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CHAPTER 1 
INTRODUCTION 
 
Earth’s climate system consists of a multitude of components, active on a range of 
temporal and spatial scales, interrelated and subject to external influences from the 
planetary interior or outer space as well as to the effects of human activity. The        
intricacy of the resulting structure marks it as one of the most challenging targets for 
study in – and beyond – the field of physics, and no current scientific technique is able 
to provide its complete, accurate description. Even so, much understanding about 
climate system’s behavior can be gained through its simplified representations. Since 
analytical solutions do only exist for the most minimalistic embodiments of the related 
dynamics, numerical simulations have become the prime research tool in meteorology 
and climatology. Nevertheless, even the most sophisticated state-of-the-art models still 
fail to deliver a completely realistic reproduction of the climate system or its individual 
components. This applies not only to the prognostic simulations, limited in their abil-
ity to reliably forecast weather by the inherently chaotic nature of the atmosphere, but 
also to their climatic counterparts, struggling to provide a fully satisfactory approxima-
tion of the complex weave of processes forming the Earth’s climate. Consequently, 
many of the real-world features are misrepresented or absent in the simulated climates, 
or captured with substantial uncertainty. As illustrated for instance by the summary 
assessment by the Intergovernmental Panel on Climate Change (STOCKER ET AL. 
2013), steady improvement of the performance of climate models has been achieved 
over the past years, gradually alleviating many of their imperfections. Yet, even in their 
current advanced state, numerical simulations do still not offer a completely dependa-
ble picture of the climate and other approaches are needed to support, complement 
and validate them. This role is filled in a large part by statistical methods, ranging from 
basic descriptive and exploratory techniques to complex nonlinear algorithms for in-
vestigation of the variability patterns in multidimensional data.  

A substantial part of the knowledge about the climate system comes from the 
study of its direct or indirect manifestations, recorded in the form of univariable or 
multivariable time series. Main role of statistical techniques then consists in extraction, 
refinement and interpretation of information contained in such signals. Obviously, this 
brief thesis does not attempt to provide a full treatise of the extensive array of statisti-
cal methods used in the climate research, or to deliver a comprehensive synopsis of 
their numerous applications to the observed and simulated data. Rather, it aims to 
highlight several topics pertaining to my past research in the field of statistical clima-
tology, to deliver selected examples of the related results, and to connect them in a 
unifying frame.  
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The thesis has been created as summary, amalgamation and evolution of materials 
published in selected papers authored or co-authored by me since 2005. Its core is 
built upon nine stand-alone publications with my major participation, provided in the 
appendices and exploring various applications of time series analysis in meteorology 
and climatology: 
 

• MIKŠOVSKÝ & RAIDL (2006)   →  (Appendix I, p. 45) 
MIKŠOVSKÝ, J., AND A. RAIDL (2006), Testing for nonlinearity in European climatic time 
series by the method of surrogate data, Theoretical and Applied Climatology, 83(1-4), 21-
33, doi:10.1007/s00704-005-0130-7. 

• MIKŠOVSKÝ ET AL. (2008)   →  (Appendix II, p. 59) 
MIKŠOVSKÝ, J., P. PIŠOFT, AND A. RAIDL (2008), Global Patterns of Nonlinearity in Real 
and GCM-Simulated Atmospheric Data, in: Nonlinear Time Series Analysis in the Geo-
sciences: Applications in Climatology, Geodynamics and Solar-Terrestrial Physics (Eds.: 
Donner, R. V., and S. M. Barbosa), Lecture Notes in Earth Sciences, 112, 17-34, 
doi:10.1007/978-3-540-78938-3_2. 

• MIKŠOVSKÝ & RAIDL (2005)   →  (Appendix III, p. 78) 
MIKŠOVSKÝ, J., AND A. RAIDL (2005), Testing the performance of three nonlinear meth-
ods of time series analysis for prediction and downscaling of European daily tempera-
tures, Nonlinear Processes in Geophysics, 12(6), 979-991, doi:10.5194/npg-12-979-2005. 

• HUTH ET AL. (2015)    →  (Appendix IV, p. 92) 
HUTH, R., J. MIKŠOVSKÝ, P. ŠTĚPÁNEK, M. BELDA, A. FARDA, Z. CHLÁDOVÁ, AND P. 
PIŠOFT (2015), Comparative validation of statistical and dynamical downscaling models 
on a dense grid in central Europe: temperature, Theoretical and Applied Climatology, 
120(3-4), 533-553, doi:10.1007/s00704-014-1190-3. 

• MIKŠOVSKÝ ET AL. (2014)    →  (Appendix V, p. 114) 
MIKŠOVSKÝ, J., R. BRÁZDIL, P. ŠTĚPÁNEK, P. ZAHRADNÍČEK, AND P. PIŠOFT (2014), 
Long-term variability of temperature and precipitation in the Czech Lands: an attribution 
analysis, Climatic Change, 125(2), 253-264, doi:10.1007/s10584-014-1147-7. 

• BRÁZDIL ET AL. (2015B)    →  (Appendix VI, p. 127) 
BRÁZDIL, R., M. TRNKA, J. MIKŠOVSKÝ, L. ŘEZNÍČKOVÁ, AND P. DOBROVOLNÝ (2015B), 
Spring-summer droughts in the Czech Land in 1805-2012 and their forc-
ings, International Journal of Climatology, 35, 1405-1421, doi:10.1002/joc.4065. 

• MIKŠOVSKÝ ET AL. (2016A)    →  (Appendix VII, p. 145) 
MIKŠOVSKÝ, J., E. HOLTANOVÁ, AND P. PIŠOFT (2016A), Imprints of climate forcings in 
global gridded temperature data, Earth System Dynamics, 7, 231-249, doi:10.5194/esd-7-
231-2016. 

• BRÁZDIL ET AL. (2019)     →  (Appendix VIII, p. 165) 
BRÁZDIL, R., J. MIKŠOVSKÝ, P. ŠTĚPÁNEK, P. ZAHRADNÍČEK, L. ŘEZNÍČKOVÁ, AND P. 
DOBROVOLNÝ (2019), Forcings and projections of past and future wind speed over the 
Czech Republic, Climate Research, 77, 1-21, doi:10.3354/cr01540. 

• MIKŠOVSKÝ ET AL. (2019)    →  (Appendix IX, p. 187) 
MIKŠOVSKÝ, J., R. BRÁZDIL, M. TRNKA, AND P. PIŠOFT (2019), Long-term variability of 
drought indices in the Czech Lands and effects of external forcings and large-scale cli-
mate variability modes, Climate of the Past, 15, 827-847, doi:10.5194/cp-15-827-2019. 
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Further materials have also been used or referenced from the following books and 
proceedings papers, not enclosed within the thesis, but topically close to its main 
themes: 
 

• BRÁZDIL ET AL. (2012A) 
BRÁZDIL, R., M. BĚLÍNOVÁ, P. DOBROVOLNÝ, J. MIKŠOVSKÝ, P. PIŠOFT, L. ŘEZNÍČKO-

VÁ, P. ŠTĚPÁNEK, H. VALÁŠEK, AND P. ZAHRADNÍČEK (2012A), Temperature and precip-
itation fluctuations in the Czech Lands during the instrumental period, Masaryk Universi-
ty, Brno, 236 pp., ISBN 978-80-210-6052-4. 

• MIKŠOVSKÝ & PIŠOFT (2015) 
MIKŠOVSKÝ, J., AND P. PIŠOFT (2015), Attribution of European temperature variability 
during 1882-2010: A statistical perspective, in: Global Change: A Complex Challenge 
(Ed.: Urban O.), Global Change Research Centre AS CR, Brno, 10-13, ISBN: 978-80-
87902-10-3. 

• BRÁZDIL ET AL. (2015A) 
BRÁZDIL, R., M. TRNKA, L. ŘEZNÍČKOVÁ, J. BALEK, L. BARTOŠOVÁ, I. BIČÍK, P. CUDLÍN, 
P. ČERMÁK, P. DOBROVOLNÝ, M. DUBROVSKÝ, A. FARDA, M. HANEL, J. HLADÍK, P. 
HLAVINKA, B. JANSKÝ, P. JEŽÍK, K. KLEM, J. KOCUM, T. KOLÁŘ, O. KOTYZA, E. 
KRKOŠKA LORENCOVÁ, J. MACKŮ, J. MIKŠOVSKÝ, M. MOŽNÝ, R. MUZIKÁŘ, I. NO-

VOTNÝ, A. PÁRTL, P. PAŘIL, R. POKORNÝ, M. RYBNÍČEK, D. SEMERÁDOVÁ, E. SOUKA-

LOVÁ, Z. STACHOŇ, P. ŠTĚPÁNEK, P. ŠTYCH, P. TREML, O. URBAN, D. VAČKÁŘ, H. VA-

LÁŠEK, A. VIZINA, R. VLNAS, J. VOPRAVIL, P. ZAHRADNÍČEK, AND Z. ŽALUD (2015A), 
Sucho v českých zemích: Minulost, současnost, budoucnost / Drought in the Czech 
Lands: Past, present and future, Centrum výzkumu globální změny AV ČR, Brno, 400 
pp., ISBN 978-80-87902-11-0 (in Czech with English summary). 

• MIKŠOVSKÝ ET AL. (2016B) 
MIKŠOVSKÝ, J., M. TRNKA, AND R. BRÁZDIL (2016B), Manifestations of climatic telecon-
nections in Czech drought characteristics, in: Global Change & Ecosystems, Vol 2 (Eds.: 
Vačkář D., and D. Janouš), Global Change Research Institute, Czech Academy of Sci-
ences, Brno, 15-26, ISBN 978-80-87902-17-2. 

 
To provide a more complete picture of some of the issues discussed, additional un-
published results were also included. To facilitate identification of publications with 
my contribution (and with my explicit authorship or co-authorship), the respective 
references are followed by an asterisk (*) in the rest of the text. 
 

While the topics covered here vary substantially in terms of methods employed, 
datasets examined, as well as the general purpose of the particular analyses, some joint 
themes stand out. Besides the general subject of spatiotemporal relationships, and ap-
plication of statistical techniques for their characterization, the issue of manifestations 
of nonlinearity in the climate data is particularly pervasive in my past research, from 
early attempts to quantify the magnitude of nonlinear behavior in univariable and mul-
tivariable series (MIKŠOVSKÝ & RAIDL 2005*, 2006*; MIKŠOVSKÝ ET AL. 2008*), to 
use of nonlinear functions for downscaling of large-scale data (MIKŠOVSKÝ & RAIDL 
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2005*; HUTH ET AL. 2015*), or application of regression models connecting the ob-
served variability to various climate forcings and variability modes (BRÁZDIL ET AL. 
2012A*; MIKŠOVSKÝ ET AL. 2014*; BRÁZDIL ET AL. 2015B*). The issue of attribution 
also permeates through much of my past work, whether focused on identification of 
factors shaping temporal variability of basic climate variables such as temperature 
(BRÁZDIL ET AL. 2012A*; MIKŠOVSKÝ ET AL. 2014*; MIKŠOVSKÝ & PIŠOFT 2015*; 
MIKŠOVSKÝ ET AL. 2016A*), precipitation (MIKŠOVSKÝ ET AL. 2014*) or wind speeds 
(BRÁZDIL ET AL. 2019*), assessment of variability in the ozone amounts and other 
characteristics of the middle atmosphere (KRIŽAN ET AL. 2011*; KUCHAŘ ET AL. 
2015*; ŠÁCHA ET AL. 2018*), or imprints of climate forcings and large-scale variability 
modes in the series of drought indices (BRÁZDIL ET AL. 2015A*, 2015B*; MIKŠOVSKÝ 

ET AL. 2016B*, 2019*).  
Despite the obvious topical diversity of the issues addressed, there are some 

general lessons to be learned. This unifying commentary is therefore not organized by 
individual publications. Instead, the text is structured into several topically focused 
(though still partly overlapping and interrelated) sections. Two of them concentrate on 
technical, yet critical issues: Chapter 2 briefly illustrates the diversity of data available 
for statistical analyses in the climate sciences in general and in the works presented 
here in particular; Chapter 3 shows selected representatives of linear and nonlinear 
regression mappings, as the primary methodological common point of the publica-
tions assembled within this thesis. The subsequent sections then summarize specific 
results pertaining to the three basic categories of problems tackled here: Chapter 4 
explores the manifestations of nonlinear behavior related to short-term prediction of 
atmospheric variables; Chapter 5 is devoted to spatial relationships within and among 
different datasets, with particular focus on the issue of statistical downscaling (Chap. 
5.1) and an additional example demonstrating approximation of temperature values 
from other concurrently measured records (Chap. 5.2); Chapter 6 shows outcomes of 
statistical attribution analysis for various forms of temperature and precipitation data 
(Chap. 6.1), wind speed records (Chap. 6.2), and series of drought indices (Chap. 6.3). 
Finally, summarizing and concluding remarks are given in Chapter 7.  
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CHAPTER 2 
CLIMATE DATA: OBSERVATIONS & SIMULATIONS 
 
Various measured and simulated time series are a key source of information about the 
climate system and its evolution, but their origins and properties do vary substantially. 
To briefly illustrate the variety of datasets used in our past research, some of the 
prominent classes of observational and simulated data are highlighted in this section, 
and a mention is given to their most prominent representatives employed in the stud-
ies discussed in Chapters 4-6. 

The basic –  and most traditional –  form of climate records comes from the 
measurements taken at land-based stations, often established specifically for weather 
observations. The resulting series of meteorological variables such as temperature, 
precipitation totals or air pressure can span several decades, with longest of them cov-
ering multiple centuries. Length of these signals makes them a valuable source for ex-
amining the climate variability at various time scales. On the other hand, records of 
this extent are also prone to presence of non-climatic breaks and inhomogeneities and 
they are often in need of quality control and homogenization (e.g. BRÁZDIL ET AL. 
2012B). In the contributions within this thesis, numerous series of daily temperature, 
precipitation, pressure or wind speed from Czech weather stations were used, ob-
tained from the observational network maintained by the Czech Hydrometeorological 
Institute (CHMI - http://www.chmi.cz/). Data for the downscaling tests targeting 
European daily temperatures in MIKŠOVSKÝ & RAIDL (2005*) were supplied from the 
European Climate Assessment & Dataset (ECA&D - http://eca.knmi.nl/; KLEIN 

TANK ET AL. 2002). Daily temperatures employed in HUTH ET AL. (2015*) were pro-
vided by various partners within the CECILIA project (Central and Eastern Europe 
Climate Change Impact and Vulnerability Assessment - http://www.cecilia-eu.org/). 
Monthly temperature and precipitation series from several secular Czech weather sta-
tions and their areal averages (BRÁZDIL ET AL. 2012B) were studied in BRÁZDIL ET AL. 
(2012A*) and MIKŠOVSKÝ ET AL. (2014*), and they also served as a basis for calcula-
tion of the drought indices analyzed in BRÁZDIL ET AL. (2015A*, 2015B*) and 

MIKŠOVSKÝ ET AL. (2016B*). Delving even deeper into the past, central European 
temperature, precipitation and drought indices reconstructions spanning more than 
five centuries were then studied in MIKŠOVSKÝ ET AL. (2019*), derived from a combi-
nation of documentary and instrumental data. 

While the nature of the records taken at individual weather stations makes 
them useful for assessing local climate, they are not necessarily representative of a 
larger neighborhood of their site of origin. Furthermore, mutual comparability of the 
series of direct measurements may be compromised by technical factors, particularly 
by differences among the measuring and record keeping practices of individual data 
gatherers (such as national weather services). For these reasons, composite datasets are 
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often created from local measurements, through interpolation/extrapolation tech-
niques supported by various quality-control and homogenization algorithms (e.g. 
ŠTĚPÁNEK ET AL. 2011). The resulting data are then typically provided in the form of 
spatiotemporal fields, often on a regular longitude-latitude geographic grid. Several 
such gridded datasets were employed within this thesis. Gridded versions of daily min-
imum and maximum temperature created within the CECILIA project (ŠTĚPÁNEK ET 

AL. 2011) were used in HUTH ET AL. (2015*). Gridded monthly temperature anomalies 
from GISTEMP (HANSEN ET AL. 2010) and Berkeley Earth (ROHDE ET AL. 2013A, 
2013B) datasets were utilized in the attribution studies MIKŠOVSKÝ ET AL. (2014*), 
MIKŠOVSKÝ & PIŠOFT (2015*), along with the series of their continental and global 
means. For the global-scale attribution analysis in MIKŠOVSKÝ ET AL. (2016A*), these 
were further complemented by the MLOST (SMITH ET AL. 2008) and HadCRUT 
(MORICE ET AL. 2012) datasets.  

As primarily physical disciplines, meteorology and climatology rely heavily on 
mathematical representations of their respective systems of interest. Over the past 
decades, these numerical simulations have evolved from simple, low-resolution models 
into complex, multi-component structures, capturing much of the large-scale weath-
er/climate dynamics and its responses to external forcings. The current generation of 
global climate models (GCMs) not only serves as the main tool for generating out-
looks of climate future, but provides valuable insights into its past as well. While the 
GCM-type simulations do not follow the historical trajectory of the climate system, 
they are constructed to preserve its general statistical characteristics – at least in theo-
ry, as this goal is still just partly fulfilled, and even the best state-of-the-art simulations 
suffer from numerous deficiencies (e.g. STOCKER ET AL. 2013). Outcomes of the 
HadCM3 model (GORDON ET AL. 2000) were used as a source of the simulated geo-
potential height data for the analysis of nonlinear behavior in MIKŠOVSKÝ ET AL. 
(2008*). 

Being inherently world-wide simulations, GCMs do generally provide outputs 
on a relatively coarse spatial grid. The resolution gap between GCM-generated data 
and fine-scale inputs needed in local-oriented studies can be bridged by regional cli-
mate models (RCMs): High-resolution simulations over a geographically limited area, 
embedded into the global model or other suitable source of boundary conditions (such 
as global reanalysis). Of the numerous RCMs in existence, outputs of the RegCM3 
(HALENKA ET AL. 2006) and ALADIN-Climate/CZ (FARDA ET AL. 2010) models 
were used in our works, and subjected to the performance comparison with their sta-
tistical downscaling alternatives in HUTH ET AL. (2015*). Several Euro-CORDEX 
RCMs were also employed for wind speed analysis in BRÁZDIL ET AL. (2019*).  

Direct climate measurements (and their gridded versions) provide records of 
the past climate variability, but are available for just some periods and locations. GCM 
simulations can deliver a complete data coverage over their integration period, yet they 
do not track the historical trajectory of the real climate system, and they suffer from 
various systematic biases. Outcomes of atmospheric reanalyses can then be considered 



11 

 

 

an intermediate form between these two data types: Created by assimilation of actual 
measurements into a numerical model-like framework, a reanalysis can provide a for-
mally complete account of the state of the atmosphere, while still following the past 
trajectory of the real climate system. Two representatives of modern-era reanalysis 
products were used in the entries to this thesis: NCEP/NCAR reanalysis (with data 
since the year 1948; KISTLER ET AL. 2001) and ERA-40 reanalysis (covering the period 
1957-2002; UPPALA ET AL. 2005). Of particular interest for investigation of longer-
term climate variations is also the 20th Century Reanalysis (COMPO ET AL. 2011), 
providing data from the year 1851 onward (version V2c), and employed in some of 
our works. 

The range of data characterizing past climate is obviously immense, regarding 
both the general type of the dataset and its specific representatives. Often multiple 
options are available as potential analysis inputs when a particular problem is to be 
studied. In theory, data from different sources should conform to the same, historical, 
evolution of the climate system at all relevant spatial and temporal scales (or, in the 
case of GCM/RCM simulations, the general dynamical and statistical features should 
be captured in a manner consistent with observed climate). In reality, however, differ-
ences between individual datasets can be substantial, and so can be distinctions be-
tween results stemming from their use. 

A simple demonstration of possible contrasts among individual representatives 
of atmospheric variables is shown in Fig. 2.1. Czech temperature anomalies at monthly 
and annual time step are compared in four versions: a series derived directly from local 
observations, two specimen of gridded temperature data and the 20th Century Reanal-
ysis. All the signals show similar (though not completely identical) variability at the 
monthly time scale over the years 1980-2010 (Fig. 2.1a). On the other hand, systematic 
differences appear in the long-term trends, with noticeable discrepancy detected espe-
cially between the reanalysis and the rest of the observational datasets (Fig. 2.1b). 
When match of the temperature series provided by various data sources is investigated 
globally, strong regional specifics emerge –  see the correlation-based comparison of 
several gridded temperature datasets in Fig. 2.2 and notice, for instance, their generally 
good agreement in Europe, contrasting with rather loosened similarity in parts of Afri-
ca or South America. These distinctions may then translate into discrepancies between 
outcomes of otherwise identical analysis procedures applied to data from different 
sources.  

In the frame of the topics addressed within this thesis, issues related to the 
problem of inter-dataset differences have been tackled to some extent. Possible mani-
festations of nonlinearity in short-term prediction of (pseudo)observational data were 
compared for direct meteorological measurements and their reanalysis-based counter-
parts (MIKŠOVSKÝ & RAIDL 2006*). Reanalysis data were also compared to the out-
puts of a global climate model, in terms of the geographical patterns of nonlinearity 
detectable from local multivariable systems (MIKŠOVSKÝ ET AL. 2008*). Performance 
of dynamical downscaling was studied for two different representatives of regional 
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climate models in HUTH ET AL. (2015*), both of them driven by the ERA-40 reanaly-
sis. The effects of using alternative versions of the input data were also considered in 
our early analyses concerned with statistical attribution; a brief summary of the respec-
tive conclusions was included in the papers themselves (MIKŠOVSKÝ ET AL. 2014*; 
BRÁZDIL ET AL. 2015B*). More specific attention to the matter of inter-dataset con-
trasts was then paid in MIKŠOVSKÝ & PIŠOFT (2015*), and especially in MIKŠOVSKÝ 

ET AL. (2016A*), focused on identification of forcing-related patterns in several gridded 
temperature datasets. Another aspect of this problem was recently addressed in 
MIKŠOVSKÝ ET AL. (2019*), this time with regard to sensitivity of the outcomes of 
statistical attribution analysis to the choice of proxy-based explanatory variables. Clear-
ly, even from the limited sample of results presented here, it should be evident that the 
problem of data-specific features and uncertainties needs to be treated with great care. 
Questions of whether directly measured climate variables can be replaced by their 
gridded/reanalyzed/simulated counterparts (and which specific dataset should be 
used) must be carefully considered, and assessment of the effects of input data choice 
should be a crucial part of the studies dealing with spatiotemporal relations and varia-
bility in the climate system. 

 
 
 

 
 
FIGURE 2.1: Time series of monthly (a) and annual (b) temperature anomalies for the area of 
the Czech Republic derived from data obtained from various sources: mean areal temperature 
created from measurements at 10 Czech weather stations (black: BRÁZDIL ET AL. 2012A*); 
GISTEMP dataset (green: HANSEN ET AL. 2010); Berkeley Earth dataset (blue: ROHDE ET 

AL. 2013A, 2013B); 20th Century Reanalysis (red: COMPO ET AL. 2011). The anomalies are ex-
pressed relative to the 1951-1980 period and shown for the years 1980-2010 (monthly series) 
and 1882-2010 (annual series).  
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FIGURE 2.2: Local values of Pearson correlation coefficient between time series of monthly 
temperature anomalies from selected global gridded datasets: GISTEMP (HANSEN ET AL. 
2010); Berkeley Earth (BERK; ROHDE ET AL. 2013A, 2013B); MLOST (SMITH ET AL. 2008); 
HadCRUT4 (MORICE ET AL. 2012); 20th Century Reanalysis (20CR; COMPO ET AL. 2011). The 
correlations were calculated over the 1901-1955 and 1956-2010 periods; grey areas mark re-
gions with insufficient amount of data available (more than 10% of missing temperature pairs 
in the analysis period). Adapted from the supplementary materials to MIKŠOVSKÝ ET AL. 
(2016A*). 
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CHAPTER 3 
(NON)LINEAR REGRESSION TECHNIQUES 
 
A wide range of statistical techniques was used to investigate individual problems pre-
sented throughout this text, from estimation of elementary descriptive statistics, to 
dimensionality reduction and clustering algorithms and an assortment of statistical 
significance tests. One particular topic, however, permeates through most of the anal-
yses presented here: Application of various forms of linear and nonlinear regression, 
connecting values of a univariable predictand ���� to one or more predictors �����, � = 1, … , �. Index � distinguishes between individual cases in the datasets stud-
ied (out of the total of 
 available), and it mostly pertains to time here. While straight-
forward in their basic purpose, regression mappings can be employed to fulfill various 
objectives, determined by the character of variables assigned to the role of predictand 
and predictors. Within the range of problems tackled here, regression was used for 
predictive tasks (i.e., predictand estimated from predictors preceding it in time), ap-
proximation of spatial relations (with concurrent predictand and predictors originating 
from different geographic locations), trend estimation (matching the target variable 
against time) or as a basis for attribution-seeking models (decomposing predictand 
into components associated with explanatory variables representing various external 
climate forcings and internal variability modes). In this chapter, selected classes of re-
gression models are very briefly outlined, with regard to their basic structure as well as 
some details concerning their implementation in the works gathered within this thesis. 

A prominent (and historically dominant) place among the regression techniques 
is held by multiple linear regression (MLR). The respective mapping between predic-
tors and predictand takes a form of a simple weighted averaging formula,  

���� = ����� + ���� = �� + � ������� + �����
���  ,                                                                     �1�  

with regression coefficients �� calculated to obtain a model of desired properties –
typically one that minimizes the sum of squared regression residuals �, calculated as 
differences between the actual values of � and their regression-based estimates ��. This 
so-called ‘least squares method’ of �� calculation was employed in all applications of 
linear regression here. 
 While simple, fast and open to easy interpretation of its outcomes, linear re-
gression suffers from an obvious limitation: In its basic form, it is only able to capture 
strictly linear links, embodying direct proportionality between the predictors and indi-
vidual components in the predictand. However, it has been shown that linear map-
pings can be used to approximate dynamics of even strongly nonlinear systems, 
providing that linear models are applied locally for just small sections of the phase 
space or space of predictors (see, e.g., contributions in OTT ET AL. 1994). This ap-
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proach, dubbed method of local linear models (LLM) here, relies on calculation of the 
regression coefficients �� individually for each instance of �. The coefficients can then 
no longer be considered globally valid constants, but rather �-dependent functions: 

���� = ����� + ���� = ����� + � ���������� + ����.�
���                                                            �2� 

To achieve the local specificity of the regression coefficients, their calculation is car-
ried out for just a limited number � ≪ 
 of cases from the calibration part of the da-
ta, representing situations with the closest resemblance to the one being processed 
(i.e., to the one pertaining to �). The similarity of individual cases can be measured by 
the distance of the respective �-dimensional vectors of predictors ���� =������, … , ������, quantified by a suitable metric (often Euclidean). The optimum size 
and structure of the local neighborhood is subject to the specifics of the task investi-
gated, including dimensionality of the system studied, type of time series involved and 
their eventual contamination by noise. Details on the design of the local linear models 
employed in our analyses are given in the individual papers in the appendices.  

Over the past years, great popularity among nonlinear regression techniques 
has been attained by various architectures of artificial neural networks (NNs) (see, e.g., 
HAYKIN 1999). The perhaps most prominent of them, multilayer perceptron (MLP), 
was employed in several of our studies, in a form with a single hidden layer, 

���� = ����� + ���� = �� + � ��   !��� + � �"�
�

"�� �"���# + ����,                                  �3�%&'(
���  

where �"� and �� represent weights of connections between neurons in the input and 

hidden layer and in the hidden and output layer, respectively, and ��%) denotes num-
ber of neurons in the hidden layer (specifying complexity of the network). Of the pos-
sible forms of the (generally nonlinear) transfer function  , either logistic function 
(used in MIKŠOVSKÝ & RAIDL 2005*, 2006*) or hyperbolic tangent (BRÁZDIL ET AL. 
2012A*; MIKŠOVSKÝ ET AL. 2014*; BRÁZDIL ET AL. 2015B*; HUTH ET AL. 2015*) were 
applied in the examples here. The learning algorithms (i.e., procedures used to calcu-
late weights � from the calibration data) were based on various forms of error back-
propagation.   
 An alternative type of neural networks built around radial basis functions 
(RBFs) (see, e.g., HAYKIN 1999) was also applied in some of our studies. The respec-
tive mapping can be captured by the formula 

���� = ����� + ���� = *� + � *� +�‖���� − .�‖� + ����,%/01
���                                                  �4� 

with �-dimensional vector .� representing center of the radial function assigned to 
the �-th of �345 neurons in the hidden layer. In our analysis setups, Gaussian-style 
RBFs were used, +�‖���� − .�‖� = exp�−‖���� − .�‖9/2;9�, with parameter ; 
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controlling the width of the radial functions. Simple subsampling of the centers .� 
from the training part of the datasets was typically employed, although more sophisti-
cated methods (e.g., pre-processing through clustering algorithms) were also tested. 
The weights *� were then calculated to minimize the sum of squared errors, in a fash-
ion analogous to multiple linear regression. 

The above introduced regression techniques share a common purpose: to cap-
ture relations between the explanatory variables and the target signal. Intuitively, one 
might expect nonlinear mappings to be more universal in their ability to approximate 
the respective links, and thus automatically superior to linear regression. As exempli-
fied in the following chapters, such presumption often turns out to be unsupported: 
Despite the inherently nonlinear and deterministically chaotic nature of the Earth’s 
climate system, deviations from purely linear behavior are not always detectable in the 
time series it spawns. Moreover, application of nonlinear algorithms typically comes 
with increased demands on computational power, more difficult interpretation of the 
regression outcomes and more complicated evaluation of their statistical significance. 
The question therefore remains how beneficial nonlinear techniques really are and 
whether gain from their application outweighs the extra demands and interpretational 
challenges.  

Even in the presence of nonlinearities strong enough to uphold the application 
of nonlinear regression, another choice has to be made: Selection of the most suitable 
form of nonlinear mapping. The three examples above, embodied by Equations 2-4, 
represent different approaches to this problem. The method of local linear models 
builds upon an ensemble of individual, formally independent regression functions, 
pertaining to specific (and typically mutually overlapping) segments of the space of 
predictors. Multilayer perceptrons, on the other hand, can be considered a global 
mapping, without a specific link of individual neurons to particular states of the sys-
tem (or vectors of the predictors). RBF-based neural networks form a middle ground 
between these two approaches: While the mapping is formally global, individual hid-
den neurons are associated with specific vectors in the space of predictors, and their 
activation is reduced for inputs more distant from their assigned centers. The general 
form of the regression function is not the only important factor determining the be-
havior of the nonlinear models: Their individuality is subject to the selection of the 
structure-defining descriptors (such as the complexity-controlling parameters �, ��%) 
or �345 above), and finding the optimum setup is as critical as it is nontrivial. Some 
specific aspects of these problems are illustrated in the following chapters and in the 
respective publications in the appendices. 
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CHAPTER 4 
NONLINEARITY IN PREDICTIVE MAPPINGS 
 
Over the past decades, various methods have been developed for assessing the pres-
ence – and potentially magnitude – of nonlinear and chaotic behavior in univariable or 
multivariable time series. Numerous attempts have also been made to apply these 
techniques in the atmospheric and climate sciences (see, for instance, the overview by 
SIVAKUMAR 2004 for specific examples, or the references discussed by MIKŠOVSKÝ ET 

AL. 2008*). The emergence of global- or continental-scale datasets of climate data (par-
ticularly outcomes of various reanalysis projects) provided an opportunity for an even 
more systematic investigation of this problem, including the evaluation of the geo-
graphic and seasonal patterns of nonlinearity. However, the variety of results in the 
existing studies also demonstrates that degree to which deviations from strictly linear 
behavior manifest depends on a number of factors, related to the datasets analyzed as 
well as task performed. Outcomes of nonlinearity tests are therefore subject to the 
choice of the testing criterion, reflecting the particular form of nonlinear interaction of 
interest. Prediction errors represent one of the natural choices of the testing statistic: 
Due to their relation to the information transfer between consequent states of the cli-
mate system, tests based on short-term predictive mappings can provide useful infor-
mation about the local properties of the atmosphere, related to its chaoticity and pre-
dictability. In this chapter, our experiments dealing with this topic are outlined, pub-
lished in the papers MIKŠOVSKÝ & RAIDL (2006* - APPENDIX I), MIKŠOVSKÝ ET AL. 
(2008* - APPENDIX II) and MIKŠOVSKÝ & RAIDL (2005* - APPENDIX III). Some of the 
relevant materials were also previously included in my dissertation thesis (MIKŠOVSKÝ 

2004*). 
Our initial attempts at nonlinearity detection were focused on identification of 

rules governing the manifestations of nonlinear behavior in short-term forecasts of 
daily temperature and pressure, as documented in MIKŠOVSKÝ & RAIDL (2006*). The 
tests applied were built upon the method of surrogate data, employing the Iterative 
Amplitude Adjusted Fourier Transform (IAAFT) technique (SCHREIBER & SCHMITZ 

1996, 2000). Implementation of the respective algorithms from the TISEAN software 
package was used (HEGGER ET AL. 1999). Both univariable and multivariable time 
series were investigated for the presence of nonlinearities, using either the method of 
time delays (e.g. PACKARD ET AL. 1980) or the multivariable approach (e.g. KEPPENNE 

& NICOLIS 1989) to reconstruct the phase space of the local climate system (or, more 
accurately, to provide its approximate representation, and a set of predictors to enter 
the predictive regression mappings). Series of daily temperature (mean, minimum and 
maximum) and daily pressure measured at the weather station Prague-Ruzyně (Czech 
Republic) served as predictands, and they were complemented by their counterparts 
adopted from the NCEP/NCAR reanalysis. The reanalysis also supplied potential 
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predictors for the multivariable analysis setups, with step-wise screening used to iden-
tify the best subset of explanatory variables.    

Figure 4.1 provides an illustrative example of the outcomes of the surrogate da-
ta-based analysis in MIKŠOVSKÝ & RAIDL (2006*), comparing errors of prediction car-
ried out by the method of local linear models for the original data and for an ensemble 
of their IAAFT-randomized versions. It was demonstrated that nonlinear behavior 
does indeed manifest in the predictive mappings, but only in some test configurations 
and in greatly varying degree. Only mild to no detectable nonlinearity (i.e., small dif-
ference between the prediction errors in the original data and in the surrogates) was 
indicated for the setups with predictors generated by the method of time delays. On 
the other hand, a distinct nonlinear component was typically uncovered in predictive 
mappings employing multivariable predictors. Nonlinearity was generally stronger for 
longer signals (30-year-long series) than for their shortened (10-year-long) versions. It 
was also comparably most noticeable for the shortest-term prediction (lead time of 1 
day), weakening and eventually disappearing as the lead time increased. Generally, our 
results suggested that nonlinear behavior manifests more strongly in setups with high-
er amount of information available within the data analyzed, provided that a determin-
istic link between predictand and predictors exists. The information content in indi-
vidual scalar signals seemed insufficient to capture the complex dynamics of the local 
climate system beyond simple linear links, and application of nonlinear predictive 
mappings was thus largely baseless for the univariable settings (at least for the particu-
lar type of time series studied in our tests).   

While the surrogate data-based tests can deliver statistically well founded con-
clusions about the presence of specific forms of nonlinearity, they are somewhat cum-
bersome and computationally demanding. From the perspective of applied time series 
analysis, a more direct question regarding nonlinear behavior may be of interest: What 
is the actual improvement achieved by application of a specific nonlinear method over 
its linear counterpart? This issue was only very briefly touched upon in MIKŠOVSKÝ & 

RAIDL (2006*), but we focused on it more specifically in MIKŠOVSKÝ & RAIDL 

(2005*). Comparison of the short-term predictive skill of linear regression and local 
linear models was carried out for daily temperatures across the European region, sup-
plied from the NCEP/NCAR reanalysis. Multivariable predictors were used, arranged 
in a pre-defined geographic pattern. In addition to the method of local linear models, 
MLP and RBF neural networks were also applied, to assess the sensitivity of the re-
sults to the choice of the nonlinear model. Relatively strong nonlinear behavior (i.e., 
superiority of nonlinear methods over linear regression) was generally indicated, espe-
cially during boreal winter. Distinct geographic variations of nonlinearity were found, 
but just rudimentary explanation of their spatial patterns could be provided. Mostly 
minor differences between the predictive skills of individual types of nonlinear map-
pings were found. 



19 

 

 

 
 
FIGURE 4.1: Manifestations of nonlinear behavior in univariable and multivariable time series. 
Root mean squared error (RMSE) of NCEP/NCAR daily temperature series (50°N, 15°E, 
1000 hPa level) forecast 1 day ahead is shown, obtained by the method of local linear models 
for the original series (long horizontal line) and 49 instances of the corresponding IAAFT-
generated surrogates (dots). Individual setups pertain to phase space reconstruction by the 
method of time delays (I), multivariable reconstruction employing 1000 hPa temperatures 
from a region between 60°N, 0°E and 40°N, 30°E (II) and multivariable reconstruction em-
ploying 1000 hPa temperatures as well as mean sea level pressures from the same region 
(III). Results are shown for approximately 30-year-long (a) and 10-year-long (b) versions of 
the series. The embedded rectangle with shorter inset horizontal line shows average RMSE 
for the surrogates and the matching 2; range. See MIKŠOVSKÝ & RAIDL (2006*) for more 
details on the analysis setup, other related results and their interpretation. 
 
 
In MIKŠOVSKÝ & RAIDL (2005*) and MIKŠOVSKÝ & RAIDL (2006*), we focused on 
nonlinearity manifestations within just a geographically limited region, and only obser-
vational time series were studied (either direct measurements or series originating from 
a reanalysis). In MIKŠOVSKÝ ET AL. (2008*), a global scope of the analysis was em-
braced, and outcomes of the HadCM3 global climate model were investigated along 
with data originating from the NCEP/NCAR reanalysis. The primary method of non-
linearity quantification in MIKŠOVSKÝ ET AL. (2008*) was based on direct comparison 
of the 1-day-ahead prediction error achieved by multiple linear regression and by the 
local linear models method, with multivariable predictors arranged in a regular pattern, 
centered on the location of the predictand (Fig. 4.2a). The role of predictand belonged 
to the relative topography of the 850-500 hPa layer (i.e., a quantity proportional to the 
average air temperature between the 850 and 500 hPa pressure levels) or to the geo-
potential height of the 850 hPa level. 

The global nonlinearity patterns in the NCEP/NCAR data revealed a distinct 
contrast between relatively strong (and generally statistically significant) nonlinearities 
in the midlatitudes and largely negligible and statistically non-significant improvement 
from application of a nonlinear predictive model in the equatorial regions (Fig. 4.2b). 
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Besides this basic latitudinal pattern, areas with the strongest manifestations of nonlin-
earity in the higher latitudes were identified and linked to the atmospheric zones with 
the most intensive synoptic activity. Our analysis also confirmed presence of distinct 
seasonal variations of the results, with nonlinearity typically intensified during the cold 
part of the year in the extratropical regions. 

By comparing the nonlinearity patterns for the NCEP/NCAR reanalysis (ap-
proximating the actual historical variability within the climate system) and for the 
HadCM3 model (global numerical simulation, generating a trajectory uncorrelated with 
the historical one), we confirmed that the model is capable of reproducing the basic 
character of the observed nonlinearity patterns, although differences appeared in both 
the finer details of the structures detected and in their magnitude (Fig. 4.2c). Our anal-
ysis thus served as an advanced validation tool of a general circulation model and sug-
gested the ability of numerical climate simulations to replicate not only the elementary 
statistical characteristics of the climate data, but also their properties related to the 
nonlinear and chaotic structures. 

Finally, nonlinearity tests based on assessing the ratio between the prediction 
errors from multiple linear regression and local linear models method were also com-
pared to the approach employing surrogate data. Relatively good match between the 
respective geographic patterns of nonlinearity was found (see Figs. 3a and 6 in 
MIKŠOVSKÝ ET AL. 2008*). This suggests that comparing errors from  linear and non-
linear mappings may be used as an alternative to the computationally more expensive 
surrogate-assisted testing (with some reservations, discussed in MIKŠOVSKÝ ET AL. 
2008*). However, such conclusion should not be mistaken for complete invariance 
regarding the analysis setup: Choice of the specific form of the nonlinear model (and 
of its design parameters) can still affect the results to some extent, which needs to be 
taken into account when interpreting the outcomes of the nonlinearity tests.   
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FIGURE 4.2: Global distribution of estimated regional magnitude of nonlinearity, associated 
with prediction of relative topography 850-500 hPa 1 day ahead. Multivariable vector of pre-
dictors was used, consisting of 9 values of relative topography 850-500 hPa and 9 values of 
geopotential height of the 850 hPa level, arranged in a pattern shown in (a) for the predictand 
series located at 50°N, 0°E. Nonlinearity was quantified by a skill score defined as << 	 1 -

�=%%� =�%3⁄ �9, with =%%�  and =�%3  representing root mean squared error (RMSE) of the 
forecast by the method of local linear models and multiple linear regression, respectively (by 
this definition, << 	 0 pertains to situations with both methods performing identically in 
terms of RMSE, and thus no detectable nonlinearity, while positive values of << indicate non-
linear mapping outperforming its linear counterpart). Results are shown for the 
NCEP/NCAR reanalysis data (b) and for the outputs of the HadCM3 global climate model 
(c), with the forecast mappings calibrated over the 1961-1990 period and validated for the 
years 1991-2000. Locations with statistically non-significant improvement from application of 
the method of local models over linear regression are marked by black diamonds (one-sided 
paired sign test, 95% confidence level). See MIKŠOVSKÝ ET AL. (2008*) for more details on 
the analysis setup and additional results. 
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CHAPTER 5 
SPATIAL RELATIONS IN CLIMATE DATA 
 
It is typical for climate variables characterizing geographically close locations to share a 
portion of their temporal variability, and for the respective time series to be connected 
to some degree. These associations often manifest through simple linear correlations, 
but their nature may also be more complex. Regression techniques can be used to 
identify, extract and quantify the inter-variable dependencies; they can also help to 
reveal and capture connections between different datasets (for instance, to estimate 
station-specific series from large-scale data available from a reanalysis or global climate 
model). In this section, examples are given of our results related to approximation of 
spatial relations within and among various datasets of climate data: downscaling of 
large-scale atmospheric fields (Chap. 5.1; MIKŠOVSKÝ & RAIDL 2005* - APPENDIX III; 
HUTH ET AL. 2015* - APPENDIX IV), and estimation of temperature measurements 
from nearby concurrent records (Chap. 5.2).   
 

5.1 STATISTICAL DOWNSCALING OF DAILY TEMPERATURES 
 

As already mentioned in Chap. 2, spatial resolution of global climate models (as well as 
of global reanalyses) is often insufficient for local-oriented studies, and the resolution 
gap can be bridged by dynamical downscaling (i.e., through a high-resolution regional 
climate model embedded into the global simulation or reanalysis). As an alternative to 
such cascade of numerical simulations, statistical methods can also be used to approx-
imate the connections between large-scale model outputs and more site-specific data 
(such as observations at individual weather stations). Of the various techniques of sta-
tistical downscaling in existence, we focused on direct mappings between large-scale 
data (predictors) and local measurements or their gridded versions (predictands) in our 
works.  

In MIKŠOVSKÝ & RAIDL (2005*), our main aim was to assess the suitability of 
different forms of empirical regression functions to provide downscaled versions of 
daily temperature. Using NCEP/NCAR reanalysis data as predictors, the four regres-
sion mappings introduced in Chap. 3 (MLR, LLM, MLP NN, RBF NN) were used to 
generate estimates of daily mean, minimum and maximum temperature, recorded at 25 
sites across Europe and obtained from the ECA&D database (KLEIN TANK ET AL. 
2002). A pre-defined pattern of predictors was employed (Fig. 5.1a). The regression 
models were calibrated using data from the 1961-1990 period and then validated for 
the years 1991-2000, separately for each location. Distinct differences between the 
temperature estimation errors for individual stations were found (see the examples for 
daily maximum temperature in Figs. 5.1b,c, as well as figures and tables in MIKŠOVSKÝ 

& RAIDL 2005*). No clear geographic pattern of the error magnitudes was identified, 
suggesting a dominant influence of the local specifics of each of the target sites. The 
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analysis also highlighted an inclination towards stronger nonlinearity during boreal 
winter, though exceptions from this tendency were detected for some combinations of 
temperature type and location. Downscaling skills of the three nonlinear regression 
techniques (LLM, MLP NN, RBF NN) were found to be mutually similar.     

The problem of daily temperature downscaling was later revisited in HUTH ET 

AL. (2015*), this time to provide a detailed comparison of the performance of various 
dynamical and statistical downscaling methods. The analysis utilized a high-resolution 
dataset of daily maximum and minimum temperature series, assembled within the 
CECILIA project (http://www.cecilia-eu.org/; ŠTĚPÁNEK ET AL. 2011) and providing 
both station-specific records and their versions interpolated onto a regular grid, for a 
geographically limited region along the joint borders of Austria, Czech Republic, Hun-
gary and Slovakia. In addition to multiple linear regression and the three representa-
tives of nonlinear regression (LLM, MLP NN, RBF NN), method of analogues (e.g. 
ZORITA & VON STORCH 1999) was also employed and compared to the other 
downscaling approaches. Predictors were supplied from the ERA-40 reanalysis and 
pre-selected through a step-wise screening procedure based on linear regression. Cali-
bration of the regression mappings was carried out for the years 1961-1990, and their 
validation performed over the 1991-2000 period. The dynamical downscaling models 
were represented by the ERA-40-driven integrations of the RegCM3 (HALENKA ET 

AL. 2006) and ALADIN-Climate/CZ (FARDA ET AL. 2010) regional climate models.  
In Fig. 5.2, performance of some of the downscaling techniques applied in 

HUTH ET AL. (2015*) is illustrated, through root mean squared error (RMSE) of winter 
minimum daily temperature estimates. Superiority of nonlinear regression over MLR 
was once again indicated, though exceptions were detected for some combinations of 
season, location and temperature type. Unlike in MIKŠOVSKÝ & RAIDL (2005*), how-
ever, RMSE did not serve as the primary validation criterion in HUTH ET AL. (2015*). 
Instead, emphasis was on evaluating the ability of the statistical and dynamical 
downscaling models to realistically reproduce the extreme quantiles of the statistical 
distributions, their higher moments (skewness, kurtosis), autocorrelation structures in 
the time series, spatial correlations between temperatures from different locations and 
long-term temporal trends in the series. As individual sections in HUTH ET AL. (2015*) 
show, no downscaling technique was found to be universally superior to the others. 
Subject to the type of temperature, location, season and validation criterion, the rela-
tive skill rank of individual downscaling approaches varied greatly: In some cases, sta-
tistical downscaling techniques out-performed the (arguably more popular) regional 
climate models, but the opposite was also occasionally true. Also, despite the relative 
superiority of nonlinear empirical models over linear regression in terms of RMSE, 
their advantage did not automatically extend to the above mentioned validation criteria 
related to statistical distributions or spatiotemporal correlations. 
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FIGURE 5.1: Results of maximum daily temperature downscaling for 25 European locations. 
A set of NCEP/NCAR reanalysis predictors consisting of the series of 1000 hPa level tem-
perature (T1000), mean sea level pressure (MSLP) and 500 hPa level geopotential height (h500) 
was used. The predictors were arranged in a pre-defined pattern centered on the grid point 
closest to the target station, as illustrated in (a) for predictand located near coordinates 50°N, 
15°E. Outcomes of the analysis are shown for boreal winter (b) and summer (c). Root mean 
squared error (RMSE) of the temperature estimate is displayed through the size of the circle 
at the station’s location, along with the ratio of RMSEs obtained by the method of local linear 
models (LLM) and multiple linear regression (MLR) (color of the embedded square). Pres-
ence of a central dot indicates statistically significant (confidence level 95%) difference be-
tween the series downscaled by the LLM and MLR methods, according to the paired Wilcox-
on test. See MIKŠOVSKÝ & RAIDL (2005*) for more details on the test setup and additional 
results. 
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FIGURE 5.2: Root mean squared error (°C) of minimum daily temperature estimates in boreal 
winter (December, January, February), obtained by different methods of dynamical (RCM) 
and statistical (SDS) downscaling, using ERA-40 reanalysis data as inputs. Statistical distribu-
tion of errors within the target area is displayed in the form of boxplots, showing min-max 
range of the values, their inter-quartile range and median (a). Geographic pattern of the er-
rors is visualized for the ALADIN regional climate model (b), RegCM climate model (c), 
statistical downscaling by multiple linear regression (d), and statistical downscaling by the 
method of local linear models (e). Adapted from the outcomes of the analysis presented in 
HUTH ET AL. (2015*), where more details on the test setup can be found. 
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5.2 ESTIMATION OF DAILY TEMPERATURES FROM OTHER CON-

CURRENT RECORDS 
 

While the series of meteorological measurements from land-based weather stations 
represent one of the basic types of data in the atmospheric research, it is not uncom-
mon for these records to be incomplete, interrupted by shorter or longer periods of 
missing values. Often, such gaps need to be filled before a subsequent analysis can be 
performed, and records from other nearby sites are commonly used for this purpose. 
In this section, outcomes of our experiments with estimating daily temperature data 
from other concurrent measurements are briefly presented, with an emphasis again on 
comparing the performance of linear and nonlinear regression techniques. Although 
these results were not published as a stand-alone paper, their sample was included here 
to demonstrate yet another application of regression mappings for approximation of 
the spatial relations among climate time series. 

The tests were conducted on a dataset comprising daily mean, minimum and 
maximum temperature from 25 Czech weather stations (Fig. 5.3). Linear and nonlinear 
regression were used to generate estimates of each of these temperature series from 
the temperature records at the rest of the weather stations and from the temperatures 
and geopotential heights provided by the ERA-40 reanalysis. The regression mappings 
included multiple linear regression, method of local linear models and MLP and RBF 
neural networks, as introduced in Chap. 3. The pool of potential predictors consisted 
of mean, minimum and maximum temperature from the remaining 24 stations, as well 
as ERA-40 series of temperature and geopotential height at the 1000 hPa and 850 hPa 
levels from the area bounded by 40°N, 60°N, 0°E and 30°E. A step-wise screening 
procedure based on multiple linear regression was applied to identify the 20 most in-
fluential predictors, individually for each temperature type and location. These were 
then used as inputs for all four empirical models. The regression mappings were cali-
brated for the years 1961-1990 and validated for the 1991-2000 period. Other tech-
nical details of the tests were similar to those in HUTH ET AL. (2015*). The tempera-
ture estimates by different regression models were compared mutually and also to the 
outcomes of inverse distance weighting (IDW), one of the most common geostatisti-
cal interpolation techniques (e.g. JARVIS & STUART 2001).   

Figure 5.4 summarizes root mean squared errors of the temperature estimates 
obtained for individual weather stations and temperature types. On average, all non-
linear models outperformed multiple linear regression. Gain from considering the 
nonlinear components of the spatial relations was generally strongest for the high-
elevation weather stations, which can be considered atypical sites in their local geo-
graphic neighborhood. At locations with another station of similar character situated 
nearby, differences between outputs of linear and nonlinear mappings tended to be 
smaller, as did total error. RBF neural networks and the method of local linear models 
were found mutually comparable in their performance. Multilayer perceptrons, alt-
hough no worse on average than the other two nonlinear methods, have produced 
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substantially greater dispersion of errors relative to linear regression, sometimes even 
giving less accurate temperature estimates than MLR. This intermittent performance 
loss did not seem to be related to MLP’s sensitivity to the initialization of its training 
procedure (which was found to be quite low). Rather, it was traced to greater vulnera-
bility of multilayer perceptrons to inhomogeneities in the input data, present in some 
of the series of station-based measurements. All regression techniques (including 
MLR) distinctly outperformed IDW interpolation. Experiments were also performed 
using ERA-40 series alone as the regression inputs, essentially creating a downscaling-
like setup (Fig. 5.4d). Unsurprisingly, use of reanalysis-only predictors increased the 
error of temperature estimation. However, the loosening of the predictors-predictand 
links also resulted in generally greater relative improvement from application of non-
linear regression models, which now outperformed multiple linear regression by an 
even greater margin.  

While not shown here, regression models’ ability to realistically reproduce sta-
tistical distributions of observed temperatures was investigated as well. The validation 
statistics included standard deviation, as well as skewness and kurtosis. Performance of 
all regression techniques was found to be generally good and mutually comparable in 
this regard, with only mild advantage occasionally indicated for the nonlinear mapp-
ings. On the other hand, all regression models, linear and nonlinear alike, displayed 
just limited ability to realistically reproduce individual temporal trends in the tempera-
ture series, largely due to mismatch of long-term components in temperature records 
from different sites. 

 
 

 
 
FIGURE 5.3: Locations of the Czech weather stations (maintained by the Czech Hydrometeo-
rological Institute; http://www.chmi.cz/) providing data for the experiments with estimation 
of daily temperatures from other concurrent records. Numerical identifiers of the stations 
correspond to their ranks in the elevation-ordered list on the right.  
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FIGURE 5.4: Root mean squared error (RMSE) of daily temperature estimation, carried out 
for 25 Czech weather stations by different regression techniques (multiple linear regression: 
MLR; local linear models: LLM; RBF neural network: RBF; multilayer perceptron neural net-
work: MLP), as well as by inverse distance weighting interpolation (IDW). The results are 
shown for daily mean (a), maximum (b) and minimum (c) temperature computed using 
temperature series from the other observational sites and ERA-40 data as potential predic-
tors, as well as for daily mean temperature computed from ERA-40 data only (d). Identifiers 
of individual stations correspond to their numerical IDs in Fig. 5.3. The embedded boxplots 
show distributions of RMSE achieved by the nonlinear regression methods relative to linear 
regression in the set of all 25 stations: whiskers represent min-max range of the values, the 
box encloses values between lower and upper quartile, the central line corresponds to the 
median. 
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  CHAPTER 6 
STATISTICAL ATTRIBUTION ANALYSIS 
 
Among the problems studied by contemporary climatology, a prominent place is held 
by the issue of attribution, i.e. linking the observed spatiotemporal variability in the 
climate system to individual internal and external factors responsible. In this chapter, 
several examples of our contributions to the related problems are given, including 
analyses of temporal and geographical variability in temperature or precipitation series 
(Chap. 6.1; BRÁZDIL ET AL. 2012A*; MIKŠOVSKÝ ET AL. 2014* - APPENDIX V; 
MIKŠOVSKÝ & PIŠOFT 2015*; KUCHAŘ ET AL. 2015*; MIKŠOVSKÝ ET AL. 2016A* - 

APPENDIX VII), in wind speeds across the Czech Republic (Chap. 6.2; BRÁZDIL ET 

AL. 2019* - APPENDIX VIII), and in the series of various drought indices (Chap. 6.3), 
both over the instrumental era (BRÁZDIL ET AL. 2015A*, 2015B* - APPENDIX VI; 
MIKŠOVSKÝ ET AL. 2016B*) and during more distant past (MIKŠOVSKÝ ET AL. 2019* - 
Appendix IX).  
 

6.1 ATTRIBUTION OF TEMPERATURE AND PRECIPITATION VARI-

ABILITY 
 

Of variables defining the state of the climate system, air temperature is perhaps the 
most intensely studied. Yet, despite the concentrated attention aimed at various ther-
mal characteristics of the atmosphere, their behavior and its causes still remain only 
partly understood. Even temporal variability in a single series of local temperature can 
be quite complicated (as shown in Fig. 2.1 for Czech temperature), and it becomes yet 
more intricate when spatial structures are taken into account. Identifying and quantify-
ing the effects of individual climate-affecting agents (and their eventual interactions) is 
a process often approached by statistical methods, including various forms of regres-
sion mappings (see, e.g., the introductory sections in MIKŠOVSKÝ ET AL. 2014* and 

MIKŠOVSKÝ ET AL. 2016A*). Several examples of our efforts in this field are presented 
here, demonstrating the application of statistical analysis to various local and global 
temperature series and the insights that can obtained about the role of external climate 
forcings and large-scale climate variability modes.  

Our first take on the issue of statistical attribution of temperature variability 
was aimed at the series of mean annual Czech temperature over the 1860-2008 period, 
with the results published as a part of the monograph BRÁZDIL ET AL. (2012A*). The 
temperature series investigated was created from measurements gathered at 10 Czech 
weather stations, quality-controlled and subjected to a homogenization procedure 
(BRÁZDIL ET AL. 2012A*, 2012B). Motivated by the prior attribution studies concerned 
with identification of the imprints of natural and anthropogenic factors in the temper-
ature data (particularly by SCHÖNWIESE ET AL. 2010), we used multiple linear regres-
sion and multilayer perceptron neural network to detect temperature components re-
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lated to the concentration of greenhouse gases (GHGs), amounts of sulfate aerosols 
and solar activity, as well as to the effects of the Southern Oscillation (SO) and the 
North Atlantic Oscillation (NAO). Relatively prominent slow-variable components 
formally correlated with greenhouse gases concentration and sulfate amounts were 
found, along with a weaker imprint of solar activity. NAO proved to be an important 
driver of the inter-annual temperature variability, whereas the component attributed to 
SO was substantially weaker. Attention was also paid to the possible nonlinearities in 
the links studied: Application of MLP neural network instead of basic linear regression 
resulted in just about 2% decrease of total RMSE (using the same set of predictors for 
both techniques), and the respective regression-based temperature estimates were 
found to be quite similar (Fig. 6.1). 

The conclusions of BRÁZDIL ET AL. (2012A*) highlighted some possible con-
nections of Czech temperature to external climate forcings and large-scale internal 
variability modes. However, the underlying analysis was somewhat rudimentary, and it 
neglected potentially critical aspects of the attribution problem such as assessment of 
the statistical significance of the relations, possibility of time-delayed responses or sea-
sonal specifics of the links. In MIKŠOVSKÝ ET AL. (2014*), we therefore revisited the 
matter of regression-based attribution analysis in more depth. Monthly series of tem-
perature were studied alongside their annual means, and results for the Czech Lands 
were also compared to their counterparts derived from pan-European and global land 
temperature series (supplied from the Berkeley Earth dataset: ROHDE ET AL. 2013A,  
2013B). Statistical significance of the regression coefficients was tested by moving 
block bootstrap (e.g. FITZENBERGER 1998). Our results confirmed the existence of a 
strong formal match between the long-term warming trends in temperature and con-
centration of greenhouse gases, and a weaker (and typically statistically non-significant) 
cooling tendency associated with sulfate aerosols. Only weak effects of solar activity 
were detected in any of the temperature series investigated. We also found no clear 
imprint of volcanic activity in the Czech (or European) temperatures, in contrast to a 
distinct temporary post-eruption cooling in global land temperature. Of the internal 
climate oscillations, NAO was confirmed to be one of the dominant sources of short-
er-term variability in the European region, whereas contributions from the Southern 
Oscillation, albeit noticeable, were only borderline statistically significant. A weakly 
significant component in the Czech temperature was also detected for the phase of the 
Atlantic Multidecadal Oscillation (AMO). 

In addition to the temperature data, Czech precipitation series and their possi-
ble relations to the climate forcings and variability modes were also investigated. The 
respective results in BRÁZDIL ET AL. (2012A*) and MIKŠOVSKÝ ET AL. (2014*) demon-
strated that, unlike for temperatures, only very small fraction of total variance could be 
explained by any form of the regression model (7% or less, compared to up to 53 % 
for Czech annual temperature and 20% for Czech monthly temperature). NAO index 
was found to be the only predictor contributing a statistically significant component to 
the Czech precipitation series.  
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In MIKŠOVSKÝ ET AL. (2014*), too, nonlinear regression models were applied in addi-
tion to multiple linear regression, to detect and quantify eventual nonlinear interac-
tions among the predictors and temperature/precipitation. None of the nonlinear 
mappings did, however, distinctly outperform multiple linear regression in terms of 
the fraction of variance explained. Hence, while some of the climate responses to the 
forcing factors may be inherently nonlinear, their manifestations in the monthly and 
annual series of temperature seem to be approximated quite well by purely linear su-
perposition. A similar conclusion was also reached in our analysis of temperature and 
other variables in the middle atmosphere (KUCHAŘ ET AL. 2015*). In the follow-up 
work, we therefore turned our attention to the analysis of various forms of gridded 
temperature data, using multiple linear regression alone as the tool for separating 
components associated with individual climate-affecting factors.  

 
 

 
 

FIGURE 6.1: Annual mean areal Czech temperature in the 1860-2008 period, observed (grey 
line) and approximated by multiple linear regression (red line) and multilayer perceptron 
neural network (blue line) from a set of explanatory variables representing various climate 
forcings, described in BRÁZDIL ET AL. (2012A*) and based on the setup by SCHÖNWIESE ET 

AL. (2010). Adapted from BRÁZDIL ET AL. (2012A*). 
 
 
In MIKŠOVSKÝ & PIŠOFT (2015*), we investigated presence of imprints of various 
climate forcings and internal variability modes in the series of gridded monthly tem-
perature anomalies throughout the European region, supplied from the GISTEMP 
(HANSEN ET AL. 2010) and Berkeley Earth (ROHDE ET AL. 2013A, 2013B) datasets. 
Multiple linear regression was applied to identify links between local temperature 
anomalies and selected explanatory variables with established or suspected influence 
on the European weather and climate (Fig. 6.2). Statistical significance of the regres-
sion coefficients was assessed by moving block bootstrap. While not included in 
MIKŠOVSKÝ & PIŠOFT (2015*), the tests were also carried out for temperatures adopt-
ed from the 20th Century Reanalysis (COMPO ET AL. 2011). This allowed for a compar-
ison of the predictor imprints in the gridded observations and in a reanalysis dataset 
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(which, in the particular case of the 20th Century Reanalysis, does not use temperatures 
from the land-based stations as inputs). In Fig. 6.3, our results are summarized in the 
form of temperature responses to pre-selected characteristic variations of the predic-
tors, specified in the caption of Fig. 6.2. Some of the previously established links have 
been confirmed by our analysis. These included the universally strong, yet locally vari-
able correlation between GHGs concentration and the long-term temperature com-
ponent, or presence of a distinct response pattern related to the North Atlantic Oscil-
lation. Some interesting outcomes regarding the effects of external forcings or tele-
connections projected by internal variability modes also appeared, particularly the as-
sociation between the Pacific Decadal Oscillation (PDO) and temperatures in Scandi-
navia. Furthermore, our analysis highlighted some of the uncertainties potentially 
stemming from the choice of the target temperature dataset. Of particular interest was 
the notable difference between components correlated with the greenhouse gases con-
centration in the GISTEMP and Berkeley Earth datasets and in the 20th Century Rea-
nalysis. This contrast, symptomatic of potential mis-representation of long-term tem-
perature trends in the 20th Century Reanalysis (COMPO ET AL. 2013), served as a cau-
tionary example of the specifics of the reanalysis-type data, frequently employed as 
proxies of direct climate measurements, yet often carrying a distinct signature of the 
numerical model involved in their creation and of the selection of its inputs.  
 To further pursue the issue of temperature variability attribution, and to closer 
investigate the associated uncertainties related to input data selection, four gridded 
observational datasets (GISTEMP, Berkeley Earth, MLOST and HadCRUT4) were 
employed alongside the 20th Century Reanalysis in our follow-up analysis, presented in 
MIKŠOVSKÝ ET AL. (2016A*). The study focused on identification of global imprints of 
external forcings and large-scale climate variability modes in the temperature fields, 
but also on the issues of their statistical significance and on the possibility of time-
lagged temperature responses. The results highlighted various long-range teleconnec-
tions associated with the activity of NAO, SO, AMO and PDO, including, for in-
stance, a noteworthy PDO link to northern European temperature, or relationship 
between AMO phase and temperatures in large regions over the Indian and Pacific 
Oceans. Local direct effects of natural external climate forcings (solar and volcanic 
activity) were found to be rather weak and largely statistically non-significant over 
most of the globe; on the other hand, strong episodic volcanism-induced cooling was 
confirmed in the globally averaged temperature series. Resemblance of the response 
patterns obtained from individual gridded temperature datasets was found to be gen-
erally strong, although notably weakened in areas with limited raw data availability, 
such as some African regions. Noteworthy contrasts have also been confirmed be-
tween the 20th Century Reanalysis and the analysis-type temperature datasets, particu-
larly over land.  
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FIGURE 6.2: Time series of explanatory variables employed in the attribution analysis in 
MIKŠOVSKÝ & PIŠOFT (2015*): CO2-equivalent concentration of Kyoto protocol-controlled 
greenhouse gases (GHGs), obtained from http://www.pik-potsdam.de/~mmalte/rcps/ 
(MEINSHAUSEN ET AL. 2011) (a); European SO2 emissions adapted from the data by SMITH 

ET AL. (2011) as a proxy for the amounts of anthropogenic sulfate aerosols (b); monthly solar 
irradiance from http://climexp.knmi.nl/data/itsi_wls_mon.dat (WANG ET AL. 2005) (c); vol-
canic aerosol optical depth from http://data.giss.nasa.gov/modelforce/strataer/ (SATO ET 

AL. 1993) (d); Southern Oscillation (SO) index (ROPELEWSKI & JONES 1987) (e) and North 
Atlantic Oscillation (NAO) index (JONES ET AL. 1997) (f) from the CRU database at 
http://www.cru.uea.ac.uk/cru/data/pci.htm; Atlantic Multidecadal Oscillation (AMO - e.g. 
ENFIELD ET AL. 2001) index from https://www.esrl.noaa.gov/psd/data/timeseries/AMO/ 
(g); Pacific Decadal Oscillation (PDO - e.g. ZHANG ET AL. 1997) index from 
http://climexp.knmi.nl/data/ipdo_erssta.txt (h). Green bars to the right of individual panels 
illustrate the size of the characteristic variation ∆�� of the predictor, used for calculation of 
the temperature responses shown in Fig. 6.3: Increase of the CO2-equivalent GHGs concen-
tration between 1882 and 2010 (+148 ppm); peak value of the European SO2 emissions (43 
Tg.year-1); increase of the solar irradiance by 1 W.m-2; Mt. Pinatubo-sized volcanic event; in-
crease of SO, NAO, AMO and PDO indices by four times their standard deviation. Modified 
from MIKŠOVSKÝ & PIŠOFT (2015*). 
 
 
FIGURE 6.3 (): Geographic patterns of local temperature response (°C) associated with 
various explanatory variables, calculated as a product of the regression coefficient �� (com-
puted individually for each grid point by multiple linear regression) and the characteristic vari-
ation ∆�� of the respective predictor (specified in Fig. 6.2). Monthly temperature anomalies 
from the GISTEMP (HANSEN ET AL. 2010), Berkeley Earth (BERK: ROHDE ET AL. 2013A, 
2013B) and 20th Century Reanalysis (20CR: COMPO ET AL. 2011) datasets were analyzed, for 
the 1882-2010 period. Statistical significance of the components associated with individual 
predictors was evaluated by moving block bootstrap – black dots mark grid points with re-
sponse statistically significant at the 99% level. Modified from MIKŠOVSKÝ & PIŠOFT (2015*) 

and expanded with the 20CR-based results. 
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6.2 ATTRIBUTION OF WIND SPEED VARIABILITY 
 

As the most direct manifestation of atmospheric circulation, wind speeds constitute 
another prominent weather and climate descriptor. In the case of near-ground wind, a 
complex interaction between large-scale air flow and local terrain is typically responsi-
ble for the observed variability patterns. To study and attribute these, wind speed rec-
ords from 119 Czech weather stations were analyzed over the 1961-2015 period in 
BRÁZDIL ET AL. (2019*), and presence of components related to natural or anthropo-
genic forcings and selected climate or circulation indices was assessed. A distinct anti-
correlation was found between the long-term wind speed components and anthropo-
genic GHGs concentration; however, no such connection was detected for the free-
atmosphere wind speeds, adopted from the NCEP/NCAR reanalysis. The stilling in 
the Czech wind speeds was therefore found unlikely to be directly associated with 
global climate change and its effect on large-scale circulation over Europe. Other fac-
tors, such as local surface roughness changes, may be responsible for the observed 
wind speed decrease trend. 
 Regarding the short-to-mid-term oscillatory components in the Czech wind 
speeds, our analysis highlighted not only seasonally and geographically variable im-
prints of the NAO index and the Central European Zonal Index, but also notable 
links to the East Atlantic/Western Russia Pattern. In the future, understanding of 
these relationships will help to construct more reliable statistical models replicating 
wind variability patterns over central Europe and complementing dynamical simula-
tions of the region. This objective may be particularly desirable considering the mis-
match of the observed wind speed trends and their RCM-simulated counterparts, doc-
umented in BRÁZDIL ET AL. (2019*) for outputs of several Euro-CORDEX models.   
 
6.3 ATTRIBUTION OF DROUGHT VARIABILITY 
 

While temperature, precipitation sums or wind speeds are among the basic – and most 
intensely studied – climate descriptors, more intricate composite characteristics are 
often used to capture interaction of weather/climate with other Earth systems. 
Drought indices, constructed to measure the degree of wet or dry conditions within 
some locality of interest, are one particular class of such impact-focused quantities. In 
BRÁZDIL ET AL. (2015B*), we examined various aspects of several short- and long-
term indices (SPI, SPEI, Z-index, PDSI) quantifying meteorological droughts in the 
Czech Republic during the instrumental era. The analysis focused on spring and sum-
mer as the seasons most relevant to the drought impacts on agriculture. As a part of 
this assessment, presence of links between the time series of individual drought indices 
and explanatory variables related to climate forcings was investigated. Attention was 
paid to the possible manifestations of man-induced changes to the atmospheric com-
position (particularly increasing concentrations of the greenhouse gases) as well as to 
the effects of natural external forcings (solar and volcanic activity). Presence of com-
ponents correlated with the phase of the North Atlantic Oscillation, Southern Oscilla-
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tion or Atlantic Multidecadal Oscillation was also assessed. Statistically significant 
formal connection between drought indices and anthropogenic forcing was found for 
the indices involving temperature or evapotranspiration in their definition. Links to 
NAO were generally strong and a tendency towards drier conditions has been con-
firmed for the positive NAO phase. Possible influence of the Southern Oscillation 
was detected as well, though only statistically significant for some of the indices and 
seasons. Again, nonlinear regression techniques were used alongside multiple linear 
regression, but, just as in the case of annual and monthly temperature and precipita-
tion, only minor gain from application of nonlinear statistical models was generally 
indicated. 

In our subsequent analysis of the spatiotemporal variability of Czech droughts, 
incorporated into the monograph BRÁZDIL ET AL. (2015A*), we paid attention to both 
short-term (monthly time scale) and long-term (annual time scale) drought indices, 
with extra emphasis on seasonal and geographical specifics of their responses to vari-
ous climate drivers. Of the results obtained, the spatially intermittent, yet often statisti-
cally significant links of long-term droughts to the Southern Oscillation index were of 
particular interest. A similar analysis, but specifically targeting mid-term droughts, was 
therefore subsequently conducted with an increased focus on connections of Czech 
droughts to climate variability modes originating from the Pacific area (MIKŠOVSKÝ ET 

AL. 2016B*). Unlike in BRÁZDIL ET AL. (2015A*), Pacific Decadal Oscillation index 
was also considered in the analysis, along with the previously employed index of the 
Southern Oscillation. Due to a link between these two climate variability modes (e.g. 
NEWMAN ET AL. 2003), and the resulting correlation between their respective indices, 
partial regression models were applied to better capture their individual influences. 
PDO index was ultimately found to be more influential predictor of Czech drought 
variability than its SO counterpart, with statistically significant PDO imprints detected 
in drought indices from multiple Czech locations. 

  Finally, in MIKŠOVSKÝ ET AL. (2019*), the analysis of Czech drought variabil-
ity patterns and their components has been extended beyond the instrumental era. 
Reconstructions of temperature, precipitation and various drought indices, spanning 
more than five centuries and based on a combination of instrumental and documen-
tary data, were studied and compared to proxy-based reconstructions of several large-
scale climate variability modes and external climate forcings. Notable influence of 
AMO- and PDO-related temperature variations on multi-decadal variability of Czech 
droughts was indicated by the outcomes of regression and wavelet analysis, along with 
marked NAO-linked oscillations at shorter time scales. Colder and wetter episodes 
were found to coincide with large volcanic eruptions, especially during summer. 
Moreover, the results in MIKŠOVSKÝ ET AL. (2019*) once again underscored the role 
of uncertainties related to the selection of the input data, particularly evident from the 
distinct contrasts between drought responses estimated for three different versions of 
proxy-based PDO reconstruction.  
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CHAPTER 7 
CONCLUDING REMARKS 
 
The individual pieces of analyses shown throughout this text have demonstrated a few 
examples of the wide range of possible applications of statistical – and especially re-
gression – techniques in the atmospheric and climate sciences. The results achieved, 
diverse in their aims, methods used and datasets involved, can obviously not be sum-
marized by a simple, universal conclusion. There are, however, a few points worthy of 
mentioning, related to the individual topics here as well as their common aspects. 
 First, our experiments have affirmed that nonlinearity, while inherent to the 
climate system, manifests with varying level of intensity in the climate time series. It 
would be too daring to try to formulate specific guidelines pinpointing scenarios suita-
ble for application of nonlinear techniques. Our results as well as those of other stud-
ies devoted to this topic (see, for instance, references in the introduction of 
MIKŠOVSKÝ ET AL. 2008*) have highlighted numerous factors potentially affecting the 
level of discernible nonlinearity. Additional ambiguity can be brought by technical 
specifics or imperfections of the data themselves, such as the presence of non-climatic 
inhomogeneities. Still, there seem to be some general factors preconditioning superior-
ity of the nonlinear approach (or lack thereof). In the absence of nontrivial, low-
dimensional links between predictors and predictand (for instance when forecasting 
daily temperatures more than a few days ahead), no benefit stemmed from the use of 
nonlinear models. On the other hand, diminished degree of detectable nonlinearity 
was also characteristic of setups with very high linear correlation between the pre-
dictand and the predictor(s), when most of the information could be transmitted 
through a purely linear function, leaving only small fraction of total variance unex-
plained and available for the extra contribution from a nonlinear mapping. Of the 
tasks studied in this thesis, some degree of superiority of nonlinear techniques was 
typically indicated for multi-predictor regression setups at daily time scales, especially 
for relationships involving a spatial component. Even then, the gain was not automati-
cally guaranteed for each individual test configuration. This means that the key prob-
lem – reliable identification of scenarios suitable for the application of nonlinear 
methods – needs to be treated on case-by-case basis. Sometimes, pointers are available 
that can help to make the decision. In particular, presence of markers of low-
dimensional chaotic behavior in the data, such as existence of a well-defined strange 
attractor, is a likely indicator of capturable nonlinear links. Dominant, unambiguous 
manifestations of low-dimensional chaotic dynamics are however rare in climate data, 
and their presence usually difficult to establish from the observational time series (at 
least at the spatiotemporal scales investigated here). As a result, conclusions about the 
feasibility of nonlinear techniques typically need to be obtained by direct tests focused 
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on the specific performance criteria of interest. The same then also applies to the se-
lection of the best performing type of the nonlinear mapping.  

As shown in Chap. 5.1 for series of daily temperature, statistical downscaling 
tasks do often benefit from the nonlinear approach to the construction of the regres-
sion functions. However, the gain is not automatically assured, and some validation 
statistics show no systematic improvement from the use of a nonlinear regression 
model, as we demonstrated (HUTH ET AL. 2015*) and as was also suggested by other 
studies with similar focus (e.g. HUTH ET AL. 2008). There are, however, additional 
matters in need of attention. Besides the critical – yet occasionally neglected – issue of 
predictor selection (e.g. HUTH 2004), stability of the downscaling mappings must be 
carefully verified. This becomes particularly crucial when GCM outputs for the future 
time periods are downscaled, with predictors possibly falling outside the range of val-
ues typical for the past climate, and thus unprecedented in the data employed for cali-
bration of the downscaling models. Bearing these caveats in mind, statistical downscal-
ing – regardless of the specific methodology – remains a valuable tool for bypassing 
the resolution gap between global climate simulations and local-scale data. With fur-
ther improvement of the spatial step of the climate models, and reduction of their still 
considerable biases, need for statistical downscaling (and also for statistical postpro-
cessing, reducing the systematic errors in the GCM/RCM simulations – e.g. DÉQUÉ 

2007; THEMEßL ET AL. 2012) may eventually disappear. Today, however, statistical 
downscaling models do still represent a viable alternative (or a useful complement) to 
their dynamical counterparts.  

In our attribution-seeking analyses, only minor gain from application of non-
linear mappings was generally detected (BRÁZDIL ET AL. 2012A*; MIKŠOVSKÝ ET AL. 
2014*; BRÁZDIL ET AL. 2015B*; KUCHAŘ ET AL. 2015*). Even in the prior studies con-
cerned with comparable problems, and reporting presence of nonlinearities, magni-
tude of the nonlinear components was rather variable and inferiority of linear models 
not guaranteed for every test setting (PASINI ET AL. 2006; SCHÖNWIESE ET AL. 2010). 
But even though it may seem that approaching the problem of statistical attribution 
analysis via purely linear methods does not impose excessive oversimplification, such 
conclusion can not be automatically generalized to all types of forcings, teleconnec-
tions or variables of interest. As suggested, for instance, by our most recent experi-
ments with nonlinearity detection (presented at the European Meteorological Society 
2019 meeting – http://www.miksovsky.info/EMS2019.pptx), nonlinear components 
can be noteworthy for some more complex teleconnection setups, from both formal 
and practical perspective. Additional focus on such relationships, and on the dynam-
ical principles behind them, is therefore quite desirable in the future research of links 
and responses within the climate system. 

Finally, it should be emphasized that despite the benefits of the statistical ap-
proach to attribution, such as its relative speed and flexibility, one should always be 
aware of its limitations as well. Aside from suffering from potential uncertainties relat-
ed to the choice of data employed for the analysis, and to the selection of a suitable 
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analytical framework, purely statistical techniques only consider formal similarities 
among the time series, oblivious of the underlying physical dependencies or their ab-
sence. Dangers of misrepresentation of the outcomes of the statistical approach to 
attribution have been highlighted in the past (e.g. BENESTAD & SCHMIDT 2009); we 
also touched upon this subject in MIKŠOVSKÝ ET AL. (2014*), BRÁZDIL ET AL. 
(2015B*), MIKŠOVSKÝ ET AL. (2016A*), BRÁZDIL ET AL. (2019*) or MIKŠOVSKÝ ET AL. 
(2019*). In particular, caution is needed when interpreting formal links of climate vari-
ables to trend-like predictors such as greenhouse gases-induced forcing, due to very 
limited number of degrees of freedom in the relevant signals. Whenever possible, sta-
tistical answers to the question of attribution should therefore be considered along 
with other information sources, especially simulations by general circulation models, 
inherently more universal than purely statistical methodologies, even though still only 
partly successful in completely reproducing the observed features of the climate sys-
tem (e.g. STOCKER ET AL. 2013). By combining the statistical and dynamical approach-
es, mutually compensating for their individual limitations, more complete and depend-
able picture of variability in the climate system and its causes may then ultimately be 
gained. 
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