.
Here, we show that this is not the case. We show hardness for
the feasibility version of MILP, which is deciding the non-
emptiness of the set {x ∈ Zz ×Qq | Ax = b, l ≤ x ≤ u}.
Lemma 21. Let C be a class of ILP instances for which the
feasibility problem is NP-hard. Then there exists a class of
MILP instances C′ whose feasibility problem is NP-hard and

whose constraint matrix is A =

(
0 AQ
I −I

)
, where I is the

identity matrix and AQ is a constraint matrix of an instance
from C.

The proof is deferred to the full version of the paper.

Remark 22. It is an interesting question for future work
whether we can generalise our results for MILP if we put
additional restrictions on the interactions between integer
and non-integer variables. A similar approach has recently
been explored for generalising the tractability result for ILP
based on primal treedepth to MILP (Ganian, Ordyniak, and
Ramanujan 2017) using a hybrid decompositional parameter
called torso-width.

Open Problems
We close with three open problems motivating future research.
First, what is the complexity of general MIP for matrices with
bounded primal and dual treedepth? Our Lemma 20 shows
that a different approach is needed. Second, is 4-block n-fold
MILP in XP? At first sight, it may seem that to get an XP algo-
rithm, it should suffice to bound the fractionality by poly(n)
(and nothing better is possible by Lemma 18). However, the
current XP algorithm for the pure integer case depends expo-
nentially on the largest coefficient of the constraint matrix,
so solving (2) would be too slow. Third, Lemma 21 suggests
that new tractable fragments of MILP may be characterized
by having bounded interaction between the integer and con-
tinuous variables. Hence, we ask: what is the complexity of
MILP where AZ comes from an ILP tractable fragment, AQ
is arbitrary, and the number of rows which are nonzero in
both the integer and continuous variables is small? If this
is hard, what restraints need to be placed on AQ to obtain a
tractable fragment?
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Abstract

We provide several novel algorithms and lower bounds in central settings of mixed-integer (non-)linear
optimization, shedding new light on classic results in the field. This includes an improvement on
record running time bounds obtained from a slight extension of Lenstra’s 1983 algorithm [Math.
Oper. Res. ’83] to optimizing under few constraints with small coefficients. This is important for
ubiquitous tasks like knapsack–, subset sum– or scheduling problems [Eisenbrand and Weismantel,
SODA’18, Jansen and Rohwedder, ITCS’19].

Further, we extend our algorithm to an intermediate linear optimization problem when the
matrix has many rows that exhibit 2-stage stochastic structure, which adds to a prominent line
of recent results on this and similarly restricted cases [Jansen et al. ICALP’19, Cslovjecsek et al.
SODA’21, Brand et al. AAAI’21, Klein, Reuter SODA’22, Cslovjecsek et al. SODA’24]. We also
show that the generalization of two fundamental classes of structured constraints from these works
(n-fold and 2-stage stochastic programs) to separable-convex mixed-integer optimization are harder
than their mixed-integer, linear counterparts. This counters a widespread belief popularized initially
by an influential paper of Hochbaum and Shanthikumar, namely that “convex separable optimization
is not much harder than linear optimization” [J. ACM ’90].

To obtain our algorithms, we employ the mixed Graver basis introduced by Hemmecke [Math.
Prog. ’03], and our work is the first to give bounds on the norm of its elements. Importantly, we use
these bounds differently from how purely-integer Graver bounds are exploited in related approaches,
and prove that, surprisingly, this cannot be avoided.
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32:2 Separable Convex Mixed-Integer Optimization

1 Introduction

We study the Mixed Integer Programming problem, which asks to minimize a (linear
or non-linear) objective function over a linearly constrained, mixed-integer set of numerical
variables, that is, some of them are required to be integral, while others may be fractional.
The case where all variables are required to remain integral is the purely-integer case. This
problem is of enormous importance for applications, as Bixby [3] says in his famous analysis
of speed-ups for linear programming solvers: “[I]nteger programming, and most particularly
the mixed-integer variant, is the dominant application of linear programming in practice[,]”.
Moreover, concerning non-linear optimization, Bertsimas et al. note in their spectacular
work [2] on the notorious subset selection problem in statistical learning that, over the
past decades, algorithmic and hardware advances have elevated convex (and therefore, in
particular, non-linear) mixed-integer optimization to a comparable level of relevance in
applications.

Despite its practical ubiquity, the algorithmic theory of both linear and non-linear mixed
integer optimization is much less developed compared to purely-integer problems. Indeed,
the little insight we do have into the algorithmics of the mixed-integer case so far derives
mainly from the purely-integer case (see the discussion of related work below): The best
algorithms relevant to the setting of our article follow as a corollary of a 40 year-old result,
namely, Lenstra’s famous algorithm [23] (which can be extended, e.g. using [14, Theorem
6.7.9], to the setting of arbitrary convex target functions).

In this article, we focus on central special cases of the problem. We embark from the
important case when there are only few constraints with small entries, which plays a key role
in ubiquitous algorithmic applications such as scheduling problems, subset sum problems
and knapsack-type problems, and has increasingly come into focus in recent years [13, 19].
The gained insight in this domain is then supercharged to attack a linear, mixed-integer
optimization problem that arises in analogy to a long and prominent line of recent works on
purely-integer problems with structured sets of constraints [10, 5, 9, 8, 12, 20].

Our Contributions

We design faster algorithms for non-linear mixed-integer optimization in the case where there
are only few constraints, and the coefficients appearing in them are of small absolute value
(Theorem 1). Building on this, we give parameterized algorithms for a generalized, hard
linear mixed-integer optimization problem (Theorem 2). In addition, we prove new lower
bounds for separable convex optimization problems, showing that the result on polynomial-
time solvability of mixed-integer linear programming [4] subject to constraints of bounded
treedepth does not translate to the separable convex case (Theorems 3 and 4). This may
come as a surprise, considering the generally observed, tight connection between tractability
for separable convex and linear target functions in the case of both fully continuous and
purely-integer optimization (see [16, 6]), which might make it tempting to conjecture a
similarly close relationship also in the mixed-integer case.

In terms of technical innovation, our algorithmic results are based on novel insights into
as-of-yet poorly understood mixed Graver bases. We prove that, somewhat unexpectedly,
the usual manner in which these bases are employed in the literature to aid the design of
algorithms for integer programming problems can not yield much in the mixed-integer setting.
One key contribution of our algorithmic results is that they demonstrate how to circumvent
this limitation, and how to exploit the mixed Graver bases algorithmically nonetheless.
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Importantly, and in contrast to most results in the mixed-integer realm to date, our
results do not rely on expanding the results for purely-integral cases, which we prove to have
only limited power, but instead, use new insights about the structure of the mixed-integer
problem itself.

Results on Algorithms and Complexity of MIPs. To set the stage somewhat more formally,
we consider with the following problem:

min f(x) : Ex = b, l ≤ x ≤ u, x ∈ ZnZ × RnR . (MIP)

Here the number of columns is n = nZ + nR, the objective function f : Rn → R is
separable convex, that is, f(x) =

∑n
i=1 fi(xi) for some sequence of univariate convex functions

f1, . . . , fn : R → R, E ∈ Zm×n, E denotes the constraint matrix, b ∈ Rm is the right-hand
side, and the lower and upper bounds are l, u ∈ (R ∪ {±∞})n.

We set X = ZnZ ×RnR , where nZ and nR should be clear from the context. An important
special case is that of an integral right-hand side b ∈ Zm and bounds l, u ∈ Zn, and a linear
target function f(x) = wx =

∑
i wixi. In this setting, (MIP) specializes to

min wx : Ex = b, l ≤ x ≤ u, x ∈ X. (MILP)

On the front of algorithms for this problem, we improve the current, double-exponential record
bound for mixed-integer programs with few rows and small coefficients to single-exponential,
even when the target function is non-linear:1

▶ Theorem 1 (Algorithm for MIPs with few rows). The problem (MIP) can be solved in single-
exponential time (m∥E∥∞)O(m2) · R, where R is the time needed to solve the continuous
relaxation of any (MIP) with the constraint matrix E.

Until now, the best way to solve a (MIP) with few rows and small coefficients would
be to remove duplicate columns from E in a preprocessing step, and then use Lenstra’s
1983 algorithm for mixed integer programming [23]. Since there are 2∥E∥∞ + 1 numbers of
absolute value at most ∥E∥∞, the preprocessing ensures that there are at most (2∥E∥∞ +1)m

columns in E. This, however, leads to a double-exponential running time in terms of m.
Moreover, we use the above algorithm as a starting point for developing a novel algorithm

for an intermediate problem. Namely, we now allow the bounds l, u ∈ X and right-hand side
b ∈ Rm to be fractional, that is, we consider the problem

min wx : Ex = b, l ≤ x ≤ u, x ∈ X. (MILPfrac)

Already deciding feasibility of this variant has been shown to be NP-hard for totally unim-
odular matrices [7]. We are interested in algorithms that deal with constraint structures
that were extensively treated in recent works in the purely integer setting [10, 5, 9, 8, 12, 20].
Namely, n-fold and 2-stage stochastic matrices with bounded block-size, as depicted in Figure
1.2 The matrices Ai and Bi in Figure 1 are called the blocks of the constraint matrices;
furthermore, n denotes the number of blocks Ai and Bi. For the case of 2-stage stochastic
constraints, we prove:

1 As is common in the literature, we use the term single-exponential in x for functions of the form
2poly(x), as opposed to e.g. 2O(x). Similarly, we call exponential towers of height two, that is, 22poly(x)

double-exponential in x.
2 Formal definitions of all terms used in the introduction will be given in the preliminaries.
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

B1 B2 . . . Bn

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . An





B1 A1 0 . . . 0
B2 0 A2 . . . 0
...

...
...

. . .
...

Bn 0 0 . . . An


(a) An n-fold matrix (b) A 2-stage stochastic matrix

Figure 1 The Ai and Bi are matrices of dimension bounded by a parameter. Note that n-folds
and 2-stage stochastic matrices are transpositions of each other.

▶ Theorem 2 (Algorithm for 2-stage stochastic (MILPfrac)). The problem (MILPfrac) where
E is a 2-stage stochastic matrix with block-dimensions Bi ∈ Zt×r and Ai ∈ Zt×s can be
solved in time g(r, s, ∥E∥∞) · nr, for some computable function g.

Turning to lower bounds, we show that this result is likely optimal:

▶ Theorem 3 (Hardness for 2-stage stochastic MIP). The problem (MIP) with integral data is
W[1]-hard when E is a 2-stage stochastic matrix with blocks of size bounded by a parameter
and ∥E∥∞ = 1 already for linear objective functions.

In particular, under the common parameterized complexity assumption that FPT ̸= W[1]
holds, this rules out algorithms for (MIP) with running times of the form g(k) · poly(n),
where k is the maximal block-dimension of each Bi, Ai in the 2-stage stochastic constraint
matrices. Such a (double exponential) algorithm does exist for the pure integer case [12].

Moreover, we prove that the algorithm from Theorem 2 cannot be extended to the related
case of n-fold constraint structure:

▶ Theorem 4 (NP-hardness for n-fold MIP). The problem (MIP) with integral data is NP-hard
when E is an n-fold matrix with blocks of constant dimensions and ∥E∥∞ = 1 already for
linear objective functions.

Interestingly, the above hardness results demonstrate that the relationship between n-folds
and 2-stage stochastic programs in the mixed case is different from purely-integer case: In
the purely integer case, n-folds are solvable faster (in time FPT and single-exponentially [8])
than 2-stage stochastic programs [18], while in the mixed-integer case, the situation seems to
be reversed.

Results on Mixed Graver Bases. Our algorithmic approach uses the mixed Graver basis of
the constraint matrix. This is a mixed analogue of the usual integral Graver basis, which is
a central object in all the recent developments around block-structured integer programs.
Deeper insights into the Graver basis have led to new dynamic data structures [12], proximity
theorems [8, 9, 12, 20, 21] and better convergence rate analyses [12]. Intuitively speaking,
the elements of the Graver basis comprise all possible improving directions that have to be
considered by an algorithm that seeks to iteratively augment suboptimal solutions.

The mixed Graver basis was introduced by Hemmecke [15] already in 2003, but not
understood well enough to be used. On our way to showing Theorem 2, we prove several
results about the mixed Graver basis which are of independent interest, and disprove the
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typical intuitions gained by studying the ordinary integral Graver basis. First, all elements
of the integral Graver basis of an n-fold matrix with bounded block-dimension also have
entries of bounded absolute value, whence they derive their algorithmic usefulness. We show
that this is not true for the mixed Graver basis:

▶ Theorem 5 (n-fold mixed Graver lower bound). There is an n-fold matrix E with constant-
sized blocks and ∥E∥∞ = 1 such that the mixed Graver basis of E contains an element with
1-norm of size Ω(n).

On the other hand, for 2-stage stochastic matrices, the ∞-norm of its elements can be
bounded by a function of the block-dimensions and ∥E∥∞:

▶ Theorem 6 (2-stage stochastic mixed Graver upper bound). For any 2-stage stochastic
matrix E, the maximum ∞-norm of an element of its mixed Graver basis is bounded by
h(r, s, ∥E∥∞) for some computable function h.

This bound also implies a proximity result: for any integer optimum z∗, there is a nearby
mixed optimum x∗. Thus, we can first find z∗ (which can be done efficiently), and then only
search in a small neighborhood around z∗.

Until now, a bound such as h(r, s, ∥E∥∞) on the Graver elements has always led to an
algorithm with a corresponding running time h(r, s, ∥E∥∞) poly(n). However, in the mixed
case, such an algorithm is ruled out by Theorem 3. This shows that, in the mixed case, the
common intuition of good bounds on the Graver norm directly leading to fast algorithms
fails.

Related Work

We have already pointed to the most directly related recent works on block-structured
(integer) linear programming. For an overview on the vast literature concerning practical
attempts to deal with mixed-integer programming, the excellent article of Bertsimas et
al. [2] provides pointers to relevant literature on this fascinating matter. We now sketch
the theoretical literature in the field to contextualize the results obtained in the present
paper, and in particular, how they contrast the typical, expected relationship between linear
and convex optimization results observed heuristically in other situations. Since the limited
insight we do have into the mixed-integer case so far derives mainly from the purely-integer
case, we emphasize the comparison to the literature treating the latter setting to highlight
patterns of lifting algorithmic results along two axes: From purely-integer to mixed domains,
and from linear to convex objectives.

Towards the first axis, one first has to mention Lenstra’s [23] algorithm for purely-integer
linear optimization, which was seminal for the entire area. Notably, it extends to mixed-
integer domains with a fixed number of integer coordinates. By the same token, there are
other cases besides fixed integer dimension where tractability lifts from the purely-integer
to the mixed case. For one, this includes the by-now classic polynomial-time solvability of
linear integer optimization with totally unimodular constraint matrices [17]. In addition,
it was shown more recently [4] how to obtain efficient algorithms for mixed-integer linear
optimization subject to constraints of a particular structure (namely bounded treedepth,
which includes n-fold and 2-stage stochastic programs), by leveraging the flurry of tractability
results on purely-integer optimization in structurally restricted settings that we already
pointed out above.

We now turn to the second axis, linear versus convex optimization. Indeed, as mentioned
already above, the algorithm of Lenstra [23] for mixed- and purely-integer optimization
with a fixed number of purely-integer coordinates can also be extended (e.g. using [14,
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Theorem 6.7.9]) to the setting of arbitrary convex target functions. In a similar vein, a
general result of Hochbaum and Shanthikumar [16] establishes the following: Whenever the
linear integer optimization problem with constraint matrices of bounded subdeterminants
is polynomial-time solvable, then so is also the non-linear integer optimization problem for
target functions that are separable convex (that is, a sum of univariate convex functions
on the coordinates). Their paper’s eponymous heuristic observation that “convex separable
optimization is not much harder than linear optimization” has since become common
wisdom, further consolidated e.g. by Chubanov’s result on reducing linear to separable convex
optimization over the fully (non-mixed) continuous domain. What is more, also the series of
results on integer optimization subject to constraints of bounded treedepth mentioned above
apply, especially, to separable convex target functions. It is worth noting that, since it is
already NP-hard to optimize a quadratic (non-separable) convex function over the boolean
hypercube {0, 1}n [12, Proposition 101], and the constraint matrix describing (the facets
of) the hypercube is both totally unimodular and of bounded treedepth, the algorithms for
separable convex optimization are most likely not extensible to general convex objectives.

We emphasize that our results shed light on the algorithmic properties of mixed-integer op-
timization that defies the intuition that the body of work outlined above may suggest. Indeed,
our results can be interpreted to mean that mixed-integer separable-convex optimization
behaves rather unexpectedly from this point of view.

Organization

We give all necessary preliminaries in Sect. 2. Then, we give new results on mixed Graver
bases and algorithmic consequences for mixed-integer linear programs with few rows in Sect.
3. In Sect. 4, we then extend this to an algorithm for the 2-stage stochastic case, and Sect.
5 contains a matching lower bound. In Sects. 6 and 7, we prove both complexity and Graver
norm lower bounds for the n-fold case.

Due to the page limit, we postpone the proofs of some statements to the full version.

2 Preliminaries

We write vectors in boldface (e. g., x, y) and their entries in normal font (e. g., the i-th entry
of x is xi). Any (MIP) instance with infinite bounds l, u can be reduced to an instance
with finite bounds using standard techniques in polynomial time (solving the continuous
relaxation and using proximity bounds to restrict the relevant region). So from now on we
assume finite bounds l, u ∈ X with X = ZnZ × RnR

The set of indices at which x is non-zero is the support of x, denoted supp(x). For
positive integers m ≤ n we set [m, n] := {m, . . . , n} and [n] := [1, n], and we extend this
notation to vectors: for l, u ∈ Zn with l ≤ u, [l, u] := {x ∈ Zn | l ≤ x ≤ u}. If A is a matrix,
Ai,j denotes the j-th coordinate of the i-th row, Ai,• denotes the i-th row and A•,j denotes
the j-th column. We use log := log2. We define ⌊x⌉ to be ⌊x⌋ if x ≥ 0 and ⌈x⌉ otherwise,
and we define the fractional part of x to be {x} := x − ⌊x⌉. The division of variables into
integer and continuous ones induces a division of the constraint matrix E = (EZ ER) where
EZ ∈ Zm×nZ and ER ∈ Rm×nR , and analogously x = (xZ, xR) and f(x) = fZ(xZ) + fR(xR).
More generally, whenever we make reference to any subset E′ of columns or even submatrix
of E, we will freely denote with E′

Z and E′
R the analogous division of E′ into its integral

and fractional part, respectively. Throughout, we assume that the rows of E are linearly
independent.
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We consider n-fold and 2-stage stochastic matrices. A matrix is of 2-stage stochastic
structure if non-zero entries appear only in the first r columns and in n blocks of size t × s

along the diagonal beside. The overall size is nt × (r + sn). An n-fold matrix is the transpose
of a 2-stage stochastic matrix. It has thus (r + sn) rows and nt columns. For an illustration,
see Figure 1.

A vector g ∈ ker(E) \ {0} is a circuit of E if it is integral, its entries are co-prime, and it
is support-minimal, that is, there is no vector g′ ∈ ker(E) \ {0} with supp(g′) ⊂ supp(g); let
C(E) denote the set of circuits of E. For two vectors x, y ∈ Rn, we say that x is conformal
to y and write x ⊑ y if, for each i ∈ [n], |xi| ≤ |yi| and xi · yi ≥ 0. Intuitively, x and y
are in the same orthant, and y is at least as far from 0 as x in each coordinate. We say
that x =

∑
i gi is a conformal sum or a conformal decomposition of x if, for all i, gi ⊑ x.

For an arbitrary set S, we write kerS(E) as a shorthand for ker(E) ∩ S. In particular, the
mixed kernel of E is defined as kerX(E). The Graver basis of E, denoted G(E), is the set
G(E) = {g ∈ kerZn(E) \ {0} | g is ⊑-minimal}.

▶ Definition 7 (Mixed Graver basis [15]). Let E = (EZ ER) ∈ Zm×n. The mixed Graver basis
GX(E) of E with respect to X consists of all vectors (0, gR), where gR ∈ C(ER), together with
all vectors (gZ, gR) ∈ kerX(E) such that gZ ≠ 0 and there is no (g′

Z, g′
R) ∈ (kerX(E) \ {0})

(unequal to (gZ, gR)) such that (g′
Z, g′

R) ⊑ (gZ, gR).

For any p, 1 ≤ p ≤ ∞, define gX
p (E) := maxg∈GX(E) ∥g∥p.

The following is a helpful trick to reduce a (MILPfrac) to a (MIP) with integer input data
and a constraint matrix (E I).

▶ Lemma 8. Let an (MILPfrac) instance be given. It is possible to construct an equival-
ent (MIP) instance in linear time with a constraint matrix E′ = (E I), bounds l′, u′ ∈ Zn+m,
and a right-hand side b′ ∈ Zm.

Proof sketch. The proof works by first moving fractional right-hand sides into the lower
and upper bounds. Then, we relax any fractional lower and upper bounds to their closest
integers, and penalize violations of the original bounds in the new objective function, which
is what introduces non-linearity (the resulting function is piece-wise linear convex with 3
pieces in each coordinate). ◀

3 The Basic Case: Matrices with Few Rows and Small Coefficients

This section develops the basic version of our algorithmic result. We begin by giving upper
bounds for a certain notion of decompositions of elements in the mixed Graver basis, and
then employ these bounds to our algorithmic ends.

3.1 Mixed-Graver Bound
We begin with an upper bound on the 1-norm for matrices with few rows and small coefficients.
For this, we will need the Steinitz lemma:

▶ Proposition 9 (Steinitz [26], Sevastjanov, Banaszczyk [25]). Let ∥ · ∥ be any norm, and
let x1, . . . , xn ∈ Rd be such that ∥xi∥ ≤ 1 for i ∈ [n] and

∑n
i=1 xi = 0. Then there exists a

permutation π ∈ Sn such that for each k ∈ [n], ∥
∑k

i=1 xπ(i)∥ ≤ d.

▶ Lemma 10. Let E ∈ Zm×(nZ+nR). Then every g ∈ GX(E) satisfies

∥g∥1 ≤ (2m∥E∥∞(2∥E∥∞ + 1)m + 1)m + (2∥E∥∞ + 1)m

ESA 2024



32:8 Separable Convex Mixed-Integer Optimization

Proof. Let g ∈ GX(E) and assume that all columns of E are distinct; we will show how to
deal with doubled columns later. We define a sequence of vectors in the following manner: If
gi ≥ 0, we add ⌊gi⌋ copies of the i-th column of E to the sequence, if gi < 0 we add |⌈gi⌉|
copies of the negation of column i to the sequence. Thus, for each i ∈ [n], we obtained
vectors vi

1, . . . , vi
⌊gi⌉. Finally, we add the vector o =

∑n
i=1{gi}E•,i to the sequence. Notice

that this vector is integral. Let q be the number of vectors in this sequence.
Clearly, the sequence of vectors sums up to 0 as it exactly corresponds to Eg and

g ∈ kerX(E). Moreover, their ℓ∞-norm is bounded by ∥E∥∞(2∥E∥∞ + 1)m since there are at
most (2∥E∥∞ + 1)m distinct columns, ∥E∥∞ is the largest number appearing in any of them,
and this is an upper bound on any number appearing in o =

∑n
i=1{gi}E•,i. The remaining

vectors vi
j are bounded by ∥E∥∞ in ℓ∞-norm.

Using the Steinitz Lemma, there is a reordering u1, . . . , uq (i. e., vi
j = uπ(i,j) for some

permutation π) of this sequence such that each prefix sum pk :=
∑k

j=1 uj is bounded by
m∥E∥∞(2∥E∥∞ + 1)m in the l∞-norm. Clearly,∣∣{x ∈ Zm | ∥x∥∞ ≤ m∥E∥∞(2∥E∥∞ + 1)m}

∣∣ = (2m∥E∥∞(2∥E∥∞ + 1)m + 1)m =: P.

Assume for contradiction that q > P . Then two of these prefix sums are the same, say,
pα = pβ with 1 ≤ α < β ≤ q. Obtain a vector g′ from the sequence u1, . . . , uα, uβ+1, . . . , uq

as follows: begin with g′
i := 0 for each i ∈ [n], and for every uℓ in the sequence, set

g′
i :=


g′

i + 1 if π−1(ℓ) = (i, j) and gi ≥ 0
g′

i − 1 if π−1(ℓ) = (i, j) and gi < 0
g′

i + {gi} if uℓ = o, for each i ∈ [n] .

Here, (i, j) indicates the j-th copy of the i-th vector. Similarly obtain g′′ from the sequence
uα+1 . . . , uβ . We have Eg′′ = 0, as pα − pβ = 0 and thus, g′′ ∈ kerX(E) and hence,
g′ ∈ kerX(E). Moreover, both g′ and g′′ are non-zero and satisfy g′, g′′ ⊑ g. This is a
contradiction with ⊑-minimality of g which is a condition needed for g ∈ GX(E), hence
q ≤ P . Notice that only one of g′ or g′′ may be fractional, as o will be in exactly one
subsequence. For each of the at most (2∥E∥∞ + 1)m columns, the respective fractional part
in g contributes less than 1, so it follows that ∥g∥1 < P + (2∥E∥∞ + 1)m holds.

We are left to deal with the situation that E contains doubled columns. The solution
is to adjust the construction of the sequence accordingly. Fix a column E•,i and let S be
the set of all indices j such that E•,i = E•,j . Let u =

∑
j∈S gj . If u > 0, add ⌊u⌋ copies of

E•,i into the sequence, else add |⌈u⌉| copies of −E•,i into the sequence. The contribution of
this column type to o will be {u}E•,i. Since −1 < {u} < 1 for each column type, and the
number of column types is bounded by (2∥E∥∞ + 1)m, our previous arguments hold. ◀

The proof of the above Lemma actually shows that there exists a particular decomposition
of every element of kerX(E) into an element of kerZn(E) (which can be further decomposed
into elements of G(E)) and one element of kerX(E), which we can bound. This mixed element
might not be an element of GX(E), and a bound on the elements of GX(E) does not imply
a bound on this element. We crucially need this property in our proximity bound and
the bounds on GX(E) for 2-stage matrices, as well as the prospect of extending these to
multi-stage matrices. Thus, this emerges as an important feature:

▶ Definition 11 (One-fat decomposition bound). Let x ∈ kerX(E). We say that x = h + g is
a one-fat decomposition if it is a conformal decomposition, h ∈ kerX(E) and g ∈ kerZn(E),
and we call h the fat element of the decomposition. For every p, 1 ≤ p ≤ ∞, define
wtXp (x) = min ∥h∥p, where the minimum goes over all one-fat decompositions of x. Define
the ℓp-weight of E with respect to X as wtXp (E) = maxx∈kerX(E) wtXp (x).
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▶ Corollary 12. For any matrix E, wtX1 (E) ≤ (2m∥E∥∞(2∥E∥∞ + 1)m + 1)m.

Proof. Note that if x ∈ kerX(E) is decomposable, then it has a decomposition into conformal
g′, g′′, only one of which is fractional. Iterating this, we obtain the decomposition of x into
several elements of GZn(E), and one element of kerX(E) which is bounded as stated. ◀

We will obtain a better bound on both gX
1 (E) and the ℓ1-weight of E, using a recent

result:

▶ Proposition 13 ([24, Lemma 1]). Let x1, . . . , xn ∈ Zd and α1, . . . , αn ∈ R+ such that∑n
i=1 αixi ∈ Zd. If

∑n
i=1 αi > d, then there exist numbers β1, . . . , βn ∈ R+ such that, for

all i ∈ [n], βi ≤ αi and
∑n

i=1 βi ≤ d, and
∑n

i=1 βixi ∈ Zd.

An iterated use of this lemma gives rise to the following statement:

▶ Lemma 14 (Packing Lemma). Let x1, . . . , xn ∈ Zd and α = (α1, . . . , αn) ∈ Rn
+ such that∑n

i=1 αixi ∈ Zd. If
∑n

i=1 αi > d, there exist vectors β1, . . . , βm ∈ Rn
+ such that, for each

j ∈ [m], βj ≤ α,
∑n

i=1 βj
i xi ∈ Zd, ∥βj∥1 ≤ d, and

∑m
j=1 βj = α. Moreover, for all but at

most one j ∈ [m], ∥βj∥1 ≥ d/2.

Proof. The only potentially non-obvious part is the last sentence of the statement. Notice
that if there are βj and βj′

, j ̸= j′, with ∥βj∥1, ∥βj′
∥1 ≤ d/2, then we can merge them.

Formally, we set βj := βj + βj′
, and delete βj′

. ◀

Intuitively, the lemma allows us to take a non-negative linear combination of integer vectors
whose result is an integer vector, and divide it into smaller such combinations while preserving
the property that each smaller combination still results in an integer vector.

▶ Lemma 15. Let E ∈ Zm×(nZ+nR). Then gX
1 (E) ≤ (2m2∥E∥∞ + 1)m+1 and wtX1 ≤

(2m2∥E∥∞ + 1)2m+2.

Proof sketch. As in Lemma 10, we will construct a sequence of vectors summing up to zero
and then apply the Steinitz Lemma. However, this time we will use the Packing Lemma 14
to obtain a better bound on each element of the vector sequence and thus, a better bound
on the elements of GX(E) overall. Unfortunately, this approach does not yield a one-fat
decomposition, so we have to use the Steinitz Lemma in a more clever way to get a bound
on wtX1 (E). ◀

The one-fat decomposition also allows us to prove a bound on the distance between an
integer and mixed optimum, which we will use in both of our algorithmic results:

▶ Lemma 16 (MIP Proximity). Let z∗ ∈ Zn be an integer optimum of a (MIP) instance, and
let x∗ be a mixed optimum closest to z∗ in ℓp-norm, 1 ≤ p ≤ ∞. Then ∥z∗ − x∗∥p ≤ wtXp (E).

We will need a small technical proposition before we prove Lemma 16:

▶ Proposition 17 ([12, Proposition 60]). Let x, y1, y2 ∈ Rn, y1, y2 be from the same orthant,
and f be a separable convex function. Then f(x + y1 + y2) − f(x + y1) ≥ f(x + y2) − f(x).

Proof of Lemma 16. Assume for contradiction that ∥z∗ −x∗∥p > wtXp (E). Since (z∗ −x∗) ∈
kerX(E), it has a one-fat decomposition h+g where ∥h∥p ≤ wtXp (E). As ∥z∗−x∗∥p > wtXp (E),
the integral part g is non-zero. Let ẑ := z∗ − g = x∗ + h and x̂ := x∗ + g = z∗ − h. Thus,
z∗ − x∗ = h + g = (z∗ − x̂) + (z∗ − ẑ). Now Proposition 17 with x = x∗, y1 = h, y2 = g
shows

f(z∗) − f(ẑ) ≥ f(x̂) − f(x∗) .
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By the conformality of the decomposition, x̂ and ẑ are within the l, u bounds. As g ∈
kerZn(E), ẑ is an integer feasible solution, and because h ∈ kerX(E), x̂ is a mixed feasible
solution. Furthermore, because z∗ was an integer optimum and ẑ is integer feasible, the left
hand side is non-positive, and so is f(x̂) − f(x∗), thus x̂ must be another mixed optimum
and the right hand side must be zero, and so the left hand side, showing ẑ to be another
integer optimum. However, x̂ is closer to z∗, a contradiction. ◀

3.2 A Single-Exponential Algorithm
Armed with the bounds on the mixed Graver basis and our insights into one-fat decom-
positions, we are now ready to develop the single-exponential algorithm. Before we do so,
however, a few general remarks are in order. These also apply to the two-stage stochastic
algorithm for fixed block-dimensions later on.

▶ Remark 18. Both algorithmic results make use of the fact that if both the mixed and
the integer version of the problem are feasible, then for every integral optimum, there is a
mixed optimum nearby. It then suffices to first solve the (generally easier) integral version
of the problem, and then solve an auxiliary mixed-integer program with the feasible region
bounded by a small n-dimensional box around x. Indeed, if x is an integral solution of
Ex = b, l ≤ x ≤ u, then we will resort to solving the program E(x + y) = b, ∥y − x∥∞ ≤
P, l ≤ x + y ≤ u for y, which amounts to finding y with Ey = 0, l′ ≤ y ≤ u′ for some new
bounds l′, u′ such that ∥l′ − u′∥∞ is small. For general objectives, one optimizes the auxiliary
objective f ′(y) = f(x + y), whereas for linear objectives no change is needed. Hence, all of
the algorithmic heavy lifting will be done in order to solve problems of this form.

Of course, this strategy rests on the assumption that both the mixed and the integral
variant of the problem are feasible. This assumption can in turn be removed by a standard
two-phase approach, similar to what is customary e.g. for the Simplex algorithm, in order to
find an initial feasible solution. In short, this is done by introducing slack variables that are
penalized in the objective, but admit a trivial feasible solution. In the sequel, we will hence
always assume feasibility.

We say that xϵ is an ϵ-accurate solution to (MIP) if there exists an optimum x∗ such
that ∥x∗ − xϵ∥∞ ≤ ϵ. (For a discussion on the relationship of ϵ-accurate and ϵ-approximate
optima and also the motivation to use the notion of ϵ-accuracy, see [16, Section 1.2].)

▶ Theorem 1 (Algorithm for MIPs with few rows). The problem (MIP) can be solved in single-
exponential time (m∥E∥∞)O(m2) · R, where R is the time needed to solve the continuous
relaxation of any (MIP) with the constraint matrix E.

Proof of Theorem 1. The integer problem can be solved in time (m∥E∥∞)O(m2) + R(ϵ) by
known techniques [12, 13] where R(ϵ) is the ϵ-accurate solution to the continuous relaxation
– essentially, first solve the continuous relaxation, then reduce b, l, u using proximity bounds,
then solve a dynamic program. Now by Lemma 16, a mixed optimum x∗ is at most
wtX1 (E) ≤ (2m2∥E∥∞ + 1)2m+2 =: P far in 1-norm. The proximity bound implies that all
prefix sums of x∗

Z with EZ belong to the integer box R := [−∥E∥∞ · P, ∥E∥∞ · P ]m, which
has at most (2∥E∥∞ · P + 1)m = (m∥E∥∞)O(m2) elements.

This allows us to construct a dynamic program with nZ + 1 stages. Our DP table D

shall have an entry D(i, r) for i ∈ [nZ] and r ∈ R whose meaning is the minimum objective
attainable if the prefix sum of x∗

Z and EZ restricted to the first i coordinates is r. To that
end, for all r ∈ R, define x∗

i (r) to be the choice of x∗
i ∈ [−P, P ] which minimizes fi and

such that E•,ix
∗
i = r; it is possible for the solution to be undefined if no number in [−P, P ]
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satisfies the conditions. Similarly, define x∗
R(r) to be an ϵ-accurate minimizer of fR satisfying

ERx∗
R = r. To compute D, set D(0, r) := 0 for r = 0 and D(0, r) := +∞ otherwise, and for

i ∈ [nZ], set

D(i, r) := min
r′,r′′∈R:
r′+r′′=r

D(i − 1, r′) + f i(x∗
i (r′′)) .

The last stage is defined as

D(nZ + 1, 0) := min
r′,r′′∈R:
r′+r′′=0

D(nZ, r′) + fR(x∗
R(r′′)) .

The value of the optimal solution is D(nZ+1, 0) and the solution x∗ itself can be computed
easily with a bit more bookkeeping in the table D.

As for complexity, the first nZ stages of the DP can be computed in time at most
nZ · |R|2 = (m∥E∥∞)O(m2)nZ, and the last stage solves the continuous relaxation |R| times,
taking time |R|R(ϵ). Altogether, the algorithm takes time at most (m∥E∥∞)O(m2)R(ϵ).
Regarding correctness, note that any ϵ-accurate solution x∗ is such that x∗

R is an ϵ-accurate
minimizer of ERxR = −EZx∗

Z, lR ≤ xR ≤ uR, and x∗
Z is an integer minimizer of EZxZ =

−ERx∗
R, lZ ≤ xZ ≤ uZ. Since the algorithm finds exactly such minimizers, its correctness

follows. ◀

4 Algorithms for the 2-Stage Stochastic Case

After giving the basic version of our algorithm for the case of few rows, we now develop
our algorithm for the case of fixed block-dimension. We first prove our bound of the mixed
Graver basis:

▶ Theorem 6 (2-stage stochastic mixed Graver upper bound). For any 2-stage stochastic
matrix E, the maximum ∞-norm of an element of its mixed Graver basis is bounded by
h(r, s, ∥E∥∞) for some computable function h.

Proof sketch. We first decompose the element of GX(E) blockwise according to Lemma 15.
Then, we apply a recent result of [9] on the existence of submultisets with equal sums in
certain multisets of vectors with similar (but, notably, not identical) sums. This is made
possibly by the fact that we have not only a bound on gX

∞(E) but a bound on the weight
of a one-fat decomposition. This gives us the desired one-fat decomposition for the 2-stage
stochastic case. ◀

From Theorem 6 and Lemma 16, it follows that:

▶ Corollary 19. Let z∗ ∈ Zn be an integer optimum of a 2-stage stochastic (MIP) instance.
Then there exists a mixed optimum x∗ ∈ X such that ∥z∗ −x∗∥∞ ≤ h(r, s, ∥E∥∞) for a double
exponential function h.

4.1 A Polynomial Algorithm for Fixed Block-Dimension
Using the upper bounds for 2-stage stochastic MIPs on proximity and weight as combined in
Corollary 19, we can now formulate an algorithm which solves the 2-stage stochastic MILP
problem in polynomial time whenever the block-dimensions are fixed. We recall that h is
the function from Theorem 6. In accordance with Remark 18, we note two things: Firstly,
by following a standard two-phase approach, we may assume that the problem at hand is
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integrally feasible. Then, secondly, the algorithm solves the integer program corresponding
to the instance to optimality, which is fixed-parameter tractable [1, 22]. We thereby obtain
an integer optimum z∗, and we can now restrict ourselves to solving the following auxiliary
MILP to optimality:

min wx : Ex = 0, l̂ ≤ x ≤ û, x ∈ ZnZ × RnR , l, u ∈ Rn, b ∈ Zm. (AuxMILP)

Here, ℓ̂i = max{ℓi − z∗
i , −h(r, s, ∥E∥∞)} and ûi = min{ui − z∗

i , h(r, s, ∥E∥∞)}. Observe that

∥̂l − û∥∞ ≤ 2h(r, s, ∥E∥∞) (1)

holds. For an optimal solution x∗ to (AuxMILP), the augmented solution x∗ + z∗ is then an
optimal solution to the original MILP, by Corollary 19.

What remains is to show how to solve (AuxMILP) in the claimed time bound. This is
effected by proving the following Lemma:

▶ Lemma 20. Let V be the set of vertices of all integer slices of the auxiliary mixed-integer
program (AuxMILP). There are at most (8h(r, s, ∥E∥∞))(r+1)(s+1)nr distinct global parts
appearing in V , and they can be enumerated with polynomial delay.

Proof sketch. The proof goes by analyzing the structure of invertible submatrices of two-
stage stochastic matrices. Then, it becomes apparent that the global part of a basic solution
is essentially determined by which subset of r blocks out of all n blocks influences the global
part. The number of such choices is clearly bounded by nr. The remainder of the bound
stems from various guessing steps, including some of the values for the integer variables.
Hence the appearance of h in the bound, making also the bounds from Theorem 6 crucially
come into play. ◀

Lemma 20 now suggests an obvious strategy to solve the (AuxMILP) to optimality:

▶ Proposition 21. (AuxMILP) can be solved in time h(r, s, ∥E∥∞)O(rs) · nr.

Proof sketch. By Lemma 20, we may enumerate all possible global parts of vertices in
the required time bound, guess the corresponding global integer values, and then solve the
resulting block-diagonal mixed-integer system to optimality using the algorithm of Theorem 1
(notice that here we are in the special case of LP which can be solved exactly, i.e., with ϵ = 0,
and in strongly polynomial time since ∥E∥∞ is small, so R(0) = poly(n)). Among all choices
of global parts, pick the one that yields the optimal value for the full program. ◀

We have now obtained:

▶ Theorem 2 (Algorithm for 2-stage stochastic (MILPfrac)). The problem (MILPfrac) where
E is a 2-stage stochastic matrix with block-dimensions Bi ∈ Zt×r and Ai ∈ Zt×s can be
solved in time g(r, s, ∥E∥∞) · nr, for some computable function g.

Proof. As mentioned before, it is enough to first solve the integer program corresponding to
the MILP instances, and then solving the auxiliary problem using Proposition 21. ◀

▶ Remark 22. Let us note two things: Firstly, the exponent of n in our algorithm is
only dependent on the number r of global variables. Hence, for values of s such that
h(r, s, ∥E∥∞)s ≤ nf(r) for some function f , our algorithm remains polynomial for fixed r.

Secondly, note that we may choose strongly polynomial (or rather, strongly fpt) sub-
routines to solve the arising integer and mixed-integer programs. In this case, also the
algorithm we obtain is strongly polynomial for fixed block-dimensions.
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5 W[1]-Hardness of 2-Stage Stochastic MILPs with Fractional Bounds

In the following we show that 2-stage stochastic (MILPfrac) and (MIP) with integral data is
W[1]-hard parameterized by the block-dimension even if ∥E∥∞ = 1.

▶ Theorem 3 (Hardness for 2-stage stochastic MIP). The problem (MIP) with integral data is
W[1]-hard when E is a 2-stage stochastic matrix with blocks of size bounded by a parameter
and ∥E∥∞ = 1 already for linear objective functions.

Proof Sketch of Theorem 3. We show the theorem using a parameterized reduction from
the well-known Subset Sum problem, which is W[1]-hard when parameterized by the number
of elements in a solution [11].

Subset Sum
Input: A set A of pairwise distinct natural numbers and two natural numbers k and t.
Goal: Decide whether there is a subset S ⊆ A with |S| = k and

∑
s∈S

s = t?

Transformation: We give a formulation of Subset Sum as a 2-stage stochastic MILP. To do
so, we first scale all input numbers a1, a2, . . . , an in A and t by 1/ maxi{ai}. Denote the new
numbers as a′

1, a′
2, . . . , a′

n and t′. The scaling ensures that all considered sums are smaller or
equal to 1, which comes in handy later on.

Let xi
j be a binary variable that will indicate that a′

i is the jth number appearing in the
sum for all i ∈ [n] and j ∈ [k]. We collect those numbers not appearing in a solution in a
binary slack variable xi

k+1 for each i ∈ [n], yielding the constraints:

k+1∑
j=1

xi
j = 1 ∀i ∈ [n] (2)

To express the condition on the sum of the solution being t′, we introduce fractional variables
yi

j that take on the value a′
i if and only if xi

j = 1 for i ∈ [n] and j ∈ [k]. While this is trivially
achieved by yi

j = a′
ix

i
j , the crux is to model this without including a′

i as a coefficient, which
would not be bounded by the parameter any more. This is accomplished by requiring the
following:

yi
j ≤ xi

j ∀i ∈ [n], ∀j ∈ [k] (3)
k+1∑
j=1

yi
j = a′

i ∀i ∈ [n] (4)

This has the intended effect since a′
i ≤ 1 by construction. We will then store the solution

indicated by the assignment to the xi
j variables in yet another set of variables, denoted as zj ,

where j ranges from 1 to k

k∑
j=1

zj = t′ (5)

While it is easy to project the yi
j to zj , the straightforward way to do so would blow up

the block size to Ω(n). Indeed, to ensure that the zj have the intended semantics, consider
the following: The equality zj = yi

j ought to be satisfied for exactly one choice of i, say
when i = i′ (assuming distinct inputs); otherwise, zj = yi

j + si
j holds for some non-zero

compensation term si
j , whenever i ̸= i′. Note that, while the si

j do satisfy a function similar
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to slack variables, they may well need to be negative. In addition, we introduce binary
variables ri

j for all i ∈ [n] and j ∈ [k], indicating whether or not si
j = 0. The above semantics

are captured in the following constraints:

zj = yi
j + si

j ∀i ∈ [n], ∀j ∈ [k] (6)
zj ≥ min

i
a′

i (7)

− ri
j ≤ si

j ≤ ri
j ∀i ∈ [n], ∀j ∈ [k] (8)

Our aim is then to minimize the number of times any of the si
j are used, or conversely, to

make zj = yi
j for some i as often as possible, which is expressed in the choice of the objective

function

min
k∑

j=1

n∑
i=1

ri
j (9)

As argued, note that in a solution of a yes instance, for a fixed j, zj = yi
j ≥ mini a′

i

(equivalently, ri
j = 0) holds for exactly one choice of i, making the optimum equal to k(n − 1).

The above constraints define a 2-stage stochastic MILP formulation with fractional
variables zj , yi

j and si
j , and binary variables xi

j and ri
j . The global part is made up by the zj ,

of which there are k. The remaining variables are distributed across n blocks of dimension
O(k) each, including the respective slack variables for the inequality constraints. The largest
entry in the constraint matrix is 1 = O(k), and clearly, the transformation can be carried
out in time polynomial in n and k. ◀

6 NP-hardness of n-Fold MIPs

The algorithmic upper bound for 2-stage stochastic programs stands in contrast to a much
stronger bound for the n-fold case. Namely, we show NP-hardness of n-fold (MILPfrac) for
constant parameter values. By Lemma 8, we immediately get that n-fold (MIP) is also
NP-hard for constant parameter values.

▶ Theorem 4 (NP-hardness for n-fold MIP). The problem (MIP) with integral data is NP-hard
when E is an n-fold matrix with blocks of constant dimensions and ∥E∥∞ = 1 already for
linear objective functions.

Proof of Theorem 4. We reduce from the well-known Partition problem. That is, given
integers a1, . . . , an the Partition problems asks for the existence of a subset I ⊆ [n] such
that

∑
i∈I ai =

∑
i ̸∈I ai.

Let an instance of Partition be given. Without loss of generality, assume that amax :=
maxi ai ≤ 1; this can be achieved, e. g., by scaling every number of the original instance by
1/amax. We will have n bricks, with brick i ∈ [n] representing the choice whether i ∈ I or
i ̸∈ I.

Specifically, for each i ∈ [n], introduce integer variables xi
1, xi

2 ∈ {0, 1} and continuous
variables yi

1, yi
2 with bounds 0 ≤ yi

1, yi
2 ≤ 1. The local constraints (matrix A) are as follows.

We enforce a disjunction on the x-variables by the constraint xi
1 + xi

2 = 1 for every i and we
enforce that yi

1 = ai iff xi
1 = 1 and similarly yi

2 = ai iff xi
2 = 1 by the constraints yi

1 +yi
2 = a1,

yi
1 ≤ xi

1, and yi
2 ≤ xi

2 for every i.
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It is now easy to see that the following global constraint encodes the requirement that∑
i∈I ai =

∑
i̸∈I ai:

n∑
i=1

yi
1 =

n∑
i=1

yi
2. (10)

Altogether, the instance has four variables per block, four local constraints and one global
constraint, and is feasible if and only if the original Partition instance is. ◀

7 Lower Bound on the Graver Norm of n-fold MIPs

In this section, we show that the 1-norm of the mixed Graver norm can be unbounded even
for n-fold matrices.

We start with the following auxiliary lemma, which is crucial for constructing an element
of the mixed Graver basis with unbounded 1-norm.

▶ Lemma 23. Let n be an integer. There are two sets S and T of natural numbers with
|S| = |T | = n such that:
(1)

∑
s∈S s =

∑
t∈T t = 2n2 − 1 and

(2) for every two subsets S′ ⊆ S and T ′ ⊆ T , with 0 < |S′ ∪ T ′| < 2n, it holds that∑
s∈S′ s ̸=

∑
t∈T ′ t.

Proof. Let X ⊆ N \ {0}. We denote by N(X), the natural number whose binary repres-
entation has a 1 at the i-th bit (with 1 being the lowest-value bit) if and only if i ∈ X.
Conversely, for a natural number x, let B(x) be the set of all indices i such that the binary
representation of x is 1 at the i-th bit. Note that B(N(X)) = X for every X ⊆ N \ {0}.

For every i and j with 1 ≤ i, j ≤ n, let p(i, j) = (i − 1)n + j. For every i with 1 ≤ i ≤ n,
we set:

si is equal to N(Ri), where Ri = {p(i, j) | 1 ≤ j ≤ n},
ti is equal to N(Ci), where Ci = {p(j, i) | 1 ≤ j ≤ n}.

We claim that setting S = {s1, . . . , sn} and T = {t1, . . . , tn} satisfies the statement of the
lemma: As {B(s1), . . . , B(sn)} and {B(t1), . . . , B(tn)} form a partition of [n2], it holds
that

∑
s∈S′ s = N(

⋃
s∈S′ B(s)) and

∑
t∈T ′ t = N(

⋃
t∈T ′ B(t)) for every subsets S′ ⊆ S and

T ′ ⊆ T . Therefore,
∑

s∈S s =
∑

t∈T t = N([n2]) = 2n2 − 1, which shows (1).
Towards showing (2), let S′ and T ′ be any two subsets with S′ ⊆ S and T ′ ⊆ T such that

0 < |S′ ∪ T ′| < 2n. As 0 < |S′ ∪ T ′| < 2n, we obtain that either:
there are i and j with 1 ≤ i, j ≤ n such that si ∈ S \ S′ and tj ∈ T ′ or
there are i and j with 1 ≤ i, j ≤ n such that ti ∈ T \ T ′ and sj ∈ S′.

Since the proofs for the two cases are analogous, we only give the proof for the former case.
Let O = B(si) ∩ B(tj) and note that O = Ri ∩ Cj = {p(i, j)} ̸= ∅. Since ti ∈ T ′, it holds
that O ∈

⋃
t∈T ′ B(t). However, due to si /∈ S′, we have that O /∈

⋃
s∈S′ B(s). Consequently,⋃

s∈S′ B(s) ̸=
⋃

t∈T ′ B(t) and therefore also
∑

s∈S′ s ̸=
∑

t∈T ′ t. ◀

▶ Theorem 5 (n-fold mixed Graver lower bound). There is an n-fold matrix E with constant-
sized blocks and ∥E∥∞ = 1 such that the mixed Graver basis of E contains an element with
1-norm of size Ω(n).

Proof sketch. Let n be an integer, Xn = (Z × R × R)n, and En be the matrix given by the

n-fold of
(

0 I3
0 A

)
, where I3 is the identity matrix of dimension 3 and A = (1, 1, 1). Note first

that the structure of the matrix E together with the fact that the first coordinate in each
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block is integer ensures that any vector of the form (−1, s/V, 1 − s/V ) and (1, −t/V, 1 + t/V )
for some s, t, V with 0 ≤ s, t ≤ V is contained in the mixed Graver basis GX1(E) of E. This
allows us to construct g by using n/2 blocks of the form (−1, s/V, 1 − s/V ) and n/2 blocks
of the form (1, −t/V, 1 + t/V ), where s ∈ S and t ∈ T for some well-constructed sets S and
T of integers. Moreover, because of the first three rows (given by n-repetitions of I3) the
sum of the i-th coordinate over all blocks has to be 0. Therefore, to force that all n blocks of
g use non-zero kernel elements (of GX1(E)), it suffices to construct the sets S and T in such
a way that

∑
s∈S′ s =

∑
t∈T ′ t for some subsets S′ ⊆ S and T ′ ⊆ T if and only if S′ = S and

T ′ = T . We show that this is possible in an auxiliary lemma. ◀

8 Open Questions

Our work points towards two main directions for further research. First, note that we
formulate our algorithms in reference to 2-stage stochastic constraint matrices. As mentioned,
these are generalized by matrices of bounded primal treedepth, so-called multi-stage stochastic
matrices. They are structured in much the same way as in Fig. 1, but with diagonal blocks of
recursive multi-stage stochastic form (and the depth of this recursion is bounded). Judging
from previous results in the area, there is reason to believe that our algorithmic results
generalize to multi-stage stochastic programs. However, some caution seems appropriate.
After all, one key takeaway of both the lower bounds and the algorithms shown in this paper
is that block-structured mixed-integer programs do not behave as predictably as one might
hope.

A second natural, much more ambitious direction of investigation is to try to extend the
present algorithmic results on linear optimization to arbitrary separable convex objective
functions. Despite significant efforts, we were not able to push beyond the algorithms
obtained here. As for some intuition on why extending Theorem 2 to the separable convex
case in the style of Theorem 1 seems to fail: For the latter, the search space for optima is
naturally restricted already by the fact that there are only few constraints. For the former,
however, such a restriction is not possible based on rows alone; instead, we argue about
vertices of the associated polytope, which are related to mixed-integer optimal solutions. In
the separable convex case, this connection between optimal solutions and vertices disappears,
and we are left with no handle on the size of the search space. We consider the problem of
circumventing these roadblocks an intriguing and hard open question.
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Abstract. A long line of research on fixed parameter tractability of integer programming
culminated with showing that integer programs with n variables and a constraint matrix with dual
tree-depth d and largest entry \Delta are solvable in time g(d,\Delta )poly(n) for some function g. However,
the dual tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer
program can be equivalent to another with a smaller dual tree-depth, and thus does not reflect
its geometric structure. We prove that the minimum dual tree-depth of a row-equivalent matrix
is equal to the branch-depth of the matroid defined by the columns of the matrix. We design a
fixed parameter algorithm for computing branch-depth of matroids represented over a finite field
and a fixed parameter algorithm for computing a row-equivalent matrix with minimum dual tree-
depth. Finally, we use these results to obtain an algorithm for integer programming running in time
g(d\ast ,\Delta )poly(n) where d\ast is the branch-depth of the constraint matrix; the branch-depth cannot be
replaced by the more permissive notion of branch-width.
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1. Introduction. Integer programming is a fundamental problem of both theo-
retical and practical importance. It is well-known that integer programming in fixed
dimension, i.e., with a bounded number of variables, is polynomially solvable since
the work of Kannan [31] and Lenstra [36] from the 1980s. Much subsequent research
has focused on studying extensions and speed-ups of the algorithm of Kannan and
Lenstra. However, research on integer programs with many variables has been sparser.
Until relatively recently, the most prominent tractable case has been that of totally
unimodular constraint matrices, i.e., matrices with all subdeterminants equal to 0
or \pm 1; in this case, all vertices of the feasible region are integral and algorithms for
linear programming can be applied.

Besides total unimodularity, several recent results [24, 6, 14, 1, 23, 19, 18, 11]
on algorithms for integer programming exploited various structural properties of the
constraint matrix, yielding efficient algorithms for n-fold integer programs, tree-fold
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integer programs, multistage stochastic integer programs, and integer programs with
bounded fracture number and bounded tree-width. This research culminated in an
algorithm by Kouteck\'y, Levin, and Onn [35], who constructed a fixed parameter
algorithm for integer programs with bounded (primal or dual) tree-depth and bounded
coefficients.

These theoretical results well complement a long line of empirical research (see [5,
3, 33, 15, 2, 41, 40, 17, 39]), demonstrating that instances of integer programming can
be solved efficiently when the constraint matrix is decomposable into blocks. So, the
recent algorithm of Kouteck\'y, Levin, and Onn [35] gives a theoretical explanation for
this phenomenon. In particular, the Dantzig--Wolfe decomposition algorithm is known
to work very well when the constraint matrix has a so-called bordered block-diagonal
form with small blocks. It is usually necessary to describe this form explicitly but
Bergner et al. [3] have shown that it can be constructed automatically (by permuting
the rows of the constraint matrix), which has had significant performance benefits in
important benchmark instances.

However, the bordered block-diagonal form of a matrix, and, more generally, the
tree-depth of a constraint matrix, depends on the position of its nonzero entries. In
particular, a matrix with large dual tree-depth, i.e., without any apparent bordered
block-diagonal form, may be row-equivalent to another matrix with small dual tree-
depth and thus amenable to efficient algorithms. We overcome this drawback with
tools from matroid theory. To do so, we consider the branch-depth of the matroid
defined by the columns of the constraint matrix and refer to this parameter as the
branch-depth of the matrix. Since this matroid is invariant under row operations,
the branch-depth of a matrix is row-invariant and better captures the true geometry
of the instance, which can be obfuscated by the choice of basis. Our algorithm thus
allows taking the ``automated Dantzig--Wolfe"" approach of Bergner et al. [3] one step
further: it is possible to detect a block structure in a matrix even if it is obscured by
row operations, not just by permuting the rows.

Our main results concerning integer programming can be summarized as follows
(we state the results formally in the next subsection).

\bullet The branch-depth of a matrix A is equal to the minimum dual tree-depth of
a matrix row-equivalent to A (Theorem 1).

\bullet There exists a fixed parameter algorithm for computing a matrix of minimum
dual tree-depth that is row-equivalent to the input matrix and whose entry
complexity stays bounded (Theorem 35).

\bullet Integer programming is fixed parameter tractable when parameterized by the
branch-depth and the entry complexity of the constraint matrix (Corollary 4).

Existing hardness results imply that the parameterization by both branch-depth and
entry complexity in Corollary 4 is necessary unless \sansF \sansP \sansT = \sansW [\sansone ], i.e., it is not suffi-
cient to parameterize only by one of the two parameters. In particular, integer pro-
gramming is \sansW [\sansone ]-hard when parameterized by tree-depth only [19, 34] and \sansN \sansP -hard
for instances with bounded coefficients and dual tree-width (even dual path-width)
bounded by two [13, Lemma 102] (also cf. [35, 19]). The latter also implies that in-
teger programming is \sansN \sansP -hard when the branch-width and the entry complexity of
input instances are bounded (also cf. [16]). On the positive side, Cunningham and
Geelen [8] (also cf. [37] for detailed proofs and implementation) provided a slicewise
pseudopolynomial algorithm for nonnegative matrices with bounded branch-width,
i.e., the problem belongs to the complexity class \sansX \sansP for unary encoding of input. Fi-
nally, since the algorithm given in Corollary 4 is parameterized by the branch-depth of
the vector matroid formed by the columns of the matrix A, it is natural to ask whether
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the tractability also holds in the setting dual to this one, i.e., when the branch-depth
of the vector matroid formed by the rows of A is bounded. This hope is dismissed in
Proposition 16.

The algorithm from Theorem 35 is based on the following algorithmic result on
matroid branch-depth, which we believe to be of independent interest.

\bullet There exists a fixed parameter algorithm for computing an optimal branch-
depth decomposition of a matroid represented over a finite field for the pa-
rameterization by the branch-depth and the order of the field (Theorem 31).

To apply this result, we show that every matroid represented by rational vectors that
has bounded branch-depth is isomorphic to a matroid representable over a finite field
(Lemma 34), where the order of the field depends on the branch-depth and the entry
complexity of the rational vectors.

We would like to point out that the algorithm from Theorem 31 is fully combi-
natorial, similar to the recent algorithm for computing the branch-width of matroids
represented over a finite field by Jeong, Kim, and Oum [30], which extends the classical
algorithm for tree-width by Bodlaender and Kloks [4], and unlike the older algorithm
by Hlin\v en\'y and Oum [28, 29], which relies on an exponential upper bound on the size
of excluded minors for branch-width by Geelen et al. [21] and needs to precompute
the list of excluded minors. While it would likely be possible to follow a similar path
in the setting of branch-depth, we chose the more challenging route of designing a
fully combinatorial algorithm, i.e., one that is based on an explicit dynamic program-
ming procedure. The benefit of a fully combinatorial approach is that the hidden
constants are better, which is of importance to applications including those in model
checking [20, 25, 26, 27]; in particular, Hlin\v en\'y [25, 26, 27] (in the analogy of Cour-
celle's result [7] for graphs) proved that monadic second order model checking is fixed
parameter tractable for matroids with bounded branch-width represented over finite
fields.

1.1. Statement of integer programming results. To state our integer pro-
gramming results precisely, we first need to fix some notation. Vectors throughout our
exposition will be written in bold font. We consider the general integer programming
problem in standard form:

(1) min \{ f(x) | Ax = b , l \leq x \leq u , x \in \BbbZ n\} ,

where A \in \BbbZ m\times n is an integer m \times n matrix, b \in \BbbZ m, l,u \in (\BbbZ \cup \{ \pm \infty \} )n, and
f : \BbbZ n \rightarrow \BbbZ is a separable convex function, i.e., f(x) =

\sum n
i=1 fi(xi) where fi : \BbbZ \rightarrow \BbbZ 

are convex functions. In particular, each fi(xi) can be a linear function of xi. Integer
programming is well-known to be \sansN \sansP -hard even when f is a constant function and
either the entries of A are 0 and +1 (by a reduction from the vertex cover problem)
or m = 1 (by a reduction from the subset sum problem).

We next demonstrate the previously mentioned drawback of parameterizing inte-
ger programs by tree-depth. The tree-depth of a graph G is the minimum depth of
a rooted forest on the same vertex set such that the two end vertices of every edge
of G are in ancestor-descendant relation. The dual tree-depth of a matrix A is the
tree-depth of the graph with vertices corresponding to the rows of A and with two
vertices being adjacent if the corresponding rows have a nonzero entry in the same
column. We define the branch-depth, which requires definitions from matroid theory,
and primal tree-depth of a matrix, in section 2. Consider the following matrices A
and A\prime :

D
ow

nl
oa

de
d 

05
/2

3/
23

 to
 8

4.
19

.6
6.

32
 b

y 
M

ar
tin

 K
ou

te
ck

ý 
(a

lq
ua

kn
aa

@
gm

ai
l.c

om
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



© 2022 Timothy F. Chan, Jacob W. Cooper, Martin Kouteck'y, Daniel Král, and Krist'yna Pekárková

OPTIMAL MATRIX TREE-DEPTH AND AN FPT IP ALGORITHM 667

A =

\left(           

1 1 \cdot \cdot \cdot 1 1
2 1 \cdot \cdot \cdot 1 1

1 2
. . . 1 1

...
. . .

. . .
. . . 1

1 1
. . . 2 1

1 1 \cdot \cdot \cdot 1 2

\right)           
, A\prime =

\left(           

1 1 \cdot \cdot \cdot 1 1
1 0 \cdot \cdot \cdot 0 0

0 1
. . . 0 0

...
. . .

. . .
. . . 0

0 0
. . . 1 0

0 0 \cdot \cdot \cdot 0 1

\right)           
.

The dual tree-depth of the matrix A is equal to its number of rows while the dual
tree-depth of A\prime is two; the graphs from the definition of the dual tree-depth are a
complete graph and a star, respectively. We remark that the branch-depth of both
matrices is two. Since the matrices A and A\prime are row-equivalent, the integer programs
determined by them ought to be of the same computational difficulty. More precisely,
consider the following matrix B:

B =

\left(           

1 0 0 \cdot \cdot \cdot 0 0
 - 1 1 0 \cdot \cdot \cdot 0 0

 - 1 0 1
. . . 0 0

 - 1
...

. . .
. . .

. . . 0

 - 1 0 0
. . . 1 0

 - 1 0 0 \cdot \cdot \cdot 0 1

\right)           
.

Since A\prime = BA, it is possible to replace an integer program of the form (1) with an
integer program with a constraint matrix A\prime = BA, right-hand-side b\prime = Bb, and
bounds l\prime = l and u\prime = u, and solve this new instance of integer programming, which
has dual tree-depth two and the same set of feasible solutions.

In section 4, we first observe that the branch-depth of a matrix A is at most its
dual tree-depth, and we prove that the branch-depth of a matrix A is actually equal
to the minimum dual tree-depth of a matrix A\prime that is row-equivalent to A.

Theorem 1. Let A be a matrix over a (finite or infinite) field \BbbF . The branch-
depth of A is equal to the minimum dual tree-depth of any matrix A\prime that is row-
equivalent to A.

We use the tools developed to prove Theorem 1 together with existing results
on matroid branch-depth to obtain an algorithm that given a matrix A of small
branch-depth outputs a matrix B that transforms A to a row-equivalent matrix with
small dual tree-depth. The entry complexity of a matrix A, denoted by ec(A), is
the maximum length of the binary encoding of an entry Aij (the length of binary
encoding a rational number r = p/q with p and q being coprime is \lceil log2 (| p| + 1)\rceil +
\lceil (log2 | q| + 1)\rceil ). An algorithm is called fixed parameter if its running time for an
instance of size n is bounded by f(k)poly(n) where f : \BbbN \rightarrow \BbbN is a computable
function and k is a parameter determined by the instance.

Theorem 2. There exists an algorithm with running time polynomial in ec(A),
n and m that for an input m\times n integer matrix A and an integer d either

\bullet outputs that the branch-depth of A is larger than d, or
\bullet outputs an invertible rational matrix B \in \BbbQ m\times m such that the dual tree-depth
of BA is at most 4d and the entry complexity of BA is O(d22d ec(A)).
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Table 1
Comparison of algorithms presented in Theorems 2 and 3. The first line describes the depen-

dence on the parameter d, the second and the third the tree-depth and the entry complexity of the
constraint matrix output by the algorithm, and the last line time needed to solve the instance by the
algorithm of Eisenbrand et al. [13].

Algorithm from Theorem 2 Theorem 3

Hidden constant none 2ec(A)22
2d+2+O(d)

Tree-depth at most 22d d
Entry complexity O

\bigl( 
d22d ec(A)

\bigr) 
O

\bigl( 
d222d ec(A)

\bigr) 
IP algorithm constant 2

O

\biggl( 
ec(A)d2ec(A)d22d+22d+4d

\biggr) 
2
O

\biggl( 
ec(A)d32ec(A)d222d+3d

\biggr) 

However, we go further and design a fixed parameter algorithm for computing the
branch-depth of a vector matroid (Theorem 35) and use this algorithm to prove the
following strengthening of Theorem 2.

Theorem 3. There exists a fixed parameter algorithm parameterized by d and e
with running time polynomial in n and m that for an input m \times n integer matrix A
with entry complexity at most e and an integer d either

\bullet outputs that the branch-depth of A is larger than d, or
\bullet outputs an invertible rational matrix B \in \BbbQ m\times m such that the dual tree-depth
of BA is equal to the branch-depth of A and the entry complexity of BA
is O(d222d ec(A)).

While the algorithm in Theorem 2 runs in polynomial time, the output matrix can
have dual tree-depth (single) exponential in the minimum possible tree-depth; on the
other hand, the running time of the algorithm from Theorem 3 is triple exponential
in d but it always outputs a row-equivalent matrix with the minimum possible tree-
depth. Also see Table 1 for a comparison of the algorithms from Theorems 2 and
3.

As explained above, Theorems 2 and 3 allow us to perform row operations to
obtain an equivalent integer program with small dual tree-depth from an integer
program with small branch-depth. The function g depends on which of the theorems
is used to find the matrix B as displayed in Table 1. A proof of the corollary using
Theorem 2 is presented in section 5; a proof using Theorem 3 is completely the
same except that the obtained matrix A\prime has dual tree-depth at most d and its entry
complexity is as given in Table 1.

Corollary 4. Integer programming is fixed parameter tractable when parame-
terized by branch-depth and entry complexity, i.e., an integer program given as in
(1) can be solved in time polynomial in g(bd(A), ec(A)), n, ec(b), ec(l), and ec(u),
where bd(A) is the branch-depth of the matrix A and g : \BbbN 2 \rightarrow \BbbN is a computable
function.

We remark that the results of [13, 35] give a strongly fixed parameter algorithm,
i.e., an algorithm whose number of arithmetic operations does not depend on the size
of the numbers involved, if the objective function f is a linear function, and so the
algorithm from Corollary 4 is strongly polynomial in g(bd(A), ec(A)), and n when the
objective function is linear.

We note that the dependence of g on ec(A) and bd(A) is double and triple ex-
ponential, respectively, regardless of whether we use Theorem 2 or Theorem 3 to
prove Corollary 4. However, a rather pessimistic estimate on the entry complexity
of the integer matrix A\prime \prime was used in the proof of Corollary 4 and it is likely that
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the constraint matrix with a row-equivalent matrix with a significantly smaller dual
tree-depth likely outweighs the increase of the entry complexity since the parame-
ter dependence in the algorithm of [13], which is a refined version of the algorithm

from [35], is 2(ec(A)+tdD(A)) tdD(A)2tdD(A)

= 2ec(A)2O(tdD(A))
.

1.2. Structure of the paper. We now briefly describe how the paper is orga-
nized. In section 2, we introduce notation used in this paper, in particular the notions
of (dual) tree-depth and branch-depth of matrices, and provide the relevant back-
ground on matroids. We also give the definition of an extended depth-decomposition,
which is a depth-decomposition of a matroid enhanced with information on the struc-
ture of subspaces represented by branches of the decomposition. Section 3 is devoted
to proving a structural result on matroids, which establishes the existence of ex-
tended depth-decompositions with optimal depth. The results of section 3 are used
to prove that the branch-depth of a matrix is equal to the minimum tree-depth of a
row-equivalent matrix in section 4. We next apply these results in section 5 to prove
Theorem 2 and Corollary 4, which implies that integer programming is fixed param-
eter tractable when parameterized by the branch-depth and the entry complexity of
the constraint matrix.

The rest of the paper is devoted to computing optimal branch-depth of matroids
and matrices. As a preparation for proofs of our main results, we develop additional
tools to manipulate depth-decompositions of vector matroids in section 6. These tools
are used in section 7 to construct a dynamic programming algorithm for computing op-
timal branch-depth decompositions of matroids represented over finite fields. Finally,
in section 8, we use the algorithm from section 7 to design a fixed parameter algo-
rithm for computing optimal branch-depth decompositions of matroids represented
over rationals and for computing row-equivalent matrices with optimal branch-depth
(Theorem 35).

2. Notation. In this section, we fix the notation used throughout the paper,
present the notions of graph tree-depth and matroid branch-depth, and include rel-
evant results concerning them that we will need later. To avoid our presentation
becoming cumbersome through adding or subtracting one at various places, we define
the depth of a rooted tree to be the maximum number of edges on a path from the
root to a leaf, and define the height of a rooted tree to be the maximum number of
vertices on a path from the root to a leaf, i.e., the height of a rooted tree is always
equal to its depth plus one. The height of a rooted forest F is the maximum height of
a rooted tree in F . The depth of a vertex in a rooted tree is the number of edges on
the path from the root to that particular vertex; in particular, the depth of the root
is zero. The closure cl(F ) of a rooted forest F is the graph obtained by adding edges
from each vertex to all its descendants. Finally, the tree-depth td(G) of a graph G is
the minimum height of a rooted forest F such that the closure cl(F ) of the rooted
forest F contains G as a subgraph. It can be shown that the path-width of a graph G
is at most its tree-depth td(G) minus one, and in particular, the tree-width of G is
at most its tree-depth minus one (see, e.g., [9] for the definitions of path-width and
tree-width). As [32] is one of our main references, we would like to highlight that the
tree-depth as used in [32] is equal to the minimum depth of a rooted tree T such that
G \subseteq cl(T ); however, we here follow the definition of tree-depth that is standard.

The primal graph of anm\times nmatrixA is the graphGP (A) with vertices \{ 1, . . . , n\} ,
i.e., its vertices one-to-one correspond to the columns of A, where vertices i and j
are adjacent if A contains a row whose ith and jth entries are nonzero. The primal
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tree-depth tdP (A) of a matrix A is the tree-depth of its primal graph. Analogously,
the dual graph of A is the graph GD(A) with vertices \{ 1, . . . ,m\} , i.e., its vertices one-
to-one correspond to the rows of A, where vertices i and j are adjacent if A contains a
column whose ith and jth entries are nonzero. Note that the dual graph GD(A) is iso-
morphic to the primal graph of the matrix transpose AT . Finally, the dual tree-depth
of A, which is denoted by tdD(A), is the tree-depth of the dual graph GD(A).

Before introducing the notion of the branch-depth of a matroid, we review basic
definitions from matroid theory. A detailed introduction to matroid theory can be
found in one of the standard textbooks on the topic, e.g., [38], but we include a brief
overview of relevant concepts for completeness. A matroid M is a pair (X, \scrI ), where \scrI 
is a nonempty hereditary collection of subsets of X that satisfies the augmentation
axiom. More specifically, the collection \scrI is hereditary if \scrI contains all subsets of X \prime 

for every X \prime \in \scrI , and the augmentation axiom asserts that for all X \prime \in \scrI and X \prime \prime \in \scrI 
with | X \prime | < | X \prime \prime | , there exists an element x \in X \prime \prime \setminus X \prime such that X \prime \cup \{ x\} \in \scrI . The sets
contained in \scrI are referred to as independent. The rank r(X \prime ) of a set X \prime \subseteq X is the
maximum size of an independent subset ofX \prime ; the rank r(M) of a matroidM = (X, \scrI )
is the rank of X and an independent set of size r(M) is a basis of M . A circuit is a
set X \prime \subseteq X such that X \prime is not independent but every proper subset of X \prime is. Two
elements x and x\prime of X are said to be parallel if r(\{ x\} ) = r(\{ x\prime \} ) = r(\{ x, x\prime \} ) = 1,
and an element x is a loop if r(\{ x\} ) = 0.

Two particular examples of matroids are graphic matroids and vector matroids.
If G is a graph, then the pair (E(G), \scrI ) where \scrI contains all acyclic subsets of edges
of G is a matroid and is denoted by M(G); matroids of this kind are called graphic
matroids. If X is a set of vectors of a vector space and \scrI contains all subsets of X
that are linearly independent, then the pair (X, \scrI ) is a matroid; matroids of this kind
are vector matroids. In the setting of vector matroids, the rank of X \prime \subseteq X is the
dimension of the linear hull of X \prime . If (X, \scrI ) is a vector matroid, we write \scrL (X \prime )
for the linear hull of the vectors contained in X \prime \subseteq X and abuse the notation by
writing dimX \prime for dim\scrL (X \prime ).

In what follows, we will need a notion of a quotient of a vector space, which we
now recall. If A is a vector space and K a subspace of A, the quotient space A/K is a
vector space of dimension dimA - dimK obtained from A by considering cosets of A
given by K and inheriting addition and scalar multiplication from A; see, e.g., [22]
for further details. One can show that for every subspace K of A, there exists a
subspace B of A with dimension dimA - dimK such that each coset contains a single
vector from B, i.e., every vector w of A can be uniquely expressed as the sum of a
vector wB of B and a vector wK of K. We call the vector wB the quotient of w by K.
Note that the quotient of a vector is not uniquely defined by K; however, it becomes
uniquely defined when the subspace B, which intersects each coset at a single vector,
is fixed.

If M = (X, \scrI ) is a matroid and X \prime \subseteq X, then the restriction of M to X \prime , which
is denoted by M [X \prime ], is the matroid (X \prime , \scrI \cap 2X

\prime 
). The contraction of M by X \prime ,

which is denoted by M/X \prime , is the matroid with the elements X \setminus X \prime such that a
set X \prime \prime \subseteq X \setminus X \prime is independent in M/X \prime if and only if r(X \prime \prime \cup X \prime ) = | X \prime \prime | + r(X \prime ).
Analogously, if M = (X, \scrI ) is a vector matroid and K a subspace of the linear
hull of X, then the matroid M/K obtained by contracting along the subspace K
is the matroid whose elements are the vectors of X, with a subset X \prime \subseteq X being
independent in M/K if X \prime is linearly independent in the quotient space \scrL (X) /K.
Note that if X \prime \subseteq X, then M/X \prime is the matroid obtained by contracting along the
linear hull of X \prime and then restricting to the subset X \setminus X \prime .
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A matroid M is said to be connected if every two (distinct) nonloop elements
of M are contained in a circuit. A set X \prime \subseteq X of a matroid is a component of M if
it is an inclusionwise maximal subset of X such that the matroid M [X \prime ] is connected
and X \prime is loop-free. Equivalently, X \prime is a component of M if it is an inclusionwise
minimal nonempty subset of X such that r(X \prime )+ r(X \setminus X \prime ) = r(M). If M is a vector
matroid with rank at least one, then M is connected if and only if M has no loops
and there do not exist two vector spaces A and B such that A \cap B contains the zero
vector only, both A and B contains a nonloop element of M , and every element of M
is contained in A or B.

Since several algorithms presented in this paper work with matroids, we must fix
the way that the time complexity of algorithms involving matroids is measured. All
algorithms that we present work with vector matroids and we assume that matroids
are given by their vector representation. It is then possible to use standard linear
algebra algorithms to determine which subsets of the elements of such matroids are
independent. Hence, we say that an algorithm is polynomial time if its running time is
polynomial in the number of elements of the matroid and the complexity of its vector
representation. We remark that some of the algorithms that we use, in particular the
one in Theorem 8, are also polynomial in the more demanding setting when matroids
are given by the independence oracle, which we do not consider here.

A depth-decomposition of a matroid M = (X, \scrI ) is a pair (T, f), where T is a
rooted tree and f is a mapping from X to the leaves of T such that the number of
edges of T is the rank of M and the following holds for every subset X \prime \subseteq X: the
rank of X \prime is at most the number of edges contained in paths from the root to the
vertices f(x), x \in X \prime . The branch-depth bd(M) of a matroid M is the smallest depth
of a tree T that forms a depth-decomposition of M . For example, if M = (X, \scrI ) is
a matroid of rank r, T is a path with r edges rooted at one of its end vertices, and
f is a mapping such that f(x) is equal to the (nonroot) leaf of T for all x \in X, then
the pair (T, f) is a depth-decomposition of M . In particular, the branch-depth of
any matroid M is well-defined and is at most the rank of M . We remark that the
notion of matroid branch-depth given here is the one defined in [32]; another matroid
parameter, which is also called branch-depth but is different from the one that we use
here, is defined in [10]. Finally, the branch-depth bd(A) of a matrix A is the branch-
depth of the vector matroid formed by the columns of A. Since the vector matroid
formed by the columns of a matrix A and the vector matroid formed by the columns
of any matrix row-equivalent to A are the same, the branch-depth of A is invariant
under row operations.

Similarly to the relation between tree-depth of graphs and long paths, branch-
depth is related to the existence of long circuits in a matroid [32, Proposition 3.4].

Proposition 5. Let M be a matroid. If the branch-depth of M is d, then every
circuit of M has at most 2d elements.

Kardo\v s et al. [32] also established the following relations between the tree-depth
of a graph G and the branch-depth of the associated matroid M(G). It is worth
noting that Proposition 7 does not hold without the assumption on 2-connectivity
of a graph G: the tree-depth of an n-vertex path is \lfloor log2 n\rfloor ; however, its matroid is
formed by n - 1 independent elements, i.e., its branch-depth is one.

Proposition 6. For any graph G, the branch-depth of the graphic matroid M(G)
is at most the tree-depth of the graph G decreased by one.
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1

2

3

4

5

6

Fig. 1. An illustration of the definition of solid branches and branches at capacity. The picture
depicts the tree T of an extended depth-decomposition (T, f, g) such that the function g maps a
nonroot vertex labeled with i to the ith unit vector. If the f-preimage of the leaf of the branch of
T depicted by dashed edges is \{ (1, 1, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0)\} , then the
branch is at capacity (regardless of the structure of the matroid and the choice of f); however, if the
f-preimage is \{ (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0)\} , then the branch is not at capacity. If the f-preimage
is \{ (0, 0, 1, 1, 0, 0), (0, 1, 1, 0, 0, 0), (1, 0, 0, 1, 0, 0)\} , then the branch is solid, and if the f-preimage is
\{ (0, 0, 1, 0, 0, 0), (1, 0, 1, 0, 0, 0), (1, 0, 0, 1, 0, 0)\} , then the branch is not solid.

Proposition 7. For any 2-connected graph G, the branch-depth of the graphic
matroid M(G) is at least 1

2 log2(td(G) - 1).

Further properties of depth-decompositions and the branch-depth of matroids can
be found in [32].

An extended depth-decomposition of a vector matroid M = (X, \scrI ) is a triple
(T, f, g) such that (T, f) is a depth-decomposition of M and g is a bijective mapping
from the nonroot vertices of T to a basis of the linear hull of X that satisfies that every
element x \in X is contained in the linear hull of the g-image of the nonroot vertices on
the path from f(x) to the root of T . Note that g-images need not be elements of M in
general; if all g-images are elements of the matroid M , we say that an extended depth-
decomposition (T, f, g) is principal. Kardo\v s et al. [32, Corollary 3.17] designed an
algorithm that outputs an approximation of an optimal depth-decomposition, which
is a principal extended depth-decomposition; we state the result here for the case of
vector matroids.

Theorem 8. There exists a polynomial-time algorithm that given a vector ma-
troid M and an integer d either outputs that the branch-depth of M is larger than d
or outputs a principal extended depth-decomposition of M of depth at most 4d.

If (T, f, g) is an extended depth-decomposition and u is a vertex of T , then Ku is
the linear hull of the g-images of the vertices on the path from u to the root of T ; in
particular, if u is the root, then Ku contains the zero vector only. It will always be
clear from the context for which extended depth-decomposition of M the spaces Ku

are defined, in particular, the vertex u determines which rooted tree T is considered.
A branch of a rooted tree T is a subtree S rooted at a vertex u of T such that

u has at least two children, and the subtree S contains exactly u, one child u\prime of u,
and all descendants of u\prime . In particular, a rooted tree has a branch if and only if it
has a vertex with at least two children. A branch S is primary if every ancestor of
the root of S has exactly one child. Every rooted tree T that is not a rooted path
has at least two primary branches and all primary branches are rooted at the same
vertex. Let (T, f) be a depth-decomposition of a matroid M . We write \widehat S for the set
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root

u

S

T

root

u

S

T \prime 

Fig. 2. The trees T and T \prime from the statement of Lemma 10.

of elements of the matroid M mapped by f to the leaves of S and \| S\| for the number
of edges of S. Let S be a branch of T and S1, . . . , Sk be the other branches with the
same root. The branch S is at capacity if

r
\Bigl( 
X \setminus 

\Bigl( \widehat S1 \cup \cdot \cdot \cdot \cup \widehat Sk

\Bigr) \Bigr) 
= r(M) - \| S1\|  - \| S2\|  - \cdot \cdot \cdot  - \| Sk\| ,

where X is the set of all elements of the matroid M (see Figure 1 for an illustration).

Note that if S is primary, then the left side of the equality is r(\widehat S) and the right side
is h+ \| S\| , where h is the depth of the root of S. In particular, a primary branch S

is at capacity if and only if the rank of \widehat S is equal to the sum of \| S\| and h, i.e., if and
only if the rank inequality from the definition of a depth-decomposition holds with
equality for the set \widehat S. Finally, if (T, f, g) is an extended depth-decomposition of M ,

we say that a branch S rooted at a vertex u is solid if the matroid (M/Ku)[\widehat S] after
removal of its loops is connected, and that (T, f, g) is solid if all of its branches are;
again, an illustration can be found in Figure 1.

3. Optimal extended depth-decompositions. The goal of this section is to
show that every vector matroid has an extended depth-decomposition with depth
equal to its branch-depth. To do so, we start with showing that branches rooted at
the root of a decomposition tree are always at capacity.

Lemma 9. Let (T, f) be a depth-decomposition of a vector matroid M . If T has
a branch S rooted at the root of T , then S is at capacity.

Proof. Suppose that a branch S rooted at the root of T is not at capacity. This
implies that dim \widehat S < \| S\| . Let X \prime be the set of elements of M that are not contained

in \widehat S. By the definition of a depth-decomposition, dimX \prime is at most r(M)  - \| S\| .
However, the submodularity of the dimension implies that dim \widehat S \cup X \prime < r(M), which
is impossible.

The following lemma is a core of our argument that every matroid has a depth-
decomposition of optimal depth such that each primary branch is at capacity. An
illustration of the operation described in the statement of the lemma is given in
Figure 2.

Lemma 10. Let (T, f) be a depth-decomposition of a vector matroid M . Assume
that T contains a primary branch S that is not at capacity. Let u be the root of S,
and let T \prime be the rooted tree obtained from T by changing the root of S to be the parent
of u. Then, (T \prime , f) is a depth-decomposition of M .
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Proof. By Lemma 9, u has a parent and thus T \prime is well-defined. Let X be the set
of elements of M and fix a subset X \prime of X. We need to show that dimX \prime is at most
the number e0 of edges on the paths in T \prime from the vertices in the f -image of X \prime to
the root. If X \prime contains an element of X \setminus \widehat S, then the number of such edges is the
same in the trees T and T \prime and the inequality follows from the fact that (T, f) is a

depth-decomposition of M . Hence, we will assume that X \prime is a subset of \widehat S. Observe
that collectively the primary branches of T different from S contain r(M) - h - \| S\| 
edges, where h is the depth of u. We derive using the fact that (T, f) is a depth-
decomposition the following:

e0 + 1 + (r(M) - h - \| S\| ) \geq dimX \prime \cup (X \setminus \widehat S)
= dimX \prime + dimX \setminus \widehat S  - dim\scrL (X \prime ) \cap \scrL 

\Bigl( 
X \setminus \widehat S\Bigr) 

\geq dimX \prime + dimX \setminus \widehat S  - dim\scrL 
\Bigl( \widehat S\Bigr) \cap \scrL 

\Bigl( 
X \setminus \widehat S\Bigr) 

= dimX \prime + dimX \setminus \widehat S  - (dim \widehat S + dimX \setminus \widehat S  - dimX)

= dimX \prime  - dim \widehat S + r(M).

This implies that dimX \prime is at most

e0 + dim \widehat S + 1 - h - \| S\| \leq e0,

where the inequality follows using that S is not at capacity, i.e., dim \widehat S < h + \| S\| .
Hence, (T \prime , f) is a depth-decomposition of M .

We can now show that every matroid has a depth-decomposition of optimal depth
such that each primary branch is at capacity. We state the next two lemmas and
the theorem that follows them for an arbitrary depth-decomposition (T, f), i.e., a
depth-decomposition of not necessarily optimal depth, since we will need to apply the
algorithmic arguments used in their proofs for arbitrary depth-decompositions later.

Lemma 11. Let (T, f) be a depth-decomposition of a vector matroid M = (X, \scrI )
of depth d. There exists a depth-decomposition of M of depth at most d such that
every primary branch is at capacity.

Proof. If T is a rooted path, then the lemma holds vacuously. Suppose that T
is not a rooted path. If all primary branches of (T, f) are at capacity, then we are
done. If not, we consider a primary branch of T that is not at capacity and apply
Lemma 10 to obtain a depth-decomposition (T \prime , f). If all primary branches of (T \prime , f)
are at capacity, then we are done. If not, we consider a primary branch of T \prime that is
not at capacity and iterate the process. Note that at each iteration, the sum of the
lengths of the paths from the leaves to the root decreases, so the process eventually
stops with a depth-decomposition such that all its primary branches are at capacity.

Now we analyze depth-decompositions whose primary branches are at capacity.

Lemma 12. Let (T, f) be a depth-decomposition of a vector matroid M = (X, \scrI )
such that T is not a rooted path and each primary branch of T is at capacity. Let
S1, . . . , Sk be the primary branches of T , and let A1, . . . , Ak be the linear hulls of\widehat S1, . . . ,\widehat Sk, respectively. Further, let h be the depth of the common root of S1, . . . , Sk

in T . There exists a subspace K of dimension h such that Ai \cap Aj = K for all 1 \leq 
i < j \leq k.

Proof. Consider i and j such that 1 \leq i < j \leq k. Since Si is at capacity,
we obtain that dim \widehat Si = dimAi = h + \| Si\| . Analogously, it holds that dim\widehat Sj =
dimAj = h+ \| Sj\| . Since (T, f) is a depth-decomposition, we deduce that
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h+ \| Si\| + \| Sj\| \geq dimAi \cup Aj

= dimAi + dimAj  - dimAi \cap Aj

= (h+ \| Si\| ) + (h+ \| Sj\| ) - dimAi \cap Aj ,

which implies that dimAi \cap Aj \geq h. On the other hand, it holds that

dimAi \cap Aj \leq dimAi \cap \scrL 

\left(  \bigcup 
j\prime \not =i

Aj\prime 

\right)  
= dimAi + dim

\bigcup 
j\prime \not =i

Aj\prime  - dimAi \cup 
\bigcup 
j\prime \not =i

Aj\prime 

= h+ \| Si\| + dim
\bigcup 
j\prime \not =i

Aj\prime  - h - 
k\sum 

j\prime =1

\| Sj\prime \| 

\leq h+ \| Si\| + h+
\sum 
j\prime \not =i

\| Sj\prime \|  - h - 
k\sum 

j\prime =1

\| Sj\prime \| = h.

We conclude that dimAi \cap Aj = h. This implies that the first inequality in the
expression above holds with equality, so

(2) Ai \cap \scrL 

\left(  \bigcup 
j\prime \not =i

Aj\prime 

\right)  = Ai \cap Aj = Aj \cap Ai = Aj \cap \scrL 

\left(  \bigcup 
i\prime \not =j

Ai\prime 

\right)  ,

where the last step follows by the same argument above with indices i and j swapped.
Since the left-hand side of (2) is independent of the choice of j and the right-hand
side is independent of the choice of i, it must hold that Ai \cap Aj is independent of the
choice of both i and j. This intersection forms the required space K of dimension h.

We are now ready to prove the main theorem of this section.

Theorem 13. Let (T, f) be a depth-decomposition of a vector matroid M =
(X, \scrI ) of depth d. There exists an extended depth-decomposition of M of depth at
most d.

Proof. The proof proceeds by induction on the rank of M . If T is a rooted path,
we assign elements of a basis of \scrL (X) to the nonroot vertices of T arbitrarily, i.e.,
we choose g to be any bijection to a basis of \scrL (X), which yields an extended depth-
decomposition (T, f, g) of M . Note that if the rank of M is one, then T is the one-edge
rooted path, i.e., this case covers the base of the induction in particular.

We assume that T is not a rooted path for the rest of the proof. By Lemma 11,
we can assume that all primary branches of T are at capacity. Let S1, . . . , Sk be the
primary branches of T , and let h \geq 0 be the depth of the common root of S1, . . . , Sk.
By Lemma 12, there exists a subspace K of dimension h such that the intersection of
linear hulls of \widehat Si and \widehat Sj is K for all 1 \leq i < j \leq k; let b1, . . . , bh be an arbitrary basis
of K.

We define Mi, i = 1, . . . , k, to be the matroid such that the elements of Mi are \widehat Si

and X \prime \subseteq \widehat Si is independent if and only if the elements X \prime \cup \{ b1, . . . , bh\} are linearly

independent. In particular, the rank of X \prime \subseteq \widehat Si in Mi is equal to dimX \prime \cup K  - h.
The matroid Mi can be viewed as obtained by taking the vector matroid with the
elements \widehat Si \cup \{ b1, . . . , bh\} and contracting the elements b1, . . . , bh. In particular, Mi
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is a vector matroid, and the vector representation of Mi can be obtained from \widehat Si by
taking quotients by K. Note that the rank of Mi is dim \widehat Si \cup K  - h, i.e., its rank is
smaller than the rank of M and we will be able to eventually apply induction to it.

Let fi be the restriction of f to \widehat Si. We claim that (Si, fi) is a depth-decomposition

of Mi. Let X \prime be a subset of \widehat Si, and let ei be the number of edges contained in the
union of paths from the elements fi(x), x \in X \prime , to the root of Si. By the definition
of Mi, the rank of X \prime in Mi is equal to dimX \prime \cup K  - h. Choose an arbitrary j \not = i,
1 \leq j \leq k. Since the intersection of linear hulls of \widehat Si and \widehat Sj is K, (T, f) is a depth-

decomposition of M , and the branch Sj is at capacity, i.e., dim\widehat Sj = \| Sj\| + h, we
obtain that the rank of X \prime in Mi is equal to

dimX \prime \cup K  - h = dimX \prime \cup \widehat Sj  - dim\widehat Sj

\leq ei + \| Sj\| + h - dim\widehat Sj = ei.

Hence, (Si, fi) is a depth-decomposition of Mi.
We apply induction to each matroid Mi and its depth-decomposition (Si, fi),

i = 1, . . . , k, to obtain extended depth-decompositions (S\prime 
i, f

\prime 
i , gi) of Mi such that the

depth of S\prime 
i is at most the depth of Si. Let T

\prime be a rooted tree obtained from a rooted
path of length h by identifying its nonroot end with the roots of S\prime 

1, . . . , S
\prime 
k. Observe

that the depth of T \prime does not exceed the depth of T . Further, let f \prime be the unique
function from X to the leaves of T such that the restriction of f \prime to the elements of Mi

is f \prime 
i . Finally, let g be any function from the nonroot vertices of T such that the h

nonroot vertices of the path from the root are mapped by g to the vectors b1, . . . , bh
by g and g(v) = gi(v) for every nonroot vertex v of Si.

We claim that (T \prime , f \prime , g) is an extended depth-decomposition of M . We first
verify that, for every x \in X, f \prime (x) is contained in the linear hull of the g-image of
the nonroot vertices on the path from f \prime (x) to the root. Fix x \in X and let i be

such that x \in \widehat Si. Since (S\prime 
i, f

\prime 
i , gi) is an extended depth-decomposition of Mi, x is

contained in the linear hull of K and the gi-images of the nonroot vertices on the
path from f \prime (x) = fi(x) to the root of S\prime 

i. Hence, x is contained in the linear hull of
the g-image of the nonroot vertices on the path from f \prime (x) to the root of T \prime .

Consider now an arbitrary subset X \prime \subseteq X. We have already established that all
elements of X \prime are contained in the linear hull of the g-image of the nonroot vertices
on the paths from f \prime (x), x \in X \prime , to the root of T \prime . Since the dimension of this linear
hull is at most the number of nonroot vertices on such paths, which is equal to the
number of edges on the paths, it follows that (T \prime , f \prime ) is a depth-decomposition of M .

4. Optimal tree-depth of a matrix. In this section, we relate the optimal
dual tree-depth of a matrix A to its branch-depth. We start with showing that the
branch-depth of a matrix A is at most its dual tree-depth.

Proposition 14. If A is an m\times n matrix, then bd(A) \leq tdD(A).

Proof. We assume without loss of generality that the rows of the matrix A are
linearly independent. Indeed, deleting a row of A that can be expressed as a linear
combination of other rows of A does not change the structure of the matroid formed
by the columns of A. In particular, the branch-depth of A is preserved by deleting
such a row, and the deletion cannot increase the tree-depth of the dual graph GD(A)
(the dual graph of the new matrix is a subgraph of the original dual graph and the
tree-depth is monotone under taking subgraphs).

Let X be the set of rows of the matrix A and Y be the set of its columns. Further,
let T be a rooted forest of height tdD(A) with the vertex set X such that its closure
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contains the dual graph GD(A) as a subgraph. Consider the rooted tree T \prime obtained
from T by adding a new vertex w, making w adjacent to the roots of all trees in T and
also making w to be the root of T \prime . Since the rows of A are linearly independent, the
number of edges of T \prime is equal to the row rank of A, which is the same as its column
rank. In particular, the number of edges of T \prime is the rank of the vector matroid formed
by the columns of A.

We next define a function f : Y \rightarrow V (T \prime ) such that the pair (T \prime , f) is a depth-
decomposition of the vector matroid formed by the columns of A. Let y be a column
of A, and observe that all rows x such that the entry in the row x and the column y
is nonzero form a complete subgraph of the dual graph GD(A). Hence they must lie
on some path from a leaf to the root of T \prime ; set f(y) to be any such leaf.

Since the depth of T \prime is tdD(A) (the height of T \prime is tdD(A) + 1), the proof will
be completed by showing that (T \prime , f) is a depth-decomposition of the vector matroid
formed by the columns of A. Consider a subset Y \prime \subseteq Y of columns of A and let X \prime 

be the set of rows (vertices of the dual graph) on the path from f(y) for some y \in Y \prime 

to the root of T \prime . Note that | X \prime | is equal to the number of edges contained in such
paths. The definition of f yields that every column y \in Y \prime has nonzero entries only
in the rows x such that x \in X \prime . Hence, the rank of Y \prime is at most | X \prime | . It follows
that the pair (T \prime , f) is a depth-decomposition of the vector matroid formed by the
columns of A.

We next prove the main theorem of this section.

Theorem 15. Let A be an m\times n matrix of rank m, let M be the vector matroid
formed by columns of A, and let (T, f, g) be an extended depth-decomposition of M .
Further, let Im(g) = \{ w1, . . . , wm\} . The dual tree-depth of the m\times n matrix A\prime such
that the jth column of A is equal to

m\sum 
i=1

A\prime 
ijwi

is at most the depth of the tree T .

Proof. Let F be the rooted forest obtained from T by removing the root and
associate the ith row of A\prime with the vertex v of F such that g(v) = wi. Note that
the height of F is the depth of T . We will establish that the dual graph GD(A\prime )
is contained in the closure cl(F ) of the forest F . Let i and i\prime , 1 \leq i < i\prime \leq m, be
such that the vertices of F associated with the ith and i\prime th rows of A\prime are adjacent
in GD(A\prime ). This means that there exists j, 1 \leq j \leq n, such that A\prime 

ij \not = 0 and A\prime 
i\prime j \not = 0.

Let v be the leaf of T that is the f -image of the jth column of A. The definition of an
extended depth-decomposition yields that the jth column is a linear combination of
the g-image of the nonroot vertices on the path from v to the root of T . In particular,
the path contains the two vertices of T mapped by g to wi and wi\prime ; these two vertices
are associated with the ith and i\prime th rows of A\prime . Hence, the vertices associated with
the ith and i\prime th rows are adjacent in cl(F ). We conclude that GD(A\prime ) is a subgraph
of cl(F ).

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let td\ast D(A) be the smallest dual tree-depth of a matrix that
is row-equivalent to A. By Proposition 14, it holds that bd(A) \leq td\ast D(A). We now
prove the other inequality. We can assume without loss of generality that the rank
of A is equal to the number of its rows; if this is not the case, we can apply the
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following arguments to the matrix A restricted to a maximal linearly independent set
of rows and then use row operations to make all entries of the remaining rows to be
equal to zero. Since rows with all entries equal to zero correspond to isolated vertices
in the dual graph, their presence does not affect the dual tree-depth of the matrix.

Let M be the vector matroid formed by the columns of A. By Theorem 13,
the matroid M has an extended depth-decomposition (T, f, g) with depth bd(A) =
bd(M). Let A\prime be the matrix from the statement of Theorem 15. Note that A\prime =
B - 1A where B is the m \times m matrix such that the columns of B are the vec-
tors w1, . . . , wm from the statement of Theorem 15. In particular, A\prime is row-equivalent
to A since \{ w1, . . . , wm\} is a basis. As tdD(A\prime ) is at most the depth of T , which
is bd(A), it follows that td\ast D(A) \leq bd(A).

5. Algorithms for integer programming. The main purpose of this section
is to combine Theorem 1 with the existing approximation algorithm for branch-depth
(Theorem 8) to obtain an approximation algorithm for computing a row-equivalent
matrix with small dual tree-depth (if it exists).

Proof of Theorem 2. Let A be anm\times nmatrix. Without loss of generality, we can
assume that the rows of A are linearly independent, i.e., the rank of A is m. This also
implies that the rank of the column space of A is m, in particular, n \geq m. We apply
the approximation algorithm described in Theorem 8 to the vector matroid M formed
by the columns of the matrix A, and obtain an extended depth-decomposition (T, f, g)
of M . If the depth of T is larger than 4d, then the branch-depth of A is larger than d;
we report this and stop. Let Bg be the matrix with the columns formed by the vectors
in Im(g) and let B = B - 1

g . Note that the matrix A\prime from the statement of Theorem 15

is equal to BA. By Theorem 15, the dual tree-depth of A\prime is at most 4d.
We will next show that the entry complexity of A\prime is at most O(d\cdot 4d \cdot ec(A)). Note

that the classical implementation of the Gaussian elimination in strongly polynomial
time by Edmonds [12] yields that the entry complexity of the matrix B is O(m logm \cdot 
ec(A)) and this estimate is not sufficient to bound the entry complexity of A\prime in
the way that we need. Let x be a column of A, and let W be the set of indices i,
1 \leq i \leq m, such that the ith column of Bg is g(v) for some nonroot vertex v on
the path from f(x) to the root of T . Note that | W | \leq 4d since the depth T is
at most 4d. Since the column x is a linear combination of the g-images of nonroot
vertices on the path from f(x) to the root of T , the ith entry of the column of A\prime 

that corresponds to x is zero if i \not \in W . The remaining | W | entries of this column
of A\prime form a solution of the following system of at most 4d linear equations: the
system is given by a matrix obtained from Bg by restricting Bg to the columns with
indices in W and to | W | rows such that the resulting matrix has rank | W | , and
the right-hand side of the system is formed by the entries of the column x in A
corresponding to these | W | rows. It follows (using Cramer's rule for solving systems
of linear equations involving determinants) that a solution of this system has entry
complexity at most O(log(4d)! \cdot ec(A)) = O(d \cdot 4d \cdot ec(A)). Hence, the entry complexity
of the matrix A\prime = BA, after dividing the numerator and the denominator of each
entry by their greatest common divisor, is O(d \cdot 4d \cdot ec(A)).

As explained in section 1, Theorem 2 yields Corollary 4, which asserts that integer
programming is fixed parameter tractable when parameterized by the branch-depth
and the entry complexity of the constraint matrix.

Proof of Corollary 4 using Theorem 2. Consider an integer program as in (1)
that has branch-depth at most d. We apply the algorithm from Theorem 2 to obtain
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a rational matrix B such that the instance with A\prime = BA, b\prime = Bb, l\prime = l, and u\prime = u
has dual tree-depth D at most 4d in case of Theorem 2.

To apply the algorithm from [13], we need to transform the matrix A\prime into an
integer matrix. We do so by multiplying each row by the least common multiple of
the denominators of the fractions in this row. Since all denominators are integers

between 1 and 2ec(A
\prime ), the value of this least common multiple is at most 2ec(A

\prime )2ec(A
\prime )
.

Hence, the entry complexity of the resulting integer matrix A\prime \prime is O(ec(A\prime )2ec(A
\prime )).

Since the dependence of the algorithm from [13] on the entry complexity ec(A\prime \prime ) and

the dual tree-depth D of A\prime \prime is 2(ec(A
\prime \prime )+D)D2D , we obtain that the running time of

the resulting algorithm depends on ec(A) and d as given in Table 1.

We complement Corollary 4 by showing that integer programming is not fixed
parameter tractable when parameterized by the ``primal"" branch-depth.

Proposition 16. Integer programming is \sansN \sansP -hard for instances with constraint
matrices A satisfying bd(AT ) = 1 and ec(A) = 1, i.e., for instances such that the
vector matroid formed by rows of the constraint matrix has branch-depth one.

Proof. An integer program as in (1) such that the rows of the matrix A are not
linearly independent is equivalent to an integer program with a matrix A\prime obtained
from A by a restriction to a maximal linearly independent set of rows unless the
rank of the matrix A with the column b added is larger than the rank of A; in the
latter case, the integer program is infeasible. Hence, it is possible in polynomial
time either to determine that the input integer program is infeasible or to find an
equivalent integer program such that the rows of the constraint matrix are linearly
independent and the matrix is a submatrix of the original constraint matrix. However,
the branch-depth of the matroid formed by rows of such a (nonzero) matrix is one.
Since integer programming is already \sansN \sansP -hard for instances such that all the entries
of the constraint matrix are 0 or \pm 1 (cf. [13, Proposition 101, part 2]), the proposition
follows.

6. Structure of extended depth-decompositions. In this section, we pres-
ent structural results on extended depth-decompositions that we need to design a
fixed parameter algorithm to compute a depth-decomposition of a vector matroid
with an optimal depth. We start with the following lemma, which can be viewed as
a generalization of Lemma 12; indeed, if the set U in the statement contains only the
common root of the primary branches, then the statement of the lemma is the same
as that of Lemma 12.

Lemma 17. Let (T, f) be a depth-decomposition of a vector matroid M and let U
be a set of vertices of T such that every vertex contained in U has at least two children
and every ancestor u\prime of a vertex in U such that u\prime has at least two children is also
contained in U . Assume that every branch of T rooted at a vertex from U is at
capacity.

Then, every vertex u \in U can be associated with a subspace Lu of the linear hull
of the elements of M such that the dimension of Lu is the depth of u and the following
holds. Let S1, . . . , Sk be all branches rooted at u. If each ancestor of u has a single
child, let L0 be the vector space containing the zero vector only; otherwise, let u\prime be
the nearest ancestor of u with at least two children, and let L0 be the space Lu\prime . It
holds that
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A\prime 
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1

S\prime 
2

S\prime 
1

Fig. 3. Notation used in the proof of Lemma 17.

dim \widehat Si \cup L0 = \| Si\| + dimLu and \scrL 
\Bigl( \widehat Si \cup L0

\Bigr) 
\cap \scrL 

\Bigl( \widehat Sj \cup L0

\Bigr) 
= Lu

for all 1 \leq i < j \leq k. In particular, L0 \subseteq Lu.

Proof. We proceed by induction on the size of U . If U is empty, the lemma
vacuously holds. Suppose that | U | = 1 and let u be the only vertex contained in U .
By the assumption of the lemma, every branch rooted at u is primary. Hence, the
statement of the lemma is implied by Lemma 12 and the fact that each branch rooted
at u is at capacity.

Suppose that | U | \geq 2, and let u be any vertex of U with no descendant in U .
Apply induction to the set U \setminus \{ u\} to get subspaces Lu\prime , u\prime \in U \setminus \{ u\} , with properties
given in the statement of the lemma. Let S1, . . . , Sk be all branches rooted at u, and
let A1, . . . , Ak be the linear hulls of \widehat S1, . . . ,\widehat Sk, respectively. Further, let u1, . . . , u\ell 

be all the vertices with at least two children on the path from the parent of u to the
root (in this order), and let h1, . . . , h\ell , be the depth of u1, . . . , u\ell , respectively. See
Figure 3 for an illustration of the notation. Note that \{ u1, . . . , u\ell \} \subseteq U ; the choice
of u implies that \ell \geq 1. Let S\prime 

i, i = 1, . . . , \ell , be the branch rooted at ui that contains u
and A\prime 

i be the linear hull of the elements assigned to leaves of the branches rooted

at ui different from S\prime 
i. Note that \widehat S\prime 

1 = \widehat S1 \cup \cdot \cdot \cdot \cup \widehat Sk.
Set Li = Lui

for i = 1, . . . , \ell and also set L\ell +1 to be the vector space containing
the zero vector only. Note that L\ell +1 \subseteq L\ell \subseteq \cdot \cdot \cdot \subseteq L1 and the dimension of Li

is hi for i = 1, . . . , \ell ; the space L1 is the vector space L0 from the statement of
the lemma with respect to u. The following holds by the induction assumption for
every i = 1, . . . , \ell : if R is a branch rooted at the vertex ui, then

(3) dim \widehat R \cup Li+1 = dimLi + \| R\| ,

and if R\prime is another branch rooted at the vertex ui, then

(4) \scrL 
\Bigl( \widehat R \cup Li+1

\Bigr) 
\cap \scrL 

\Bigl( \widehat R\prime \cup Li+1

\Bigr) 
= Li.

The identity (3) for i = 1 and R = S\prime 
1 yields that

(3') dimL2 \cup \widehat S\prime 
1 = dimL1 + \| S\prime 

1\| .

Using (4) iteratively for i = \ell , . . . , 1, we obtain the following; the iterative argument

uses that \widehat S\prime 
i \cup A\prime 

i \subseteq \scrL 
\Bigl( \widehat S\prime 

i+1

\Bigr) 
,
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Li \subseteq \scrL (A\prime 
i \cup Li+1) \subseteq \cdot \cdot \cdot \subseteq \scrL (A\prime 

i \cup \cdot \cdot \cdot \cup A\prime 
\ell ) ,(5)

\scrL 
\Bigl( \widehat S\prime 

i \cup Li+1

\Bigr) 
\cap \scrL (A\prime 

i \cup Li+1) = Li,

\scrL 
\Bigl( \widehat S\prime 

i \cup Li+1

\Bigr) 
\cap \scrL (A\prime 

i \cup \cdot \cdot \cdot \cup A\prime 
\ell ) = Li.(6)

Let A\prime be the linear hull of A\prime 
i \cup \cdot \cdot \cdot \cup A\prime 

\ell . The relations (5) and (6) yield for i = 1 the
following:

L1 \subseteq \scrL (A\prime 
1 \cup \cdot \cdot \cdot \cup A\prime 

\ell ) = A\prime ,(5')

\scrL 
\Bigl( \widehat S\prime 

1

\Bigr) 
\cap A\prime \subseteq L1.(6')

Now we obtain using (6) that

(7) dimA\prime 
i \cup \cdot \cdot \cdot \cup A\prime 

\ell = r(M) - \| S\prime 
i\| .

This implies for i = 1 that

(7') dimA\prime = r(M) - \| S\prime 
1\| .

The lemma requires establishing the existence of a vector space Lu such that

dimAi \cup L1 = \| Si\| + dimL1 + h and \scrL (Ai \cup L1) \cap \scrL (Aj \cup L1) = Lu

for all 1 \leq i < j \leq k and such that the dimension of Lu is dimL1 + h, where h is the
distance between u and u1. Since every branch rooted at u is at capacity, we obtain
using (7') that

(8) dimAi \cup A\prime = r(M) - (\| S\prime 
1\|  - h - \| Si\| ) = dimA\prime + h+ \| Si\| 

for every i = 1, . . . , k. Since every Ai is a subspace of \scrL 
\Bigl( \widehat S\prime 

1

\Bigr) 
, we derive from (5'),

(6'), and (8) that

dimAi \cup L1 = dim(Ai \cup A\prime ) + dim(\scrL (Ai \cup L1) \cap A\prime ) - dim(A\prime )

= dimL1 + h+ \| Si\| .(9)

Since (T, f) is a depth-decomposition, it holds that

(10) dimA\prime \cup 
\bigcup 
j\in J

Aj \leq r(M) - \| S\prime 
1\| + h+

\sum 
j\in J

\| Sj\| = dimA\prime + h+
\sum 
j\in J

\| Sj\| 

for all J \subseteq \{ 1, . . . , k\} , and analogously to the proof of (9), we derive from (10) that

(11) dimL1 \cup 
\bigcup 
j\in J

Aj \leq dimL1 + h+
\sum 
j\in J

\| Sj\| .

We now obtain using (9) and (11) for J = \{ i, j\} that

dimL1 + h+ \| Si\| + \| Sj\| 
\geq dimAi \cup Aj \cup L1

= dimAi \cup L1 + dimAj \cup L1  - dim\scrL (Ai \cup L1) \cap \scrL (Aj \cup L1)

= 2 dimL1 + 2h+ \| Si\| + \| Sj\|  - dim\scrL (Ai \cup L1) \cap \scrL (Aj \cup L1)
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for all 1 \leq i < j \leq k. It follows that

(12) dim\scrL (Ai \cup L1) \cap \scrL (Aj \cup L1) \geq dimL1 + h

for all 1 \leq i < j \leq k. On the other hand, it holds using (3'), (9), and (11) applied
for J = \{ 1, . . . , k\} \setminus \{ i\} that

dim\scrL (Ai \cup L1) \cap \scrL (Aj \cup L1)

\leq dim\scrL (Ai \cup L1) \cap \scrL 

\left(  L1 \cup 
\bigcup 
j\prime \not =i

Aj\prime 

\right)  
= dimAi \cup L1 + dimL1 \cup 

\bigcup 
j\prime \not =i

Aj\prime  - dimL1 \cup \widehat S\prime 
1

\leq dimL1 + h+ \| Si\| + dimL1 + h+
\sum 
j\prime \not =i

\| Sj\prime \|  - dimL1  - \| S\prime 
1\| 

= dimL1 + h.

We conclude that equality always holds in (12). Hence, there exists a subspace Lu of
dimension dimL1 + h such that

dimAi \cup L1 = \| Si\| + dimL1 + h = \| Si\| + dimLu and

\scrL (Ai \cup L1) \cap \scrL (Aj \cup L1) = Lu

for all 1 \leq i < j \leq k.

Using Lemma 17, we prove the following.

Lemma 18. Let (T, f) be a depth-decomposition of a vector matroid M , u1 a
vertex of T with at least two children, and u2, . . . , uk all ancestors of u1 with at least
two children (listed in the increasing distance from u1). Assume that every branch
rooted at one the vertices u1, . . . , uk is at capacity, and let L1 be the space Lu1

from
the statement of Lemma 17 applied with U = \{ u1, . . . , uk\} . Further, let S1 be any

branch rooted at u1 and f1 the restriction of f to \widehat S1.
The pair (S1, f1) is a depth-decomposition of the vector matroid (M/L1)[\widehat S1] and

a branch of (S1, f1) is at capacity if and only if it is at capacity in (T, f). In addition,

if (S\prime 
1, f

\prime 
1) is another depth-decomposition of the matroid (M/L1)[\widehat S1], then (T \prime , f \prime ) is

a depth-decomposition of the matroid M , where T \prime is obtained from T by replacing S1

with S\prime 
1, and the function f \prime is defined as f \prime (x) = f \prime 

1(x) for x \in \widehat S1, and f \prime (x) = f(x)
otherwise.

Proof. Let X be the set of elements of M , let A1 be the linear hull of \widehat S1, and
let A\prime 

1 be the linear hull of X \setminus \widehat S1. By Lemma 17, it holds that

(13) A1 \cap A\prime 
1 \subseteq L1 and L1 \subseteq A\prime 

1.

It follows that the matroids (M/L1)[\widehat S1] and (M/A\prime 
1)[

\widehat S1] are the same. In addition,
since all branches rooted at u1, . . . , uk are at capacity, it also holds that dimA\prime 

1 =
dimM  - \| S1\| by (7').

Instead of verifying that (S1, f1) is a depth-decomposition of (M/L1)[\widehat S1], we

verify that (S1, f1) is a depth-decomposition of (M/A\prime 
1)[

\widehat S1], which is equivalent since

the two matroids are the same. Let X \prime be any subset of \widehat S1 and let e be the number of
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edges on the paths from the f1-image of X \prime to the root of S1. Since (T, f) is a depth
decomposition of the matroid M , we obtain that

dimX \prime \cup A\prime 
1 = dimX \prime \cup 

\Bigl( 
X \setminus \widehat S1

\Bigr) 
\leq dimM  - \| S1\| + e.

Since the rank of the set X \prime in (M/A\prime 
1)[

\widehat S1] is dimX \prime \cup A\prime 
1  - dimA\prime 

1 and dimA\prime 
1 =

dimM  - \| S1\| , we obtain that the rank of X \prime in (M/A\prime 
1)[

\widehat S1] is at most e as desired.

Hence, (S1, f1) is a depth-decomposition of (M/L1)[\widehat S1].
Let S be a branch of S1 rooted at a vertex u, let X \prime be the elements assigned

to the leaves of the other branches rooted at u, and let e\prime be the number of edges
contained in the other branches rooted at u. The branch S is at capacity in the depth-
decomposition (S1, f1) of the matroid (M/L1)[\widehat S1] if and only if the rank of \widehat S1 \setminus 
X \prime in the matroid (M/L1)[\widehat S1] is \| S1\|  - e\prime . The rank of the set \widehat S1 \setminus X \prime in the

matroid (M/L1)[\widehat S1] is equal to dim(\widehat S1 \setminus X \prime )\cup L1 - dimL1, which is equal to dim(\widehat S1 \setminus 
X \prime )\cup A\prime 

1 - dimA\prime 
1 by (13). Since dimA\prime 

1 = dimM  - \| S1\| , we infer that the branch S

is at capacity in the depth-decomposition (S1, f1) of the matroid (M/L1)[\widehat S1] if and

only if dim(\widehat S1 \setminus X \prime )\cup A\prime 
1 is dimM  - e\prime . The latter holds if and only if S is at capacity

in the depth-decomposition (T, f) of the matroid M .
It remains to prove the last part of the lemma. We proceed by induction of k.

The base case is k = 1, i.e., the case when the branch S1 is primary. Let (S\prime 
1, f

\prime 
1) be

another depth-decomposition of the matroid (M/L1)[\widehat S1], and let (T \prime , f \prime ) be obtained
as described in the statement of the lemma. Denote by S2, . . . , S\ell the remaining
branches rooted at u1. Let X

\prime be any subset of the elements of M , let ei, i = 1, . . . , \ell ,
be the number of edges on the paths from the vertices in the f \prime -image of X \prime \cap \widehat Si to u1,
and let fi, i \geq 2 be the restriction of f to \widehat Si. Since (S\prime 

1, f
\prime 
1) is a depth-decomposition

of the matroid (M/L1)[\widehat S1], we obtain that

(14) dim
\Bigl( 
X \prime \cap \widehat S1

\Bigr) 
\cup L1  - dimL1 \leq e1.

Similarly, as (Si, fi) is a depth-decomposition of the matroid (M/L1)[ \widehat Si] by the al-
ready proven part of this lemma, we obtain that

(15) dim
\Bigl( 
X \prime \cap \widehat Si

\Bigr) 
\cup L1  - dimL1 \leq ei.

Using (14) and (15), we infer that

dimX \prime \leq dimX \prime \cup L1 = dim

\ell \bigcup 
i=1

\Bigl[ 
(X \prime \cap \widehat Si) \cup L1

\Bigr] 
\leq dimL1 +

\ell \sum 
i=1

ei.

Since the choice of X \prime was arbitrary, (T \prime , f \prime ) is a depth-decomposition of M .
The inductive step proceeds as follows. Let k \geq 2, let S2 be the branch rooted

at u2 in T containing S1, let S\prime 
2 be the branch rooted at u2 in T \prime containing S\prime 

1,
and let f2 and f \prime 

2 be the restrictions of f and f \prime , respectively, to the elements

of \widehat S2 = \widehat S\prime 
2. Finally, let L2 be the space Lu2

from the statement of Lemma 17
applied with U = \{ u1, . . . , uk\} . By the already proven part of the lemma, (S2, f2)

is a depth-decomposition of the matroid (M/L2)[\widehat S2]. By the base of the induction,
which we have already proven, (S\prime 

2, f
\prime 
2) is also a depth-decomposition of the ma-

troid (M/L2)[\widehat S2]. We now apply the induction to the vertex u2 of T with replacing
the branch S2 with S\prime 

2 in T and conclude that (T \prime , f \prime ) is a depth-decomposition of the
matroid M .
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We next extend Lemma 10 to all branches.

Lemma 19. Let (T, f) be a depth-decomposition of a vector matroid M and S0

be a branch of T rooted at a vertex u0 such that S0 is not at capacity. Suppose that
every branch rooted at an ancestor of u0 is at capacity. Let T \prime be the rooted tree
obtained from T by changing the root of S0 to be the parent of u0. Then, (T \prime , f) is a
depth-decomposition of M .

Proof. If S0 is primary, we apply Lemma 10. Hence, we can assume that S0 is not
primary. Let U be the set of ancestors of u0 that have at least two children; note that
U is nonempty since the branch S0 is not primary. We next apply Lemma 17 to get
subspaces Lu, u \in U , with properties described in the statement of the lemma. Let u1

be the vertex of U nearest to u0, L1 the vector space Lu1
, S1 the branch rooted at u1

that contains u0, and f1 the function f restricted to the leaves of S1. By Lemma 18,
(S1, f1) is a depth-decomposition of the matroid (M/L1)[\widehat S1] and the branch S0 is not

at capacity in (M/L1)[\widehat S1].
Let S\prime 

1 be the rooted tree obtained from S1 by changing the root of S0 to be the
parent of u0. Since the branch S0 is primary in the depth-decomposition (S1, f1), we

obtain that (S\prime 
1, f1) is a depth-decomposition of the matroid (M/L1)[\widehat S1] by Lemma 10.

The fact that (T \prime , f) is a depth-decomposition of M now follows from Lemma 18.

We are now ready to present one of the main results of this section.

Theorem 20. There exists a polynomial time algorithm that, given a vector ma-
troid M and a depth-decomposition (T, f) of M , outputs an extended depth-decompo-
sition (T \prime , f \prime , g) of M such that the depth of T \prime is at most the depth of T and every
branch of T \prime is at capacity.

Proof. The algorithm first modifies (T, f) to a depth-decomposition (T \prime , f \prime ) such
that every branch of T \prime is at capacity. This is done iteratively as follows. At each
iteration, the algorithm searches in the increasing order given by the distance from
the root for a vertex u with at least two children such that a branch rooted at u
is not at capacity. The depth-decomposition is then modified by changing the root
of the branch that is not at capacity to the parent of u (note that u cannot be the
root of the whole tree by Lemma 9). Lemma 19 implies that the new tree is again
a depth-decomposition of M . This finishes the iteration and the algorithm starts
a new iteration (again searching in the order given by the distance from the root).
Note that the number of leaves is preserved and at each iteration the sum of the
distances of the leaves to the root of the tree decreases. Since T has r(M) edges, it
has at most r(M) leaves and each leaf is at distance at most r(M) from the root. It
follows that the algorithm stops after at most r(M)2 iterations producing a depth-
decomposition (T \prime , f \prime ) of M such that every branch of T \prime is at capacity. Since the
depth of the tree is never increased by the algorithm, the depth of T \prime is at most the
depth of T .

We next construct the function g. Let U be the set containing the root of T \prime and
all vertices of (T \prime , f \prime ) with at least two children, and let Lu be the vector spaces as
described in Lemma 17 while setting Lu to be the space containing the zero vector
only for the root u of T \prime . Observe that the spaces Lu, u \in U , can be algorithmically
constructed. Indeed, if u \in U and the space Lu\prime has already been constructed for the
nearest ancestor u\prime of u contained in U , then Lu is the intersection of the linear hulls
of \widehat S1 \cup Lu\prime and \widehat S2 \cup Lu\prime where S1 and S2 are any two branches rooted at u.

The function g is defined for the vertices of T \prime in the order based on their distance
from the root. Let v be a vertex of T \prime and assume that g has been defined for all
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ancestors of v (except the root). We distinguish two cases. The first case is that v has
at least two descendants that are leaves. If v has at least two children, then let u be
the vertex v itself, and let u be the nearest descendant of v contained in U otherwise.
We set g(v) to be any vector of Lu that is linearly independent of the g-image of the
vertices on the path from the parent of v to the root. Since the dimension of Lu is the
depth of u, which is at least the depth of v, such a vector always exists. The other
case is that v and all its descendants have at most one child. If v is a leaf, let v\prime be the
vertex v itself. Otherwise, let v\prime be the only leaf descendant of v. We set g(v) to be
any vector in the f \prime -preimage of v\prime that is linearly independent of the g-image of the
vertices on the path from the parent of v to the root. Since the branch S containing v
that is rooted at the nearest ancestor u of v contained in U is a depth-decomposition
of the matroid (M/Lu)[\widehat S] (see Lemma 18), such a vector always exists. Note that
the function g can be algorithmically constructed.

We now verify that (T \prime , f \prime , g) is an extended depth-decomposition of the ma-
troid M . Observe that for every vertex u \in U , Lu contains all spaces Lu\prime for ances-
tors u\prime of u contained in U . Hence, the g-image of the vertices on the path from u to
the root form a basis of Lu for every u \in U . In particular, Ku = Lu for every u \in U .
Let v be a leaf of T \prime and u its nearest ancestor contained in U . By Lemma 18, the
branch S rooted at u containing v together with the restriction of f \prime to \widehat S is a depth-
decomposition of the matroid (M/Lu)[\widehat S]. Note that the branch S is actually a path
rooted at u. This implies that the g-image of the vertices on the path from v to
the child of u contained in S form a basis of the linear hull of the f \prime -preimage of v
quotiened by Lu. Since the g-image of the vertices on the path from u to the root
form a basis of Ku = Lu, we conclude that every vector in the f \prime -preimage of v is
contained in the linear hull of the g-image of the vertices on the path from v to the
root of T \prime .

We obtain the following two statements as corollaries of Theorem 20.

Corollary 21. Every vector matroid M has a depth-decomposition (T, f) with
depth bd(M) such that every branch of T is at capacity.

Corollary 22. If (T, f) is a depth-decomposition of a vector matroid M , then
there exists g such that (T, f, g) is an extended depth-decomposition of M .

Proof. Let (T \prime , f \prime , g) be the extended depth-decomposition of M constructed in
Theorem 20. Since T \prime was obtained from T by rerooting some of the branches, the
vertices of T and T \prime are in one-to-one correspondence. In particular, the roots of T
and T \prime are the same vertex, the functions f and f \prime are identical, and g is a well-
defined function from the nonroot vertices of T . Further, notice that any vertex
on a given root-to-leaf path in T \prime is also on the path from the root to the corre-
sponding leaf in T . Since (T \prime , f \prime , g) is an extended depth decomposition, any ele-
ment x of M is contained in the linear hull of the g-image of the vertices on the path
in T \prime from f(x) to the root, and thus (T, f, g) is an extended depth decomposition
as well.

We conclude this section with a theorem that asserts that every vector matroid has
a depth-decomposition of minimum depth such that every branch is both at capacity
and solid. Before we can state and prove the theorem, we need three auxiliary lemmas.

Lemma 23. Let M be a vector matroid with no loops and M1, . . . ,Mk be its com-
ponents. For each i, suppose (Ti, fi, gi) is an extended depth-decomposition of Mi.
Let T be the rooted tree obtained from the trees T1, . . . , Tk by identifying their roots,
let f be the mapping from the elements of M to the leaves of T such that f(x) = fi(x)
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if x belongs to Mi, and let g be the mapping such that g(v) = gi(v) if v is a nonroot
vertex of Ti. The triple (T, f, g) is an extended depth-decomposition of M .

Proof. Let X1, . . . , Xk be the elements of M contained in M1, . . . ,Mk, respec-
tively. Since M1, . . . ,Mk are components of M , the rank of M is the sum of the ranks
of M1, . . . ,Mk. In particular, the number of edges of T is the rank of M . Since every
vertex x \in Xi can be expressed as a linear combination of the gi-image of the vertices
on the path from fi(x) to the root of Ti, it is also a linear combination of the g-image
of the vertices on the path from f(x) to the root of T . In particular, the linear hull
of the g-image of all nonroot vertices of T is equal to the linear hull of X1 \cup \cdot \cdot \cdot \cup Xk.
This implies that the vectors in the g-image of all nonroot vertices of T are linearly
independent. Let X \prime be any set of vertices of M . Since any vector in X \prime can be
expressed as a linear combination of the g-image of the nonroot vertices on the paths
from f(X \prime ) to the root, the dimension of the linear hull of X \prime is at most the number
of such vertices, which is equal to the number of edges on the paths. It follows that
(T, f, g) is an extended depth-decomposition of M .

Lemma 24. Let (T, f, g) be an extended depth-decomposition of a vector matroid M ,

and let u be a vertex with at least two children. If S is a branch rooted at u, then \widehat S
is a union of some components and loops of M/Ku.

Proof. Let X be all the vectors of M , A their linear hull, and AS the linear hull
of the g-images of the nonroot vertices of S. Since the vectors of Im(g) form a basis
of the vector space A and every element x of the matroid M is a linear combination
of the vectors in the g-image of the vertices on the path from f(x) to the root, AS is

a subset of the linear hull of \widehat S, and the linear hull of \widehat S is a subset of the linear hull
of AS \cup Ku. Since the dimension of AS is \| S\| , we obtain that

dim \widehat S \cup Ku  - dimKu = dimAS \cup Ku  - dimKu = \| S\| .

Along the same lines, we obtain that

dim
\Bigl( 
X \setminus \widehat S\Bigr) \cup Ku  - dimKu = dimX  - dimKu  - \| S\| .

Since the rank of M/Ku is dimX  - dimKu, the rank of \widehat S in M/Ku is \| S\| , and the

rank of X \setminus \widehat S in M/Ki is dimX  - dimKu  - \| S\| . Hence, the set \widehat S is a union of
components and loops of M/Ku.

Lemma 25. Let (T, f, g) be an extended depth-decomposition of a vector matroid M ,
and let u be a vertex with at least two children. Further, let S be a branch rooted
at u and (T \prime , f \prime , g\prime ) be an extended depth-decomposition of the matroid (M/Ku)[\widehat S].
Let T \prime \prime be the rooted tree obtained by removing from T the branch S and identifying
the root of T \prime with u, setting f \prime \prime (x) = f \prime (x) for elements x \in \widehat S and f \prime \prime (x) = f(x)
for other elements x of M , and setting g\prime \prime (v) = g\prime (v) for nonroot vertices of T \prime and
g\prime \prime (v) = g(v) for other nonroot vertices of T \prime \prime . The triple (T \prime \prime , f \prime \prime , g\prime \prime ) is an extended
depth-decomposition of M .

Proof. Since the rank of the matroid (M/Ku)[\widehat S] is equal to dim \widehat S\cup Ku - dimKu =
\| S\| , the trees T \prime and S have the same number of edges. This implies that the trees T
and T \prime \prime also have the same number of edges. In order to establish that (T \prime \prime , f \prime \prime , g\prime \prime ) is
an extended depth-decomposition ofM , it is now enough to verify that every element x
of the matroid M is a linear combination of the g\prime \prime -image of the vertices on the path
from f \prime \prime (x) to the root. If this is the case, then the g\prime \prime -image of all nonroot vertices
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of T \prime \prime form a basis of the vector space generated by the elements of M , and the rank
of any subset X \prime of the elements of M is at most the number of nonroot vertices on
the paths from the f \prime \prime -image of X \prime to the root, which is equal to the number of edges
on such paths.

Let x be any element of the matroid M . If x \not \in \widehat S, then f(x) = f \prime \prime (x) and
the g-image of the vertices on the path from f(x) = f \prime \prime (x) to the root is the same as
the g\prime \prime -image, in particular, x is a linear combination of the g\prime \prime -image of the vertices
on this path. Hence, we need to analyze the case when x \in \widehat S. In this case, the path
from f \prime \prime (x) to the root contains all vertices on the path from u to the root of T \prime \prime , which
implies that the linear hull of the g\prime \prime -image of the vertices on the path from f \prime \prime (x)
to the root of T \prime \prime contains Ku. Since (T \prime , f \prime , g\prime ) is an extended depth-decomposition

of the matroid (M/Ku)[\widehat S], x is contained in the linear hull of the union of Ku and
the g\prime -image of the vertices on the path from f \prime (x) to the root of T \prime . Hence, x is
contained in the linear hull of the g\prime \prime -image of the vertices on the path from f \prime \prime (x)
to the root of T \prime \prime . We conclude that (T \prime \prime , f \prime \prime , g\prime \prime ) is an extended depth-decomposition
of M .

We are now ready to prove the final theorem of this section.

Theorem 26. Every vector matroid M has an extended depth-decomposition
(T, f, g) of depth bd(M) such that every branch of T is both at capacity and solid.

Proof. We start with a depth-decomposition (T, f, g) of M with depth td(M)
and modify it iteratively as follows. At each iteration, we first apply Theorem 20
to obtain a depth-decomposition such that every branch is at capacity. If every
branch is solid, we stop. If there is a branch S that is not solid, we proceed as
follows. Since S is not solid, the matroid (M/Ku)[\widehat S] is not connected, where u is

the root of S. Let M1, . . . ,Mk be the components of the matroid (M/Ku)[\widehat S] and
let Xu be the set containing all loops of the matroid (M/Ku)[\widehat S]. Let (Si, fi, gi) be
an extended depth-decomposition of Mi, i = 1, . . . , k, with depth bd(Mi). Since the

branch-depth bd(Mi) of Mi is at most the branch-depth of (M/Ku)[\widehat S] (as the branch-
depth is a minor-monotone parameter), the depth of each of the trees S1, . . . , Sk is at
most the depth of S. By Lemmas 23 and 25, it is possible to replace the branch S
with the branches S1, . . . , Sk rooted at the root of S while assigning the elements
of Xu to arbitrary leaves of the branches S1, . . . , Sk. Note that the depth of the
new rooted tree does not exceed the depth of the original rooted tree. In this way,
we obtain a new extended depth-decomposition of M , and we proceed to the next
iteration.

We need to argue that the procedure described above eventually finishes. Let ai be
the sum of the degrees of the vertices at distance i from the root. During the iterations,
the rooted tree T is modified by the algorithm presented in Theorem 20 and by the
procedure described in the first paragraph. The algorithm presented in Theorem 20
selects a branch that is not at capacity and reroots it to the parent of its root. Hence,
there always exists i0 such that a0, . . . , ai0 - 1 are preserved and ai0 has increased
by one. Similarly, in the procedure described in the first paragraph, the degree of
the vertex u has increased while the degrees of all vertices with distance to the root
smaller than u have not changed, in particular, there exists i0 such that a0, . . . , ai0 - 1

are preserved and ai0 has increased. We conclude that the vector (a0, . . . , abd(M))
lexicographically increases at each modification of the tree T . Since the sum of the
degrees of the vertices at distance i from the root is bounded by the rank r of M ,
which is the total number of edges of T , there are at most rbd(M)+1 vectors that can
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u0 = u12

u1 = u7 = u11

u8 = u10u2 = u4 = u6

u3 u5 u9

Fig. 4. An example of a depth-first-search transversal of a rooted tree.

represent a sequence of sums of degrees of vertices of T at distance 0, 1, . . . ,bd(M)
from the root. Hence, the procedure terminates after at most rbd(M)+1 iterations.

7. Algorithm for finite fields. In this section, we design a fixed parameter
algorithm for computing a depth-decomposition of a vector matroid over a fixed fi-
nite field. To do so, we need to introduce additional notation. Let (T, f, g) be an
extended depth-decomposition of a vector matroid M , and let r be the rank of M .
Let u0, . . . , u2r be a depth-first-search transversal of the tree T (see Figure 4 for an
illustration). For i \in \{ 0, . . . , 2r\} , we define Ai to be the linear hull of Kui

and the f -
preimage of the leaves among the vertices u0, . . . , ui. Similarly, we define Bi to be
the linear hull of Kui

and the f -preimage of the leaves among the vertices ui, . . . , u2r.
The sequence (ui, Ai, Bi)i\in \{ 0,...,2r\} is called a transversal sequence for (T, f, g). Note
that Ai \cap Bi = Kui by the fact that Im(g) is a basis of the linear hull of elements
of M . If (T, f, g) is principal and (T \prime , f \prime , g\prime ) is another extended depth-decomposition

of M , we say that a branch S of T \prime is i-crossed if \widehat S contains the g-image of a vertex
on the path from ui to the root of T .

Lemma 27. Let M be a vector matroid with rank r, (T, f, g) a principal extended
depth-decomposition of M , and (T \prime , f \prime , g\prime ) a solid extended depth-decomposition of M .
Further, let (ui, Ai, Bi)i\in \{ 0,...,2r\} be a transversal sequence for (T, f, g). If S is a

branch of (T \prime , f \prime , g\prime ) that is not i-crossed, then \widehat S is a subset of Ai \cup Kv or Bi \cup Kv,
where v is the root of S.

Proof. Let v be the root of S, V the set of all vertices of T \prime that are not descen-
dants of v in S, and C the linear hull of g\prime (V ). Since Im(g) is a base of the linear hull

of elements of M , the matroids (M/Kv)[\widehat S] and (M/C)[\widehat S] are the same. Since the

branch S is solid in (T \prime , f \prime , g\prime ), it follows that \widehat S is the union of a component of M/C
and possibly some loops corresponding to vectors contained in Kv \subseteq C.

Let X be the set of elements of M . By the definition of an extended depth-
decomposition, the sets X \cap Ai and X \cap Bi are unions of components and loops of
the matroid M/Kui . Since S is not i-crossed, the leaf f \prime (g(v\prime )) for every vertex v\prime on
the path from ui to the root of T is contained in V . It follows that g(v\prime ) is contained
in C, and so Kui

is a subspace of C. Hence, every component of the matroid M/Kui

is a union of components and loops of the matroid M/C. In particular, each of the
sets X \cap Ai and X \cap Bi is a union of components and loops of the matroid M/C.

Since \widehat S is the union of a component of M/C and possibly some vectors from Kv, it

must hold that \widehat S is a subset of the union of X \cap Ai and Kv or the union of X \cap Bi

and Kv. The lemma follows.

D
ow

nl
oa

de
d 

05
/2

3/
23

 to
 8

4.
19

.6
6.

32
 b

y 
M

ar
tin

 K
ou

te
ck

ý 
(a

lq
ua

kn
aa

@
gm

ai
l.c

om
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



© 2022 Timothy F. Chan, Jacob W. Cooper, Martin Kouteck'y, Daniel Král, and Krist'yna Pekárková

OPTIMAL MATRIX TREE-DEPTH AND AN FPT IP ALGORITHM 689

u1 = u3 = u5

u4

f \prime (g(u4))

f \prime (g(u1))

Fig. 5. An example of the construction of an i-frontier. A part of the principal extended depth-
decomposition (T, f, g) is depicted on the left and the extended depth-decomposition (T \prime , f \prime , g\prime ) is
shown on the right; the subtree T0 for the 4-frontier is depicted in bold.

We will design a dynamic programming algorithm, which will construct an opti-
mal depth-decomposition of a vector matroid M using the information on the struc-
ture of M captured by an extended depth-decomposition of M produced by an ap-
proximation algorithm given in Theorem 8. The depth-decomposition will be con-
structed iteratively for elements of M in the order that the leaves corresponding
to them appear in the transversal sequence of the depth-decomposition produced
by the approximation algorithm. Since it would not be feasible to store all pos-
sible ``partial"" depth-decompositions, we need a more succinct way of represent-
ing an already constructed part of a depth-decomposition, which we now formally
introduce.

Let T0 be a rooted tree; we say that a mapping h from the nonroot vertices
to vectors is k-matchable for some k \in \BbbN if there exists a surjective mapping g
from \{ 1, . . . , k\} to the leaves of T0 such that for every j = 1, . . . , k, the linear hull
of the h-image of the vertices on the path from g(j) to the root contains the jth
unit vector. A frontier is a tuple (T0, d, a, b, h) such that T0 is a rooted tree, d, a,
and b are nonnegative integers that sum to the number of edges of T0 (in particu-
lar, T0 has at most d leaves), and h is a mapping from the nonroot vertices of T0

to \BbbF d+a+b such that Im(h) is a basis of \BbbF d+a+b and h is d-matchable. We will refer
the middle a coordinates of h-images as A-coordinates and to the last b coordinates
as B-coordinates.

Let (T, f, g) be a principal extended depth-decomposition of a vector matroid M
with rank r over a field \BbbF , (ui, Ai, Bi)i\in \{ 0,...,2r\} a transversal sequence for (T, f, g),
and (T \prime , f \prime , g\prime ) another extended depth-decomposition of a matroid M . The i-frontier
of (T \prime , f \prime , g\prime ) with respect to (T, f, g) and (ui, Ai, Bi)i\in \{ 0,...,2r\} is the frontier (T0, d, a, b, h)
obtained as described below; see Figure 5 for an illustration.

\bullet The integer d is the depth of ui in T .
\bullet T0 is the rooted subtree of T \prime formed by the paths from the root of T \prime to
the f \prime -images of vu1 , . . . , v

u
d , where vu1 , . . . , v

u
d are the g-images of the vertices

on the path from the root of T to ui (in this order).
\bullet The integers a and b are the smallest integers for that there exists an a-
dimensional subspace LA of Ai and a b-dimensional subspace LB of Bi such
that the linear hull of the g\prime -images of the vertices of T0 is a subspace of the
linear hull of vu1 , . . . , v

u
d , LA, and LB .

\bullet Finally, h is a mapping from the nonroot vertices of T0 to \BbbF d+a+b that sat-
isfies the following: Let vA1 , . . . , v

A
a be a basis of LA, and let vB1 , . . . , vBb

be a basis of LB . The value h(v) for a nonroot vertex v of T0 is equal
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T \prime T \prime \prime T \prime \prime \prime 

Fig. 6. An illustration of the operation described in the statement of Lemma 28. The trees T \prime ,
T \prime \prime , and T \prime \prime \prime are respectively depicted on the left, middle, and right. The edges of the i-frontier are
drawn solid, the edges of branches S of T \prime such that \widehat S \subseteq Ai \cup KA and branches S of T \prime \prime such that\widehat S \subseteq Ai \cup KB are drawn dashed, and the edges of branches S of T \prime such that \widehat S \subseteq Bi \cup KA and
branches S of T \prime \prime such that \widehat S \subseteq Bi \cup KB are drawn dotted; branches of T \prime \prime \prime are drawn in the same
way as the branches of T \prime and T \prime \prime corresponding to them.

to the coordinates of g\prime (v) with respect to the (linearly independent) vec-
tors vu1 , . . . , v

u
d , v

A
1 , . . . , v

A
a , v

B
1 , . . . , vBb .

Note that we use i both as an index for the transversal sequence and as an index
of the frontier in order to emphasize the link between the two indices. To see that
i-frontiers are indeed frontiers, observe first that Kui is the linear hull of vu1 , . . . , v

u
d .

Since Kui = Ai \cap Bi and Kui is contained in the linear hull of the g\prime -images of the
vertices of T0, the subspaces LA \subseteq Ai and LB \subseteq Bi are uniquely determined and the
dimension of the linear hull of the g\prime -images of the vertices of T0 is equal to d+ a+ b.
Since g\prime is a bijection from the nonroot vertices of T to a basis of the linear hull of
elements of M , the number of edges of T0 must be d+a+b. Finally, since T0 contains
the f \prime -images of vu1 , . . . , v

u
d , the function h is d-matchable.

The following lemma justifies the definition of an i-frontier. Informally speaking,
the lemma says that an i-frontier splits an extended depth-decomposition into a left
and a right side, and that two depth-decompositions with the same i-frontier can be
glued together on it, taking one side from each decomposition; also see Figure 6 for
an illustration. In this way, the i-frontier contains all information that needs to be
stored when iteratively constructing a depth-decomposition of M in a dynamic way
for the elements of contained in A0, A1, . . . , A2r.

Lemma 28. Let (T, f, g) be a principal extended depth-decomposition of a vector
matroid M with rank r, let (ui, Ai, Bi)i\in \{ 0,...,2r\} be a transversal sequence for (T, f, g),
and let (T \prime , f \prime , g\prime ) and (T \prime \prime , f \prime \prime , g\prime \prime ) be two solid extended depth-decompositions of M .
Suppose that i \in \{ 0, . . . , 2r\} is such that the i-frontiers of (T \prime , f \prime , g\prime ) and (T \prime \prime , f \prime \prime , g\prime \prime )
with respect to (T, f, g) and (ui, Ai, Bi)i\in \{ 0,...,2r\} are the same. Let T0 be the rooted
tree of the i-frontier, which we identify with the corresponding subtrees of T \prime and T \prime \prime .
Further, let KA be the linear hull of the g\prime -image of the vertices of T0, let KB be
the linear hull of the g\prime \prime -image of the vertices of T0, and set CA = KA \cap Ai and
CB = KB \cap Bi.

Obtain T \prime 
A from T \prime by removing all branches S with \widehat S \subseteq Bi \cup KA that are not i-

crossed, T \prime \prime 
B from T \prime \prime by removing all branches S with \widehat S \subseteq Ai \cup KB that are not i-

crossed, and T \prime \prime \prime by gluing T \prime 
A and T \prime \prime 

B together on the vertices of T0 (note that both T \prime 
A

and T \prime \prime 
B contain T0). Finally, let f \prime \prime \prime be a function from the elements of M to the

leaves of T \prime \prime \prime defined as follows. If x \in Ai \setminus CA, then f \prime \prime \prime (x) = f \prime (x). If x \in Bi \setminus CB,
then f \prime \prime \prime (x) = f \prime \prime (x). If x \in CA, then let f \prime \prime \prime (x) be any leaf u of T0 such that x
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is contained in the linear hull of the g\prime -image of the vertices on the path from u to
the root. Finally, if x \in CB \setminus CA, then let f \prime \prime \prime (x) be any leaf u of T0 such that x is
contained in the linear hull of the g\prime \prime -image of the vertices on the path from u to the
root. Then, (T \prime \prime \prime , f \prime \prime \prime ) is a depth-decomposition of M .

Proof. We first verify that f \prime \prime \prime is well-defined. Consider an element x of M and
suppose that x \in Ai \setminus CA. Since the space CA is the intersection of Ai and KA, the
element x does not belong to KA and so f \prime (x) is not contained in T0, i.e., f

\prime (x) is
contained in a branch of T \prime that is not i-crossed. Consider a maximal such branch S.
Lemma 27 yields that \widehat S \subseteq Ai \cup KA or \widehat S \subseteq Bi \cup KA, and since x \in Ai \setminus KA and

Ai \cap Bi = Kui
\subseteq KA, it follows that \widehat S \nsubseteq Bi \cup KA. Hence, the branch S is contained

in T \prime 
A and f \prime \prime \prime (x) is well-defined. The case that x \in Bi \setminus CB is symmetric.
The next case that we analyze is that x \in CA. Since CA \subseteq KA and the g\prime -image

of T0 is a basis of KA, the element x can be uniquely expressed as a linear combination
of the elements of the g\prime -image of T0. Moreover, as (T \prime , f \prime , g\prime ) is an extended depth-
decomposition of M , the g\prime -preimage of the basis elements with nonzero coefficients in
this linear combination is contained in the path from f \prime (x) to the root of T \prime . Hence,
this preimage is contained in a path from the root of T0 to one of its leaves, say, u.
This implies that x \in Ku in T \prime , so f \prime \prime \prime (x) can be set to be u. The final case is that
x \in CB \setminus CA. Since x \in CB , the argument above yields that there exists a leaf u of T0

such that x \in Ku in T \prime \prime , and so f \prime \prime \prime (x) can be set to be u.
For completeness, we check that the sets Ai \setminus CA, Bi \setminus CB , CA, and CB \setminus CA are

pairwise disjoint so that f \prime \prime \prime (x) is never multiply defined. Observe that Ai \setminus CA =
Ai \setminus KA is disjoint from Bi as Ai \cap Bi = Kui \subseteq KA. Hence Ai \setminus CA is disjoint from
both Bi \setminus CB and CB \setminus CA \subseteq Bi. Similarly, Bi \setminus CB = Bi \setminus KB is disjoint from
both Ai \setminus CA and CA. The remaining pairs are disjoint by definition, so indeed f \prime \prime \prime is
a well-defined function.

We next verify that the number of edges of T \prime \prime \prime is the rank of M , which is

dimAi + dimBi  - dimAi \cap Bi = dimAi + dimBi  - dimKui
= dimAi + dimBi  - d.

Let (T0, d, a, b, h) be the common i-frontier of (T \prime , f \prime , g\prime ) and (T \prime \prime , f \prime \prime , g\prime \prime ). Observe
that dimAi \cap KA = d + a and dimBi \cap KA = d + b. By Lemma 27, it holds that\widehat S \subseteq Ai\cup KA or \widehat S \subseteq Bi\cup KA for every branch S of T \prime that is not i-crossed. Hence, Ai

is contained in the linear hull of the g\prime -image of T \prime 
A and the dimension of this linear

hull is dimAi + b. Since Im(g\prime ) is a basis, the number of edges of T \prime 
A is dimAi + b. A

symmetric argument yields that the number of edges of T \prime \prime 
B is dimBi+a. The tree T0

has d+ a+ b edges since (T0, d, a, b, h) is a frontier, so T \prime \prime \prime has

(dimAi + b) + (dimBi + a) - (d+ a+ b) = dimAi + dimBi  - d

edges, as desired.
To finish the proof of the lemma, we need to show that (T \prime \prime \prime , f \prime \prime \prime ) is a depth-

decomposition of M . To do so, we define a function g\prime \prime \prime such that (T \prime \prime \prime , f \prime \prime \prime , g\prime \prime \prime ) is
an extended depth-decomposition of M . Let u be a nonroot vertex of T \prime \prime \prime . If u is
a nonroot vertex of a branch S of T \prime with \widehat S \subseteq Ai \cup KA that is not i-crossed, we
set g\prime \prime \prime (u) to be any nonzero vector of Ai such that g\prime (u)  - g\prime \prime \prime (u) \in KA, i.e., the
vectors g\prime (u) and g\prime \prime \prime (u) are the same in the space quotiened by KA. Similarly, if u

is a nonroot vertex of a branch S of T \prime \prime with \widehat S \subseteq Bi \cup KB that is not i-crossed, we
set g\prime \prime \prime (u) to be any nonzero vector of Bi such that g\prime \prime (u) - g\prime \prime \prime (u) \in KB . It remains
to define the mapping g\prime \prime \prime for nonroot vertices of the tree T0. Let vu1 , . . . , v

u
d be the
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vectors assigned to the vertices on the path from ui to the root in T , let vA1 , . . . , v
A
a be

the basis of the space LA as in the definition of the i-frontier of T \prime , and let vB1 , . . . , vBb
be the basis of the space LB as in the definition of the i-frontier of T \prime \prime . If u is a non-
root vertex of T0, we set g

\prime \prime \prime (u) to be the linear combination of the vectors vu1 , . . . , v
u
d ,

vA1 , . . . , v
A
a , v

B
1 , . . . , vBb with coefficients h(u). Finally, let K \prime 

u, K
\prime \prime 
u , and K \prime \prime \prime 

u be the
spaces Ku defined for trees T \prime , T \prime \prime , and T \prime \prime \prime ; we need to make this distinction here
since the spaces K \prime 

u, K
\prime \prime 
u , and K \prime \prime \prime 

u may differ. Observe that for every nonroot vertex u
of T0, the intersection of K \prime 

u and Ai is the same as the intersection of K \prime \prime \prime 
u and Ai. The

choice of g\prime \prime \prime for the vertices of T \prime 
A not contained in T0 implies that K \prime 

u\cap Ai \subseteq K \prime \prime \prime 
u \cap Ai

for every vertex u of T \prime 
A (indeed, even equality can be shown). Similarly, it holds that

K \prime \prime 
u \cap Bi \subseteq K \prime \prime \prime 

u \cap Bi for every vertex u of T \prime \prime 
B .

It remains to show that every element x of M is a linear combination of the g\prime \prime \prime -
image of the vertices on the path from f \prime \prime \prime (x) to the root in T \prime \prime \prime . Fix an element x ofM .
If x \in Ai \setminus CA, let u be the vertex f \prime \prime \prime (x) = f \prime (x) and observe that x belongs to T \prime 

A (as
we have already established that f \prime \prime \prime (x) is well-defined). Since K \prime 

u \cap Ai \subseteq K \prime \prime \prime 
u \cap Ai,

it follows that x is contained in the linear hull of the g\prime \prime \prime -image of the vertices on the
path from f \prime \prime \prime (x) to the root. If x \in CA, the vertex f \prime \prime \prime (x) is a leaf of T0 such that
x \in K \prime 

u (as we have already established that f \prime \prime \prime (x) is well-defined). Since CA \subseteq Ai,
it follows that x \in K \prime 

u \cap Ai \subseteq K \prime \prime \prime 
u \cap Ai and x is contained in the linear hull of the g\prime \prime \prime -

image of the vertices on the path from f \prime \prime \prime (x) to the root in T \prime \prime \prime . The cases x \in Bi

and x \in CB \setminus CA follow the same line of reasoning.

To prove the main result of this section, we will need the following auxiliary
lemma.

Lemma 29. Let (T, f, g) be a principal extended depth-decomposition of a vector
matroid M with rank r, (ui, Ai, Bi)i\in \{ 0,...,2r\} a transversal sequence for (T, f, g), and
(T \prime , f \prime , g\prime ) a solid extended depth-decomposition of M . The following holds for ev-
ery i \in \{ 0, . . . , 2r\} . Let T0 be the rooted tree of the i-frontier, K the linear hull of
the g\prime -image of the vertices of T0, TA the rooted tree obtained from T \prime by removing
all branches S with \widehat S \subseteq Bi \cup K that are not i-crossed, gA the restriction of g\prime to TA,
and MA the vector matroid obtained from the restriction of M to the elements of Ai

by adding the g\prime -image of the vertices of T0 (note that parallel elements may be added
to MA by this operation). There exists a function fA from the elements of MA to
the leaves of TA such that the triple (TA, fA, gA) is an extended depth-decomposition
of MA.

Proof. We define fA as follows. If x is contained in the restriction of M to the
elements of Ai and f \prime (x) is a leaf of TA, we set fA(x) to f \prime (x). If x is contained in
the restriction of M to the elements of Ai but f

\prime (x) is not a leaf of TA, we set fA(x)
to any leaf u such that x \in Ku. Finally, if x is not contained in Ai, then x = g\prime (v)
for a vertex v of T0 and we set fA(x) to any leaf descended from v.

We need to argue that fA(x) is well-defined for every element x of MA. This is
clear unless x is contained in the restriction of M to the elements of Ai and f \prime (x) is
not a leaf of TA. In such a case, Lemma 27 implies that f \prime (x) is a leaf of a branch S

with \widehat S \subseteq Bi \cup K. It follows that the element x is contained in

Ai \cap (Bi \cup K) = (Ai \cap Bi) \cup (Ai \cap K) = Kui
\cup (Ai \cap K) \subseteq Kui

\cup K = K.

Since the g\prime -image of T0 is a basis of K, the element x can be uniquely expressed as
a linear combination of the elements of the g\prime -image of T0. Moreover, as (T \prime , f \prime , g\prime ) is
an extended depth-decomposition of M , the g\prime -preimage of the basis elements with
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nonzero coefficients in this linear combination is contained in the path from f \prime (x) to
the root of T \prime . The subpath of this path containing the preimage is also contained
in T0, and so T0 contains a path from one of its leaves, say, u, to its root such that
the preimage is also contained in this path. It follows that x \in Ku and fA(x) can be
set to u.

To complete the proof, we need to show that (TA, fA, gA) is an extended depth-
decomposition of the matroid MA. Observe that for every leaf u of TA, the g-image
and gA-image of the vertices on the path from u to the root are the same. Hence,
the space Ku is the same with respect to g and gA and it follows that x \in KfA(x)

for every element x of MA. Finally, since MA contains all elements of Ai and a basis
of K and the gA-image of the vertices of TA is a basis of the linear hull of Ai \cup K, the
number of edges of TA is the rank of MA. It follows that (TA, fA, gA) is an extended
depth-decomposition of the matroid MA.

Before stating the main result of this section, we need to establish that the number
of frontiers for any fixed d is bounded.

Lemma 30. For all integers d and D and any finite field \BbbF , there exist at most
d2D+1D| \BbbF | (dD)2 choices of a rooted tree T of depth at most d, integers a and b, and
a mapping h from the nonroot vertices of T to \BbbF D+a+b such that (T,D, a, b, h) is a
frontier.

Proof. We first show that there are at most d2k - 1 rooted trees T with k leaves and
depth at most d. Such a tree can be encoded as follows: enumerate the k leaves of T in
the depth-first-search order. Let d1 be the depth of the first leaf, and for i = 2, . . . , k,
let di be the depth of the ith leaf and mi be the number of edges shared by the paths
from the root to the (i  - 1)th and ith leaves. Note that the numbers d1, . . . , dk and
m2, . . . ,mk determine the tree T . Since each di is a positive integer that is at most d
and each mi is a nonnegative integer that is at most d  - 1, it follows that there are
at most d2k - 1 rooted trees T with k leaves and depth at most d. Summing over all
the choices k = 1, . . . , D, we obtain that there are at most d2D rooted trees with at
most D leaves and depth at most d.

Fix a tree T with at most D leaves and depth at most d, and let m be the number
of edges of T . Note that m \leq dD, and D + a + b = m if (T,D, a, b, h) is to be a
frontier. Hence, the integers a and b can be chosen in at most m \leq dD ways, and the
mapping h can be chosen in at most | \BbbF | m2 \leq | \BbbF | (dD)2 ways (although some of these
choices would not yield a frontier). It follows that the number of choices of a, b, and

h, when T is fixed (which determines d), is at most dD| \BbbF | (dD)2 . We conclude that for
a fixed D, the number of frontiers (T,D, a, b, h) such that the depth T is at most d

does not exceed d2D+1D| \BbbF | (dD)2 .

We are now ready to prove the main theorem of this section.

Theorem 31. For the parameterization by a positive integer d and a prime power q,
there exists a fixed parameter algorithm that for a vector matroid M over the q-
element field either outputs that bd(M) is larger than d or outputs an extended depth-
decomposition of M with depth at most d.

Proof. We first apply the algorithm from Theorem 8. The algorithm either out-
puts that the branch-depth of M is larger than d or outputs a principal extended
depth-decomposition of M with depth at most 4d. If the former applies, we stop and
report that the branch-depth of M is larger than d. Otherwise, let (T, f, g) be the
principal extended depth-decomposition returned by the algorithm.
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Let r be the rank of the matroid M , (ui, Ai, Bi)i\in \{ 0,...,2r\} a transversal sequence
for (T, f, g), and di the depth of ui in T . For i = 0, . . . , 2r, the algorithm iteratively
computes the list of all frontiers (T0, di, a, b, h) with depth at most d for which the
following hold:

\bullet there exists a vector matroid M \prime with rank dimAi + b such that the linear
hull of its elements is contained in \scrL (Ai \cup Bi),

\bullet M \prime contains the restriction of M to the elements of Ai,
\bullet the matroidM \prime has an extended depth-decomposition (TA, fA, gA) with depth
at most d, and

\bullet (T0, di, a, b, h) is yielded by the procedure for creating i-frontiers performed
on (TA, fA, gA) with respect to (T, f, g) and (ui, Ai, B

\prime 
i), where B\prime 

i is the
intersection of the linear hull of the elements of M \prime and Bi. (Note that we
cannot formally take i-frontiers of (TA, fA, gA) since (T, f, g) is not a depth-
decomposition of M \prime .)

If the branch-depth of M is at most d, then M has a solid extended depth-
decomposition with depth bd(M) by Theorem 26 and the list is nonempty for every i =
0, . . . , 2r by Lemma 29. By Lemma 30, the size of the list computed in the ith iteration
does not exceed d2di+1di| \BbbF | (ddi)

2

and is therefore bounded by a function of d and | \BbbF | 
only (since di \leq 4d for every i). We emphasize that (T0, di, a, b, h) is not required to
be an i-frontier of M \prime with respect to a principal depth-decomposition of M \prime .

We now describe the iterations of the algorithm in detail. For i = 0, the list
of frontiers contains a single element (R, 0, 0, 0, h), where R is the rooted tree that
contains the root only and h is the null function. Hence, assume that i > 0 and
we have already computed the list for i  - 1. The iteration of the algorithm differs
according to whether ui is the parent or a child of ui - 1.

We start with the case where ui is the parent of ui - 1. Then the depth of ui - 1

is di+1, and the following is performed for every frontier (T0, di+1, a, b, h) in the list
from the previous iteration:

\bullet If h is di-matchable, we add (T0, di, a+1, b, h\prime ) to the list for the ith iteration,
where h\prime is a mapping from the nonroot vertices of T0 obtained from h by
changing the (di + 1)th coordinate into an A-coordinate and applying an
invertible linear transformation to the a+1 A-coordinates, i.e., we fix such a
linear transformation L and set h\prime (v) = L(h(v)) for all vertices v of T0.

\bullet For every leaf v of T0 such that the linear hull of the h-image of the vertices
from v to the root contains the (di + 1)th unit vector, we proceed as follows.
Let T \prime 

0 be the tree obtained by removing the path from v to the first ancestor
with at least two children, or to the root if there is no such ancestor. Let c be
the number of edges on this path, and let h\prime be the restriction of h to the non-
root vertices of T \prime 

0. If h
\prime is di-matchable and the linear hull of Im(h\prime ) restricted

to the last b coordinates has dimension b, we add (T \prime 
0, di, a + 1  - c, b, h\prime \prime ) to

the list for the ith iteration, where h\prime \prime is a mapping from the nonroot vertices
of T \prime 

0 to \BbbF di+a+1 - c+b obtained from h\prime by changing the (di + 1)th coordinate
into an A-coordinate and applying any full rank linear transformation L :
\BbbF a+1 \rightarrow \BbbF a+1 - c to its a+ 1 A-coordinates.

We next describe the case that ui is a child of ui - 1; note that di = di - 1 + 1 in this
case. Let Xi be the set of di-dimensional vectors that formed by di coordinates of
the elements of M contained in Kui

, expressed with respect to the basis formed by
the g-image of the vertices on the path from the root of T to ui (in this order). The
following is performed for every frontier (T0, di - 1, a, b, h) in the list from the previous
iteration:
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\bullet For every invertible linear transformation L of the B-coordinates of h and
every leaf v of T0 such that the linear hull of the L(h)-image of the vertices
on the path from v to the root contains the (di  - 1+ a+ b)th unit vector, we
proceed as follows. Let h\prime be the mapping obtained from L(h) by changing
the last coordinate into a new dith coordinate. If for every x \in Xi there exists
a vertex v\prime of T0 such that x is contained in the linear hull of the h\prime -image
of the vertices on the path from v\prime to the root of T0 restricted to the first di
coordinates, we add (T0, di, a, b - 1, h\prime ) to the list for the ith iteration.

\bullet For every rooted tree T \prime 
0 obtained from T0 by adding a new leaf v joined by

a path with c \geq 1 edges to T0 in a way that the depth of T \prime 
0 is at most d, we

proceed as follows. Let h\prime be the mapping obtained from h by adding new c
zero B-coordinates and extending it to each vertex on the newly added path
by mapping the vertex to one of the unit vector for the new coordinates in
a way that the dimension of of the h\prime -image is di + a + b + c  - 1. We next
consider all invertible linear transformations L of the b + c B-coordinates
such that the L(h\prime )-image of the vertices on the path from v to the root
contains the (di+a+ b+ c - 1)th unit vector, and, for each such L, we obtain
the mapping h\prime \prime from L(h\prime ) by turning the last coordinate into a new dith
coordinate. If for every x \in Xi there exists a vertex v\prime of T \prime 

0 such that x is
contained in the linear hull of the h\prime \prime -image of the vertices on the path from v\prime 

to the root of T \prime 
0 restricted to the first di coordinates, we add (T \prime 

0, di, a, b +
c - 1, h\prime \prime ) to the list for the ith iteration.

The inspection of the steps of the algorithm yields that if (T0, di, a, b, h) is added to
the list in the ith iteration, then h is di-matchable and the dimension of the h-image
is di+a+ b. Hence, the computed list of frontiers in the ith iteration contains exactly
the frontiers described at the beginning of the proof.

As we have already argued, if the branch-depth of M is at most d, the list of
frontiers is nonempty in all iterations. In particular, if the list becomes empty, we
stop and report that the branch-depth of M exceeds d. Hence, we assume that
the list is nonempty in all iterations. If the final list is nonempty, it contains a single
element (T2r, d2r, a2r, b2r, h2r) = (R, 0, 0, 0, h) where R is the rooted tree that contains
the root only and h is the null mapping. We now define (Ti, di, ai, bi, hi) for all i =
0, . . . , 2r by tracing back the lists of frontiers for i = 2r, 2r - 1, . . . , 1: if (Ti, di, ai, bi, hi)
was added to the list in the iteration i, then let (Ti - 1, di - 1, ai - 1, bi - 1, hi - 1) be a
frontier that triggered (Ti, di, ai, bi, hi) to be added to the list.

We next use this sequence of frontiers to construct an extended depth-decompo-
sition of depth at most d. We first define inductively for i = 0, . . . , 2r linear maps hM

i

from \BbbF di+ai to the linear hull of the elements of M . The mapping hM
0 is the null

mapping (note that d0 + a0 = 0). If ui is a child of ui - 1, we obtain hM
i from hM

i - 1

by inserting the dith coordinate, mapping the dith unit vector to g(ui), and ex-
tending linearly to \BbbF di+ai . If ui is the parent of ui - 1, there exists a linear mapping L
from \BbbF di - 1+ai - 1 to \BbbF di+ai such that the restriction of hi to the first di+ai coordinates
is the L-transformation of the restriction of hi - 1 to the first di - 1 + ai - 1 coordinates;
we set hM

i to be the L-transformation of hM
i - 1, i.e., h

M
i = L(hM

i - 1).
As the next step, we define inductively for i = 0, . . . , 2r rooted trees TM

i such
that TM

i contains Ti as a subtree, and mappings gMi from the vertices of TM
i that

are not contained in Ti to the linear hull of the elements of M . The tree TM
0 is the

rooted tree that contains the root only and gM0 is the null mapping. If Ti = Ti - 1,
we set TM

i = TM
i - 1 and gMi = gMi - 1. Otherwise, we proceed as follows. If ui is

a child of ui - 1, then Ti has been constructed from Ti - 1 by attaching a path to
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one of its vertices, so we obtain TM
i by attaching a path of the same length to the

corresponding vertex of TM
i - 1 and set gMi = gMi - 1. If ui is the parent of ui - 1, we

set TM
i = TM

i - 1 and define gMi (v) = gMi - 1(v) for vertices v of TM
i - 1 not contained

in Ti - 1 and gMi (v) = hM
i - 1(hi - 1(v)) for vertices v of Ti - 1 not contained in Ti. Observe

that TM
i - 1 is a subtree of TM

i and gMi - 1 is a restriction of gMi for all i = 1, . . . , 2r.
Furthermore, the depth of all trees TM

i , i = 0, . . . , 2r, is at most d, and the number
of edges of TM

i is dimAi + bi for every i = 0, . . . , 2r.
We now establish the existence of a mapping fM such that (TM

2r , f
M , gM2r ) is

an extended depth-decomposition of M . Let x be an element of M and let i be
the smallest index such that x \in Kui . It follows that ui - 1 is the parent of ui and
x \in Kui

\setminus Kui - 1
. Since (Ti, di, ai, bi, hi) was included in the list in the iteration i,

there exists a vertex v of Ti such that the linear hull of the hi-image of the vertices
on the path from v to the root of Ti contains the vector defined by the di coordinates
of x with respect to the basis formed by the g-image of the vertices on the path from
the root to ui in T (in this order). The definition of gMi and the construction of the
list of frontiers imply that the the linear hull of the gM2r -image of the vertices of the
path from v to the root of Ti contains x. Hence, fM (v) can be chosen to be any leaf
descendant of v in TM

2r .
We have shown that if the final list is nonempty, the matroid M has an extended

depth-decomposition of depth at most d. Since the trees TM
i and the mappings hM

i

and gMi can be constructed algorithmically, the extended depth-decomposition (TM
2r , f

M ,
gM2r ) can also be constructed algorithmically. Finally, observe that the number of itera-
tions in the algorithm is twice the rank of M , the size of the list computed in each iter-
ation is bounded by a function of d and q only, and the number of steps needed for each
element of these lists to be processed is bounded by a function of d and q times a poly-

nomial in the size of M . Specifically, each list has at most d2
2d+1+14dq(d4

d)2 = q2
O(d)

elements and the number of steps needed to process each of their elements is bounded

by a polynomial in the size of M times q(d4
d)2 = q2

O(d)

. Hence the presented algorithm
is a fixed parameter algorithm for parameterization by d and q.

Theorems 20 and 31 yield the following corollary.

Corollary 32. For the parameterization by a positive integer d and a prime
power q, there exists a fixed parameter algorithm that for a vector matroid M over
the q-element field either outputs that bd(M) is larger than d or computes bd(M) and
outputs an extended depth-decomposition with this depth such that every branch is at
capacity.

8. Algorithm for rational matrices. In this section, we adopt the algorithm
presented in section 7 to matroids over rationals. We start with an auxiliary lemma
on linear combinations appearing in extended depth-decompositions. We remark that
the bound of 22d - 1 in Lemma 33 can be replaced with d \cdot 2d - 1 using a slightly more
careful analysis.

Lemma 33. Let M be a vector matroid and (T, f) a depth-decomposition of M
with depth d such that every branch is at capacity. There exists a mapping g such
that (T, f, g) is an extended depth-decomposition of M and every element of Im(g) is
a linear combination of at most 22d - 1 elements of M .

Proof. We show that it is possible to choose a mapping g in such a way that
the g-image of a vertex at depth i > 0 is a linear combination of at most 2d+i - 1

elements of M . Let u0, . . . , uk be the vertices on the path from the root of T to a leaf,
in that order. Let i0 < \cdot \cdot \cdot < i\ell be the sequence of indices such that i0 = 0, i\ell = k,
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and ui1 , . . . , ui\ell  - 1
are exactly the vertices among u1, . . . , uk - 1 that have at least two

children. By Lemma 17, each Kuij
, j = 0, . . . , \ell , is the same for any function g such

that (T, f, g) is an extended depth-decomposition of M . Let Lj be this space, which
has dimension ij and is determined by the choice of T and f only, and note that the
elements g(uij - 1+1), . . . , g(uij ) always form a basis of Lj/Lj - 1. We will establish that
it is possible to choose these elements in such a way that g(ui), i = 1, . . . , k, is a linear
combination of at most 2d+i - 1 elements of M .

Suppose that we have already fixed g(u1), . . . , g(ui - 1), and let j be the smallest
index such that i \leq ij . Note that dimLj > i  - 1. If ij = k, then Lj/Lj - 1 is the
linear hull of the elements in f - 1(uk) quotioned by Lj - 1 and so we choose g(ui) to
be any element of f - 1(uk) that is linearly independent of g(u1), . . . , g(ui - 1). Hence,
we assume that ij < k in the rest of the proof.

Let K be the linear hull of g(u1), . . . , g(ui - 1), and let C be the at most (1 +
. . . + 2i - 1)2d - 1 = (2i  - 1)2d - 1 elements of M appearing in the linear combinations
used to express g(u1), . . . , g(ui - 1). Consider any two branches rooted at uij and let A
and B be the f -preimages of the leaves of the two branches. By Lemma 17, Lj is
the intersection of the linear hulls of A \cup Lj - 1 and B \cup Lj - 1. Since the linear hulls
of A\cup Lj - 1 and A\cup K are the same, and the linear hulls of B \cup Lj - 1 and B \cup K are
the same, Lj is also the intersection of the linear hulls of A\cup K and B \cup K. Since the
dimension of Lj is larger than dimK = i  - 1, K is a proper subspace of Lj and so
the matroid (M/K)[A\cup B] contains a circuit X such that both X \cap A and X \cap B are
nonempty. Hence, Lj \setminus K contains a nonzero element w that is a linear combination
of the elements of (X \cap A) \cup K \subseteq (X \cap A) \cup \scrL (C) and also a linear combination of
the elements of (X \cap B) \cup K \subseteq (X \cap B) \cup \scrL (C). By Proposition 5, every circuit
of M contains at most 2d elements, and since every circuit of M/K is a subset of a
circuit of M , we can by symmetry assume that | X \cap A| \leq 2d - 1. Hence, w is a linear
combination of at most 2d+i - 1 elements of M contained in (X \cap A) \cup C and we can
set g(ui) to be the vector w.

The next lemma allows us to convert a representation of a matroid with small
branch-depth over the rational numbers to a representation of an isomorphic matroid
over a finite field.

Lemma 34. There exists an algorithm such that
\bullet the input of the algorithm is an integer d \geq 1 and a matroid M represented

over \BbbQ such that all entries of the vectors in the representation are integers
between  - K and +K,

\bullet the running time of the algorithm is polynomial in the number of elements
of M and logK, and

\bullet the algorithm either outputs that the branch-depth of M is larger than d or

computes a matroid M \prime represented over \BbbF q for some q \leq K24
d+1

22
2d+2

, along
with an isomorphism between M and M \prime .

Proof. We describe how the algorithm from the statement of the lemma proceeds.
First, the algorithm from Theorem 8 is invoked for the input matroid M and an inte-
ger d. If the algorithm outputs that the branch-depth of M is larger than d, then we
stop and report this. Otherwise, we obtain a principal depth-decomposition (T, f, g)
of M with depth at most 4d. For each element x \in M , we compute its represen-
tation x\prime with respect to the basis Im(g). Note that all entries of the vector x\prime are
zero except for those that correspond to the g-image of the vertices on the path
from f(x) to the root. Hence, computing the entries of x\prime requires solving a system
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of at most 4d equations with integer coefficients between  - K and +K, which implies
that the fractions appearing as the entries of x\prime have both numerator and denominator

at most (K4d)4
d

by Cramer's rule. We define \varphi (x) to be the integer vector obtained
from x\prime by multiplying all its entries by the least common multiple of the denomina-
tors of the fractions that form the entries of x\prime . Since the vector x\prime has at most 4d

nonzero entries, all entries of \varphi (x) are between  - K \prime and K \prime where K \prime = (K4d)4
2d

.

Let q be any prime larger than (2K \prime 24
d

)2
4d

and consider the vector matroid M \prime 

over \BbbF q formed by the vectors Im(\varphi ). Note that there exists such a prime q that is at

most 2 \cdot (2K \prime 24
d

)2
4d \leq K24

d+1

22
2d+2

. Observe that (T, f \prime , g\prime ) is a depth-decomposition
of M \prime where f \prime (\varphi (x)) is set to f(x) and g\prime (v) is the unit vector whose nonzero coor-
dinate corresponds to g(v). Indeed, the only nonzero coordinates of the vector \varphi (x)
are those corresponding to the g-images of the vertices on the path from f(x) to the
root. We conclude the branch-depth of M \prime is at most 4d.

It is well-known that if a set of integer vectors is linearly dependent over \BbbQ , then
it is linearly dependent over any finite field; in particular, if X is a linearly dependent
set of elements of M , then \varphi (X) is linearly dependent over \BbbF q. On the other hand,

the choice of q yields that if X is an independent set of at most 24
d

elements of M ,
then \varphi (X) is independent over \BbbF q. Since the branch-depths of both M and M \prime are at

most 4d, neitherM norM \prime has a circuit with more than 24
d

elements by Proposition 5.
Hence, the matroids M and M \prime have the same set of circuits. It follows that the
matroids M and M \prime are isomorphic and \varphi is an isomorphism between them.

Using Lemmas 33 and 34, we prove the main theorem of this section.

Theorem 35. For the parameterization by positive integers d and K, there exists
a fixed parameter algorithm that, for a vector matroid M over \BbbQ such that the entries
of all vectors in M are between  - K and +K, either outputs that bd(M) is larger
than d, or computes bd(M) and outputs an extended depth-decomposition (T, f, g)
of M with depth bd(M). Moreover, the entry complexity of the vectors in Im(g) is
bounded by a function of d and K.

Proof. Fix integers d and K. We first run the algorithm from Lemma 34 that
either outputs that the branch-depth of M is larger than d or outputs a matroid M \prime 

with a representation over \BbbF q for q \leq K24
d+1

22
2d+2

that is isomorphic to M and an
isomorphism \varphi between M and M \prime . Hence, we can use the algorithm from Corol-
lary 32 to decide whether the branch-depth of M \prime is at most d and, if so, to construct
a depth-decomposition (T, f \prime ) of depth bd(M \prime ) such that every branch of T is at
capacity. If the branch-depth of M \prime exceeds d, then the branch-depth of M also
exceeds d, so we stop and report this. Otherwise, (T, f) is a depth-decomposition
of depth bd(M) = bd(M \prime ) where f is obtained from f \prime using the isomorphism be-
tween M and M \prime , i.e., f(x) = f \prime (\varphi (x)) for every element x of M . We now use the
procedure described in the proof of Lemma 33 to compute a function g such that
(T, f, g) is an extended depth-decomposition of M . Since computations given in the
proof of Lemma 33 involve solving systems of equations with at most 22d - 1 variables,
the entry complexity of the vectors in Im(g) is bounded by O(d22d logK).

Theorem 35 implies Theorem 3 as follows.

Proof of Theorem 3. Let M be the matroid formed by columns of A. The al-
gorithm from Theorem 35 either reports that bd(A) > d or outputs an extended
depth-decomposition (T, f, g) of M with branch-depth bd(A) such that the entry
complexity of Im(g) is bounded by a function of d and K. Let A\prime be the matrix from
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Theorem 15. Since each element x of the matroid M is a linear combination of at
most bd(A) \leq d elements from Im(g), which are those forming the g-image of the
vertices on the path from f(x) to the root of T , each entry of the matrix A\prime can be
obtained by solving a system of at most d linear equations where the entry complexity
of the coefficients and the right-hand side is bounded by O(d22d logK). Hence, the
entry complexity of A\prime is bounded by O(d222d logK).

Acknowledgment. The authors would like to thank the anonymous reviewers
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its results.
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Abstract
An intensive line of research on fixed parameter tractability of integer programming
is focused on exploiting the relation between the sparsity of a constraint matrix A
and the norm of the elements of its Graver basis. In particular, integer programming
is fixed parameter tractable when parameterized by the primal tree-depth and the
entry complexity of A, and when parameterized by the dual tree-depth and the entry
complexity of A; both these parameterization imply that A is sparse, in particular, the
number of its non-zero entries is linear in the number of columns or rows, respectively.
We study preconditioners transforming a given matrix to a row-equivalent sparse
matrix if it exists and provide structural results characterizing the existence of a sparse
row-equivalent matrix in terms of the structural properties of the associated column
matroid. In particular, our results imply that the �1-norm of theGraver basis is bounded
by a function of the maximum �1-norm of a circuit of A. We use our results to design
a parameterized algorithm that constructs a matrix row-equivalent to an input matrix
A that has small primal/dual tree-depth and entry complexity if such a row-equivalent
matrix exists. Our results yield parameterized algorithms for integer programming
when parameterized by the �1-norm of the Graver basis of the constraint matrix,
when parameterized by the �1-norm of the circuits of the constraint matrix, when
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parameterized by the smallest primal tree-depth and entry complexity of a matrix
row-equivalent to the constraint matrix, and when parameterized by the smallest dual
tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix.

Keywords Integer programming · Width parameters · Matroids · Graver basis ·
Tree-depth · Fixed parameter tractability

Mathematics Subject Classification 90C10 · 05B35 · 90C27

1 Introduction

Integer programming is a problem of fundamental importance in combinatorial opti-
mization with many theoretical and practical applications. From the computational
complexity point of view, integer programming is very hard: it is one of the 21 prob-
lems shown to be NP-complete in the original paper on NP-completeness by Karp
[37] and remains NP-complete even when the entries of the constraint matrix are zero
and one only. On the positive side, Kannan and Lenstra [35, 45] showed that integer
programming is polynomially solvable in fixed dimension, i.e., with a fixed number
of variables. Another prominent tractable case is when the constraint matrix is totally
unimodular, i.e., all determinants of its submatrices are equal to 0 or±1, in which case
all vertices of the feasible region are integral and so linear programming algorithms
can be applied.

Integer programming (IP) is known to be tractable for instanceswhere the constraint
matrix of an input instance enjoys a certain block structure. The two most important
cases are the cases of 2-stage IPs due to Hemmecke and Schultz [27], further investi-
gated in particular in [1, 13, 31, 39, 40, 44], and n-fold IPs introduced by De Loera et
al. [15] and further investigated in particular in [11, 12, 19, 26, 34, 44]. IPs of this kind
appear in various contexts, see e.g. [32, 41, 42, 48]. These (theoretical) tractability
results complement well a vast number of empirical results demonstrating tractability
of instances with a block structure, e.g. [2–4, 22, 23, 38, 49–51].

There tractability results on IPs with sparse constraint matrices can be unified
and generalized using depth and width parameters of graphs derived from constraint
matrices. Ganian andOrdyniak [24] initiated this line of study by showing that IPswith
bounded primal tree-depth tdP (A) of a constraint matrix A and bounded coefficients
of the constraint matrix A and the right hand side b can be solved efficiently. Levin,
Onn and the second author [44] widely generalized this result by showing that IPs with
bounded ‖A‖∞ and bounded primal tree-depth tdP (A) or dual tree-depth tdD(A) of
the constraint matrix A can be solved efficiently; such IPs include 2-stage IPs, n-fold
IPs, and their generalizations.

Most of the existing algorithms for IPs assume that the input matrix is already
given in its sparse form. This is a substantial drawback as existing algorithms cannot
be applied to instances that are not sparse but can be transformed to an equivalent
sparse instance. For example, the matrix in the left below, whose dual tree-depth is 5,
can be transformed by elementary row operations to the matrix with dual tree-depth
2 given in the right; a formal definition of tree-depth is given in Sect. 2.1, however,
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just the visual appearance of the two matrices indicates which is likely to be more
amenable to algorithmic techniques.

⎛
⎜⎜⎜⎜⎝

2 2 1 2 1 3 1
2 1 1 1 2 1 1
2 2 2 2 2 2 1
2 1 1 2 2 1 1
2 2 1 2 1 3 2

⎞
⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎝

2 1 0 1 1 2 1
0 1 1 0 0 1 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 2 0 1

⎞
⎟⎟⎟⎟⎠

This transformation is an example of a preconditioner that transforms an instance of
integer programming to an equivalent one that is more amenable to existing methods
for solving integer programming and whose existence we investigate in this paper.

Preconditioning a problem to make it computationally simpler is a ubiquitous pre-
processing step in mathematical programming solvers. An interesting link between
matroid theory and preconditioners to sparsity of matrices was exhibited by Chan and
Cooper together with the second, third and fourth authors [8, 9]. In particular, they
proved the following structural characterization of matrices that are row-equivalent,
i.e., can be transformed by elementary row operations, to amatrix with small dual tree-
depth: a matrix is row-equivalent to one with small dual tree-depth if and only if the
column matroid of the matrix has small contraction∗-depth (see Theorem 1 below).
In this paper, we further explore this uncharted territory by providing a structural
characterization of matrices row-equivalent to matrices with small primal tree-depth,
designing efficient algorithms for finding preconditioners with respect to both primal
and dual tree-depth, and relating complexity of circuits and Graver basis of constraint
matrices.

1.1 Our contribution

We now describe the results presented in this paper in detail. We opted not to interrupt
the presentation of our results with various notions, some of which may be standard
for some readers, and rather collect all definitions in a single section—Sect. 2. We
remark that the primal tree-depth of a matrix A is a structural parameter that measures
the complexity of interaction between the columns of A, and the dual tree-depth of a
matrix A measures the complexity of interaction between the rows of A.

1.1.1 Characterization of depth parameters

Observe that the column matroid of the matrix is preserved by row operations, i.e.,
the column matroid of row-equivalent matrices is the same. The main structural result
of [8, 9] is the following characterization of the existence of a row-equivalent matrix
with small dual tree-depth in terms of the structural parameter of the column matroid
[8, Theorem 1]. We remark that the term branch-depth was used in [8, 9] in line with
the terminology from [36] but as there is a competing notion of branch-depth [16], we
decided to use a different name for this depth parameter throughout the paper to avoid
confusion.
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Theorem 1 For every non-zero matrix A, it holds that the smallest dual tree-depth
of a matrix row-equivalent to A is equal to the contraction∗-depth of M(A), i.e.,
td∗

D(A) = c*d(A).

We discover structural characterizations of the existence of a row-equivalent matrix
with small primal tree-depth and the existence of a row-equivalent matrix with small
incidence tree-depth.

Theorem 2 For every matrix A, it holds that the smallest primal tree-depth of a matrix
row-equivalent to A is equal to the deletion-depth of M(A), i.e., td∗

P (A) = dd(A).

Theorem 3 For every matrix A, it holds that the smallest incidence tree-depth of a
matrix row-equivalent to A is equal to contraction∗-deletion-depth of M(A) increased
by one, i.e., td∗

I (A) = c*dd(A) + 1.

1.1.2 Interplay of circuit and graver basis complexity

Graver bases play an essential role in designing efficient algorithms for integer pro-
gramming. We show that the maximum �1-norm of a circuit of a matrix A and the
maximum �1-norm of an element of the Graver basis of A, which are denoted by c1(A)

and g1(A), respectively, are functionally equivalent.

Theorem 4 There exists a function f1 : N → N such that the following holds for every
rational matrix A with dim ker A > 0:

c1(A) ≤ g1(A) ≤ f1(c1(A)).

The parameter c1(A) can be related to dual tree-depth and entry complexity as
follows (we have opted throughout the paper to use entry complexity rather than
‖A‖∞ as this permits to formulate our results for rational matrices rather than integral
matrices, which is occasionally more convenient).

Theorem 5 Every rationalmatrix Awith dim ker A > 0 is row-equivalent to a rational
matrix A′ with tdD(A′) ≤ c1(A)2 and ec(A′) ≤ 2�log2(c1(A) + 1)	.

Our results together with Theorem 9 imply that the following statements are equiv-
alent for every rational matrix A:

– The �1-norm of every circuit of A, i.e., c1(A), is bounded.
– The �1-norm of every element of the Graver basis of A, i.e., g1(A), is bounded.
– The matrix A is row-equivalent to a matrix with bounded dual tree-depth and
bounded entry complexity.

– The contraction∗-depth of the matroid M(A) is bounded, and the matrix A is row-
equivalent to a matrix with bounded entry complexity (with any dual tree-depth).
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1.1.3 Algorithms to compute matrices with small depth parameters

We also construct parameterized algorithms for transforming an input matrix to a row-
equivalent matrix with small tree-depth and entry complexity if one exists. First, we
design a parameterized algorithm for computing a row-equivalent matrix with small
primal tree-depth and small entry complexity if one exists.

Theorem 6 There exists a function f : N2 → N and a fixed parameter algorithm for
the parameterization by d and e that for a given rational matrix A:

– either outputs that A is not row-equivalent to a matrix with primal tree-depth at
most d and entry complexity at most e, or

– outputs a matrix A′ that is row-equivalent to A, its primal tree-depth is at most d
and entry complexity is at most f (d, e).

The following algorithm for computing a row-equivalent matrix with small dual
tree-depth was presented in [8, 9].

Theorem 7 There exists a function f : N
2 → N and a fixed parameter algorithm

for the parameterization by d and e that for a given rational matrix A with entry
complexity at most e:

– either outputs that A is not row-equivalent to a matrix with dual tree-depth at most
d, or

– outputs a matrix A′ that is row-equivalent to A, its dual tree-depth is at most d
and entry complexity is at most f (d, e).

Weimprove the algorithmby replacing the parameterizationby the entry complexity
of an input matrix with the parameterization by the entry complexity of the to be
constructedmatrix.Note that if amatrix A has entry complexity e and is row-equivalent
to a matrix with dual tree-depth d, then Theorem 7 yields that A is row-equivalent to
a matrix with dual tree-depth d and entry complexity bounded by a function of d and
e. Hence, the algorithm given below applies to a wider set of input matrices than the
algorithm from Theorem 7.

Theorem 8 There exists a function f : N2 → N and a fixed parameter algorithm for
the parameterization by d and e that, for a given rational matrix A:

– either outputs that A is not row-equivalent to a matrix with dual tree-depth at most
d and entry complexity at most e, or

– outputs a matrix A′ that is row-equivalent to A, its dual tree-depth is at most d
and entry complexity is at most f (d, e).

We point out the following difference between the cases of primal and dual tree-
depth. As mentioned, if a matrix A has entry complexity e and is row-equivalent to a
matrix with dual tree-depth d, then A is row-equivalent to amatrix with dual tree-depth
d and entry complexity bounded by a function of d and e. However, the same is not
true in the case of primal tree-depth. The entry complexity of every matrix with primal
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M. Briański et al.

tree-depth equal to one that is row-equivalent to the following matrix A is linear in
the number of rows of A, quite in a contrast to the case of dual tree-depth.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0 0 · · · 0 0 0 0
0 1 2 0 · · · 0 0 0 0
0 0 1 2 · · · 0 0 0 0
...

...
. . .

. . .
...

...
...

...
. . .

. . .
...

...

0 0 0 0 · · · 1 2 0 0
0 0 0 0 · · · 0 1 2 0
0 0 0 0 · · · 0 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1.1.4 Fixed parameter algorithms for integer programming

One of the open problems in the area, e.g. discussed during the Dagstuhl workshop
19041 “New Horizons in Parameterized Complexity”, has been whether integer pro-
gramming is fixed parameter tractable when parameterized by g1(A), i.e., by the
�1-norm of an element of the Graver basis of the constraint matrix A. Our results on
the interplay of dual tree-depth, the circuit complexity and theGraver basis complexity
of a matrix yield an affirmative answer. The existence of appropriate preconditioners
that we establish in this paper implies that integer programming is fixed parameter
tractable when parameterized by

• g1(A), i.e., the �1-norm of the Graver basis of the constraint matrix,
• c1(A), i.e., the �1-norm of the circuits of the constraint matrix,
• td∗

P (A) and ec(A), i.e., the smallest primal tree-depth and entry complexity of a
matrix row-equivalent to the constraint matrix, and

• td∗
D(A) and ec(A), i.e., the smallest dual tree-depth and entry complexity of a

matrix row-equivalent to the constraint matrix.

We believe that our new tractability results significantly enhance the toolbox of
tractable IPs as the nature of our tractability conditions substantially differ from
prevalent block-structured sparsity-based tractability conditions. The importance of
availability of various forms of tractable IPs can bewitnessed byn-fold IPs,whichwere
shown fixed-parameter tractable in [26], and, about a decade later, their applications
have become ubiquitous, see e.g. [6, 7, 10, 11, 28, 32, 33, 42, 43].

1.1.5 Hardness results

As our algorithmic results involve computing depth decompositions of matroids for
various depth parameters in a parameterizedway, we establish computational hardness
of these parameters in Theorem 12, primarily for the sake of completeness of our
exposition. In particular, computing the followingmatroid parameters is NP-complete:

• deletion-depth,
• contraction-depth,
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• contraction-deletion-depth,
• contraction∗-depth, and
• contraction∗-deletion-depth.

2 Preliminaries

In this section, we fix the notation used throughout the paper. We start with general
notation and we then fix the notation related to graphs, matrices and matroids.

The set of all positive integers is denoted by N and the set of the first k positive
integers by [k]. If A is a linear space, we write dim A for its dimension. If K is a
subspace of A, the quotient space A/K is the linear space of the dimension dim A −
dim K that consists of cosets of A given by K with the natural operations of addition
and scalar multiplication; see e.g. [25] for further details. The quotient space A/K
can be associated with a linear subspace of A of dimension dim A − dim K formed
by exactly a single vector from each coset of A given by K ; we will often view the
quotient space as such a subspace of A and write w + K for the coset containing a
vector w. For example, if A is R3 and K is the linear space generated by (0, 0, 1),
A/K can be associated with (or viewed as) the 2-dimensional space formed by vectors
(x, y, 0), x, y ∈ R.

2.1 Graphs

All graphs considered in this paper are loopless simple graphs unless stated otherwise.
If G is a graph, then we write V (G) and E(G) for the vertex set and the edge set of G,
respectively. IfW is a subset of vertices of a graphG, thenG \W is the graph obtained
by removing the vertices of W (and all edges incident with them), and G[W ] is the
graph obtained by removing all vertices not contained in W (and all edges incident
with them). If F is a subset of edges of a graph G, then G \ F is the graph obtained by
removing the edges contained in F and G/F is the graph obtained by contracting all
edges contained in F and removing resulting loops and parallel edges (while keeping
one edge from each group of parallel edges).

We next define the graph parameter tree-depth, which is the central graph parameter
in this paper. The height of a rooted tree is the maximum number of vertices on a path
from the root to a leaf, and the height of a rooted forest, i.e., a graph whose each
component is a rooted tree, is the maximum height of its components. The depth of
a rooted tree is the maximum number of edges on a path from the root to a leaf, and
the depth of a rooted forest is the maximum depth of its components. Note that the
height and the depth of a rooted tree always differ by one; we use both notions to avoid
cumbersome way of expressing that would otherwise require adding or subtracting
one. The closure cl(F) of a rooted forest F is the graph obtained by adding edges from
each vertex to all its descendants. Finally, the tree-depth td(G) of a graph G is the
minimum height of a rooted forest F such that the closure cl(F) of the rooted forest F
contains G as a subgraph. See Fig. 1 for an example. It can be shown that the path-
width, and so the tree-width, of any graph is at most its tree-depth decreased by one;
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Fig. 1 A rooted forest F consisting of a single tree and its closure cl(F), which shows that tree-depth of
the depicted graph G is (at most) four

see e.g. [14] for a more detailed discussion of the relation of tree-depth, path-width
and tree-width, and their algorithmic applications.

2.2 Matroids

We next review basic definitions from matroid theory; we refer to the book of Oxley
[46] for detailed exposition. A hereditary collection of subsets of a set is a collection
closed under taking subsets; in particular, every non-empty hereditary collection of
subsets contains the empty set. A matroid M is a pair (X , I), where I is a non-empty
hereditary collection of subsets of X that satisfies the augmentation axiom, i.e., if
X ′ ∈ I, X ′′ ∈ I and |X ′| < |X ′′|, then there exists an element x ∈ X ′′ \ X ′ such
that X ′ ∪ {x} ∈ I. The set X is the ground set of M and the sets contained in I
are referred to as independent. We often refer to elements of the ground set of M
to as elements of the matroid M , and if e is an element of (the ground set of) M ,
we also write e ∈ M . Two important examples of matroids are vector matroids and
graphic matroids. A vector matroid is a matroid whose ground set is formed by vectors
and independent sets are precisely sets of linearly independent vectors (note that the
augmentation axiom follows from the Steinitz exchange lemma). A graphic matroid
is a matroid whose ground set is formed by edges of a graph and independent sets are
precisely acyclic sets of edges, i.e., sets not containing a cycle.

The rank of a subset X ′ of the ground set X , which is denoted by rM (X ′)or simply by
r(X ′) ifM is clear from the context, is themaximumsize of an independent subset of X ′
(it can be shown that all maximal independent subsets of X ′ have the same cardinality);
the rank of the matroid M , which is denoted by r(M), is the rank of its ground set.
Note that in the case of vector matroids, the rank of X ′ is exactly the dimension of
linear space generated by X ′. A basis of a matroid M is a maximal independent subset
of the ground set of M and a circuit is a minimal subset of the ground set of M that
is not independent. In particular, if X ′ is a circuit of M , then r(X ′) = |X ′| − 1 and
every proper subset of X ′ is independent. An element x of a matroid M is a loop if
r({x}) = 0, an element x is a bridge if it is contained in every basis of M , and two
elements x and x ′ are parallel if r({x}) = r({x ′}) = r({x, x ′}) = 1. Note that in
the case of vector matroids, two non-loop elements are parallel if and only if they
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are non-zero multiple of each other. If M is a matroid with ground set X , the dual
matroid, which is denoted by M∗, is the matroid with the same ground set X such
that X ′ ⊆ X is independent in M∗ if and only if rM (X \ X ′) = r(M); in particular,
rM∗(X ′) = rM (X \ X ′) + |X ′| − r(M) for every X ′ ⊆ X .

For a field F, we say that a matroid M is F-representable if every element of M
can be assigned a vector from F

r(M) in such a way that a subset of the ground set of
M is independent if and only if the set of assigned vectors is linearly independent. In
particular, an element of M is a loop if and only if it is assigned the zero vector and
two non-loop elements of M are parallel if and only if they are non-zero multiples
of each other. Such an assignment of vectors of Fr(M) to the elements of M is an
F-representation of M . Clearly, a matroid M is F-representable if and only if it is
isomorphic to the vector matroid given by its F-representation.Matroids representable
over the 2-element field are referred to as binary matroids. We say that a matroid M
is F-represented if the matroid M is given by its F-representation. If a particular field
F is not relevant in the context, we just say that a matroid M is represented to express
that it is given by its representation.

Let M be a matroid with a ground set X . The matroid kM for k ∈ N is the matroid
obtained from M by introducing k − 1 parallel elements to each non-loop element
and k − 1 additional loops for each loop; informally speaking, every element of M
is “cloned” to k copies. Note that a subset X ′ of the elements of kM is independent
if and only if it does not contains two clones of the same element and the set of the
elements of M corresponding to those contained in X ′ is independent. Observe that
if M is a vector matroid, then kM is the vector matroid obtained by adding k − 1
copies of each vector forming M . Similarly, if M is a graphic matroid associated with
a graph G, then kM is the graphic matroid obtained from the graph G by duplicating
each edge k − 1 times.

If X ′ ⊆ X , then the restriction of M to X ′, which is denoted by M
[
X ′], is the

matroid with the ground set X ′ such that a subset of X ′ is independent in M
[
X ′] if

and only if it is independent in M . In particular, the rank of M
[
X ′] is rM (X ′). For

example, if M is a graphic matroid associated with a graph G, then the restriction of
M to X ′ is the graphic matroid associated with the spanning subgraph of G with edge
set X ′. The matroid obtained from M by deleting X ′ is the restriction of M to X \ X ′
and is denoted by M \ X ′.

The contraction of M by X ′, which is denoted by M/X ′, is the matroid with the
ground set X \ X ′ such that a subset X ′′ of X \ X ′ is independent in M/X ′ if and
only if rM (X ′′ ∪ X ′) = |X ′′| + rM (X ′). If X ′ is a single element set and e is its only
element, we write M \ e and M/e instead of M \ {e} and M/{e}, respectively. If M
is a graphic matroid associated with a graph G and e is an edge of G, then M/e is the
graphic matroid associated with the graph obtained from G by contracting the edge
e (while keeping all resulting loops and parallel edges). If an F-representation of M
is given and X ′ is a subset of the ground set of M , then an F-representation of M/X ′
can be obtained from the F-representation of M by considering the representation in
the quotient space by the linear hull of the vectors representing the elements of X ′.
This leads us to the following definition: if M is an F-represented matroid and A is a
linear subspace of Fr(M), then the matroid M/A is the F-represented matroid with the
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representation of M in the quotient space by A. Note that the ground sets of M and
M/A are the same, in particular, M and M/A have the same number of elements.

A matroid M is connected if every two distinct elements of M are contained in a
common circuit. We remark that the property of being contained in a common circuit
is transitive [46, Proposition 4.1.2], i.e., if the pair of elements e and e′ is contained in
a common circuit and the pair e′ and e′′ is also contained in a common circuit, then the
pair e and e′′ is also contained in a common circuit. If M is an F-represented matroid
with at least two elements, then M is connected if and only if M has no loops and there
do not exist two non-trivial linear spaces A and B of Fr(M) such that A ∩ B contains
the zero vector only and every element of M is contained in A or B (the linear space
F
r(M) would be the direct sum of the linear spaces A and B). Also observe that if M

is a graphic matroid associated with a graph G, then the matroid M is connected if
and only if the graph G is 2-connected.

A component of a matroid M is an inclusion-wise maximal connected restriction of
M ; a component is trivial if it consists of a single loop, and it is non-trivial otherwise.
If M is a vector matroid, then each non-trivial component of M can be associated with
a linear space such that each element of M is contained in one of the linear spaces and
the linear hull of all elements of M is the direct sum of the linear spaces. We often
identify components of a matroid M with their element sets. Using this identification,
it holds that a subset X ′ of a ground set of a matroidM is a component ofM if and only
if X ′ is a component of M∗ (we use this equivalence to prove some of our hardness
results in Sect. 6). We remark that (M∗)∗ = M for every matroid M , and if e is an
element of a matroid M , then (M/e)∗ = M∗ \ e and (M\e)∗ = M∗/e.

2.3 Matrices

In this section, we define notation related to matrices. If F is a field, we write Fm×n for
the set of matrices withm rows and n columns over the fieldF. If A is a rational matrix,
the entry complexity ec(A) is the maximum length of a binary encoding of its entries,
i.e., the maximum of �log2(|p| + 1)	 + �(log2 |q| + 1)	 taken over all entries p/q of
A (where p and q are always assumed to be coprime). If A is an integral matrix, then
ec(A) = �(log ‖A‖∞). Throughout the paper, we use the entry complexity rather than
the �∞-norm of matrices as this permits formulating our results for rational matrices
rather than integral matrices only.

A rational matrix A is z-integral for z ∈ Q if every entry of A is an integral multiple
of z. We say that two matrices A and A′ are row-equivalent if one can be obtained
from another by elementary row operations, i.e., by repeatedly adding a multiple of
one row to another and multiplying a row by a non-zero element. Observe that if A
and A′ are row-equivalent matrices, then their kernels are the same. For a matrix A,
we define M(A) to be the represented matroid whose elements are the columns of A.
Again, if matrices A and A′ are row-equivalent, then the matroids M(A) and M(A′)
are the same.

If A is a matrix, the primal graph of A is the graph whose vertices are columns
of A and two vertices are adjacent if there exists a row having non-zero elements
in the two columns associated with the vertices; the dual graph of A is the graph
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Fig. 2 The primal graph, the dual graph and the incidence graph of the depicted matrix A

whose vertices are rows of A and two vertices are adjacent if there exists a column
having non-zero elements in the two associated rows; the incidence graph of A is the
bipartite graph with one part formed by rows of A and the other part by columns of A
and two vertices are adjacent if the entry in the associated row and in the associated
column is non-zero. See Fig. 2 for an example. The primal tree-depth of A, denoted by
tdP (A), is the tree-depth of the primal graph of A, the dual tree-depth of A, denoted
by tdD(A), is the tree-depth of the dual graph of A, and the incidence tree-depth of
A, denoted by tdI (A), is the tree-depth of the incidence graph of A. Finally, td∗

P (A) is
the smallest primal tree-depth of a matrix row-equivalent to A, td∗

D(A) is the smallest
dual tree-depth of a matrix row-equivalent to A, and td∗

I (A) is the smallest incidence
tree-depth of a matrix row-equivalent to A.

A circuit of a rational matrix A is a support-wise minimal integral vector contained
in the kernel of A such that all its entries are coprime; the set of circuits of A is denoted
by C(A). Note that a set X of columns is a circuit in the matroid M(A) if and only
if C(A) contains a vector with the support exactly equal to X . We write c1(A) for
the maximum �1-norm of a circuit of A and c∞(A) for the maximum �∞-norm of a
circuit of A. Note if A and A′ are row-equivalent rational matrices, then C(A) = C(A′)
and so the parameters c1(·) and c∞(·) are invariant under elementary row operations.
Following the notation from [21], we write κ̇A for the least common multiple of the
entries of the circuits of A. Observe that there exists a function f : N → N such that
κ̇A ≤ f (c∞(A)) for every matrix A.

If x and y are two d-dimensional vectors, we write x � y if |xi | ≤ |yi | for all
i ∈ [d] and x and y are in the same orthant, i.e., xi and yi have the same sign (or one or
both are zero) for all i ∈ [d]. The Graver basis of a matrix A, denoted by G(A), is the
set of the �-minimal non-zero elements of the integer kernel kerZ(A). We use g1(A)

and g∞(A) for the Graver basis of A analogously to the set of circuits, i.e., g1(A) is
the maximum �1-norm of a vector in G(A) and g∞(A) is the maximum �∞-norm of a
vector in G(A). Again, the parameters g1(·) and g∞(·) are invariant under elementary
row operations as the Graver bases of row-equivalent matrices are the same. Note that
every circuit of a matrix A belongs to the Graver basis of A, i.e., C(A) ⊆ G(A), and
so it holds that c1(A) ≤ g1(A) and c∞(A) ≤ g∞(A) for every matrix A.

The existence of efficient algorithms for integer programming with of constraint
matrices A with bounded primal and dual tree-depth is closely linked to bounds on
the norm of elements of the Graver basis of A. In particular, Koutecký, Levin and Onn
[44] established the following.
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Fig. 3 A deletion-tree and a contraction-tree of the depicted binary matroid M , which is also the graphic
matroid associated with the depicted graph

Theorem 9 There exist functions fP , fD : N
2 → N such that the following

holds for every rational matrix A: g∞(A) ≤ fP (tdP (A), ec(A)) and g1(A) ≤
fD(tdD(A), ec(A)).

2.4 Matroid depth parameters

We now define matroid depth parameters that will be of importance further. We start
with the notion of deletion-depth and contraction-depth, which were introduced by
DeVos, Kwon and Oum [16].

The deletion-depth of a matroid M , denoted by dd(M), is defined recursively as
follows:

– If M has a single element, then dd(M) = 1.
– If M is not connected, then dd(M) is the maximum deletion-depth of a component
of M .

– Otherwise, dd(M) = 1 + min
e∈M dd(M \ e), i.e., dd(M) is 1 plus the minimum

deletion-depth of M \ e where the minimum is taken over all elements e of M .

A sequence of deletions of elements witnessing that the deletion-depth of a matroid M
is dd(M) can be visualized by a rooted tree, which we call a deletion-tree, defined as
follows. IfM has a single element, then the deletion-tree ofM consists of a single vertex
labeled with the single element of M . If M is not connected, then the deletion-tree is
obtained by identifying the roots of deletion-trees of the components of M . Otherwise,
there exists an element e of the matroid M such that dd(M) = dd(M \ e) + 1 and
the deletion-tree of M is obtained from the deletion-tree of M \ e by adding a new
vertex adjacent to the root of the deletion-tree of M \ e, changing the root of the tree
to the newly added vertex and labeling the edge incident with it with the element
e. See Fig. 3 for an example. Observe that the height of the deletion-tree is equal to
the deletion-depth of M . In what follows, we consider deletion-trees that need not
to be of optimal height, i.e., its edges can be labeled by a sequence of elements that
decomposes a matroid M in a way described in the definition of the deletion-depth
but its height is larger than dd(M). In this more general setting, the deletion-depth of
a matroid M is the smallest height of a deletion-tree of M .

The contraction-depth of a matroid M , denoted by cd(M), is defined recursively
as follows:

– If M has a single element, then cd(M) = 1.
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Fig. 4 A binary matroid M of
rank four given by its
representation and a tree T as in
the definition of the
contraction∗-depth

– If M is not connected, then cd(M) is the maximum contraction-depth of a com-
ponent of M .

– Otherwise, cd(M) = 1 + min
e∈M cd(M/e), i.e., cd(M) is 1 plus the minimum

contraction-depth of M/e where the minimum is taken over all elements e of
M .

It is not hard to show that dd(M) = cd(M∗) and cd(M) = dd(M∗) for every matroid
M . We define a contraction-tree analogously to a deletion-tree; the contraction-depth
of a matroid M is the smallest height of a contraction-tree of M (an example is given
in Fig. 3).

We next introduce the contraction-deletion-depth; this parameter was studied
under the name type in [17], however, we decided to adopt the name contraction-
deletion-depth from [16], which we find to better fit the context considered here. The
contraction-deletion-depth of a matroid M , denoted by cdd(M), is defined recursively
as follows:

– If M has a single element, then cdd(M) = 1.
– If M is not connected, then cdd(M) is the maximum contraction-deletion-depth
of a component of M .

– Otherwise, cdd(M) = 1 + min
e∈M min{cdd(M \ e), cdd(M/e)}, i.e., cdd(M) is 1

plus the smaller among the minimum contraction-deletion-depth of the matroid
M \ e and the minimum contraction-deletion-depth of the matroid M/e where
both minima are taken over all elements e of M .

Observe that it holds that cdd(M) = cdd(M∗), cdd(M) ≤ dd(M) and cdd(M) ≤
cd(M) for every matroid M .

One of the key parameters in our setting is that of contraction∗-depth; this parameter
was introduced under the name branch-depth in [36] and further studied in [8] but
we decided to use a different name to avoid a possible confusion with the notion of
branch-depth introduced in [16].We first introduce the parameter for general matroids,
and then present an equivalent definition for represented matroids, which is more
convenient to work in our setting. The contraction∗-depth of a matroid M , denoted
by c*d(M), is the smallest depth of a rooted tree T with exactly r(M) edges with the
following property: there exists a function f from the ground set of M to the leaves
of T such that for every subset X of the ground set of M the total number of edges
contained in paths from the root to vertices of X is at least r(X). An example is given
in Fig. 4.
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There is an alternative definition of the parameter for represented matroids, which
also justifies the name that we use for the parameter. The contraction∗-depth of a
represented matroid M can be defined recursively as follows:

– If M has rank zero, then c*d(M) = 0.
– If M is not connected, then c*d(M) is the maximum contraction∗-depth of a com-
ponent of M .

– Otherwise, c*d(M) is 1 plus theminimum contraction∗-depth of amatroid obtained
from the matroid M by factoring along an arbitrary one-dimensional subspace.

As the contraction in the definition is allowed to be by an arbitrary one-dimensional
subspace, not only by a subspace generated by an element of M , it follows that
c*d(M) ≤ cd(M).

The sequence of such contractions can be visualized by a contraction∗-tree that is
defined in the sameway as a contraction-tree except that one-vertex trees are associated
withmatroids of rank zero (rather thanmatroids consisting of a single element) and the
edges are labeled by one-dimensional subspaces. If each one-dimensional subspace
that is the label of an edge of the tree is generated by an element of the matroid
M , we say that the contraction∗-tree is principal and we view the edges of the tree
as labeled by the corresponding elements of M . Note that the minimum depth of a
principal contraction∗-tree of amatroidM is an upper bound on its contraction∗-depth,
however, in general, the contraction∗-depth of a matroid M can be smaller than the
minimum depth of a principal contraction∗-tree of M . We point out that the notions of
principal contraction∗-trees and contraction-trees differ in a subtle but important way.
For example, if M is a vector matroid of rank one containing a single element e, its
only contraction-tree consists of a root labeled by ewhile its only contraction∗-tree has
a root and a leaf adjacent to it and the edge joining them is labeled with (the subspace
generated by) e. However, if M is a vector matroid of rank one containing two parallel
elements e and e′, any contraction-tree and any contraction∗-tree of M has depth one.
Still, the minimum depth of a principal contraction∗-tree of M is either cd(M) − 1 or
cd(M).

Kardoš et al. [36] established the connection between the contraction∗-depth and
the existence of a long circuit, which is described in Theorem 10 below; Theorem 10
implies that cd(M) ≤ k2 + 1 where k is the size of the largest circuit of M .

Theorem 10 Let M be a matroid and k the size of its largest circuit. It holds that
log2 k ≤ c*d(M) ≤ k2. Moreover, there exists a polynomial-time algorithm that for an
input oracle-given matroid M outputs a principal contraction∗-tree of depth at most
k2.

We next introduce the parameter of contraction∗-deletion-depth, which we believe
to have not been yet studied previously, butwhich is particularly relevant in our context.
To avoid unnecessary technical issues, we introduce the parameter for represented
matroids only. The contraction∗-deletion-depth of a represented matroid M , denoted
by c*dd(M), is defined recursively as follows:

– If M has rank zero, then c*dd(M) = 0;
– if M has a single non-loop element, then c*dd(M) = 1.
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– If M is not connected, then c*dd(M) is the maximum contraction∗-deletion-depth
of a component of M .

– Otherwise, c*dd(M) is 1 plus the smaller among the minimum contraction∗-
deletion-depth of the matroid M \e, where the minimum is taken over all elements
of M , and the minimum contraction∗-deletion-depth of a matroid obtained from
M by factoring along an arbitrary one-dimensional subspace.

Observe that c*dd(M) ≤ cdd(M) and c*dd(M) ≤ c*d(M) for every matroid M .
Finally, if A is a matrix, the deletion-depth, contraction-depth, etc. of A is the

corresponding parameter of the vector matroid M(A) formed by the columns of A,
and we write dd(A), cd(A), etc. for the deletion-depth, contraction-depth, etc. of the
matrix A. Observe that the deletion-depth, contraction-depth etc. of a matrix A is
invariant under elementary row operations as elementary row operations preserve the
matroid M(A).

3 Structural results

In this section, we prove our structural results concerning optimal primal tree-depth
and optimal incidence tree-depth of a matrix. We start with presenting an algorithm,
which uses a deletion-tree of the matroid associated with a given matrix to construct
a row-equivalent matrix with small primal tree-depth.

Lemma 1 There exists a polynomial-time algorithm that for an input matrix A and a
deletion-tree of M(A) with height d outputs a matrix A′ row-equivalent to A such that
tdP (A′) ≤ d.

Proof We establish the existence of the algorithm by proving that tdP (A′) ≤ d in a
constructive (algorithmic) way. Fix a matrix A and a deletion-tree T of M(A) with
height d.

Let X be the set of non-zero columns that are labels of the vertices of T . We show
that the columns contained in X form a basis of the column space of the matrix A.
As the matroid obtained from M(A) by deleting the labels of the edges of T has no
component of size two or more, the columns contained in X are linearly independent.
Suppose that there exists a non-zero column x that is not a linear combination of the
columns contained in X , and choose among all such columns the label of an edge
e as far from the root of T as possible. Since the element x does not form its own
component in the matroid obtained from M by deleting the labels of all edges on the
path from the root to e (excluding e), x is a linear combination of the labels of the
vertices and edges of the subtree of T delimited by e. This implies that either x is a
linear combination of the columns in X or there is a label of an edge of this subtree
that is not a linear combination of the columns in X contrary to the choice of x . We
conclude that X is a basis of the column space of A. In particular, unless A is the zero
matrix, the set X is non-empty.

Let A′ be the matrix obtained from A by elementary row operations such that
the submatrix of A′ induced by the columns of X is the unit matrix and with some
additional zero rows; note that the set X is determined by the input deletion-tree and
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Fig. 5 A binarymatrix A, a deletion-tree of the matroidM(A) and the matrix A′ as in the proof of Lemma 1.
Note that X = {a, b, f }

so the matrix A′ depends on the deletion-tree. See Fig. 5 for an example. This finishes
the construction of A′ and, in particular, the description of the algorithm to produce
the output matrix A′. To complete the proof, it remains to show that the primal tree-
depth of A′ is at most d, i.e., the correctness of the algorithm. This will be proven by
induction on the number of columns of an input matrix A.

The base of the induction is the case when A has a single column. In this case,
the primal tree-depth of A′ is one and the tree T is a single vertex labeled with the
only column of A, and so its height is one. We next present the induction step. First
observe that every label of a vertex of T is either in X or a loop in M(A) (recall that
only non-zero columns of A are included to X ), and every label of an edge e is a linear
combination of labels of the vertices in the subtree delimited by e.

Suppose that the root of T has a label and let x be one of its labels; note that x is
either a loop or a bridge in the matroid M(A). Let B be the matrix obtained from A
by deleting the column x , and let T ′ be the deletion-tree of M(B) obtained from T by
removing the label x from the root. Let B ′ be the matrix produced by the algorithm
described above for B and T ′. If x is a loop, then the matrix A′ is the matrix B ′
extended by a zero column with possibly permuted rows, and if x is a bridge (and so
x ∈ X ), then the matrix A′ is, possibly after permuting rows, the matrix B ′ extended
by a unit vector such that its non-zero entry is the only non-zero entry in its row. In
either case, the vertex associated with the column x is isolated in the primal graph of
A′, and it follows that tdP (A′) = tdP (B ′) ≤ d (the inequality holds by the induction
hypothesis). Hence, we can assume that the root of T has no label.

We next analyze the case that the root of T has a single child and no label. Let
x be the label of the single edge incident with the root of T . Let B be the matrix
obtained from A by deleting the column x , and let T ′ be the deletion-tree of M(B)

obtained from T by deleting the edge incident with the root and rooting the tree at the
remaining vertex of the deleted edge. Let B ′ be the matrix produced by the algorithm
described above for B and T ′; note that the primal tree-depth of B ′ is at most d − 1
by the induction hypothesis. Since B ′ is the submatrix of A′ formed by the columns
different from x (possibly after permuting rows), the primal tree-depth of A′ is at most
tdP (B ′) + 1 = d.

The final case to analyze is the case when the root of T has k ≥ 2 children (in
addition to having no label). Let T1, . . . , Tk be the k subtrees of T delimited by the k
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edges incident with the root of T , let Y1, . . . ,Yk be the labels of the vertices and edges
of these subtrees, and let B1, . . . , Bk be the submatrices of A formed by the columns
contained in Y1, . . . ,Yk . Observe that Ti is a deletion-tree of the matroid M(Bi ) for
i = 1, . . . , k, and the matrix B ′

i produced by the algorithm described above for Bi
and Ti is the submatrix of A′ formed by the columns contained in Yi (possibly after
permuting rows). Since the support of the columns contained in Yi contains only the
unit entries of the columns of A′ contained in X ∩ Yi , the primal graph of A′ contains
no edge joining a column of Yi and a column of Y j for i �= j . It follows that the primal
tree-depth of A′ is at most the maximum primal tree-depth of Bi , which is at most d
by the induction hypothesis. It follows that tdP (A′) ≤ d as desired. The proof of the
correctness of the algorithm is now completed and so is the proof of the lemma. ��

We are now ready to establish the link between the optimal primal tree-depth and
the deletion-depth of the matroid associated with the matrix.

Proof of Theorem 2 Fix a matrix A. By Lemma 1, it holds that td∗
P (A) ≤ dd(A) as

there exists a deletion-tree of the matroid M(A) with height dd(A). So, we focus on
proving that dd(A) ≤ td∗

P (A).Wewill show that everymatrix B satisfies that dd(B) ≤
tdP (B); this implies that dd(A) ≤ tdP (A′) for every matrix A′ row-equivalent to A
as dd(A) = dd(A′) and so implies that dd(A) ≤ td∗

P (A).
The proof that dd(B) ≤ tdP (B) proceeds by induction on the number of columns.

If B has a single column, then both dd(B) and tdP (B) are equal to one. We next
present the induction step. We first consider the case when the matroid M(B) is not
connected. Let B1, . . . , Bk be the submatrices of B formed by columns corresponding
to the components of M(B); note that some of the submatrices may consist of a single
zero column (if M(B) has a loop). The definition of the deletion-depth implies that
dd(B) is the maximum among dd(B1), . . . , dd(Bk). On the other hand, the primal
tree-depth of each of the matrices Bi is at most the primal tree-depth of the matrix
B as the primal graph of Bi is a subgraph of the primal graph of B. It follows that
dd(Bi ) ≤ tdP (B), which implies that dd(B) ≤ tdP (B).

We next assume that thematroidM(B) is connected and claim that the primal graph
of B must also be connected. Suppose that the primal graph of B is not connected, i.e.,
there exists a partition of rows of B into R1 and R2 and a partition of the columns into
C1 and C2, such that for each i = 1, 2, the support of each column in Ci is contained
in Ri . Therefore, for any dependent set of columns of B, either its subset formed by
columns contained in C1 is dependent, or its subset formed by by columns contained
in C2 is dependent, or both these subsets are dependent. It follows that the support of
every circuit of M(B) is fully contained in either C1 or C2; in particular, no there is
no circuit of M(B) containing a column from C1 and a column from C2. This implies
that M(B) is not connected. Hence, the primal graph of B must be connected.

Since the primal graph of B is connected, there exists a column such that the matrix
B ′ obtained by deleting this column satisfies that tdP (B ′) = tdP (B)−1. The induction
assumption yields that dd(B ′) ≤ tdP (B) − 1 and the definition of the deletion-depth
yields that the deletion-depth ofM(B) is atmost the deletion-depth ofM(B ′) increased
by one. This implies that dd(B) = dd(M(B)) ≤ tdP (B) as desired. ��
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Before proceeding with our structural result concerning incidence tree-depth, we
use the structural results presented in Lemma 1 and Theorem 2 to get a parameterized
algorithm for computing an optimal primal tree-depth of a matrix over a finite field.

Corollary 1 There exists a fixed parameter algorithm for the parameterization by a
finite field F and an integer d that for an input matrix A over the field F,

– either outputs that td∗
P (A) > d, or

– computes a matrix A′ row-equivalent to A with tdP (A′) ≤ d and also outputs the
associated deletion-tree of M(A) with height tdP (A′).

Proof Wefirst show that the property that amatroidM has deletion depth at most d can
be expressed inmonadic secondorder logic.Recall thatmonadic secondorder formulas
for matroids may contain quantification over elements and subsets of elements of a
matroid, and the predicateψI (·) used to test whether a particular subset is independent
in addition to logic connectives and the equality =, the set inclusion ∈ and the subset
inclusion⊆. In the formulas thatwe present, small letters are used to denote elements of
amatroid and capital letters subsets of the elements.We next present amonadic second
order formula ψd(X) that describes whether the deletion-depth of the restriction of
the matroid M to a subset X of the elements of M is at most d, which would imply the
statement. The following formulaψc(·, ·)describes the existence of a circuit containing
two distinct elements:

ψc(x, y) ≡ (x �= y) ∧ (∃X : x ∈ X ∧ y ∈ X ∧ ¬ψI (X) ∧ ∀z ∈ X : ψI (X \ z) ) .

The next formula ψC (·) describes whether a subset X is a component of a matroid
(recall that the binary relation of two matroid elements being contained in a common
circuit is transitive):

ψC (X) ≡ (∀x, y ∈ X : x �= y ⇒ ψc(x, y) ) ∧ (∀x ∈ X , y /∈ X : ¬ψc(x, y) ) .

The sought formula ψd(·) is defined inductively as follows (we remark that ψd(∅) is
true for all d):

ψ1(X) ≡ ∀x, y ∈ X : x �= y ⇒ ¬ψc(x, y) and

ψd(X) ≡ ∀X ′ ⊆ X : ψC (X ′) ⇒ ∃x ∈ X ′ : ψd−1(X
′ \ {x}) for d ≥ 2.

Hliněný [29, 30] proved that all monadic second order logic properties can be tested
in a fixed parameter way for matroids represented over a finite field F with branch-
width at most d when parameterized by the property, the field F and the branch-width
d. Since the branch-width of a matroid M is at most its deletion-depth, it follows that
testing whether the deletion-depth of an input matroid represented over a finite field
F is at most d is fixed parameter tractable when parameterized by the field F and
the integer d. This establishes the existence of a fixed parameter algorithm deciding
whether td∗

P (A) = dd(M(A)) ≤ d (the equality follows from Theorem 2). To obtain
the algorithm claimed to exist in the statement of the corollary, we need to extend the
algorithm for testing whether the deletion-depth of an input matroid M represented
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over F is at most d to an algorithm that also outputs a deletion-tree of M with height
at most d; this would yield an algorithm for computing A′ by Lemma 1.

We now describe the extension of the algorithm from testing to constructing a
deletion-decomposition tree as a recursive algorithm. Let d be the computed deletion-
depth of an input matroid M . The deletion-depth of an input matroid M is one if
and only if every element of M is a loop or a bridge. Since the latter is easy to
algorithmically test, if d = 1, then the deletion-tree of height one consists of a single
vertex labeled with all elements ofM . If d ≥ 2 and thematroidM is not connected, we
first identify its components, which can be done in polynomial time even in the oracle
model, then proceed recursively with each component of M and eventually merge the
roots of all deletion-trees obtained recursively.

Finally, we discuss the case when d ≥ 2 and the matroid M is connected. We loop
over all elements e of M and test using the monadic second order checking algorithm
of Hliněný [29, 30] whether dd(M \e) ≤ d−1, i.e., whetherψd−1(M \e) is true. Such
an element emust exist (otherwise, the deletion-depth ofM cannot be d) and when e is
found, we recursively apply the algorithm to M \e to obtain a deletion-tree T of M \e
with height d−1. Note that there is a single recursive call as we invoke recursion for a
single element e of thematroidM . The tree T returned by the recursive call is extended
to a deletion-tree of M by introducing a new vertex, joining it by an edge to the root
of T , rerooting the tree to the new vertex, and labeling the new edge with the element
e. This completes the description of the algorithm for constructing a deletion-tree of
height at most d if it exists. Observe that the running time of the described procedure
for constructing a deletion-tree is bounded by the product of the number of elements of
M and the running time of the test whether an input matroid is connected and the test
whether an input matroid satisfies ψ1(·), . . . , ψd(·); in particular, it is fixed parameter
when parameterized by a finite field F and an integer d. ��

We conclude this section by establishing a link between the optimal incidence tree-
depth and the contraction∗-deletion-depth of the matroid associated with the matrix.

Proof of Theorem 3 We prove the equality as two inequalities starting with the inequal-
ity c*dd(A) ≤ td∗

I (A)−1. To prove this inequality, we show that c*dd(A) ≤ tdI (A)−1
holds for every matrix A with m rows and n columns by induction on m + n. The
base of the induction is formed by the cases when all entries of A are zero, n = 1 or
m = 1. If all entries of A are zero, then c*dd(A) = 0 and tdI (A) = 1. If n = 1 and A
is non-zero, then M(A) has a single non-loop element and so c*dd(A) = 1 while the
incidence graph of A is formed by a star and possibly some isolated vertices and so
tdI (A) = 2. Finally, ifm = 1 and A is non-zero, then M(A) has rank 1, so contracting
any non-loop element of M(A) yields a matroid of rank zero and so c*dd(A) = 1. On
the other hand, the incidence graph of A is formed by a star and possibly some isolated
vertices and so tdI (A) = 2.

We now establish the induction step, i.e., we assume that the matrix A is non-
zero, m ≥ 2 and n ≥ 2. First suppose that the matroid M(A) is not connected.
Let X1, . . . , Xk be the components of M(A) and let A1, . . . , Ak be the submatri-
ces of A formed by the columns X1, . . . , Xk , respectively. The definition of the
contraction∗-deletion-depth implies that c*dd(A) is the maximum of c*dd(Ai ). The
induction hypothesis yields that c*dd(Ai ) ≤ tdI (Ai )− 1. Since the incidence graph of
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Ai is a subgraph of the incidence graph of A, it follows that tdI (Ai ) ≤ tdI (A) and so
c*dd(Ai ) ≤ tdI (A) − 1. We conclude that c*dd(A) ≤ tdI (A) − 1.

Next suppose that thematroidM(A) is connected but the incidence graph of A is not
connected. As the columns associated with vertices contained in different components
of the incidence graph of A have disjoint supports, such columns cannot be contained
in the same component of the matroid M(A). Hence, if the incidence graph of A is
not connected despite the matroid M(A) being connected, then the incidence graph
of A consists of a single non-trivial component and isolated vertices associated with
zero rows of A. Let x be one such row and let A′ be the matrix obtained from A
by deleting the row x . Since the matroids M(A) and M(A′) are the same, it holds
that c*dd(A) = c*dd(A′), and since the incidence graph of A is the incidence graph
of A′ with an isolated vertex added, it holds tdI (A) = tdI (A′). Hence, the induction
hypothesis yields that c*dd(A′) ≤ tdI (A′)−1,which implies that c*dd(A) ≤ tdI (A)−1.

Finally, suppose that thematroidM(A) is connected and the incidence graph of A is
also connected. The definition of the tree-depth implies that there exists a vertex w of
the incidence graph whose deletion decreases the tree-depth of the incidence graph by
one. Let A′ be thematrix obtained from A by deleting the row or the column associated
with the vertexw and note that tdI (A′) = tdI (A)−1. If the vertexw is associated with
a column x , the matroid M(A′) is the matroid obtained from M(A) by deleting the
element x . If the vertexw is associated with a row x , the matroid M(A′) is the matroid
obtained from M(A) by contracting by the subspace generated by the unit vector with
the entry in the row x . In either case, the definition of the contraction∗-deletion-depth
implies that c*dd(A) ≤ c*dd(A′) + 1. The induction hypothesis applied to A′ yields
that c*dd(A′) ≤ tdI (A′) − 1, which yields that c*dd(A) ≤ tdI (A′) = tdI (A) − 1.

To complete the proof of the theorem, it remains to show that the inequality td∗
I (A) ≤

c*dd(A)+1 holds for every matrix A. The proof proceeds by induction on the number
n of columns of A. If n = 1 and the only column of A is zero, then the incidence graph
of A is formed by isolated vertices and so td I (A) = 1 while c*dd(A) = 0 since the
rank of M(A) is zero. If n = 1 and the only column of A is not zero, then the incidence
graph of A is formed by a star and possibly some isolated vertices and so tdI (A) = 2
while c*dd(A) = 1. In either case, it holds that td∗

I (A) ≤ tdI (A) = c*dd(A) + 1.
We now establish the induction step. First suppose that the matroid M(A) is not

connected. Let X1, . . . , Xk be the sets of columns forming the components of M(A)

and let A′ be thematrix row-equivalent to A such that there exist sets of rowsY1, . . . ,Yk
such that |Yi | = rM(A)(Xi ) for i = 1, . . . , k and the only columns with non-zero
entries in the rows Yi are those of Xi and all rows not contained in Y1 ∪ · · · ∪ Yk are
zero (such a matrix A′ exists since the matroid M(A) is union of its restrictions to
X1, . . . , Xk). Let A′

i be the submatrix of A′ formed by the rows of Yi and the columns
of Xi . Observe that all entries of the matrix A not contained in one of the matrices
A′
1, . . . , A

′
k are zero. By the induction hypothesis, for every i = 1, . . . , k, there exists a

matrix A′′
i row-equivalent to A

′
i such that td I (A

′′
i ) ≤ c*dd(M(A) [Xi ])+1, in particular,

tdI (A′′
i ) ≤ c*dd(A) + 1. Let A′′ be the matrix obtained from A′ by replacing A′

i with
A′′
i for i = 1, . . . , k. Observe that A′′ is row-equivalent to A′ and so to A. Since

the incidence graph of A′′ is the union of the incidence graphs of A′′
i , i = 1, . . . , k,
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and possibly some isolated vertices (which correspond to zero rows), it follows that
tdI (A′′) ≤ c*dd(A) + 1. Hence, it holds that td∗

I (A) ≤ c*dd(A) + 1.
To complete the proof, we need to consider the case that the matroid M(A) is

connected. The definition of the contraction∗-deletion-depth implies that there exists
an element x of M(A) such that c*dd(M(A)\x) = c*dd(M(A)) − 1 = c*dd(A) − 1
or there exists a one-dimensional subspace such that the contraction by this subspace
yields a matroid M ′ such that c*dd(M ′) = c*dd(M(A)) − 1 = c*dd(A) − 1. In the
former case, let A′ be the matrix obtained from A by deleting the column x . By
the induction hypothesis, there exists a matrix A′′ row-equivalent to A′ such that
tdI (A′′) ≤ c*dd(A′) + 1 = c*dd(A), and let A′′′ be the matrix obtained from A by
the same elementary row operations that A′′ is obtained from A′. Observe that the
incidence graph of A′′ can be obtained from the incidence graph of A′′′ by deleting
the vertex associated with the column x . Hence, tdI (A′′′) ≤ tdI (A′′) + 1. Since A′′′
is row-equivalent to A, it follows that

td∗
I (A) ≤ tdI (A

′′′) ≤ tdI (A
′′) + 1 ≤ c*dd(A) + 1.

We now analyze the latter case, i.e., the case that there exists a one-dimensional
subspace such that the contraction by this subspace yields a matroid M ′ with
c*dd(M ′) = c*dd(A) − 1. Let A′ be the matrix obtained from A by elementary row
operations such that the contracted subspace used to obtain M ′ is generated by the unit
vector with the non-zero entry being its first entry, and let B be the matrix obtained
from A′ by deleting the first row. By the induction hypothesis, there exists a matrix
B ′ row-equivalent to B such that tdI (B ′) ≤ c*dd(A′) + 1 = c*dd(A), and let A′′
be the matrix consisting of the first row of A and the matrix B ′. Observe that A′′ is
row-equivalent to A. Since the incidence graph of B ′ can be obtained from the inci-
dence graph of A′′ by deleting the vertex associated with the first row, it holds that
tdI (A′′) ≤ tdI (B ′) + 1. Hence, it follows that

td∗
I (A) ≤ tdI (A

′′) ≤ tdI (B
′) + 1 ≤ c*dd(A) + 1.

The proof of the theorem is now completed. ��

4 Primal tree-depth

In this section, we present a parameterized algorithm for computing a row-equivalent
matrix with small primal tree-depth and bounded entry complexity if such a matrix
exists.

Proof of Theorem 6 We first find a bound on κ̇B when B is an integer matrix with
tdP (B) ≤ d and ec(B) ≤ e (recall that κ̇B is the least common multiple of the entries
of the circuits of B). Consider such a square invertible matrix C with tdP (C) ≤ d and
ec(C) ≤ e. By the result of Brand, Ordyniak and the second author [5], the maximum
denominator appearing over all entries of C−1 can be bounded by a function of d
and e; in particular, there exists k0 ≤ (2e)d!(d!)d!/2 such that every entry of C−1 is

123
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1/k-integral for some k ≤ k0. Set κ0 to be the least common multiple of the integers
1, . . . , k0. By [21, Theorem3.8], κ̇B is the smallest integer such that every denominator
of the inverse of every invertible square submatrix of B divides κ̇B . Since the primal
tree-depth of any square submatrix of B at most the primal tree-depth of B, κ̇B divides
κ0 for every matrix B with tdP (B) ≤ d and ec(B) ≤ e. In particular, κ̇B ≤ κ0 for
every matrix B with tdP (B) ≤ d and ec(B) ≤ e.

We next describe the algorithm from the statement of the theorem. Without loss of
generality, we can assume that the rank of the input matrix A is equal to the number
of its rows, in particular, A is non-zero. The algorithm starts with diagonalizing the
square submatrix of the input matrix A formed by an arbitrary basis of the column
space, i.e., performing elementary row operations so that the selected columns form
the identity matrix. The resulting matrix is denoted by AI . If the numerator or the
denominator of any (non-zero) entry of AI does not divide κ0, the algorithm arrives
at the first conclusion of the theorem as every (non-zero) entry of AI is a fraction that
can be obtained by dividing two entries of a circuit of A (indeed, consider the circuit
of the matrix A with support formed by a column x and some of the columns of the
chosen basis, and observe that each entry in the column x is equal to the x-entry of
the circuit divided by one of its other entries). Hence, we assume that both numerator
and denominator of each (non-zero) entry of AI divides κ0 in the rest. The algorithm
multiplies AI by κ0, which yields an integral matrix A0 with entries between −κ2

0 and
κ2
0 .
Let MQ be the column matroid of A0 when viewed as a matrix over rationals and

let Mp be the column matroid of A0 when viewed as a matrix over a p-element field
Fp for a prime p > κ2

0 ; note that such a prime p can be found algorithmically as the
algorithm is parameterized by d and e and κ0 depends on d and e only. Note that the
elements of both matroids MQ and Mp are the columns of the matrix A0, i.e., we can
assume that their ground sets are the same, and the matroid MQ is the column matroid
of A, which is a matrix over rationals.

We now establish the following claim: if A is row-equivalent to a matrix with
primal tree-depth at most d and entry complexity at most e, then the matroids MQ

and Mp are the same. If a set X of columns forms a circuit in MQ, then there exists a
linear combination of the columns of X that has all coefficients integral and coprime,
i.e., not all are divisible by p, and that is equal to the zero vector (in fact, there exist
such coefficients that they all divide κ0 by the definition of κ0); it follows that the
set X is also dependent in Mp. If a set X of columns is independent in MQ, let BI

be an invertible square submatrix of AI formed by the columns X and |X | rows, and
let B0 be the square submatrix of A0 formed by the same rows and columns. By [21,
Lemma 3.3], the matrix B−1

I is 1/κ̇A-integral and the absolute value of both numerator
and denominator of each entry of B−1

I is at most κ̇A. Note that κ̇A divides κ0 (here, we
use the definition of κ0 and the assumption that A is row-equivalent to a matrix with
primal tree-depth at most d and entry complexity at most e) and so the matrix B−1

I
is 1/κ0-integral and the absolute value of both numerator and denominator of each
entry of B−1

I is at most κ0. Let B ′ be the matrix obtained from B−1
I by multiplying

each entry by κ0; note that B ′ is an integer matrix with entries between −κ2
0 and κ2

0 .
The definitions of the matrices BI , B0 and B ′ yield that the product of the matrix B ′
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when viewed as over Fp and the matrix B0 has numerically the same entries as the
matrix (κ0B

−1
I )(κ0BI ), which is a diagonal matrix with all diagonal entries equal to

κ2
0 . Hence, the matrix B0 is full rank (over the field Fp) and so the set X is independent
in Mp.

We now continue the description of the algorithm that is asserted to exist in the
statement of the theorem. As the next step, we apply the algorithm from Corollary 1 to
thematrix A0 viewed as over the fieldFp. If the algorithm determines that the deletion-
depth of A0 is larger than d, we arrive at the first conclusion of the theorem: either
the matroids MQ and Mp are different (and so A is not row-equivalent to a matrix
with primal tree-depth at most d and entry complexity at most e), or the matroids
MQ and Mp are the same but dd(A) = td∗

P (A) > d. If the algorithm determines
that the deletion-depth of A0 is at most d, it also outputs a deletion-tree of Mp with
height at most d. If the output deletion-tree is not valid for the matroid MQ, which
can be verified in polynomial time, the matroids MQ and Mp are different and we
again arrive at the first conclusion of the theorem. If the output deletion-tree is also
a deletion-tree of the matroid MQ, we use the algorithm from Lemma 1 to obtain a
matrix A′ row-equivalent to A such that the primal tree-depth of A′ at most the height
of the deletion-tree, i.e., tdP (A′) ≤ d. As the matrix A′ contains a unit submatrix
formed by m rows and m columns, each (non-zero) entry of A′ is a fraction that can
be obtained by dividing two entries of a circuit of A (as argued earlier). If the absolute
value of the numerator or the denominator of any of these fractions exceeds κ0, then
c∞(A) > κ0 and we again arrive at the first conclusion of the theorem. Otherwise, we
output the matrix A′. Note that the primal tree-depth of A′ is at most d and its entry
complexity is at most 2�log2 (κ0 + 1)	. As κ0 depends on d and e only, the matrix A′
has the properties given in the second conclusion of the theorem. ��

5 Dual tree-depth, circuit complexity and Graver basis

In this section, we link minimum dual tree-depth of a matrix to its circuit complexity,
and also present related algorithmic results. We start with proving Theorem 5; in fact,
we show that a matrix row-equivalent to an input matrix A such that both its dual tree-
depth and entry complexity bounded by a function of c1(A) can be found efficiently.
Note that the algorithmpresented in the next theorem is not afixedparameter algorithm,
i.e., its running time is polynomial in the size of an input matrix.

Theorem 11 There exists a polynomial-time algorithm that for a given rational matrix
A with dim ker A > 0 outputs a row-equivalent matrix A′ such that tdD(A′) ≤ c1(A)2

and ec(A′) ≤ 2�log2(c1(A) + 1)	.
Proof We start with the description of the algorithm from the statement of the theorem.
Let A be the input matrix. We apply the algorithm from Theorem 10 to the matroid
M(A) given by the columns of the matrix A. Let T be the principal contraction∗-tree
output by the algorithm and let X be the set of columns of A that are the labels of
the edges of T , i.e., the elements of M(A) used in the contractions. Observe that the
definition of the contraction∗-depth and the principal contraction∗-tree yields that the
labels of the edges of T form a basis X of M(A) and for every element z of M(A)
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there is a leaf v of T such that z is contained in the linear hull of the labels of the
edges on the path from v to the root of T . Next perform row-operations on the matrix
A in a way that the submatrix formed by the columns of X is an identity matrix (with
additional zero rows if the rank of A is smaller than the number of its rows); let A′
be the resulting matrix; see Fig. 6 for an example. The algorithm outputs the matrix
A′. Note that the running time of the algorithm is indeed polynomial in the size of the
input matrix A.

We next analyze the matrix A′ that is output by the algorithm. Since dim ker A > 0,
thematrix A has at least one circuit. Recall that for every circuitC of thematroidM(A),
there exists a circuit of A whose support is exactly formed by the elements of C . This
implies that every circuit of M(A) contains at most c1(A) elements and so Theorem
10 implies that the depth of the principal contraction∗-tree T is at most c1(A)2.

Let F be a rooted forest obtained from the tree T as follows. For each edge e,
the vertex of e farther from the root is identified with the (unique) row of A′ that is
non-zero in the column that is the label of the edge e (recall that the columns of X
form an identity matrix), and then remove the root of T ; also add an isolated vertex for
each zero row of A′. In this way, we obtain a rooted forest F with vertex set formed
by the rows of A′. Note that the height of F is at most c1(A)2. We will show that the
dual graph of A′ is a subgraph of cl(F). As no column of X contributes any edges to
the dual graph of A′, it is enough to consider columns not contained in X . Let z be a
column of A′ that is not contained in X and let v be a leaf of T such that the column
z of A, which is an element of M(A), is contained in the linear hull of the labels of
the edges on the path from v to the root of T . Hence, the column z of A′ contains
non-zero entries only in the rows with non-zero entries in the columns that are labels
of the edges on the path from v to the root of T . Consequently, all edges contained in
the dual graph of A′ because of non-zero entries in the column z are between vertices
on the path from the vertex v in F to the root of the corresponding tree of F . It follows
that the dual graph of A′ is a subgraph of cl(F) and so its tree-depth is at most the
height of F , i.e., it is at most c1(A)2. We conclude that tdD(A′) ≤ c1(A)2.

It remains to analyze the entry complexity of A′. The entries of A′ in the columns
of X are zero or one. Next consider a column z of A′ that is not contained in X and
consider a circuit c of A′ (and so of A) whose support contains z and some elements
of X (such a circuit exists as the columns of X form a basis of the column space
of A′). Observe that the entries in the column z are equal to −cx/cz (otherwise, c
would not be a circuit of A′). We conclude that the entry complexity of A′ is at most
2�log2(c1(A) + 1)	. ��

We are now ready to prove Theorem 4. Note that the condition dimKerA > 0 in
the statement of the theorem is necessary as otherwise A has no circuit and so c1(A)

is not defined.

Proof of Theorem 4 Consider a rational matrix A with dimKerA > 0. Note that
c1(A) ≤ g1(A) as every circuit of A is also an element of the Graver basis of A.
To prove the existence of the function f1, let fD be the function from Theorem 9 and
note that Theorem 11 implies that g1(A) ≤ fD(c1(A)2, 2�log2(c1(A) + 1)	). ��

We next combine the algorithms from Theorems 7 and 11.

123



Characterization of matrices with bounded graver bases…

Fig. 6 A rational matrix A, a principal contraction∗-tree T of the matroid M(A) and the matrix A′ as in
the proof of Theorem 11

Corollary 2 There exists a function f : N → N and a fixed parameter algorithm for
the parameterization by k that for a given rational matrix A:

– either outputs that c1(A) > k, or
– outputs a matrix A′ that is row-equivalent to A, its dual tree-depth is td∗

D(A) and
its entry complexity is at most f (k).

Proof If dim KerA = 0 for an input matrix A, i.e., the rank of A is equal to the
number of the columns, which can be easily verified in polynomial time, then A is
row-equivalent to the unit matrix possibly with some zero rows added, i.e., to a matrix
with dual tree-depth one and entry complexity one. If dim KerA > 0, we apply the
algorithm from Theorem 11 to get a matrix A′ row-equivalent to A that has properties
given in the statement of Theorem 11. If the dual tree-depth of A′ is larger than k2

or the entry complexity of A′ is larger than 2�log2(k + 1)	, then c1(A) > k (by
Theorem 11) and we arrive at the first conclusion. Otherwise, we apply the algorithm
from Theorem 7 with parameters d = k2 and e = 2�log2(k+1)	 to compute a matrix
A′′ row-equivalent to A′ and so to A such that the dual tree-depth of A′′ is td∗

D(A) and
the entry complexity of A′′ is bounded by a function of k only. ��

Finally, the previous corollary together with Theorem 9 yields the parameterized
algorithm for testing whether an input matrix is row-equivalent to a matrix with small
dual tree-depth and small entry complexity as given in Theorem 8.

Proof of Theorem 8 Let fD be the function from the statement of Theorem 9 and set

k = fD(d, e); note fD(d, e) ≤ 22
(d log e)O(1)

by Eisenbrand et al. [20]. Apply the
algorithm from Corollary 2 with the parameter k to an input matrix A. If the algorithm
reports that c1(A) > k, then A is not row-equivalent to a matrix with dual tree-depth
at most d and entry complexity at most e. If the algorithm outputs a matrix A′ and
tdD(A′) > d, then td∗

D(A) > d and so the matrix A is not row-equivalent to a matrix
with dual tree-depth at most d. Otherwise, the dual tree-depth of A′ is at most d and
its entry complexity is bounded by f (k) = f ( fD(d, e)) where f (·) is the function
from Corollary 2, i.e., the entry complexity of A′ is bounded by a function of d and e
only as required. ��
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6 Computational hardness of depth parameters

In this section, we complement our algorithmic results by establishing computational
hardness of matroid depth parameters that we have discussed in this paper. The hard-
ness results apply even when the input matroid is given by its representation over a
fixed (finite or infinite) field.

We start with defining a matroid MF(G) derived from a graph G. Fix a field F.
For a graph G, we define an F-represented matroid MF(G) as follows. The matroid
MF(G) contains |V (G)| + |E(G)| elements, each corresponding to a vertex or an
edge of G. We associate each element of MF(G) with a vector of FV (G). An element
of MF(G) corresponding to a vertex w of G is represented by ew and an element of
MF(G) corresponding to an edge ww′ of G is represented by ew − ew′ or ew′ − ew (an
arbitrary of the two vectors can be chosen as the choice does not affect the matroid).

We next define a graphG/A for a graphG and a linear subspace A of FV (G). LetW
be the subset of vertices of V (G) such that ew ∈ A for w ∈ W , and let F be the set of
edges ww′ of G such that neither w nor w′ is contained in W and A contains a vector
ew + αew′ for a non-zero element α ∈ F. The graph G/A is obtained by deleting all
vertices of W and then contracting a maximal acyclic subset of edges contained in F
(the remaining edges of F become loops and so get removed); note that we use an
acyclic subset of edges for contraction so that the resulting graph is well-defined.

The next lemma relates the number of components of the matroid MF(G)/A and
the number of components of the graph G/A for a graph G and a linear subspace A
of FV (G).

Lemma 2 Let G be a graph, F a field and A a linear subspace of FV (G). The number
of components of MF(G)/A is at most the number of components of the graph G/A.

Proof Fix a graph G, a field F and a linear subspace of FV (G). Let W and F be the
subsets of vertices and edges of G as in the definition of G/A, respectively. Let A′
be the linear subspace of FV (G) generated by the vectors ew, w ∈ W , and the vectors
ew + αew′ ∈ A for ww′ ∈ F ; clearly, A′ is a subspace of A. Note that the sets W and
F defined with respect to A would be the same if defined with respect to A′, and so
the graphs G/A and G/A′ are the same. We next describe an F-representation of the
matroid MF(G)/A′ using vectors of FV (G/A′). The matroid MF(G) contains elements
corresponding to vertices and to edges of G. Consider a vertex w of V (G). If w ∈ W ,
then the element corresponding to w is a loop in MF(G)/A′ and so represented by
the zero vector. If w /∈ W , then the element corresponding to w is represented by the
vector eu where u is the vertex of G/A′ that the vertex w was contracted to. Next
consider an edge ww′ of G.

– If both w and w′ belong to W , then the element corresponding to ww′ is a loop in
MF(G)/A′ and so represented by the zero vector.

– If exactly one ofw andw′ belong toW , sayw ∈ W andw′ /∈ W , then the element
corresponding toww′ is represented by the vector eu where u is the vertex ofG/A′
that the vertex w′ was contracted to.

– If neither w nor w′ belongs to W and ew − ew′ ∈ A′ (and so ww′ ∈ F), then the
element corresponding to ww′ is a loop in MF(G)/A′ and so represented by the
zero vector.
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– If neither w nor w′ belongs to W , ew − ew′ /∈ A′ but ww′ ∈ F , then the element
corresponding toww′ is represented by the vector eu where u is the vertex ofG/A′
that the vertex w (and so the vertex w′) was contracted to.

– Finally, if neitherw norw′ belongs toW andww′ /∈ F , the element corresponding
to ww′ is the vector αeu + α′eu′ where u is the vertex of G/A′ that the vertex w

was contracted to, u′ is the vertex of G/A′ that the vertex w′ was contracted to,
and the vector αeu + α′eu′ corresponds to the vector ew − ew′ in F

V (G)/A′; note
that uu′ is an edge of G/A′ and both coefficients α and α′ are non-zero.

It is straightforward to verify that the just described representation is indeed a repre-
sentation of the matroid MF(G)/A′; note that each non-loop element of MF(G)/A′ is
associated to a vertex or an edge of G/A′ and each vertex or an edge of G/A′ with at
least one (but possibly more) non-loop element of MF(G)/A′.

We now analyze the matroid MF(G)/A. The matroid MF(G)/A can be viewed as
the matroid (MF(G)/A′)/(A/A′). Observe that the definition of A′ implies that any
non-loop element of MF(G)/A′ is non-loop in MF(G)/A. Also observe that the space
A/A′ viewed as a subspace ofFV (G/A′) does not contain a vector ew forw ∈ V (G/A′)
or a vector ew + αew′ for a non-zero α ∈ F such that ww′ is an edge of E(G/A′).
In particular, the support of every vector of A/A′ is at least two and if the support
has size two, then it does not correspond to an edge of E(G/A′). It follows that
if ww′ is an edge of E(G/A′), x is an element of MF(G)/A′ associated with the
vertex w, x ′ is an element of MF(G)/A′ associated with the vertex w′, and x ′′ is
an element of MF(G)/A′ associated with the edge ww′, then the elements x , x ′ and
x ′′ form a circuit of (MF(G)/A′)/(A/A′). Since the relation of being contained in a
common circuit is transitive, it follows that all elements of MF(G)/A′ corresponding
to the vertices and the edges of the same component of G/A′ are contained in the
same component of (MF(G)/A′)/(A/A′). In particular, the number of components of
the matroid (MF(G)/A′)/(A/A′) is at most the number of components of the graph
G/A′. Since the graphs G/A and G/A′ are the same and the matroids MF(G)/A and
(MF(G)/A′)/(A/A′) are also the same, the lemma follows. ��

We next link the existence of a balanced independent set in a bipartite graph to the
contraction∗-depth of a suitably defined matroid. We remark that the idea of using a
bipartite graph with cliques added between the vertices of its parts was used in [47]
to establish that computing tree-depth of a graph is NP-complete.

Lemma 3 Let G be a bipartite graph with parts X and Y , let F be a field, and let
k be an integer. Let G ′ be the graph obtained from G by adding all edges between
the vertices of X and between the vertices of Y . The following three statements are
row-equivalent.

– The graph G has an independent set containing k elements of X and k elements
of Y .

– The contraction∗-depth of MF(G ′) is at most |X | + |Y | − k.
– The contraction-depth of the matroid 2MF(G ′) is at most |X | + |Y | − k + 1.

Proof Fix a bipartite graph G with parts X and Y , a field F and an integer k. We first
show that if G has an independent set containing k elements of X and k elements of
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Y , then the contraction∗-depth of MF(G ′) is at most |X |+|Y |−k and the contraction-
depth of 2MF(G ′) is at most |X | + |Y | − k + 1. Let W be such an independent set
and let W ′ be the set containing all elements ew of MF(G ′) such that w /∈ W . Note
that |W ′| = |X | + |Y | − 2k. The matroid MF(G ′)/W ′ is the matroid obtained from
MF(G ′[W ]) by adding

– a loop for every edge with both end vertices not contained in W , and
– an element represented by ew for every edge joining a vertex w ∈ W to a vertex
not contained in W .

In particular, the matroid MF(G ′)/W ′ has two non-trivial components, each of rank
k, and so the contraction∗-depth of MF(G ′) is at most |W ′| + k = |X | + |Y | − k.
Similarly, the matroid (2MF(G ′))/W ′ is the matroid obtained from 2MF(G ′[W ]) by
adding

– a loop for every vertex not contained in W ,
– two loops for every edge with both end vertices not contained in W , and
– two elements represented by ew for every edge joining a vertex w ∈ W to a vertex
not contained in W .

Since the matroid (2MF(G ′))/W ′ has two non-trivial components, each of rank k, its
contraction-depth is at most |W ′| + k + 1 = |X | + |Y | − k + 1 (note that any rank r
matroid has contraction-depth at most r + 1).

We next argue that if the contraction∗-depth of MF(G ′) is at most |X | + |Y | − k
or the contraction-depth of 2MF(G ′) is at most |X | + |Y | − k + 1, then there exists a
subsetW of V (G) = V (G ′) that is independent in G, |W ∩ X | ≥ k and |W ∩Y | ≥ k.
To do so, we first show that there is no linear subspace A such that MF(G ′)/A would
have more than two components. Consider a linear subspace A of FV (G ′) such that the
matroid MF(G ′)/A is not connected. By Lemma 2, the graph G ′/A is disconnected.
Since the graph G ′/A cannot have more than two components (one is formed by some
of the vertices of X and another by some of the vertices of Y ), it follows that the
graph G ′/A has exactly two components and so the matroid MF(G ′)/A has exactly
two components, too.

If the contraction∗-depth of MF(G ′) is at most |X | + |Y | − k, there exists a linear
subspace A of FV (G ′) such that the matroid MF(G ′)/A is not connected and the rank
of each of its two components is at most |X | + |Y | − k − dim A. We will prove that
the existence of such A is also implied by the assumption that the contraction-depth of
2MF(G ′) is at most |X |+ |Y |− k+1. We next use that the matroid (2MF(G ′))/F has
at most two non-trivial components for every subset F of the elements of 2MF(G ′). If
the contraction-depth of 2MF(G ′) is at most |X |+|Y |−k+1, then there exists a subset
F of the elements of 2MF(G ′) such that the matroid (2MF(G ′))/F is not connected
and the rank of each of its two components is at most |X | + |Y | − k − rank F (as the
contraction-depth of each of its two components is the rank of the component increased
by one because each element is parallel to at least one other element). It follows that
there exists a linear subspace A of FV (G ′), which is the hull of the vectors representing
the elements of the set F as above, such that the matroid MF(G ′)/A is not connected
and the rank of each of its two components is at most |X | + |Y | − k − dim A. We
conclude that if the contraction∗-depth of MF(G ′) is at most |X | + |Y | − k or if the
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contraction-depth of 2MF(G ′) is at most |X | + |Y | − k + 1, then there exists a linear
subspace A of FV (G ′) such that the matroid MF(G ′)/A is not connected and the rank
of each of its two components is at most |X | + |Y | − k − dim A.

It remains to show that the existence of a subspace A of F
V (G ′) such that the

matroid MF(G ′)/A is not connected and the rank of each of its two components is at
most |X | + |Y | − k − dim A implies that there exists an independent set containing
k elements of X and k elements of Y . Fix such a subspace A. Let W be the set of
vertices w such that ew is contained in A and let AW be the subspace of A generated
by the vectors ew, w ∈ W . Since G ′/A is not connected, the graph G ′ \ W is also
not connected (recall that G ′/A is obtained by removing the vertices of W and then
contracting some edges). By Lemma 2 the matroid MF(G ′)/AW is also not connected.
Since the space AW is a subspace of A, the rank of each component of MF(G ′)/AW

is larger by at most dim A − dim AW compared to the corresponding component of
MF(G ′)/A. Hence, the rank of each of the two components of MF(G ′)/AW is at most
|X |+ |Y |− k−dim AW = |X |+ |Y |− k−|W |. It follows that each component of the
graph G ′/AW = G ′ \W contains at most |X |+ |Y |− k −|W | vertices. Since the sum
of the sizes of the two components of G ′ \ W is |X | + |Y | − |W |, each component of
G ′ \W has at least k vertices. In addition, the vertex set of each component of G ′ \W
is either a subset of X or a subset of Y , which implies that there is no edge joining a
vertex of X \ W and a vertex of Y \ W and both sets X\W and Y\W have at least k
vertices. Hence, the graph G has an independent set containing k elements of X and
k elements of Y (such an independent set is a subset of V (G) \ W ). ��

We are now ready to state our hardness result.

Theorem 12 For every field F, each of the following five decision problems, whose
input is an F-represented matroid M and an integer d, is NP-complete:

– Is the contraction-depth of M at most d?
– Is the contraction∗-depth of M at most d?
– Is the contraction-deletion-depth of M at most d?
– Is the contraction∗-deletion-depth of M at most d?
– Is the deletion-depth of M at most d?

Proof It is NP-complete to decide for a bipartite graph G with parts X and Y and an
integer k whether there exist k-element subsets X ′ ⊆ X and Y ′ ⊆ Y such that X ′ ∪ Y ′
is independent [47]. For an input bipartite graph G, let G ′ be the graph obtained from
G by adding all edges between the vertices of X and between the vertices of Y . We
claim that the existence of such subsets X ′ and Y ′ is equivalent to each of the following
four statements:

– The matroid 2MF(G ′) has contraction-depth at most |X | + |Y | − k + 1.
– The matroid MF(G ′) has contraction∗-depth at most |X | + |Y | − k.
– The matroid (|V (G ′)| + 1)MF(G ′) has contraction-deletion-depth at most |X | +

|Y | − k + 1.
– The matroid (|V (G ′)| + 1)MF(G ′) has contraction∗-deletion-depth at most |X | +

|Y | − k.
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The equivalences to the first and second statements follow directly from Lemma 3.
Since the rank of the matroid (|V (G ′)| + 1)MF(G ′) is |G ′|, its contraction-deletion-
depth is at most |G ′| + 1 and its contraction∗-deletion-depth is at most |G ′|. As each
element of thematroid (|V (G ′)|+1)MF(G ′) is parallel to (at least) |V (G ′)| elements of
the matroid, it follows that the contraction-deletion-depth of MF(G ′) is the same as its
contraction-depth and its contraction∗-deletion-depth is the same as its contraction∗-
depth. Lemma 3 now implies the equivalence of the third and fourth statements. As
the matroids 2MF(G ′), MF(G ′) and (|V (G ′)| + 1)MF(G ′) can be easily constructed
from the input graph G in time polynomial in |V (G)|, the NP-completeness of the
first four problems listed in the statement of the theorem follows.

For an F-represented matroid M , it is easy to construct an F-represented matroid
M∗ that is dual to M in time polynomial in the number of the elements of M [46,
Chapter 2]. Since the contraction-depth of M is equal to the deletion-depth of M∗, it
follows that thefifth problem listed in the statement of the theorem is alsoNP-complete.

��

7 Concluding remarks

We would like to conclude with addressing three natural questions related to the work
presented in this paper.

In Sect. 5, we have given a structural characterization of matrices A with g1(A)

bounded by showing that g1(A) is bounded if and only if A is row-equivalent to a
matrix with small dual tree-depth and small entry complexity. Unfortunately, a similar
(if and only if) characterization of matrices A with g∞(A) bounded does not seem to
be in our reach.

Problem 1 Find a structural characterization of matrices A with g∞(A) bounded.

In view of Theorem 9, it may be tempting to think that such a characterization can
involvematriceswith bounded incidence tree-depth as if amatrix A has boundedprimal
tree-depth or it has bounded dual tree-depth, then g∞(A) is bounded. However, the
following matrix A has incidence tree-depth equal to 4 and yet g∞(A) grows with the
number t of its columns; in particular, the vector (t − 1, 1, 1, . . . , 1) is an element of
its Graver basis as it can be readily verified. We remark that a similar matrix was used
by Eiben et al. [18] in their NP-completeness argument.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 · · · −1 −1
0 1 −1 0 · · · 0 0
0 1 0 −1 · · · 0 0
...

...
...

. . .
...

0 1 0 0 · · · −1 0
0 1 0 0 · · · 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

In Sect. 3, we have given structural characterizations of matrices that are row-
equivalent to a matrix with small primal tree-depth or small incidence tree-depth,
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which complements the characterization of matrices row-equivalent to a matrix with
small dual tree-depth from [8, 9]. We have also presented fixed parameter algorithms
(Theorems 6 and 8) for finding such a row-equivalent matrix with bounded entry com-
plexity if one exists; both of these algorithms are based on fixed parameter algorithms
for finding deletion-depth decompositions and contraction∗-depth decompositions of
matroids over finite fields, which are presented in Corollary 1 in the case of deletion-
depth and in [8, 9] in the case of contraction∗-depth.We believe that similar techniques
would lead to a fixed parameter algorithm for contraction∗-deletion-depth decomposi-
tions of matroids represented over a finite field (note that contraction∗-deletion-depth
does not have an obvious description in monadic second order logic and so the algo-
rithmic results of Hliněný [29, 30] do not readily apply in this setting). However, it is
unclear whether such an algorithm would yield a fixed parameter algorithm for ratio-
nal matrices as we do not have structural results on the circuits of rational matrices
with small incidence tree-depth, which would reduce the case of rational matrices to
those over finite fields.

Another natural question is whether the upper bound on the depth of the principal
contraction∗-tree given in Theorem 10, which is quadratic in the length of the longest
circuit of a represented matroid, can be improved. However, this turns out to be impos-
sible as we now argue. Since the minimum depth of a principal contraction∗-tree of a
matroid M differs from cd(M), i.e. the minimum height of a contraction-tree of M ,
by at most one, it is enough to construct a sequence of matroids Mn such that

– the length of the longest circuit of Mn is is at most O(n), and
– the contraction-depth of Mn is at least �(n2).

Hence, the quadratic dependence of the minimum depth in Theorem 10 is optimal up
to a constant factor. Still, it can be the case that the bound on the contraction∗-depth
can be improved.

The matroids Mn are the graphic matroids of graphs Gn , which are constructed
inductively. To facilitate the induction we will require slightly stronger properties.
Each of the graphs Gn contains two distinguished vertices, denoted by rn and bn , and
the following holds:

1. The length of any path in Gn between the vertices rn and bn is between n and 2n.
2. The length of any circuit in Mn is at most 4n.
3. The contraction-depth of Mn is at least

(n
2

)
.

If n = 1, we set G1 to be the two-vertex graph formed by two parallel edges, and
r1 and b1 are chosen as the two vertices of G1. Note that the graph G1 and the matroid
M1 = M(G1) has the properties (7), (7), and (7). To obtain Gn , we start with a cycle
of length 2n and choose any two vertices at distance n to be rn and bn . This cycle
containing the vertices rn and bn will be referred to as the root cycle. We then add n
copies of Gn−1, connect the vertex rn−1 in each copy to the vertex rn , and connect the
vertex bn−1 in each copy to bn . The construction is illustrated in Fig. 7.

Assuming that the matroid Mn−1 and the graph Gn−1 have the properties (7), (7),
and (7), and we will show that the matroid Mn and the graph Gn also have these
properties.
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M. Briański et al.

Fig. 7 The construction of the graph Gn . The vertices rn and rn−1 are drawn red while bn and bn−1 are
drawn blue

We start with showing that Gn has the property (7). Indeed, a path from rn to bn is
either contained in the root cycle or consists of a path between rn−1 and bn−1 in one
of the copies of Gn−1, whose length is between n− 1 and 2(n− 1), together with two
edges joining rn−1 to rn and bn−1 to bn . In either of the cases, the length of the path
is between n and 2n as required.

Having established the property (7), we prove the property (7). Any circuit of the
matroid Mn corresponds to a cycle in the graph Gn , thus we can simply investigate the
lengths of cycles in Gn . First observe that a cycle of Gn contains either both vertices
rn and bn or neither of them. Every cycle containing rn and bn consists of two paths
between rn and bn and so its length is at most 4n, and every cycle containing neither
rn nor bn is contained entirely within a copy of Gn−1 and so its length is at most
4(n − 1) ≤ 4n.

Finally, we argue that contraction-depth ofMn is at least
(n
2

)
. Recall that contracting

an element of Mn corresponds to contracting the associated edge in the graph Gn , and
components of a graphicmatroid correspond to blocks, i.e.,maximal 2-edge-connected
components, of an associated graph. Since the length of any path between rn to bn is
at least n, until at least n edge contractions are performed in graph Gn , the vertices
rn and bn are distinct and are contained in the same block. Hence, after n − 1 edge
contractions followed by deleting all blocks not containing the vertices rn and bn
(if such blocks appear), the graph still contains an intact copy Gn−1. It follows that
cd(Mn) ≥ (n− 1)+ cd(Mn−1), which implies that cd(Mn) ≥ (n− 1)+ (n−1

2

) = (n
2

)
.
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Parameterized algorithms for block-structured
integer programs with large entries∗

Jana Cslovjecsek† Martin Koutecký‡ Alexandra Lassota§ Michał Pilipczuk¶
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Abstract

We study two classic variants of block-structured integer programming. Two-stage stochastic programs
are integer programs of the form {Aix + Diyi = bi for all i = 1, . . . , n}, where Ai and Di are bounded-size
matrices. Intuitively, this form corresponds to the setting when after setting a small set of global variables x,
the program can be decomposed into a possibly large number of bounded-size subprograms. On the other
hand, n-fold programs are integer programs of the form {

∑n
i=1 Ciyi = a and Diyi = bi for all i = 1, . . . , n},

where again Ci and Di are bounded-size matrices. This form is natural for knapsack-like problems, where we
have a large number of variables partitioned into small-size groups, each group needs to obey some set of local
constraints, and there are only a few global constraints that link together all the variables.

A line of recent work established that the optimization problem for both two-stage stochastic programs
and n-fold programs is fixed-parameter tractable when parameterized by the dimensions of relevant matrices
Ai, Ci, Di and by the maximum absolute value of any entry appearing in the constraint matrix. A fundamental
tool used in these advances is the notion of the Graver basis of a matrix, and this tool heavily relies on the
assumption that all the entries of the constraint matrix are bounded.

In this work, we prove that the parameterized tractability results for two-stage stochastic and n-fold
programs persist even when one allows large entries in the global part of the program. More precisely, we
prove the following: In this work, we prove that the parameterized tractability results for two-stage stochastic
and n-fold programs persist even when one allows large entries in the global part of the program. More
precisely, we prove the following:

• The feasibility problem for two-stage stochastic programs is fixed-parameter tractable when parameter-
ized by the dimensions of matrices Ai, Di and by the maximum absolute value of the entries of matrices Di.
That is, we allow matrices Ai to have arbitrarily large entries.

• The linear optimization problem for n-fold integer programs that are uniform – all matrices Ci are equal
– is fixed-parameter tractable when parameterized by the dimensions of matrices Ci and Di and by the
maximum absolute value of the entries of matrices Di. That is, we require that Ci = C for all i = 1, . . . , n,
but we allow C to have arbitrarily large entries.

In the second result, the uniformity assumption is necessary; otherwise the problem is NP-hard already when
the parameters take constant values. Both our algorithms are weakly polynomial: the running time is measured
in the total bitsize of the input.

In both results, we depart from the approach that relies purely on Graver bases. Instead, for two-stage
stochastic programs, we devise a reduction to integer programming with a bounded number of variables using
new insights about the combinatorics of integer cones. For n-fold programs, we reduce a given n-fold program
to an exponential-size program with bounded right-hand sides, which we consequently solve using a reduction
to mixed integer programming with a bounded number of integral variables.
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1 Introduction
We study two variants of integer programming problems, where the specific structure of the constraint matrix
can be exploited for the design of efficient parameterized algorithms. Two-stage stochastic programs are integer
programs of the following form:

x ∈ Zk
⩾0, yi ∈ Zk

⩾0, and

Aix+Diyi = bi for all i = 1, 2, . . . , n.(♠)

Here, Ai, Di are integer k × k matrices1 and each bi is an integer vector of length k. This form arises naturally
when the given integer program can be decomposed into multiple independent subprograms on disjoint variable
sets yi, except there are several global variables x that are involved in all the subprograms and thus link them. See
the survey of Shultz et al. [41] as well as an exposition article by Gavenčiak et al. [19] for examples of applications.

We moreover study n-fold programs which are integer programs of the form

yi ∈ Zk
⩾0,

n∑
i=1

Ciyi = a, and(♣)

Diyi = bi for all i = 1, 2, . . . , n,

where again Ci, Di are integer k × k matrices and a,bi are integer vectors of length k. These kind of programs
appear for knapsack-like and scheduling problems, where blocks of variables yi correspond to some independent
local decisions (for instance, whether to pack an item into the knapsack or not), and there are only a few
linear constraints that involve all variables (for instance, that the capacity of the knapsack is not exceeded).
See [9, 14, 19, 23, 28, 30, 32, 33] for examples of n-fold programs appearing naturally “in the wild”. Figure 1
depicts constraint matrices of two-stage stochastic and n-fold programs.


A1 D1

A2 D2

...
. . .

An Dn



C1 C2 . . . Cn

D1

D2

. . .
Dn




B C1 C2 . . . Cn

A1 D1

A2 D2

...
. . .

An Dn


Figure 1: Constraint matrices in two-stage stochastic, n-fold, and 4-block integer programs, respectively. (The
last kind will be discussed later.) Every block is a k × k matrix, where k is the parameter. Empty spaces denote
blocks of zeroes.

Both for two-stage stochastic programs and for n-fold programs, we can consider two computational problems.
The simpler feasibility problem just asks whether the given program has a solution: an evaluation of variables
in nonnegative integers that satisfies all the constraints. In the harder (linear) optimization problem, we are
additionally given an integer weight wx for every variable x appearing in the program, and the task is to minimize∑

x : variable wx · x over all solutions.
Two-stage stochastic and n-fold programs have recently gathered significant interest in the theoretical

community for two reasons. On one hand, it turns out that for multiple combinatorial problems, their natural
integer programming formulations take either of the two forms. On the other hand, one can actually design
highly non-trivial fixed-parameter algorithms for the optimization problem for both two-stage stochastic and
n-fold programs; we will review them in a minute. Combining this two points yields a powerful algorithmic
technique that allowed multiple new tractability results and running times improvements for various problems of
combinatorial optimization; see [9, 19, 23, 28, 29, 30, 32, 33, 37] for examples.

Delving more into technical details, if by ∆ we denote the maximum absolute value of any entry in the
constraint matrix, then the optimization problem for

1Reliance on square matrices is just for convenience of presentation. The setting where blocks are rectangular matrices with
dimensions bounded by k can be reduced to the setting of k × k square matrices by just padding with 0s.
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• two-stage stochastic programs (♠) can be solved in time 2∆
O(k2) · n logO(k2) n [11]; and

• n-fold programs (♣) can be solved in time (k∆)O(k3) · n logO(k2) n [10].
The results above are in fact pinnacles of an over-a-decade-long sequence of developments, which gradually
improved both the generality of the results and the running times [2, 10, 11, 14, 15, 16, 21, 24, 26, 35], as well
as provided complexity lower bounds [22, 34]. We refer the interested reader to the monumental manuscript of
Eisenbrand et al. [16] which provides a comprehensive perspective on this research area.

We remark that the tractability results presented above can be also extended to the setting where the global-
local block structure present in two-stage stochastic and n-fold programs can be iterated further, roughly speaking
to trees of bounded depth. This leads to the study of integer programs with bounded primal or dual treedepth,
for which analogous tractability results have been established. Since these notions will not be of interest in this
work, we refrain from providing further details and refer the interested reader to the works relevant for this
direction [3, 4, 8, 10, 11, 15, 16, 26, 27, 34, 35].

All the abovementioned works, be it on two-stage stochastic or n-fold programs, or on programs of bounded
primal or dual treedepth, crucially rely on one tool: the notion of the Graver basis of a matrix. Intuitively
speaking, the Graver basis of a matrix A consists of “minimal steps” within the lattice of integer points belonging
to the kernel of A. Therefore, the maximum norm of an element of the Graver basis reflects the “granularity” of
this lattice. And so, the two fundamental observations underlying all the discussed developments are the following:

• in two-stage stochastic matrices (or more generally, matrices of bounded primal treedepth), the ℓ∞ norm of
the elements of the Graver basis is bounded in terms of k (the dimension of every block) and the maximum
absolute value of any entry appearing in the matrix (see [16, Lemma 28]); and

• an analogous result holds for n-fold matrices (or more generally, matrices of bounded dual treedepth) and
the ℓ1 norm (see [16, Lemma 30]).

Based on these observations, various algorithmic strategies, including augmentation frameworks [24, 35] and
proximity arguments [10, 11, 15], can be employed to solve respective integer programs.

The drawback of the Graver-based approach is that it heavily relies on the assumption that all the entries
of the input matrices are (parametrically) bounded. Indeed, the norms of the elements of the Graver basis are
typically at least as large as the entries, so lacking any upper bound on the latter renders the methodology
inapplicable. This is in stark contrast with the results on fixed-parameter tractability of integer programming
parameterized by the number of variables [12, 13, 18, 25, 38, 40], which rely on different tools and for which no
bound on the absolute values of the entries is required. In fact, two-stage stochastic programs generalize programs
with a bounded number of variables (just do not use variables yi), yet the current results for two-stage stochastic
programs do not generalize those for integer programs with few variables, because they assume a bound on the
absolute values of the entries.

The goal of this paper is to understand to what extent one can efficiently solve two-stage stochastic and n-fold
programs while allowing large entries on input.

Our contribution. We prove that both the feasibility problem for two-stage stochastic programs and the
optimization problem for uniform n-fold programs (that is, where C1 = C2 = . . . = Cn) can be solved in fixed-
parameter time when parameterized by the dimensions of the blocks and the maximum absolute value of any entry
appearing in the diagonal blocks Di. That is, we allow the entries of the global blocks (Ai and Ci, respectively)
to be arbitrarily large, and in the case of n-fold programs, we require that all blocks Ci are equal. The statements
below summarize our results. (∥P∥ denotes the total bitsize of a program P .)

Theorem 1.1. The feasibility problem for two-stage stochastic programs P of the form (♠) can be solved in time
f(k,maxi ∥Di∥∞) · ∥P∥ for a computable function f , where k is the dimension of all the blocks Ai, Di.

Theorem 1.2. The optimization problem for n-fold programs P of the form (♣) that are uniform (that is, satisfy
C1 = . . . = Cn) can be solved in time f(k,maxi ∥Di∥∞) · ∥P∥O(1) for a computable function f , where k is the
dimension of all the blocks Ci, Di.

The uniformity condition in Theorem 1.2 is necessary (unless P = NP), as one can very easily reduce Subset
Sum to the feasibility problem for n-fold programs with k = 2 and Di being {0, 1}-matrices. Indeed, given an
instance of Subset Sum consisting of positive integers a1, . . . , an and a target integer t, we can write the following
n-fold program on variables y1, . . . , yn, y

′
1, . . . , y

′
n ∈ Z⩾0: yi + y′i = 1 for all i = 1, . . . , n and

∑n
i=1 aiyi = t. We

remark that uniform n-fold programs are actually of the highest importance, as this form typically arises in
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applications. In fact, many of the previous works named such problems “n-fold”, while our formulation (♣) would
be called “generalized n-fold”.

We also remark that the algorithm of Theorem 1.2 does not use the assumption that the number of rows of
matrix C is bounded by k (formally, in the formal statement proved in the full version of this work, we do not
consider this number among parameters). However, we stress that the bound on the number of columns of C is
heavily exploited, which sets our approach apart from many of the previous works [10, 15, 35].

Further, observe that Theorem 1.1 applies only to the feasibility problem for two-stage stochastic programs.
We actually do not know whether Theorem 1.1 can be extended to the optimization problem as well, and we
consider determining this an outstanding open problem. We will discuss its motivation in more details later on.
Also, we remark that Theorem 1.1 seems to be the first algorithm for feasibility of two-stage stochastic programs
that achieves truly linear dependence of the running time on the total input size; the earlier algorithms of [11, 35]
had at least some additional polylogarithmic factors.

Finally, note that the algorithms of Theorems 1.1 and 1.2 are not strongly polynomial (i.e., the running time
depends on the total bitsize of the input, rather than is counted in the number of arithmetic operations), while the
previous algorithms of [10, 11, 15, 35] for the stronger parameterization are. At least in the case of Theorem 1.1,
this is justified, as the problem considered there generalizes integer programming parameterized by the number
of variables, for which strongly polynomial FPT algorithms are not known.

Not surprisingly, the proofs of Theorems 1.1 and 1.2 depart from the by now standard approach through
Graver bases; they are based on entirely new techniques, with some key Graver-based insight needed in the case
of Theorem 1.2. In both cases, the problem is ultimately reduced to (mixed) integer programming with a bounded
number of (integral) variables, and this allows us to cope with large entries on input. We expand the discussion
of our techniques in Section 2, which contains a technical overview of the proofs.

4-block programs. Finally, we would like to discuss another motivation for investigating two-stage stochastic
and n-fold programs with large entries, namely the open question about the parameterized complexity of 4-block
integer programming. 4-block programs are programs in which the constraint matrix has the block-structured
form depicted in the right panel of Figure 1; note that this form naturally generalizes both two-stage stochastic
and n-fold programs. It is an important problem in the area to determine whether the feasibility problem for
4-block programs can be solved in fixed-parameter time when parameterized by the dimension of blocks k and
the maximum absolute value of any entry in the input matrix. The question was asked by Hemmecke et al. [20],
who proposed an XP algorithm for the problem. Improvements on the XP running time were reported by Chen
et al. [7], and FPT algorithms for special cases were proposed by Chen et al. [5]; yet no FPT algorithm for the
problem in full generality is known so far. We remark that recently, Chen et al. [6] studied the complexity of
4-block programming while allowing large entries in all the four blocks of the matrix. They showed that then the
problem becomes NP-hard already for blocks of constant dimension, and they discussed a few special cases that
lead to tractability.

We observe that in the context of the feasibility problem for uniform 4-block programs (i.e., with Ai = A
and Ci = C for all i = 1, . . . , n), it is possible to emulate large entries within the global blocks A,B,C using only
small entries at the cost of adding a bounded number of auxiliary variables. This yields the following reduction,
whose proof can be found in the full version of this work.

Observation 1. Suppose the feasibility problem for uniform 4-block programs can be solved in time f(k,∆) ·
∥P∥O(1) for some computable function f , where k is the dimension of every block and ∆ is the maximum absolute
value of any entry in the constraint matrix. Then the feasibility problem for uniform 4-block programs can be
also solved in time g(k,maxi ∥Di∥∞) · ∥P∥O(1) for some computable function g under the assumption that all the
absolute values of the entries in matrices A,B,C are bounded by n.

Consequently, to approach the problem of fixed-parameter tractability of 4-block integer programming, it is
imperative to understand first the complexity of two-stage stochastic and n-fold programming with large entries
allowed in the global blocks. And this is precisely what we do in this work.

We believe that the next natural step towards understanding the complexity of 4-block integer programming
would be to extend Theorem 1.1 to the optimization problem; that is, to determine whether optimization of
two-stage stochastic programs can be solved in fixed-parameter time when parameterized by k and maxi ∥Di∥∞.
Indeed, lifting the result from feasibility to the optimization problem roughly corresponds to adding a single
constraint that links all the variables, and 4-block programs differ from two-stage stochastic programs precisely
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in that there may be up to k such additional linking constraints. Thus, we hope that the new approach to block-
structured integer programming presented in this work may pave the way towards understanding the complexity
of solving 4-block integer programs.

Acknowledgements. This research has been initiated during the trimester on Discrete Optimization at the
Hausdorff Research Institute for Mathematics (HIM) in Bonn, Germany. We thank the organizers of the trimester
for creating a friendly and motivating research environment. We also thank Eleonore Bach, Fritz Eisenbrand, and
Robert Weismantel, for pointing us to the work of Aliev and Henk [1].

2 Overview
In this section we provide a technical overview of our results aimed at presenting the main ideas and new conceptual
contributions. Complete and formal proofs of all our results can be found in the full version of this paper.

2.1 Two-stage stochastic programming. We start with an overview on the proof of Theorem 1.1. We will
heavily rely on the combinatorics of integer and polyhedral cones, so let us recall basic definitions and properties.

Cones. Consider an integer matrix D with t columns and k rows. The polyhedral cone spanned by D is the
set cone(D) := {Dy : y ∈ Rt

⩾0} ⊆ Rk
⩾0, or equivalently, the set of all vectors in Rk

⩾0 expressible as nonnegative
combinations of the columns of D. Within the polyhedral cone, we have the integer cone where we restrict
attention to nonnegative integer combinations: intCone(D) := {Dy : y ∈ Zt

⩾0} ⊆ Zk. Finally, the integer lattice is
the set lattice(D) := {Dy : y ∈ Zt} ⊆ Zk which comprises all integer combinations of columns of D with possibly
negative coefficients.

Clearly, not every integer vector in cone(D) has to belong to intCone(D). It is not even necessarily the case
that intCone(D) = cone(D) ∩ lattice(D), as there might be vectors that can be obtained both as a nonnegative
combination and as an integer combination of columns of D, but every such integer combination must necessarily
contain negative coefficients. To see an example, note that in dimension k = 1, this is the Frobenius problem:
supposing all entries of D are positive integers, the elements of intCone(D) are essentially all nonnegative numbers
divisible by the gcd (greatest common divisor) of the entries of D, except that for small numbers there might be
some aberrations: a positive integer of order O(∥D∥2∞) may not be presentable as a nonnegative combination of
the entries of D, even assuming it is divisible by the gcd of the entries of D.

However, the Frobenius example suggests that the equality intCone(D) = cone(D)∩ lattice(D) is almost true,
except for aberrations near the boundary of cone(D). We forge this intuition into a formal statement presented
below that says roughly the following: if one takes a look at intCone(D) at a large scale, by restricting attention
to integer vectors v ∈ Zk with fixed remainders of entries modulo some large integer B, then intCone(D) behaves
like a polyhedron. In the following, for a positive integer B and a vector r ∈ {0, 1, . . . , B − 1}k, we let ΛB

r be the
set of all vectors v ∈ Zk such that v ≡ r mod B, which means vi ≡ ri mod B for all i ∈ {1, . . . , k}.

Theorem 2.1. (Reduction to Polyhedral Constraints) Let D be an integer matrix with t columns and k
rows. Then there exists a positive integer B, computable from D, such that for every r ∈ {0, 1, . . . , B − 1}k, there
exists a polyhedron Qr such that

ΛB
r ∩ intCone(D) = ΛB

r ∩Qr.

Moreover, a representation of such a polyhedron Qr can be computed given D and r.

In other words, Theorem 2.1 states that if one fixes the remainders of entries modulo B, then membership in
the integer cone can be equivalently expressed through a finite system of linear inequalities. Before we sketch the
proof of Theorem 2.1, let us discuss how to use this to solve two-stage stochastic programs.

The algorithm. Consider a two-stage stochastic program P = (Ai, Di,bi : i ∈ {1, . . . , n}) such that blocks
Ai, Di are integer k × k matrices and all entries of blocks Di are bounded in absolute value by ∆. The
feasibility problem for P can be understood as the question about satisfaction of the following sentence, where
all quantifications range over Zk

⩾0:

(2.1) ∃x

(
n∧

i=1

∃yi Aix+Diyi = bi

)
, or equivalently, ∃x

(
n∧

i=1

bi −Aix ∈ intCone(Di)

)
.

Applying Theorem 2.1 to each matrix Di yields a positive integer Bi. Note that there are only at most (2∆+1)k
2

different matrices Di appearing in P , which also bounds the number of different integers Bi. By replacing all Bis
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with their least common multiple, we may assume that B1 = B2 = . . . = Bn = B. Note that B is bounded by a
computable function of ∆ and k.

Consider a hypothetical solution x, (yi : i ∈ {1, . . . , n}) to P . We guess, by branching into Bk possibilities,
a vector r ∈ {0, 1, . . . , B − 1}k such that x ≡ r mod B. Having fixed r, we know how the vectors bi − Aix look
like modulo B, hence by Theorem 2.1, we may replace the assertion bi − Aix ∈ intCone(Di) with the assertion
bi − Aix ∈ Qri , where ri ∈ {0, 1, . . . , B − 1}k is the unique vector such that bi − Air ≡ ri mod B. Thus, (2.1)
can be rewritten to the sentence∨

r∈{0,1,...,B−1}k

∃x (x ≡ r mod B) ∧

(
n∧

i=1

bi −Aix ∈ Qri

)
,

which is equivalent to

(2.2)
∨

r∈{0,1,...,B−1}k

∃x∃z (x = B · z+ r) ∧

(
n∧

i=1

bi −Aix ∈ Qri

)
.

Verifying satisfiability of (2.2) boils down to solving Bk integer programs on 2k variables x and z and linearly
FPT many constraints, which can be done in linear fixed-parameter time using standard algorithms, for instance
that of Kannan [25].

We remark that the explanation presented above highlights that Theorem 2.1 can be understood as a quantifier
elimination result in the arithmetic theory of integers. This may be of independent interest, but we do not pursue
this direction in this work.

Reduction to polyhedral constraints. We are left with sketching the proof of Theorem 2.1. Let
Z := ΛB

r ∩ intCone(D). Our goal is to understand that Z can be expressed as the points of ΛB
r that are contained

in some polyhedron Q = Qr.
The first step is to understand cone(D) itself as a polyhedron. This understanding is provided by a classic

theorem of Weyl [42]: given D, one can compute a set of integer vectors F ⊆ Zk such that

cone(D) = {v ∈ Rk | ⟨f ,v⟩ ⩾ 0 for all f ∈ F}.

Here, ⟨·, ·⟩ denotes the scalar product in Rk. We will identify vectors f ∈ F with their associated linear functionals
v 7→ ⟨f ,v⟩. Thus, cone(D) comprises all vectors v that have nonnegative evaluations on all functionals in F . It
is instructive to also think of the elements of F as of the facets of cone(D) understood as a polyhedron, where
the functional associated with f ∈ F measures the distance from the corresponding facet.

Recall that in the context of Theorem 2.1, we consider vectors of ΛB
r , that is, vectors v ∈ Zk such that

v ≡ r mod B. Then ⟨f ,v⟩ ≡ ⟨f , r⟩ mod B for every f ∈ F , hence we can find a unique integer pf ∈ {0, 1, . . . , B−1},
pf ≡ ⟨f , r⟩ mod B, such that ⟨f ,v⟩ ≡ pf mod B for all v ∈ ΛB

r . Now ⟨f ,v⟩ is also nonnegative provided
v ∈ cone(D), hence

⟨f ,v⟩ ∈ {pf , pf +B, pf + 2B, . . .} for all f ∈ F and v ∈ ΛB
r ∩ cone(D).

Now comes the key distinction about the behavior of v ∈ ΛB
r ∩ cone(D) with respect to f ∈ F : we say that f

is tight with respect to v if ⟨f ,v⟩ = pf , and is not tight otherwise, that is, if ⟨f ,v⟩ ⩾ pf + B. Recall that in the
context of Theorem 2.1, we are eventually free to choose B to be large enough. Intuitively, this means that if f is
not tight for v, then v lies far from the facet corresponding to f and there is a very large slack in the constraint
posed by f understood as a functional. On the other hand, if f is tight with respect to v, then v is close to the
boundary of cone(D) at the facet corresponding to f , and there is a potential danger of observing Frobenius-like
aberrations at v.

Thus, the set R := ΛB
r ∩ cone(D) can be partitioned into subsets {RG : G ⊆ F} defined as follows: RG

comprises all vectors v ∈ R such that G is exactly the set of functionals f ∈ F that are tight with respect to v.
Our goal is to prove that each set RG behaves uniformly with respect to Z: it is either completely disjoint or
completely contained in Z. To start the discussion, let us look at the particular case of RG for G = ∅. These are
vectors that are deep inside cone(D), for which no functional in F is tight. For these vectors, we use the following
lemma, which is the cornerstone of our proof.
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Lemma 2.1. (Deep-in-the-Cone Lemma, simplified version) There exists a constant M , depending only
on D, such that the following holds. Suppose v ∈ cone(D) ∩ Zk is such that ⟨f ,v⟩ > M for all f ∈ F . Then
v ∈ intCone(D) if and only if v ∈ lattice(D).

Proof. The left-to-right implication is obvious, hence let us focus on the right-to-left implication. Suppose then
that v ∈ lattice(D).

Let w =
∑

d∈D L · d, where the summation is over the columns of D and L is a positive integer to be fixed
later. Observe that for every f ∈ F , we have ⟨f ,v − w⟩ > M − L ·

∑
d∈D⟨f ,d⟩. Therefore, if we choose M to

be not smaller than L · maxf∈F ∥f∥1 · ∥D∥∞, then we are certain that ⟨f ,v − w⟩ ⩾ 0 for all f ∈ F , and hence
v−w ∈ cone(D). Consequently, we can write v−w = Dy for some y ∈ Rt

⩾0. Let y′ ∈ Zt
⩾0 be such that y′i = ⌊yi⌋

for all i ∈ {1, . . . , t}, and let v′ = w +Dy′. Then

∥v − v′∥∞ = ∥D(y − y′)∥∞ ⩽ t · ∥D∥∞.

On the other hand, we clearly have v′ ∈ intCone(D) and by assumption, v ∈ lattice(D). It follows that
v−v′ ∈ lattice(D). From standard bounds, see e.g. [39], it follows that there exists z ∈ Zt with v−v′ = Dz such
that ∥z∥1 is bounded by a function of D and ∥v − v′∥∞, which in turn is again bounded by a function of D as
explained above. (Note here that t is the number of columns of D, hence it also depends only on D.) This means
that if we choose L large enough depending on D, we are certain that ∥z∥1 ⩽ L. Now, it remains to observe that

v = w +Dy′ + (v − v′) = D(L · 1+ y′ + z),

where 1 denotes the vector of t ones, and that all the entries of L ·1+y′+z are nonnegative integers. This proves
that v ∈ intCone(D).

We remark that the statement of Lemma 2.1 actually follows from results present in the literature, concerning
the notion of diagonal Frobenius numbers. See the work of Aliev and Henk [1] for a broader discussion and pointers
to earlier works. As we will discuss in a moment, in this work we actually use a generalization of Lemma 2.1.

Consider any u,v ∈ R. Since all the entries of u− v are divisible by B, it is not hard to prove the following:
if we choose B to be a large enough factorial, then u ∈ lattice(D) if and only if v ∈ lattice(D). Hence, from
Lemma 2.1 it follows that R∅ is either entirely disjoint or entirely contained in Z.

A more involved reasoning based on the same fundamental ideas, but using a generalization of Lemma 2.1,
yields the following lemma, which tackles also the case when some functionals of F are tight with respect to the
considered vectors.

Lemma 2.2. Suppose u,v ∈ R are such that for every f ∈ F , if f is tight with respect to u, then f is also tight
with respect to v. Then u ∈ Z implies v ∈ Z.

We remark that the proof of Lemma 2.2 actually requires more work and more ideas than those presented in
the proof of Lemma 2.1. In essence, one needs to partition functionals that are tight with respect to u into those
that are very tight (have very small pf ) and those that are only slightly tight (have relatively large pf ) in order to
create a sufficient gap between very tight and slightly tight functionals. Having achieved this, a delicate variant
of the reasoning from the proof of Lemma 2.1 can be applied. It is important that whenever a functional f ∈ F
is tight with respect to both u and v, we actually know that ⟨f ,u⟩ = ⟨f ,v⟩ = pf . Note that this is exactly the
benefit achieved by restricting attention to the vectors of ΛB

r .
Using Lemma 2.2, we can immediately describe how the structure of Z relates to that of R.

Corollary 2.1. For every G ⊆ F , either RG ∩ Z = ∅ or RG ⊆ Z. Moreover, if RG ⊆ Z and RG is non-empty,
then RG′ ⊆ Z for all G′ ⊆ G.

Corollary 2.1 suggests now how to define the polyhedron Q. Namely, Q is defined as the set of all v ∈ Rk

satisfying the following linear inequalities:
• inequalities ⟨f ,v⟩ ⩾ 0 for all f ∈ F that define cone(D); and
• for every G ⊆ F such that RG is nonempty and RG ∩ Z = ∅, the inequality∑

g∈G
⟨g,v⟩ ⩾ 1 +

∑
g∈G

pg.
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In essence, the inequalities from the second point “carve out” those parts RG that should not be included in Z.
We note that computing the inequalities defining Q requires solving several auxiliary integer programs to figure
out for which G ⊆ F the corresponding inequality should be included.

It is now straightforward to verify, using all the accumulated observations, that indeed Z = R∩Q as required.
This concludes a sketch of the proof of Theorem 2.1.

2.2 n-fold programming. We now give an overview of the proof of Theorem 1.2. For simplicity, we make the
following assumptions.

• We focus on the feasibility problem instead of optimization. At the very end, we will remark on what
additional ideas are needed to also tackle the optimization problem.

• We assume that all the diagonal blocks Di are equal: Di = D for all i ∈ {1, . . . , n}, where D is a k × k

integer matrix with ∥D∥∞ ⩽ ∆. This is only a minor simplification because there are only (2∆ + 1)k
2

different matrices Di with ∥Di∥∞ ⩽ ∆, and in the general case, we simply treat every such possible matrix
“type” separately using the reasoning from the simplified case.

Breaking up bricks. Basic components of the given n-fold program P = (C,D,a,bi : i ∈ {1, . . . , n}) are
bricks: programs Dyi = bi for i ∈ {1, . . . , n} that encode local constraints on the variables yi. While the entries
of D are bounded in absolute values by the parameter ∆, we do not assume any bound on the entries of vectors bi.
This poses an issue, as different bricks may possibly have very different behaviors.

The key idea in our approach is to simplify the program P by iteratively breaking up every brick Dy = b
into two bricks Dy = b′ and Dy = b′′ with strictly smaller right-hand sides b′,b′′, until eventually, we obtain an
equivalent n-fold program P ′ in which all right-hand sides have ℓ∞-norms bounded in terms of the parameters.
The following lemma is the crucial new piece of technology used in our proof. (Here, we use the conformal order
on Zk: we write u ⊑ v if |u[i]| ⩽ |v[i]| and u[i] · v[i] ⩾ 0 for all i ∈ {1, . . . , k}.)

Lemma 2.3. (Brick Decomposition Lemma) There exists a function g(k,∆) ∈ 2(k∆)O(k)

such that the
following holds. Let D be an integer matrix with t columns and k rows and all absolute values of its entries
bounded by ∆. Further, let b ∈ Zk be an integer vector such that ∥b∥∞ > g(k,∆). Then there are non-zero
vectors b′,b′′ ∈ Zk such that:

• b′,b′′ ⊑ b and b = b′ + b′′; and
• for every v ∈ Zy

⩾0 satisfying Dv = b, there exist v′,v′′ ∈ Zy
⩾0 such that

v = v′ + v′′, Dv′ = b′, and Dv′′ = b′′.

In other words, Lemma 2.3 states that the brick Dy = b can be broken into two new bricks Dy′ = b′

and Dy′′ = b′′ with conformally strictly smaller b′,b′′ so that every potential solution v to Dy = b can be
decomposed into solutions v′,v′′ to the two new bricks. It is easy to see that this condition implies that in P , we
may replace the brick Dy = b with Dy′ = b′ and Dy′′ = b′′ without changing feasibility or, in the case of the
optimization problem, the minimum value of the optimization goal. In the latter setting, both new bricks inherit
the optimization vector ci from the original brick.

Before we continue, let us comment on the proof of Lemma 2.3. We use two ingredients. The first one is the
following fundamental result of Klein [26]. (Here, for a multiset of vectors A, by

∑
A we denote the sum of all

the vectors in A.)

Lemma 2.4. (Klein Lemma, variant from [11]) Let T1, . . . , Tn be non-empty multisets of vectors in Zk such
that

∑
T1 =

∑
T2 = . . . =

∑
Tn and all vectors contained in all multisets T1, . . . , Tn have ℓ∞-norm bounded

by ∆. Then there are non-empty multisets S1 ⊆ T1, . . . , Sn ⊆ Tn, each of size at most 2O(k∆)k , such that∑
S1 =

∑
S2 = . . . =

∑
Sn.

In the context of the proof of Lemma 2.3, we apply Lemma 2.4 to the family of all multisets T that consist
of columns of D and satisfy

∑
T = b. By encoding multiplicities, such multisets correspond to vectors v ∈ Zk

⩾0

satisfying Dv = b. (We hide here some technicalities regarding the fact that this family is infinite.) By Lemma 2.4,
from each such multiset T , we can extract a submultiset S of bounded size such that all the submultisets S sum
up to the same vector b′. Denoting b′′ = b − b′, this means that every vector v ∈ Zk

⩾0 satisfying Dv = b can
be decomposed as v = v′ + v′′ with v′,v′′ ∈ Zk

⩾0 so that Dv′ = b′ and Dv′′ = b′′. Namely, v′ corresponds
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to the vectors contained in S and v′′ corresponds to the vectors contained in T − S, where T is the multiset
corresponding to v.

There is an issue in the above reasoning: we do not obtain the property b′,b′′ ⊑ b, which will be important in
later applications of Lemma 2.3. To bridge this difficulty, we apply the argument above exhaustively to decompose
b as b1 + . . .+ bm, for some integer m, so that every vector bi has the ℓ∞-norm bounded by 2O(k∆)k and every
vector v ∈ Zk

⩾0 satisfying Dv = b can be decomposed as v = v1 + . . . + vm where vi ∈ Zk
⩾0 satisfies Dvi = bi.

Then, we treat vectors b1, . . . ,bm with the following lemma.

Lemma 2.5. Let u1, . . . ,um be vectors in Zk of ℓ∞-norm bounded by Ξ, and let b =
∑m

i=1 ui. Then the vectors
u1, . . . ,um can be grouped into non-empty groups U1, . . . , Uℓ, each of size at most O(∆)2

k−1

, so that
∑

Ui ⊑ b
for all i = 1, . . . , ℓ.

More precisely, Lemma 2.5 allows us to group vectors b1, . . . ,bm into groups of bounded size so that the
sum within each group is sign-compatible with b. Assuming ∥b∥∞ is large enough, there will be at least two
groups. Then, any non-trivial partition of the groups translates into a suitable decomposition b = b′ + b′′ with
b′,b′′ ⊑ b.

The proof of Lemma 2.5 is by induction on k and uses arguments similar to standard proofs of Steinitz
Lemma. This concludes a sketch of the proof of Lemma 2.3.

Once Lemma 2.3 is established, it is natural to use it iteratively: break b into b′,b′′, then break b′ into
two even smaller vectors, and so on. By applying the argument exhaustively, eventually we obtain a collection of
vectors b1, . . . ,bm ⊑ b such that b = b1 + . . .+bm, ∥bi∥∞ ⩽ 2(k∆)O(k)

for all i ∈ {1, . . . ,m}, and every v ∈ Zk
⩾0

satisfying Dv = b can be decomposed as v = v1 + . . .+ vm with vi ∈ Zk
⩾0 and Dvi = bi for all i ∈ {1, . . . ,m}.

We call such a collection a faithful decompostion of b of order 2(k∆)O(k)

.
There is an important technical caveat here. Observe that the size m of a faithful decomposition of a right-

hand side b can be as large as Ω(∥b∥1), which is exponential in the bitsize of the program P . So we cannot
hope to compute a faithful decomposition explicitly within the target time complexity. However, observe that all
vectors bi in a faithful decomposition B are bounded in ℓ∞-norm by Ξ := 2(k∆)O(k)

, and there are only at most
(2Ξ + 1)k different such vectors. Therefore, B can be encoded by storing, for each vector b′ present in B, the
multiplicity of b′ in B. Thus, describing B takes 2(k∆)O(k) · log ∥b∥∞ bits.

With this encoding scheme in mind, we show that a faithful decomposition B of a given vector b of order at
most Ξ can be computed in fixed-parameter time f(∆, k) · (log ∥b∥∞)O(1), for a computable function f . For this,
we show that one can extract parts of the decomposition in “larger chunks”, at each step reducing the ℓ1-norm
of the decomposed vector by a constant fraction; this gives a total number of steps logarithmic in ∥b∥1. In each
step, to extract the next large chunk of the decomposition, we use the fixed-parameter algorithm for optimization
problems definable in Presburger arithmetic, due to Koutecký and Talmon [36]. We remark that in our context,
this tool could be also replaced by the fixed-parameter algorithm of Eisenbrand and Shmonin [17] for ∀∃ integer
programming.

Reduction to (mixed) integer programming with few variables. With faithful decompositions
understood, we can compute, for every right-hand side bi part of P , a faithful decomposition {b1

i , . . . ,b
mi
i }

of bi. This allows us to construct an equivalent (in terms of feasibility and optimization) n-fold program P ′ by
replacing each brick Dyi = bi with bricks Dyj

i = bj
i for j ∈ {1, . . . ,mi}. Thus, the program P ′ has an exponential

number of bricks, but can be computed and described concisely: all right-hand sides are bounded in the ℓ∞-norm
by at most Ξ, so for every potential right-hand side b, we just write the multiplicity in which b appears in P ′.
We remark that such high-multiplicity encoding of n-fold integer programs has already been studied by Knop et
al. [31].

For convenience, let RHS := {−Ξ, . . . ,Ξ}k be the set of all possible right-hand sides, and for b ∈ RHS, by
count[b] we denote the multiplicity of b in P ′.

It is now important to better understand the set of solutions to a single brick Dy = b present in P ′. Here
comes a key insight stemming from the theory of Graver bases: as (essentially) proved by Pottier [39], every
solution w ∈ Zk

⩾0 to Dw = b can be decomposed as w = ŵ + g1 + . . .+ gℓ, where
• ŵ ∈ Zk

⩾0 is a base solution that also satisfies Dŵ = b, but ∥ŵ∥∞ is bounded by a function of ∆
and ∥b∥∞, and
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• g1, . . . ,gℓ ∈ Zk
⩾0 are elements of the Graver basis of D.

Here, the Graver basis of D consists of all conformally-minimal non-zero vectors g satisfying Dg = 0. In particular,
it is known that the Graver basis is always finite and consists of vectors of ℓ∞ norm bounded by (2k∆+1)k [15].
The decomposition explained above will be called a Graver decomposition of w.

For b ∈ RHS, let Base[b] be the set of all possible base solutions ŵ to Dy = b. As ∥b∥∞ ⩽ Ξ and Ξ is
bounded by a function of the parameters under consideration, it follows that Base[b] consists only of vectors of
bounded ℓ∞-norms, and therefore it can be efficiently constructed.

Having this understanding, we can write an integer program M with few variables that is equivalent to P ′.
The variables are as follows:

• for every b ∈ RHS and ŵ ∈ Base[b], we introduce a variable ζbŵ ∈ Z⩾0 that signifies how many times in
total ŵ is used in the Graver decompositions of solutions to individual bricks.

• for every nonnegative vector g in the Graver basis of D, we introduce a variable δg ∈ Z⩾0 signifying how
many times in total g appears in the Graver decompositions of solutions to individual bricks.

Note that since program P ′ is uniform, the guessed base solutions and elements of the Graver basis can be assigned
to any brick with the same effect on the linking constraints of P ′. Hence, it suffices to verify the cardinalities and
the total effect on the linking constrains of P ′, yielding the following constraints of M :

• the translated linking constraints:
∑

b∈RHS

∑
ŵ∈Base[b] ζ

b
ŵ · Cŵ +

∑
g∈Graver(D),g⩾0 δg · Cg = a.

• for every b ∈ RHS, the cardinality constraint
∑

ŵ∈Base[b] ζ
b
ŵ = count[b].

Noting that the number of variables of M is bounded in terms of the parameters, we may apply any fixed-
parameter algorithm for integer programming parameterized by the number of variables, for instance that of
Kannan [25], to solve M . This concludes the description of the algorithm for the feasibility problem.

In the case of the optimization problem, there is an issue that the optimization vectors ci may differ between
different bricks, and there may be as many as n different such vectors. While the Graver basis elements can be
always greedily assigned to bricks in which their contribution to the optimization goal is the smallest, this is not
so easy for the base solutions, as every brick may accommodate only one base solution. We may enrich M by
suitable assignment variables ωb,i

ŵ to express how many base solutions of each type are assigned to bricks with
different optimization vectors; but this yields as many as Ω(n) additional variables. Fortunately, we observe that
in the enriched program M , if one fixes any integral valuation of variables ζbŵ and δg, the remaining problem on
variables ωb,i

ŵ corresponds to a flow problem, and hence its constraint matrix is totally unimodular. Thus, we may
solve M as a mixed integer program where variables ωb,i

ŵ are allowed to be fractional. The number of integral
variables is bounded in terms of parameters, so we may apply the fixed-parameter algorithm for mixed integer
programming of Lenstra [38].
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