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1 Introduction

My research focuses on theoretical gravitational physics, black holes, and mathematical
relativity. I am a recognized expert on hidden symmetries, separability, and integrability
of field equations in curved spacetime. I am one of the founders of a new subdiscipline
of black hole thermodynamics known as black hole chemistry. In the last couple of years
I have pushed forward our understanding of exotic black hole spacetimes, studied the
interaction of ultralight bosons with rotating black holes, and proposed a new theory of
higher curvature gravity. Most recently, I have become interested in relativistic quantum
information and quantum detection of various spacetime features.

In this Habilitation I have gathered a number of selected publications that I have
published in collaboration with my students and numerous researchers in the past 15
years or so. These papers have been split into four categories: i) hidden symmetries of
rotating black holes ii) black hole thermodynamics iii) modified gravity theories and iv)
miscellaneous results. A brief introduction to each of these topics is provided in Sec. 2.
This section also sets the context for each of the attached papers.
The central topic of this Habilitation is that of black holes. Black holes are one of

the most fascinating predictions of Einstein’s general relativity. With a high resolution
image of a supermassive black hole at the center of M87 by the Event Horizon Telescope1

and recent gravitational wave observations of binary black hole collisions by LIGO2 at
hand, there are no longer any doubts that black holes exist in our Universe. However, the
very existence of black holes still raises many fundamental theoretical questions. Those
related to quantum processes, such as the mystery of black hole entropy, information
loss, quantum evaporation and black hole thermodynamics, are expected to provide key
insights towards understanding how to reconcile gravity with quantum theory. Other are
purely classical and range from describing astrophysical processes to pure mathematical
physics
One of the most exciting theoretical developments in classical black hole thermody-

namics in the past couple of years is due to the black hole chemistry – a new discipline I
helped to establish. My original papers on this topic3,4 have generated a groundswell of
activity, resulting in more than 700 papers written in this field. The subject has grown

1



1 Introduction

substantially and now spans many diverse directions5. While the mainstream focuses
on studying black hole phase transitions and understanding the notion of black hole
volume, more recently there have been attempts to understand the thermodynamics of
“exotic” black hole spacetimes, for example those with acceleration6,7 and Newman–
Unti–Tamburino (NUT) parameters8,9. These works have helped to discover a more
complete thermodynamic dictionary and raise new challenges for the interpretation of
the black hole entropy and the AdS/CFT correspondence.
Perhaps my most ground breaking discovery in the past 6 years is the demonstration10

of separability of the massive vector perturbations around rotating black holes in any
number of dimensions – a completely unexpected result that was awaiting its discovery
for almost 50 years. The demonstrated separability allowed us to study instability modes
of such perturbations, providing constraints on various candidates for the dark matter10.
The key tool towards this discovery was to exploit a hidden symmetry encoded in the
principal Killing–Yano tensor that is present in these black hole spacetimes11.

Another topic discussed in this Habilitation is that of modified gravity theories. It is
very likely that Einstein’s theory of gravity is only an approximation and will eventually
have to be modified. At classical level, the departures are expected to be described by
the higher curvature terms. Of special interest are the higher curvature theories that
preserve some of the remarkable properties of Einstein’s theory. In this spirit, we have
proposed two novel modified higher curvature gravities. One that is obtained by taking a
singular limit of the well known Gauss–Bonnet gravity to four dimensions12 and another
that generalizes the recently proposed quasi-topological gravities13.
Finally, we shall discuss three ‘miscellaneous results’, related to the calculation of

gravitational wave production in black hole mergers14, to quantum detection of inertial
frame dragging15, and cosmic string hair of black holes16.
The author would like to thank the Perimeter Institute for Theoretical Physics, where

many of the included works have been completed, and the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) for their support. Research at Perimeter
Institute is supported in part by the Government of Canada through the Department
of Innovation, Science and Economic Development Canada and by the Province of On-
tario through the Ministry of Colleges and Universities. Perimeter Institute is situated
on the Haldimand Tract, land that was promised to the Haudenosaunee of the Six Na-
tions of the Grand River, and is within the territory of the Neutral, Anishnawbe, and
Haudenosaunee peoples.
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2 The Hitchhiker’s guide to the selected
papers

2.1 Black hole thermodynamics

It has been nearly 50 years since Bardeen, Carter and Hawking first formulated the
laws of black hole mechanics17. These laws are geometric in origin and are consequences
of classical general relativity. In particular, the first law of black hole mechanics is
a constraint enforced by the Einstein equation, relating physical perturbations of the
black hole to variations in its area and conserved charges. That the laws of black
hole mechanics are in fact the laws of thermodynamics (induced by quantum effects
in the vicinity of a black hole horizon) was only firmly established somewhat later by
Bekenstein and Hawking18,19, yielding the famous relation for the black hole temperature
and entropy:

temperature T ↔ κ

2π surface gravity

entropy S ↔ A

4 horizon area (2.1)

in units where G= c= h̄= kB = 1, yielding a correspondence between the laws of ther-
modynamics and black hole mechanics:

δE = TδS−PδV +work terms ↔ δM = κ

2π
δA

4 + ΩδJ +φδQ+ . . . , (2.2)

where on the r.h.s. the ΩdJ and ΦdQ terms are the standard ‘kinetic’ and ‘chemical
potential’ black hole work terms, written in terms of the asymptotic angular momentum
J and electric charge Q (and their conjugate variables Ω and φ), andM is the mass of the
black hole. The first law is standardly accompanied by its ‘integral version’, the so called
Smarr–Gibbs–Duhem relation20, which is an equality relating the finite thermodynamic
charges:

d−3
d−2M = TS+ ΩJ + d−3

d−2φQ, (2.3)
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2 The Hitchhiker’s guide to the selected papers

valid for asymptotically flat black holes in d number of spacetime dimensions.
While the above laws are well established for simple black holes, two natural questions

arise. 1) Is it possible to find, on the black hole side, the term that would correspond
to the standard PδV work term? 2) Can the laws of black hole thermodynamics be
also formulated for more complicated black hole spacetimes, such as those including
acceleration, Taub-NUT charges, and/or cosmic strings? Whereas the answer to the first
question led to a new subdiscipline of black hole thermodynamics known as the black
hole chemistry, the latter gave rise to an extended thermodynamic dictionary where new
thermodynamic charges on the black hole side were properly identified. In what follows,
we shall describe these recent developments.

2.1.1 Black hole chemistry

Black hole chemistry5,21 is a new and fast developing subdiscipline of classical black
hole thermodynamics. The original idea was to reconsider the behavior of Anti de
Sitter (AdS) black holes, that is black holes in an asymptotically AdS space, in the
context of a dynamical cosmological constant, which provided the basis for introducing
the pressure/volume term into black hole thermodynamics22. This simple idea has far
reaching consequences and leads to a radical new understanding of black holes from the
“viewpoint of chemistry”, in terms of concepts such as chemical enthalpy, Van der Waals
fluids, and holographic heat engines.

Thermodynamics with variable Λ

Asymptotically AdS black holes feature many attractive properties that are absent for
their asymptotically flat cousins. Such black holes provide a description of the dual
conformal field theory (CFT) at finite temperature via the AdS/CFT correspondence23.
Moreover, they can be in thermal equilibrium with their Hawking radiation and exhibit
interesting thermodynamic phase transitions, such as the first order Hawking–Page phase
transition24, or the existence of a second order Van der Waals type phase transition for
charged AdS black holes4,25–27.

An asymptotically AdS black hole in d spacetime dimensions is a black hole solution
to the Einstein equations

Rµν−
1
2gµνR+ Λgµν = Tµν , (2.4)

where the cosmological constant Λ < 0 is often parameterized by the AdS radius l
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2.1 Black hole thermodynamics

according to
Λ =−(d−1)(d−2)

2l2 < 0 , (2.5)

and Tµν is the matter stress-energy tensor (that vanishes sufficiently quickly as we ap-
proach the asymptotic region). The starting point of the black hole chemistry is to
identify the thermodynamic pressure with the cosmological constant Λ according to

P =− Λ
8π = (d−1)(d−2)

16πl2 , (2.6)

and allow it to vary in the first law of black hole thermodynamics.∗ The thermodynamic
volume is then defined as a quantity that is thermodynamically conjugate to pressure:

V ≡
(
∂M

∂P

)
S,Q,J

. (2.7)

This means that the mass of the black hole M is now identified with enthalpy rather
than energy† and the extended first law reads22:

δM = TδS+V δP +
∑
i

ΩiδJ i+
∑
j

φjδQj , (2.8)

where we allowed for a possibility of having multiple angular momenta J i and multiple
U(1) charges Qj . This law is now consistent (via the dimensional Euler argument) with
the following extended Smarr relation22,30:

d−3
d−2M = TS+

∑
i

ΩiJ i− 2
d−2PV + d−3

d−2
∑
j

φjQj . (2.9)

Obviously, without the P −V term this equality would not be valid, giving a ‘practical
reason’ as to why the variations of Λ have to be included in the first law of black hole
thermodynamics.

∗The idea that Λ might be a dynamical variable was first proposed by Teitelboim and Brown28,29.
†In standard thermodynamics, enthalpy is energy to create the system and place it in an environment.
In black hole physics this corresponds to ‘creating’ a black hole and ‘placing’ it in an environment of
the negative cosmological constant.
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2 The Hitchhiker’s guide to the selected papers

Simple example

To illustrate the above concepts, let us consider the ‘simplest possible’ (vacuum) spherical
AdS black hole in d= 4 dimensions, the Schwarzschild-AdS spacetime:

ds2 =−f(r)dt2 + dr2

f(r) + r2(dθ2 + sin2θdφ2) , f(r) = 1− 2M
r

+ r2

l2
, (2.10)

whose horizon is located at the radius r+, determined as the largest positive root of
f(r+) = 0 . This black hole can be assigned the following thermodynamic quantities:

M = r+
2
(
1 + r2

+
l2

)
, S = Area

4 = πr2
+ , T = f ′(r+)

4π = 1
4πr+

(
1 + 3r

2
+
l2

)
. (2.11)

Thence, upon identifying P = 3/(8πl2), we find an ‘amusing formula’

V = 4
3πr

3
+ (2.12)

for the thermodynamic volume of this black hole, which is a volume of a sphere in a
3-dimensional Euclidean space. Such a volume can also be recovered by integrating the
‘space’ hidden behind the black hole horizon – a quantity know as the geometric black
hole volume31,32.

Thermodynamic volume

In general, there is no reason for the thermodynamic volume to have any relation to the
volume in Euclidean space or to the black hole geometric volume. In fact, already for
rotating black holes in four dimensions, the three concepts are different3. That ther-
modynamic definition yields a sensible definition for the black hole volume is indicated
by the reverse isoperimetric inequality. Namely, the following conjecture has been put
forward in3:

Reverse isoperimetric inequality. For any AdS black hole solution in Einstein
gravity the following ratio:

R=
((d−1)V

ωd−2

) 1
d−1

(ωd−2
A

) 1
d−2

, (2.13)
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2.1 Black hole thermodynamics

where A is the black hole horizon area, V is its thermodynamic volume, and

ωn = 2π n+1
2

Γ
(
n+1

2

) , (2.14)

is the volume of the unit n-sphere, obeys the following inequality:

R≥ 1 , (2.15)

with the bound being saturated for Schwarzschild-AdS black holes. In other
words, for a fixed thermodynamic volume the entropy of the black hole is
maximized for the Schwarzschild-AdS spacetime.

It turns out that many of the AdS black holes obey the conjectured inequality3. Those
that do not, possess for a given thermodynamic volume more entropy than the Schwarzschild-
AdS spacetime, and are known as the ‘superentropic black holes’33.

Phase transitions

Interestingly, already the simplest AdS black hole (2.10) admits an interesting phase
transition, known as the Hawking–Page phase transition24. To uncover this, one has
to study the corresponding free energy of the system and seek its global minimum. If
such a minimum is ‘discontinuous’, there will be the corresponding phase transition. In
particular, according to Ehrenfest’s classification the continuity in the minimum itself
but discontinuity in its first derivatives implies a first order phase transition.
In our case, the total system consists of AdS black hole and its Hawking radiation.

While the (Gibbs) free energy of the latter, sometimes referred to as the thermal AdS, is
negligible24, Grad ≈ 0, the free energy of the black hole (and thence the total free energy)
reads

G=G(T,P ) =M −TS = r+
4
(
1− r

2
+
l2

)
. (2.16)

For a given pressure, this is parametrically plotted in Fig. 2.1. We observe a minimum
temperature Tmin = 2

√
3/(4πl), corresponding to rmin = l/

√
3, below which no black holes

can exist. Above this temperature we have two branches of black holes that meet at a
cusp. The upper branch describes small black holes with negative specific heat; these
are thermodynamically unstable and cannot be in a thermal equilibrium with a thermal
bath of radiation. The large (r+ > rmin) black holes at lower branch have positive specific
heat and are locally thermodynamically stable. More importantly, the radiation with
zero free energy represents a global minimum of the free energy for temperatures lower
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2 The Hitchhiker’s guide to the selected papers

Figure 2.1: Hawking–Page phase transition. Above Tmin, the free energy of the Schwarzchild-
AdS black hole displays two branches of black holes. The upper branch (small
black holes) has negative specific heat and is thermodynamically unstable. The
lower branch (large black holes) has positive specific heat. For T > THP this branch
has negative free energy (lower than that of the Hawking radiation) and the corre-
sponding black holes represent the globally thermodynamically preferred state. As
the temperature increases, at THP, the system undergoes a first order Hawking–Page
phase transition from radiation to large black hole.
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2.1 Black hole thermodynamics

Figure 2.2: Phase diagram: Schwarzschild-AdS. We display a semi-infinite coexistence line be-
tween the radiation and large black hole phases, reminiscent of the solid-liquid
phase transition.

than the Hawking–Page temperature:

THP = 1
πl
, (2.17)

determined from G = 0, above which the branch of large black holes thermodynami-
cally dominates. In other words, as the system is heated up, it undergoes a first order
Hawking–Page phase transition from thermal radiation to a large black hole24.

This phase transition was later re-interpreted as a confinement/deconfinement phase
transition in the dual quark gluon plasma34. Alternatively, it is obvious that as we vary
the cosmological constant, the Hawking–Page critical temperature, (2.17), changes. This
yields the following coexistence line between the two phases:

P |coexistence = 3π
8 T 2 . (2.18)

The corresponding P −T phase diagram is displayed in Fig. 2.2. It is reminiscent of a
solid-liquid phase transition, yielding thus a familiar interpretation.

So far we have only dealt with the simplest AdS black hole (2.10). Considering more
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2 The Hitchhiker’s guide to the selected papers

complicated AdS black hole spacetimes has revealed remarkable similarities between
the phase behaviour of black holes and that of ordinary matter5. The paradigmatic
example of this analogy is the Van der Waals-like phase transition of charged AdS black
holes4,25,26. While the Van der Waals behavior is the most ‘typical’ for AdS black holes,
more complicated phase diagrams can also be identified. For example, people observed
the so called reentrant phase transitions35, water-like tricritical points36, an isolated
critical point37,38, superfluid-like behaviour39, or the existence of ‘snapping’ swallow
tails40. Most recently, these phase transitions were further investigated employing the
Ruppener’s thermodynamic geometry to reveal possible features of the underlying black
hole microstructure41.

Holographic interpretation

One of the main motivations to study AdS black holes is the AdS/CFT correspondence23

where such black holes provide a dual description of the boundary CFT at finite tem-
perature. This in particular regards the bulk black hole phase transitions which are dual
to the phase transitions of the boundary CFT.
Surprisingly, the holographic interpretation of black hole chemistry has been elusive

for many years42–48. The reason for this is that the extended first law (2.8) cannot be
straightforwardly related to the corresponding thermodynamics of the holographic dual
field theory49,50, because variations of the bulk cosmological constant Λ correspond to
changing both the central charge C (or the number of colours N) and the CFT volume
V. Namely, one has the following holographic first law50:

δE = TδS−pdV+ φ̃δQ̃+ ΩδJ + µ̃δC , (2.19)

where E is the CFT energy (not enthalpy), p and V = V0lD−2 are the CFT pressure and
volume, µ̃ is the chemical potential for the central charge C, which is proportional to N
to some power (C ∝N2 for SU(N) gauge theories with conformal symmetry), J and Ω
are the angular momentum and conjugate angular velocity, and Q̃, φ̃ are its respective
holographic charge and conjugate potential.
When the holographic first law (2.19) is used a starting point, and upon employing

the standard dictionary between boundary and bulk quantities (recovering the Newton’s
constant G for the moment):

E =M , Q̃= Ql√
G
, φ̃= φ

√
G

l
, (2.20)

10



2.1 Black hole thermodynamics

together with the two holographic Smarr relations E = (D−2)pV , E = TS+ φ̃Q̃+ΩJ+
µ̃C , and the duality relation

C = k
lD−2

16πG , (2.21)

where the numerical factor k depends on the details of the particular holographic system49,
one arrives at the following extended bulk first law:

δM = κ

8πGδA+ ΩδJ +φδQ− V

8πGδΛ−α
δG

G
. (2.22)

Thus varying Λ is naturally (at least from the holographic perspective) accompanied by
varying the Newton’s constant G. (See51 for additional reasons as to why G should be
varied in the first law of black hole thermodynamics.)
Alternatively, one may rewrite the extended bulk first law (2.22) in the following

‘mixed’ form52:
δM = TδS+ ΩδJ +φδQ+VCδP +µδC , (2.23)

where VC and µ are the new thermodynamic volume and chemical potential, respectively.
In this form, it is possible to decouple the variations of the cosmological constant from
the effect of changing the boundary theory – allowing one to study the black hole bulk
behavior, holding the central charge C fixed. As shown in52, this has the very interesting
consequence that varying bulk pressure (as done in the black hole chemistry literature)
no longer qualitatively changes phase diagrams. Their qualitative behavior depends
entirely on the value of the central charge – in particular, phase transitions of charged
AdS black holes only exist provided the dual CFT has a sufficient number of degrees of
freedom. In this sense the work52 marks “the fall” of black hole chemistry as traditionally
understood, but opens up a new frontier for exploring its relationship with the AdS/CFT
correspondence.

Comments on selected papers

As described above the black hole chemistry is a fast developing discipline. More than
700 papers have been written on the topic in past 10 years, with the author of the current
manuscript playing a leading role in many of the developments.
Paper3 is one of the first studies probing the notion of the black hole thermodynamic

volume (2.7). Having calculated this volume for a large variety of black holes, the authors
were led to the reverse isoperimetric inequality conjecture (2.15). This has influenced
many following studies and led eventually to the concept of superentropic black holes,
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2 The Hitchhiker’s guide to the selected papers

discussed in Paper33.
One of the most interesting conclusions that come from the black hole chemistry is that

black holes feature many interesting phase transitions, reminiscent of phase transitions
of everyday substances. The Paper4 represents the first study in this direction, showing
that the charged AdS black holes demonstrate Van der Waals-like behavior, where the
coexistence line of first order phase transition terminates at a second order critical point
characterized by standard mean field theory critical exponents. While many other more
complicated phase transitions were later identified, one of the most remarkable discover-
ies is the existence of an ‘isolated critical point’, studied in38 for higher-curvature black
holes, which is a special critical pint with polymer-like critical exponents.
Finally, the holographic interpretation of the black hole chemistry was recently clarified

in52.

2.1.2 Thermodynamics of exotic black hole spacetimes

Euclidean methods and regularity paradigm

While Hawking’s original derivation of black hole radiation19 was performed in the con-
text of Lorentzian quantum field theory in curved spacetime, very shortly after this a
number of works established relationships between properties of the complexified geom-
etry and black hole thermodynamics53–55. These so-called Euclidean methods have since
become common practice for deducing the thermodynamic properties of spacetimes con-
taining horizons. A key point advocated in this approach is that the Euclidean sector
be regular. For example, York writes56

“This geometry must be topologically regular (no conical singularity at its
axis or horizon), a geometrical condition equivalent to the physical require-
ment of thermal equilibrium.”

For many examples of gravitating solutions regularity is indeed an essential ingredient
for the validity of the first law — as is the case of the Schwarzschild solution, or for
certain gravitational solitons57. In particular, regularity implies that the Euclidean time
τ is periodic, τ ∼ τ +β, and yields a finite temperature T , given by:

T = 1
β
, τ ∼ τ +β . (2.24)

In what follows we are going to question the regularity paradigm, and probe whether or
not the first law can also be formulated for more ‘exotic black hole spacetimes’ for which
regularity of the Euclidean solution cannot be fully achieved.

12



2.1 Black hole thermodynamics

Lorentzian Taub-NUT solution

A prototypical example of a spacetime that has been puzzling physicists for the past 70
years is the Lorentzian Taub-NUT(-AdS) solution58–60, whose metric reads

ds2 = −f(dt+ 2ncosθdφ)2 + dr2

f
+ (r2 +n2)(dθ2 + sin2 θdφ2) ,

f = r2−2mr−n2

r2 +n2 − 3n4−6n2r2− r4

l2(r2 +n2) . (2.25)

Here, m stands for the gravitational mass, l is the AdS radius, and n represents the so
called NUT charge (a gravitational analogue of the magnetic monopole). The solution
is plagued by the existence of a Misner string singularity61, located along the axis θ= 0,
and the associated with it closed timelike curves in its vicinity. The Misner string,
which is the gravitational analog of the Dirac string, can be eliminated by requiring the
Lorentzian time t to be periodic61

t∼ t+ 8πn, (2.26)

which, however, has fatal consequences for the spacetime causality and geodesic completeness62–65.
A recently preferred alternative66,67 is to preserve the Misner string and interpret it as
a (rotating string) source of angular momentum68–70.

Turning to the Euclidean sector, which is obtained by Wick rotating t→ iτ and n→ iν,
we observe several singularities. Namely, similar to Schwarzschild, the Euclidean metric
possesses a conical singularity at the root of f(r+) = 0 that can be eliminated by choosing
the Euclidean time τ to have period β, given by

β = 4π
f ′(r+) . (2.27)

In addition to the conical singularity at the horizon f(r+) = 0, there is the Euclidean
version of the Misner string singularity along the axis θ = 0, which can be eliminated by
requiring that τ ∼ τ +β, where60,61,71

β = 8πν , (2.28)

in accord with the Lorentzian condition (2.26). To proceed further, we calculate the
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2 The Hitchhiker’s guide to the selected papers

Euclidean action

I = 1
16π

∫
M
d4x
√
g
(
R+ 6

`2

)
+ 1

8π

∫
∂M

d3x
√
h

[
K− 2

`
− `

2R(h)
]
, (2.29)

where K and R(h) are respectively the extrinsic curvature and Ricci scalar of the
boundary. In this expression we have included, apart from the Einstein–Hilbert and
York–Gibbons–Hawking terms, also the standard AdS counter-terms72. Assuming gen-
eral periodicity τ ∼ τ+β, we obtain the following simple result for the free energy of the
Euclidean solution8,72:

F = I

β
= m

2 −
1

2l2
(
r3

+−3ν2r+
)
. (2.30)

So what do we infer from here?
The conventional approach is to concentrate on the thermodynamics of the Euclidean

solution and require its full regularity. This means that both conditions (2.27) and (2.28)
have to be simultaneously satisfied, which implies

T = 1
β

= f ′(r+)
4π = 1

8πν ⇔ r+ = r+(ν, l) (2.31)

for the temperature and reduces the number of free parameters of the solution. At the
same time, the free energy is now understood as a function of two variables, F =F (T,P ),
which yields the following entropy:

S =−∂F
∂T

∣∣∣
P

= π(3r4
+−12ν2r2

+ + r2
+l

2 +ν2l2−3ν4)
l2 + 3r2

+−3ν2 , (2.32)

providing thus the only example of entropy in Einstein gravity that is not equal to
Area/4, a result that is interpreted by assigning the Misner strings themselves an
entropy60,73.‡

Despite this being the conventional approach, it is possible to obtain fully consistent
thermodynamics without imposing the absence of Misner strings – abandoning the regu-
larity paradigm. Let us concentrate on the Lorentzian setting, where the Misner strings
are themselves Killing horizons associated with the Killing vector ξ = ∂t−∂φ/(2n), and
can be assigned the following Misner potential8,9,74:

ψ = 1
8πn , (2.33)

‡The author finds this conclusion very counter-intuitive, as the Misner string has already been removed
by imposing the Misner condition (2.28).

14



2.1 Black hole thermodynamics

where ψ has been identified with either the Misner string surface gravity κMS/(4π)74, or
alternatively, with its angular velocity ΩMS/(4π)75. The Lorentzian versions of (2.27)
and (2.30) are given by

T = f ′(r+)
4π = 1

4πr+

(
1 + 3(n2 + r2

+)
l2

)
, F = m

2 −
r+(r2

+ + 3n2)
2l2 . (2.34)

We stress that, since the absence of Misner strings is no longer required, all of r+,n, l

remain independent, and the free energy is now a function of three variables, F =
F (T,ψ,P ). The conjugate potentials are then computed in the standard way:

S =−∂F
∂T

∣∣∣
ψ,P

= π(r2
+ +n2) , N =−∂F

∂ψ

∣∣∣
T,P

=−4πn3

r+

(
1 + 3(n2− r2

+)
l2

)
, (2.35)

while the energy E =m is deduced from the relation F = E−TS−ψN . The obtained
quantities can easily be verified to satisfy the first law

δE = TδS+ δW , δW = ψδN , (2.36)

where the new work term δW is associated with either the surface gravity or the rota-
tional energy of Misner strings. The entropy S is now Area/4, while N can be shown to
have the geometric interpretation as the integral of ∗dξ over the Misner string9.
We thus managed to formulate a ‘meaningful’ first law for the Taub-NUT spacetime,

without demanding the full regularity of its Euclidean sector. The same considerations
apply also to other spacetimes containing NUT charge. For example, demanding reg-
ularity for rotating NUT solutions eliminates all free parameters of the solution and
leads to a ‘discrete first law’76. However, it is entirely possible to obtain a ‘normal’ full
cohomogeneity first law when regularity is not demanded77.

Accelerating black holes and other examples

There are many other examples of black hole solutions for which a sensible first law
of black hole mechanics can be formulated – even using Euclidean methods – without
demanding regularity of the Euclidean solution.
A very interesting (and only recently understood) example is that of accelerated black

holes with78,79 or without6,7,80,81 accelerated horizons. The Euclidean action is not reg-
ular due to the presence of conical singularities, or cosmic strings, that extend along
the north pole/south pole symmetry axes. It is precisely the tension µ of these strings
that causes the acceleration of the black hole. As understood in the above studies, the
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variation of this tension needs to be included in the first law, leading to a new black hole
work term

δW = λdµ, (2.37)

with a new conjugate variable λ, known as the thermodynamic length80,82. Similar work
term also appears for the ‘balanced’ multi black hole solutions, e.g.82–86.

Perhaps the most famous example of spacetimes where full regularity cannot be
achieved is that of de Sitter black holes87,88 whose Euclidean sector has necessarily coni-
cal singularity on at least one of the horizons, cosmological or black hole. Although, such
spacetimes are in general out of thermodynamic equilibrium, the corresponding laws of
black hole mechanics can be formulated for each horizon separately and consequently
combined to a ‘mixed’ black hole/cosmological horizon first law, e.g.88.

We may also consider an example of a black hole with magnetic charge Qm. Here the
Euclidean geometry is regular, but the U(1) gauge potential

A∝ dt+Qm cosθdφ (2.38)

is not, unless the Dirac quantization condition is imposed. Nevertheless, the first law of
black hole mechanics can still be formulated without imposing regularity, picking up an
additional work term

δW = φmδQm , (2.39)

where φm is the conjugate ‘magnetostatic’ potential, e.g.30.

To summarize, we have illustrated here through a number of examples, that the po-
tential singularity of the Euclidean solution need not be fatal and does not necessarily
prevent one from formulating the first law of black hole mechanics. Instead, one typically
picks up additional work terms which come with a well-motivated physical interpretation
such as string tension µ in the case of accelerating black holes, or Misner charge N in
case of the Taub-NUT solutions. These quantities can be interpreted as the physical
sources responsible for the loss of regularity in the Euclidean solution. Their inclusion
extends the black hole thermodynamic dictionary and poses a challenge for the potential
holographic interpretation. While some of the obtained first laws obviously cannot be
associated with equilibrium thermodynamics in the spirit of the identification (2.1), as
is the case of de Sitter black holes, for others this is not so obvious – for example the
Taub-NUT solutions. Therefore, it seems that the precise role played by regularity of
the Euclidean solution remains an open question.
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Comments on selected papers

The author has devoted a number of papers towards understanding thermodynamics
of exotic objects, and in particular the thermodynamics of accelerated black holes and
Lorentzian Taub-NUT solutions.
Paper6 marks the first study of the author on thermodynamics of the accelerated black

holes (before the necessity of including the λdµ term, (2.37), was first realized). The
work on this subject culminated in81 where the full thermodynamics of accelerated black
holes with charges and rotations was finally understood.
As discussed above, the thermodynamics of the Lorentzian Taub-NUT solutions finds

natural description in terms of the Misner potential ψ, (2.33), and its conjugate quantity
N . In9 the geometric interpretation of these quantities has been first proposed, filling
an important gap in understanding these spacetimes.
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2.2 Hidden symmetries of rotating black holes

With motivations coming from string theory and braneworld scenarios, higher-dimensional
black holes have recently attracted a lot of attention. One of the most surprising discov-
eries of recent years is a realization that the properties of higher-dimensional rotating
black holes are very similar to those of the simple four-dimensional Kerr metric.§ This
remarkable result stems from the existence of a single object called the principal Killing–
Yano tensor. The very existence of this tensor determines uniquely the Kerr-NUT-AdS
family of metrics in all dimensions. It also generates a tower of explicit and hidden sym-
metries that stand behind complete integrability of geodesic motion and separability of
the Hamilton–Jacobi equation, as well guarantee separability of the scalar, spinor, and
vector perturbations in these spacetimes. In this section we shall review some of these
remarkable results.

Principal Killing–Yano tensor

The Principal Killing–Yano tensor11,92 is a special object which obeys a number of
algebraic and differential restrictions. More specifically, it is a non-degenerate closed
conformal Killing–Yano 2-form h obeying the following equation:

∇γhαβ = gαγξβ−gβγξα , (2.40)

where
ξα = 1

d−1∇βh
β
α (2.41)

is the corresponding characteristic 1-form, the primary Killing vector93. The non-
degeneracy means that h has a maximal matrix rank and that its eigenvalues are func-
tionally independent.¶

Contrary to explicit symmetries of Killing vectors, whose action is evident on the
configuration space (manifold itself), the principal Killing–Yano tensor is a dynamical
symmetry of the phase space, and its action on configuration space remains ‘hidden’. For
this reason we call the corresponding symmetry a hidden symmetry. In what follows, we
shall assume the existence of this tensor and derive some of the implications.

§Here we refer to the black holes with spherical horizon topology that belong to the ‘Myers–Perry
class’89. This excludes both the non-trivial topology generalizations, such as black rings90, as well
as ‘bumpy’ black holes91.

¶When the algebraic conditions on h are not imposed, the existence of h is far less restrictive and many
of the results discussed below become weaker. For example, we have to deal with the corresponding
generalized Kerr-NUT-AdS spacetimes which contain unspecified Kähler manifolds94.
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Towers of symmetries

Starting with a single principal Killing–Yano tensor h, one can generate the whole towers
of explicit and hidden symmetries – the ‘symmetry descendants’ of h95. Namely, we can
construct the following tower of closed conformal Killing–Yano tensors:

h(j) = 1
j! h∧·· ·∧h︸ ︷︷ ︸

j times

. (2.42)

Their Hodge duals f (j) = ?h(j) are Killing–Yano tensors, and their square gives rise to a
tower of rank-2 Killing tensors:

kαβ(j) = 1
(d−2j−1)!f

(j)α
γ1...γd−2j−1f

(j)βγ1...γd−2j−1 . (2.43)

In turn, these tensors give rise to the tower of Killing vectors:

lα(j) = kαβ(j)ξβ . (2.44)

Note that the j = 0 Killing tensor is just the inverse metric and the zeroth Killing vector
is the primary Killing vector, l(0) = ξ.

Since the principal Killing–Yano tensor is non-degenerate – it admits n independent
eigenvalues in

d= 2n+ ε (2.45)

number of dimensions, where ε= 0,1 in even, odd dimensions – the above construction
yields n independent Killing tensors, and (n+ ε) independent Killing vectors, with the
last l(n) in odd dimensions given by l(n) = f(n). Moreover, being constructed from a
single object, all these symmetries mutually Schouten–Nijenhuis commute[

l(i), l(j)
]α

SN
= Ll(i) l

α
(j) = 0 ,

[
l(i),k(j)

]αβ
SN

= Ll(i)k
αβ
(j) = 0 ,[

k(i),k(j)
]αβγ

SN
= k

δ(α
(i) ∇δk

βγ)
(j) −k

δ(α
(j) ∇δk

βγ)
(i) = 0 , (2.46)

and the Killing tensors commute as matrices: kα(i)βk
β
(j)γ−k

α
(j)βk

β
(i)γ = 0 , see11 for all the

details and proofs of the above statements.

Remarkable properties of rotating black holes

It is not surprising that the above towers of symmetries are very special and determine
many remarkable properties of the corresponding spacetime. Namely, the following
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uniqueness theorem was proved in93,96:

Uniqueness theorem: The most general solution of the Einstein equations
with the cosmological constant which admits the principal Killing–Yano ten-
sor is the Kerr-NUT-(A)dS black hole spacetime97. Even when the Einstein
equations are not imposed, any spacetime admitting such a hidden symme-
try can be written in the off-shell Kerr-NUT-AdS form which guarantees
the following properties: it is of the special algebraic type D, it allows the
separation of variables for the Hamilton–Jacobi, Klein–Gordon, and Dirac
equations, the geodesic motion in such a spacetime is completely integrable.

We are already equipped to intuitively understand complete integrability of geodesic
motion. To this purpose we would need to find d number of integrals of motion that
are all independent and mutually Poisson commute98. These integrals are simply given
by the (n+ ε) linear and n quadratic in particle’s momenta integrals of motion that are
generated from Killing vectors and Killing tensors of the above constructed tower:

Lj = pαl
α
(j) , Kk = pαk

αβ
(k)pβ . (2.47)

Note that K0 is related to the Hamiltonian of the geodesic motion, H = 1
2K0 = 1

2pαg
βpβ.

The Schouten–Nijenhuis commutation relations between the tensors (2.46) then precisely
translate into the mutual Poisson commutation of these integrals:

{Lj ,Lk}= 0 , {Lk,Kk}= 0 , {Kj ,Kk}= 0 . (2.48)

The final step in the proof of integrability is to show that all such integrals are indepen-
dent. This fact was shown in99–101 and is intimately related to the fact that h possesses
independent eigenvalues.
The proof of geodesic integrability99–101 was shortly followed by the demonstration

that the Hamilton–Jacobi102, the Klein–Gordon102, and the Dirac103 equations all sepa-
rate in Kerr-NUT-AdS spacetimes. The geodesic integrability result was later extended
to integrability of the bosonic sector of the Grassmann spinning particle model104.
Perhaps the most remarkable is a more recent result of separability of vector per-

turbations in these spacetimes10,105,106. The key ingredience for this development is to
consider a novel ansatz for the vector field

Aµ =Bµν∇νZ , (2.49)
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where the ‘polarization tensor Bµν is the following ‘inverse’ of the principal Killing–Yano
tensor: Bµν =

[
(g+ iµh)−1]µν , and µ is an arbitrary constant. Imposing the Lorentz

‘gauge’ condition,
∇µAµ = 0 , (2.50)

yields a set of differential equations for the separated scalar Z. Interestingly, the ansatz
is applicable to both the Maxwell (m= 0) and massive perturbations:

∇νFµν +m2Aµ = 0 , (2.51)

whose equations simply impose an additional algebraic constraint on the separated
solution Z. This method therefore provides an alternative to the famous Teukolsky
approach107,108 over which it has many advantages: it is i) covariant ii) applicable in
all dimensions, and iii) applies to massive vector fields as well. In particular, the novel
ansatz allowed one to study the instability modes of the ultralight massive vector fields
in the vicinity of rotating black holes, providing thus a characteristic feature for possible
observations of axionic-type dark matter candidates10,109.

Generalized Killing–Yano tensors

The above uniqueness theorem essentially restricts the applications of the principal
Killling–Yano tensor to ‘vacuum spacetimes’ of Einstein gravity – we are inevitably
led to the Kerr-NUT-AdS family of metrics. To go beyond, one has to relax some of
the assumptions imposed on the principal Killing–Yano tensor. One such generalization,
especially useful for supergravity and string theory solutions, is that of Killing–Yano ten-
sors with torsion, where the torsion is identified with the 3-form flux naturally present
in these theories110–114.
In particular, we define a generalized principal Killing–Yano tensor with torsion by

the following equation generalizing (2.40):

∇Tγ hαβ = gαγξβ−gβγξα , (2.52)

where ∇T is a covariant derivative with (totally antisymmetric) torsion T , properly
identified with the 3-form flux of the given solution. This simple generalization turned
out to be very fruitful for example for black holes of d= 5 minimal gauged supergravity110

(with T identified with the Maxwell flux, T = ∗F/
√

3), or the Kerr–Sen solution of the
string theory113 (with T given by the Kalb–Ramond field, T =H). At the moment, there
is no uniqueness theorem for such a generalized principal Killing–Yano tensor, though a
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partial classification was achieved in114.
Other natural generalizations of Killing–Yano tensors, that can be obtained by study-

ing the symmetry operators of the Dirac equation in the presence of general fluxes, were
studied in112.

Comments on selected papers

The author of this Habilitation has played a central role in many of the above develop-
ments. The following publications provide a selected overview of some of these works.
Paper92 presents a discovery of the principal Killing–Yano tensor in higher-dimensional

rotating black hole spacetimes. Before its publication it was strongly believed, e.g.115,
that such symmetries are very unlikely to play any role for black holes in higher di-
mensions. Paper99 demonstrates complete integrability of geodesic motion in rotating
black hole spacetimes, while paper104 presents a generalization of thereof to the case
of a spinning particle described by the Grassmann variables. The separability of the
Klein–Gordon and Hamilton–Jacobi equations has been demonstrated in102. In93 the
Uniqueness theorem for the principal Killing–Yano tensor was formulated. Paper110

presents the torsion generalization of the Killing–Yano tensors and demonstrates their
relevance for black holes of d = 5 minimal gauged supergravity. Finally, paper10 shows
separability of massive vector perturbations in general Kerr-NUT-AdS spacetimes and
provides its application to calculating the black hole instability modes due to ultralight
massive vector bosons.
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2.3 Modified gravity theories

2.3 Modified gravity theories

Although incredibly successful and in full agreement with all its experimental verifi-
cations, Einstein’s general relativity cannot be the final theory of gravity. First, it is
intrinsically incompatible with quantum theory – the smooth spacetime on which the
theory is founded likely emerges only in the low energy limit. Even at the classical level
one has to deal with the problem of spacetime singularities, which are a generic predic-
tion of the theory. Furthermore, it is an open question whether the Einstein’s relativity
provides the correct description at cosmological scales. For all these reasons, it is im-
portant to seek new modified theories of gravity. In particular, at the classical level it
is natural to study higher curvature corrections to the Einstein–Hilbert action, as the
latter is only expected to provide effective description for weak gravitational fields. In
this section, we shall describe two attempts of the author at formulating new (classical)
higher curvature theories of gravity.

Lovelock gravities

The gravitational action of a theory that possesses the diffeomorphism invariance as
a fundamental symmetry is determined by specifying a scalar Lagrangian density L, a
function of the metric tensor g and its derivatives,

S = 1
16πG

∫
d4x

√
|g|L(g,∂g,∂2g, . . .) . (2.53)

In order to avoid the so called ‘runaway solutions’ (or ghosts at the quantum level) an
additional assumption, that the resulting equations of motion for the metric should be
at most second order in metric derivatives, is often imposed. The simplest solution to
these requirements is provided by the Einstein–Hilbert action where L is identified with
the Ricci scalar:

LEH =R. (2.54)

Is this really just the simplest solution, or can we include some other terms like:

R2 , RαβR
αβ , RαβγδR

αβγδ , R3 , ∇αR∇αR, . . . ? (2.55)

The answer is provided by the following theorem116:

Lovelock theorem (1971): In four dimensions, the Einstein–Hilbert action is
the only local action, apart from the cosmological constant and topological
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terms (total derivatives), that leads to the second-order partial differential
equations for the metric.

An example of an interesting topological term in four dimensions is the following Gauss–
Bonnet term:

LGB =R2−4RαβRαβ +RαβγδR
αβγδ . (2.56)

Interestingly, this term is topological only in four dimensions. It identically vanishes
in d < 4, and yields a non-trivial equations of motion in d = 5 and higher dimensions,
governed by the corresponding Gauss–Bonnet tensor:

Hαβ =−1
2gαβG+ 2RRαβ−4RαγRβγ + 4RγαβδRγδ + 2RαγδκRβγδκ . (2.57)

By inspection, this tensor leads to second-order equations of motion for the metric, and
thence a generalization of the Einstein gravity in d≥ 5 dimensions.
More generally, one may consider the Lovelock gravity116. This is a unique higher-

curvature (with local action) gravity in d dimensions that yields second order partial
differential equations for the metric. The corresponding Lagrangian density is given by

L= 1
16πG

K∑
k=0

αkL(k) , (2.58)

where L(k) are the 2k-dimensional Euler densities

L(k) = 1
2k δ

α1β1...αkβk
γ1δ1...γkδk

Rα1β1
γ1δ1 . . .Rαkβk

γkδk , (2.59)

and αk are the associated coupling constants. In particular, k = 0 is the cosmological
constant term, Λ = −α0/2, k = 1 corresponds to the Einstein–Hilbert action, k = 2
recovers the Gauss–Bonnet term, and so on. Interestingly, the basic property of the Euler
densities is that they are topological in d= 2k dimension, trivial below, and contribute
to equations of motion for d > 2k. This is why the sum terminates at K =

[
d−1

2

]
. Many

people consider the Lovelock gravity to be a natural generalization of Einstein’s gravity
to higher dimensions, though the problem of well-posedness is a non-trivial one, see
e.g.117,118.

Beyond Lovelock

While Lovelock gravities are very natural geometric generalizations of the Einstein grav-
ity, they are only non-trivial in higher dimensions. If one wants to restrict to (what
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seems to be a physical dimension) d= 4, one must therefore seek other alternatives.
In a purely geometric framework, where gravity is described by the metric only, it

follows from the Lovelock theorem that one must consider theories that lead to higher-
order equations of motion. A famous example of one such theory is the so called quasi-
topological gravity119. This is a higher curvature theory (a generalization of the Lovelock
gravity) whose equations of motion become second-order on spherically symmetric space-
times. Another very specific theory which is non-trivial even in four dimensions is known
as the Einsteinian cubic gravity120. Guided by the importance of spherically symmet-
ric solutions, a generalized quasi-topological theory was proposed by the author and his
collaborators13, see also121,122 for its later generalizations. These new theories play, for
example, a natural role in ‘geometric inflation’, e.g.123.
Going beyond the purely geometric framework, one may consider theories with extra

gravitational degrees of freedom. Among such theories, the forefront position belongs
to the Horndeski gravity124, which is the most general scalar-tensor theory that yields
second order equations of motion for both the metric and the scalar field. As shown by
the author12, a special subclass of Horndeski theories is obtained by taking a (singular)
limit of the Gauss–Bonnet gravity to four dimensions.

Comments on selected papers

In paper13 the author constructed the most general cubic in curvature theory with the fol-
lowing remarkable properties: i) It has a well-defined Einstein gravity limit, ii) it admits
“Schwarzschild-like” solutions characterized by a single metric function, iii) on maxi-
mally symmetric backgrounds it propagates the same degrees of freedom as Einstein’s
gravity, and iv) all of the following: Lovelock116, quasitopological119, and Einsteinian
cubic120 gravities are recovered as special cases.
Recently, there has the been a lot of interest in whether or not there exists a meaningful

theory of gravity obtained by taking a singular limit of the Gauss–Bonnet gravity to
d = 4 dimensions125–129. In paper12 we have shown that a well-defined d→ 4 limit of
the Gauss–Bonnet Gravity is obtained by generalizing a method of Mann and Ross130,
used many years ago to obtain a limit of the Einstein gravity in d= 2 dimensions. The
resulting theory is a scalar-tensor theory of the Horndeski type, obtained alternatively
by a special dimensional reduction127.
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2.4 Miscellaneous results

Apart from hidden symmetries, black hole thermodynamics, and modified gravity theo-
ries, the author of this Habilitation has also been interested in many other problems of
gravitational physics. In this section, we shall present three different results on: gravita-
tional waves, quantum detection of inertial frame dragging, and black hole cosmic string
hair, that provide a glimpse into the author’s other interests.

Gravitational waves

Gravitational waves provide a new window into our Universe. The great discovery made
by LIGO on September 14, 20152 provided the first direct confirmation that strong
gravitational waves are produced in the violent process of the coalescence of two black
holes. Other such observations shortly followed. The effort culminated in an observation
of a neutron star-neutron star collision131, marking the beginning of multi messenger
astronomy.
The precise modelling of the merger and of the corresponding gravitational wave

production are complicated and have to often be simulated numerically or by using
various approximations. In14 we have employed the so called moduli space approximation
to study the collision of charged black holes surrounded by a dilatonic field, picking up
the threads on the work132 where no dilatonic field was considered. The special feature of
such an approximation is that it remains valid in strong gravitational regime (as opposed
to the post-Newtonian expansion). The price to pay is that the approximation is only
valid for extrenal black holes that are supported by (most likely unphysical) strong
electromagnetic fields. The obtained results clearly illustrate the effect of the dilatonic
field on the gravitational wave production, and in turn impose some restrictions on the
corresponding theories with dilatons, string theory for example.

Quantum detection of inertial frame dragging

Frame dragging (or gravitomagnetism) is a general-relativistic effect induced by the mo-
tion (and in particular rotation) of matter and gravitational waves, that is in many ways
analogous to electromagnetic induction. Already in the early days of general relativity
Lens and Thiring observed133,134 that in the vicinity of a rotating body an infalling
geodesic observer experiences a Coriolis-type force, and that gyroscopes are subject to
precession, which can be thought of as a Larmor precession induced by the gravitomag-
netic fields. The extreme frame dragging manifest itself by the existence of an ergosphere
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in the vicinity of rotating black holes. Frame-dragging is also behind various astrophysi-
cal phenomena such as relativistic jets and the Bardeen-Petterson effect135, which aligns
accretion disks perpendicular to the axis of a rotating black hole. The frame drag-
ging by the planet Earth has been measured recently by the Gravity Probe B satellite
mission136,137.

In15 we have proposed a toy model for quantum measurement of the frame dragging
effect. Namely, we have positioned an Unruh–deWitt detector138,139 inside a rotating
shell and shown that it can pick up the information about the frame dragging with
respect to distant stars. This happens despite that the space inside the shell is flat and
the detector remains inertial for all times. Perhaps even more interestingly, it happens
even when the detector is switched on for a finite time interval within which a light signal
cannot travel to the shell and back as required by a classical measurement. In principle,
our results open a possibility of measuring the frame dragging effect in the laboratory
settings and analogue systems.

Cosmic string hair on rotating black holes

Cosmic strings are examples of field theory topological defects that could have been
created by phase transitions in the early Universe. An interaction of such strings with
a black hole might result in a string capture, and black hole featuring a novel type
of cosmic string hair – providing thus another counter-example to black hole no hair
theorems140,141.

In16 we have shown that rotating black holes can indeed sport cosmic string hair.
Interestingly, it was found that, contrary to the common wisdom, the backreaction of
the string can no longer be described by a simple conical deficit, as is the case for
non-rotating black holes142. Moreover, it is well known, e.g.143–146, that extremal black
holes feature a flux expulsion for simple electromagnetic fields, also known as the black
hole Meissner effect. In the case of cosmic strings, however, the situation is much more
subtle16,147. Namely, small black holes demonstrate flux expulsion, while large ones
are pierced by the cosmic string. The phase transition between the two situations is
of the second order for charged black holes147, and of the first order for the rotating
ones16, demonstrating that interesting critical phenomena also occur in classical black
hole physics.
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