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Introduction 1

1.1 Thesis Structure . . . . 2

1.2 Included Papers . . . . 3

With its recent fast development, artificial intelligence in

general and machine learning in particular are gaining new

applications every day. People and companies use machine

learning to classify images and translate documents. Medical

doctors use deep learning models to improve their diagnostic

processes, and self-driving vehicles use machine learning, ar-

tificial intelligence and computer vision to navigate dynamic

environments safely.

Many of these recent advances gain their power from math-

ematical optimization, ranging from the more low-level al-

gorithms such as stochastic gradient descend and its vari-

ants used to train the parameters of numerous machine

learning models to more high-level optimization algorithms

based on evolutionary computing or reinforcement learn-

ing to optimize whole machine learning workflows in the

areas of automated machine learning and neural architecture

search.

In this thesis, we focus mostly on evolutionary algorithms –

a nature-inspired population-based optimization technique

that is inspired by Darwinian evolutionary theory. Evolu-

tionary algorithms have obtained great results in the recent

years both in the areas mentioned above (automated machine

learning, neural architecture search), but also in a many dif-

ferent engineering applications. Every year at the GECCO The list of the winners of

the Humies competition is

available at https://www.

human-competitive.org/

conference, the best of these algorithms are awarded the

Humies award for human-competitive results obtained by

evolutionary computation techniques.

However, evolutionary algorithms also have one strong dis-

advantage, and that is the fact that they typically need to

make a lot of evaluations of the objective function we want

to optimize – either minimize, or maximize. If the objective

function is slow, which is often the case in the applications

mentioned above, it also makes the whole algorithm slow.

This, in turn, makes using evolutionary algorithms for these

applications hard, or even impossible. In this thesis, we try

to improve some of these shortcomings by implementing bet-

ter parallel evolutionary algorithms and by using so called

https://www.human-competitive.org/
https://www.human-competitive.org/
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surrogate models – cheap approximations of the slow or

expensive objective function.

1.1 Thesis Structure

This thesis is divided into two parts. The first one contains the

background and general context of the work, the second one

contains eight selected papers that show our recent results

in this area.

More specifically, the first part contains three chapters. Chap-

ter 2 gives a general description of evolutionary algorithms

and also some of their variants that are later discussed –

differential evolution, genetic programming, and a multi-

objective evolutionary algorithm – MOEA/D. This chapter

also mentions the main challenges of evolutionary computa-

tion when dealing with optimization of objective functions

that are slow or expensive to evaluate.

Chapter 3 discusses the ways, how evolutionary algorithms

can be implemented in parallel, and also the problems that

the parallel implementations face in case the evaluation time

of the objective function is variable. This chapter thus gives a

more detailed context to the papers included in Chapter 6.

Chapter 4 describes so called surrogate models and how they

can be used to speed up evolutionary algorithms. Surrogate

models are typically used in continuous optimization (opti-

mization of functions ℝ𝑛 → ℝ). However, we also describe

how these can be used in other areas, such as in genetic pro-

gramming. This chapter provides introduction to the papers

included in Chapter 7.

The second part of the thesis contains the selected papers

themselves together with a single chapter (Chapter 5) that

briefly describes the main results of the papers and their

context within the wider field of work. This chapter also

explains my contribution to the results of each of the papers

and briefly discusses other works I published in related ar-

eas. The papers themselves are in four chapters divided by

their topic – Chapter 6 contains two papers about the paral-

lelization of evolutionary algorithms, Chapter 7 contains two

papers about using surrogate models in genetic program-

ming, Chapter 8 contains a paper about consideration of user

preferences in multi-objective evolutionary algorithms, and,
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finally, Chapter 9 contains three papers in which evolutionary

algorithms are applied to various problems with expensive

objective functions.

All the papers selected for this thesis were published either

in journals, or as full papers at international peer-reviewed

conferences. The only exception is the second paper on

surrogate models in genetic programming that was presented

as a poster at GECCO 2022, it was however still included in

this thesis as it shows the current direction of our research

on surrogate-based genetic programming.

The papers in this thesis are, however, not all the papers

we published in the recent years. They were selected as

representatives for each of the areas presented in this thesis.

The reasons for selecting each of them and other closely

related papers are mentioned in Chapter 5.

The full list of papers included in this thesis is below.

1.2 Included Papers

Martin Pilát, Roman Neruda (2017): ’Parallel Evolutionary

Algorithm with Interleaving Generations’. In: Proceedings of
the Genetic and Evolutionary Computation Conference. GECCO
2017. Berlin, Germany: Association for Computing Machinery,

pp. 865-872. DOI: 10.1145/3071178.3071309

Štěpán Balcar, Martin Pilát (2020). ’Heterogeneous Island

Models and Their Application to Recommender Systems and

Electric Vehicle Charging’. In: International Journal on Artificial
Intelligence Tools 29.03n04, World Scientific, p. 2060010. DOI:

10.1142/S0218213020600106

Martin Pilát, Roman Neruda (2016). ’Feature Extraction for

Surrogate Models in Genetic Programming’. In: Parallel Prob-
lem Solving from Nature - PPSN XIV. Ed. by Julia Handl et al.

Cham: Springer International Publishing, pp. 335-344. DOI:

10.1007/978-3-319-45823-6_31

Martin Pilát, Gabriela Suchopárová (2022). ’Using Graph

Neural Networks as Surrogate Models in Genetic Program-

ming’. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion. GECCO 2022. Boston, Mas-

sachusetts: Association for Computing Machinery, pp. 582-

585. DOI: 10.1145/3520304.3529024

http://dx.doi.org/10.1145/3071178.3071309
http://dx.doi.org/10.1142/S0218213020600106
http://dx.doi.org/10.1007/978-3-319-45823-6_31
http://dx.doi.org/10.1145/3520304.3529024
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Martin Pilát, Roman Neruda (2015). ’Incorporating User Pref-

erences in MOEA/D through the Coevolution of Weights’.

In: Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation. GECCO 2015. Madrid, Spain:

Association for Computing Machinery, pp. 727-734. DOI:

10.1145/2739480.2754801

Tomáš Křen, Martin Pilát, and Roman Neruda (2017). ’Auto-

matic Creation of Machine Learning Workflows with Strongly

Typed Genetic Programming’. In: International Journal on Arti-
ficial Intelligence Tools 26.05, World Scientific, p. 1760020. DOI:

10.1142/S021821301760020X

Martin Pilát (2018). ’Controlling the Charging of Electric

Vehicles with Neural Networks’. In: 2018 International Joint
Conference on Neural Networks (ĲCNN 2018), IEEE, pp. 1-8.

DOI: 10.1109/ĲCNN.2018.8489027

Věra Kumová, Martin Pilát (2021). ’Beating White-Box De-

fenses with Black-Box Attacks’. In: 2021 International Joint
Conference on Neural Networks (ĲCNN 2021), IEEE, pp. 1-8.

DOI: 10.1109/ĲCNN52387.2021.9533772

http://dx.doi.org/10.1145/2739480.2754801
http://dx.doi.org/10.1142/S021821301760020X
http://dx.doi.org/10.1109/IJCNN.2018.8489027
http://dx.doi.org/10.1109/IJCNN52387.2021.9533772


Background

In this part, we provide the important background concerning most of the work in the

areas covered by the papers in this thesis.
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tionary Computation 14

The thesis deals mostly with evolutionary algorithms, there-

fore, in this chapter, we give a short general introduction to

the area of evolutionary computing and describe the concepts

and versions of the algorithms that are most relevant to this

thesis. A more comprehensive overview of the area is pre-

sented in the books by Eiben and Smith (2015) or Michalewicz

and Fogel (2004).

2.1 Overview

Evolutionary algorithms are a population-based optimiza-

tion technique inspired by natural evolution. An evolutionary

algorithm works with a set (called population) of candidate

solutions (individuals). The population is often first initiated

randomly and then the algorithm runs in multiple iterations

(generations). In each generation, the quality of all individu-

als is evaluated using so called fitness function. The fitness

function should assign greater values to individuals with

better (lower for minimization and greater for maximization)

values of the objective function. Then, genetic operators are

applied to individuals selected by so called mating selection.

Individuals with better fitness have better chance of being

selected. There are two types of genetic operators – crossover
and mutation. Crossover takes two individuals as its input,

combines the information from them and returns one or two

offspring as its output. Mutation, on the other hand, takes

only one individual as its input and returns a single offspring

as its output. The individuals before the genetic operators

are applied are often called parents and the newly created

individuals are called offspring. At the end of each iteration,

the populations of parents and offspring are combined and

so called environmental selection is used to select which indi-

viduals will survive to the next generation. The number of

parents and offspring is often the same, but there are also

versions of the algorithm, where these number differ. In such

cases, the number of parents is typically denoted as 𝜇 and the

number of offspring as 𝜆. This algorithm is also expressed in

pseudo-code in Algorithm 1.
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Algorithm 1: Evolutionary Algorithm

1 𝑡 ← 0

2 𝑃0 ← random initial population

3 Evaluate the fitness of all individuals in 𝑃0

4 while not happy do

5 𝑂 = ∅
6 while |𝑂 | < 𝜆 do

7 𝑝 𝑖
1
, 𝑝 𝑖

2
← MatingSelection(𝑃𝑡)

8 𝑜′𝑖
1
, 𝑜′𝑖

2
← Crossover(𝑝 𝑖

1
, 𝑝 𝑖

2
)

9 𝑜 𝑖
1
← Mutation(𝑜′𝑖

1
); 𝑜 𝑖

2
← Mutation(𝑜′𝑖

2
)

10 𝑂 ← 𝑂 ∪ {𝑜 𝑖
1
, 𝑜 𝑖

2
}

11 Evaluate the fitness of all new individuals in 𝑂

12 𝑃𝑡+1 ← EnvironmentalSelection(𝑃𝑡 , 𝑂)
13 𝑡 ← 𝑡 + 1

14 return 𝑃𝑡−1

The description and pseudocode above give only the overall

structure of (one version of) an evolutionary algorithm. There

are many considerations that should be taken before evolu-

tionary algorithms can be used to solve practical problems –

we need to decide on the individual encoding (how the solu-

tion candidates can be encoded as individuals), on the fitness

function (how to express the quality of the individuals), on

the selection method (how to select the better individuals

to which the genetic operators will be applied), and on the

genetic operators itself.

Consider, for example, the well-known OneMax problem,

where the goal is to find a bit-string 𝑥 of length 𝑛 that contains

all 1s. Therefore, the goal is to maximizeIn a more general and realistic

case, we may want to find a bit-

string that exactly matches an

unknown one.
OneMax(𝑥) =

𝑛∑
𝑖=1

𝑥𝑖 .

In this case, the individual can be a binary string of length 𝑛

and the fitness can be directly the function OneMax defined

above. The crossover operator typically chooses a randomThis is the so called one-point

crossover.
crossover point 1 < 𝑟 < 𝑛, the offspring are then created by

copying values on indices 1..𝑟 from one parent and the rest

of the values from the other parent. The mutation operatorThis is the bit-flip mutation.

then randomly changes some values in the individual from 0

to 1 or vice versa. Both the mutation and crossover operators

are typically performed with only some probability. The

individuals, to which the operators are not applied are cloned
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without changing them.

The individual encoding, fitness function, and genetic opera-

tors are problem specific. On the other hand, the mating and

environmental selections and the termination condition tend

to be one of the handful of options described below.

The mating selection of the individuals should ensure that

better individuals have higher probability of being used in

the genetic operators. There are two common ways, how this

is performed – one of them is the tournament selection, the

other is the roulette wheel selection. In tournament selection,

two individuals are selected uniformly randomly from the

population and the better one is then used with some high

probability (typically around 80 percent). In roulette-wheel This is a binary tournament, in

𝑘-ary tournament, the best of 𝑘

individuals is selected with a

high probability, if this one is

not selected, the second best one

is selected from the rest with the

same high probability and so on.

selection (also called fitness-proportionate selection), each

individual is selected with probability directly proportionate

to its fitness, i.e. the probability 𝑝𝑖 of selecting individual 𝑖 is

defined as

𝑝𝑖 =
𝑓𝑖∑𝑁

𝑗=1
𝑓𝑛
,

where 𝑓𝑖 is the fitness of individual 𝑖 and 𝑁 is the number of

individuals in the population. This type of selection assumes

that the fitness is always positive. Tournament selection, on

the other hand, does not have this assumption and, addi-

tionally, it is invariant with respect to any monotonically

increasing transformations of the fitness functions, as the

selected individuals depend only on the ranking of the in-

dividuals according to their fitness values and not on the

specific fitness values.

The environmental selection decides which of the parents and

offspring survive to the next generation. In the simplest case,

the parents are discarded and only the offspring are kept to

the next generation. However, this way has the disadvantage

that the algorithm can lose the best solution found so far.

Therefore, some form of elitism is often employed, where

some number of the best parents are always kept to the next

generation and the rest is replaced by the best offspring. There

are also special types of environmental selection for cases

where 𝜇 ≠ 𝜆, i.e. the numbers of parents and offspring are

different. For these the notation originally used in evolution

strategies is often employed. The (𝜇,𝜆) selection (sometimes

also called the comma selection) selects 𝜇 best individuals

from the 𝜆 offspring, this case assumes that 𝜇 ≥ 𝜆. In
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case 𝜇 = 𝜆 this operation is equivalent to discarding the

parents and keeping only offspring. The 𝜇+𝜆 selection (plus
selection) selects the best 𝜇 individuals out of the combined

populations of parents and offspring. In this case, there are

no assumptions about the values of 𝜇 and 𝜆 an even extreme

cases of (1 + 1), (𝜇 + 1), or (1 + 𝜆) are sometimes used.

The last part of the algorithm, we have not discussed yet, is

the termination condition, expressed with “while not happy”

in the pseudocode. In most cases the algorithm is limited

by a specific number of generations (iterations of the loop),

or a specific number of fitness evaluations. Other common

termination conditions include reaching a specified quality

of individuals (expressed by a target fitness value) or running

for a pre-defined amount of time.

2.2 Differential Evolution

There are special types of evolutionary algorithms used for

specific types of problems. For example, for continuous opti-

mization, i.e. optimization of functions ℝ𝑛 → ℝ, evolution

strategies (Hansen, Arnold, and Auger 2015) or differential

evolution (Storn and Price 1997) are often used. In both cases,

the individuals are encoded as vectors of floating point num-

bers with length 𝑛. We describe differential evolution in more

detail here, as it is the algorithm that is used in some of the

papers in this thesis.

The main idea of differential evolution is to replace the

mutation operator by an operation that adds the difference

of two randomly selected individuals to a third individual.

More specifically, three different individuals 𝑎, 𝑏, and 𝑐 are

randomly chosen from the population and a new potential

individual 𝑥′ is generated as 𝑥′ = 𝑎 + 𝐹(𝑏 − 𝑐), where 𝐹 is

a parameter, typically around 0.8. Then, another individual

𝑥 is selected from the population and the new offspring is

created by iterating over the values of 𝑥𝑖 and 𝑥′
𝑖
and taking

the value from 𝑥′
𝑖
with probability CR and the value from 𝑥

otherwise. A single randomly selected value is always taken

from 𝑥′
𝑖
. More specifically, first, values 𝑟𝑖 for 𝑖 ∈ {1, . . . , 𝑛}

are generated from a uniform distribution between 0 and 1

and then a value 𝑗 is randomly uniformly selected from the
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set {1, . . . , 𝑛}. Then, the offspring

𝑦𝑖 =

{
𝑥′
𝑖

𝑟𝑖 < CR or 𝑖 = 𝑗

𝑥𝑖 otherwise,

where CR is the crossover rate selected from interval [0, 1].
Finally, the fitness of 𝑦𝑖 and 𝑥 is compared and the better

of these individuals is kept in the population. Typically, the

individual 𝑥 is not selected randomly, but the operation is

run for each 𝑥 in the population.

Differential evolution has some desirable features for con-

tinuous optimization. First, because of the way, how the

individual 𝑥′ is generated, the algorithm is robust with re-

spect to rotation and scaling of the search space. Second,

as the better individual is selected based on comparison of

fitness values of both the new and original individuals, the

algorithm is also invariant with respect to any monotonically

increasing transformation of the fitness values.

2.3 Genetic Programming

A very popular variant of evolutionary algorithms is genetic

programming. As its name suggests, the goal of genetic

programming is to create programs using evolutionary al-

gorithms. A very nice introduction to genetic programming

was written by Poli, Langdon, and McPhee (2008) and is

freely available online.

In its most common variant, the so called tree-based genetic

programming, the individuals are encoded as trees. These

trees can then represent mathematical expressions, simple

programs or even describe analogue or digital circuits or

structures of neural networks.

Formally, we need to define two sets – terminals and non-

terminals. Terminals are the leaves of the trees and typi-

cally contain the inputs to the program and constants. Non-

terminals are the internal nodes in the tree and they represent

the elementary functions that can be used in the program.

For each of the terminals, we need to specify its arity (number

of arguments), this also specifies the number of sub-trees

the non-terminal has. For example, if we want to use genetic

programming to find polynomials in a single variable 𝑥, the
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set of terminals can contain 𝑥 and some common constants

(typically small integers), the set of non-terminals can contain

the binary functions for multiplication and addition (and

potentially also powers).

The initialization is, as in other versions of evolutionary algo-

rithms, done by randomly generating the initial population

of trees. In this case, generally two options are used, either

full trees with a given depth are generated, or trees with

a given number of nodes are generated. A popular initial-

ization scheme (ramped half-and-half ), generates half of the

individuals with the former approach and the other half with

the latter one.

The genetic operators in genetic programming operate on

the tree-based individuals directly. A popular choice for

crossover is the sub-tree crossover that randomly selects

a subtree in one individual and swaps it with a random

subtree in the other individual. There are many options for

mutation – we can remove a sub-tree and replace it with one

of the terminals in that sub-tree, we can change one of the

non-terminals to another one with the same arity, or we can

replace a sub-tree with a randomly generated one.

In typed variants of genetic programming, terminals and non-

terminals have types that affect how trees can be constructed.

The type of the sub-tree must match the type of the input

to the non-terminal. This is useful if we want to limit what

trees are valid. For example, imagine we want to simulate an

if condition in a tree that should otherwise return a number.

The non-terminal for the condition can have tree inputs – one

of them is boolean (either true or false), the other ones are

numbers. If the condition is true, the first number if returned

from this node, otherwise the second one is returned. We can

then use other types of non-terminals, such as the less-then

relation, that take numbers as inputs and return boolean

variables. We can still use similar genetic operators to those

mentioned above, they just need to take the types of the

terminals and non-terminals into account.

Typed genetic programming is very useful if we need to

consider multiple different types of data in the program or

in the structure we try to evolve. In one of the papers that are

part of this thesis (Křen, Pilát, and Neruda 2017b), we used

typed genetic programming to ensure that the individuals

represent valid machine learning pipelines.
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2.4 Multi-Objective Optimization

Evolutionary algorithms are also very often used to solve

multi-objective optimization problems. In multi-objective

optimization, the goal is to optimize multiple functions at the

same time. More formally, we want to minimize 𝑓 : 𝐷 → ℝ𝑛
,

where 𝐷 is some decision space. Such a problem typically

does not have a unique solution, as some of the functions can

be competing with each other. We are therefore looking for a

set of Pareto optimal solutions, i.e. such solutions that there is

no other solution that would be better in all objectives at the

same time.

Evolutionary algorithms for multi-objective optimization

differ in the way how selection (and especially environ-

mental selection) is performed. Currently, two classes of

multi-objective evolutionary algorithms that are commonly

used – domination-based and decomposition-based ones.

Domination-based multi-objective optimization algorithms

are based on the Pareto dominance relation. NSGA-II (Deb

et al. 2002) is a popular example of this class of algorithms.

It performs the environmental selection by first merging

the parent and offspring populations and then dividing the

merged population into so called non-dominated fronts. The

first non-dominated front contains individuals that are not

dominated by any other individual in the population, the

second non-dominated front then contains individuals that

are not dominated by any individuals in the population, if

the first front is removed and so on. Then, individuals from

the fronts with lower numbers are put into the population

as long as the whole front fits, i.e. as long as the sum of the

sizes of the fronts is at most equal to the population size. If

more individuals are needed but the next non-dominated

front does not fit whole, individuals are selected based on

a secondary sorting criterion. In the original version of the

algorithm this is the crowding distance that expresses how

close the solution is to other solutions in the objective space.

Solutions in less crowded areas are selected first.

While NSGA-II is still a very popular algorithm, especially for

problems with two or three objectives, it does not work very

well if the number of objectives increases, as in such a case

most of the individuals belong to the first non-dominated

front (Ishibuchi, Tsukamoto, and Nojima 2008). For these
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problems, often called many-objective optimization prob-

lems, decomposition algorithms such as MOEA/D are more

commonly used.

In MOEA/D (Q. Zhang and H. Li 2007), the multi-objective

problem is decomposed into a set of single-objective ones that

are all solved at the same time. One possible decomposition is

using weighted sum of the objectives with different weights

for each individual. More specifically, the fitness for indi-

vidual 𝑘 is computed as 𝑓 𝑘(𝑥) = ∑𝑛
𝑖=1

𝑤𝑘
𝑖
𝑓𝑖(𝑥), where 𝑓𝑖 are

the objective functions and 𝑤𝑘
is the weight vector assigned

to individual 𝑘. The weight vectors are also used to defineThe weighted-sum decompo-

sition works well for prob-

lems with convex Pareto fronts.

An alternative working for all

types of problems is Tcheby-

cheff decomposition, where 𝑓 𝑘 =

max𝑖 𝜆𝑖 | 𝑓𝑖(𝑥) − 𝑧∗
𝑖
|, where 𝜆𝑖 are

the parameters of the decompo-

sition, and 𝑧∗
𝑖

are the minima of

𝑓𝑖 .

neighborhoods of individuals – a number of individuals with

the closest weight vectors are considered to be in the same

neighborhood. The genetic operators are then performed

with neighboring individuals with a high probability. Once

a new offspring is generated, its fitness is compared to the

fitness of its parent and the better one of these is kept in

the population. This individual is also compared to other

individuals in the neighborhood using their respective fitness

functions, and if it is better it also replaces them. The sharing

of the information in the neighborhood makes MOEA/D

more effective in solving multi-objective problems than using

independent runs of single-objective algorithms.

2.5 Challenges in Evolutionary

Computation

All the evolutionary algorithms described above have one

step in common – and that is the evaluation of the fitness

function. This is also the step that is most affected by the

optimization problem the algorithm tries to solve. This func-

tion, however, very often affects how long the algorithm will

run and if it is practically usable. Commonly, evolutionary

algorithms use tens or hundreds of individuals in population

and run for hundreds, or even thousands of generations. The

fitness of most of these individuals need to be evaluated in

every generation, which leads to long running times withWe actually do not have to

re-evaluate fitness of individ-

uals that were not changed

by the genetic operators. Some

implemetations may even use

caching of the results of previ-

ously evaluated individuals and

use these values if they are ran-

domly created again.

even relatively fast fitness functions. For example, with a

population of 100 individuals and 1000 generations we need

roughly 100,000 fitness evaluations. If each of these evalu-

ations takes only 1 second, the whole run of the algorithm

would take more than a day.
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There are multiple ways, how to speed up evolutionary

algorithms. In some cases, the fitness function itself can be

replaced by a faster fitness function with similar properties,

or an approximation of the fitness function can be computed.

This can work for example in symbolic regression, if the

individuals are evaluated only on a subset of the training

data. However, the potential to use these approaches is

limited to specific problems. There are two more general

ways, how to speed up evolutionary algorithms – parallel

implementation or surrogate modelling.

Parallel evolutionary algorithms use multiple CPUs or even

multiple computers to run the evolutionary algorithm. Surro-

gate modelling, on the other hand, aims to reduce the number

of fitness evaluations by replacing the slow fitness function

by a fast model thereof. We describe these two techniques in

more details in the following two chapters.
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Evolutionary algorithms are extremely easy to parallelize,

which is one of the reasons, why their parallelization is an

often considered way, how to make their computation faster.

In this chapter, we describe the most common models of

parallelization of evolutionary algorithms and some chal-

lenges parallel evolutionary algorithms face. A more detailed

survey of parallel evolutionary algorithms was published by

Sudholt (2015).

3.1 Classical Parallelization Models

The aforementioned survey mentions three different groups

of parallel evolutionary algorithms based on the form of par-

allelization – in the master-worker model, only the evaluation

of the fitness evaluation is parallelized, in the island models
multiple sub-populations are executed in parallel, and in the

cellular models each individual is assigned its own CPU. We

describe all these types of parallelization below. Apart from

these models, the survey also mentions the possibility to run

a number of independent runs of the algorithm in parallel

and a few other generalizations of the models above, these

are however not really relevant for the rest of the thesis.

In the master-worker model, the main loop of the algorithm

does not change and the whole structure remains the same.

The only difference is that the fitness of all individuals is

evaluated in parallel. This parallel evaluation can be done

either on the same machine in case multi-core CPU is used

or the individuals can be submitted to other machines over

the network. With current CPUs, it is possible to evaluate

tens or even hundreds of individuals in parallel making it

often possible to evaluate the whole generation in parallel.

In case all the fitness evaluations take the same amount of

time, the speed up can thus be linear in the number of CPUs

(ignoring any overhead for the parallelization itself).

The island model divides the population of the evolution- This is also called coarse-grained

parallelization.
ary algorithm into several sub-populations and each of

these sub-populations run on a different computer. The
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sub-populations themselves run in the same way a classi-

cal evolutionary algorithm does, the main difference is that

there is a new genetic operator for migration of individuals.

This operator sends some of the individuals to other islands

and receives individuals sent by the other islands. Commu-

nication topology defines, between which pairs of island

individuals can be exchanged. Commonly used topologies

include ring topology, grid topology, torus topology, or a

fully connected one. There are many ways to choose which

individuals are sent, how often they are sent, and how they

are incorporated into the population on the receiving island.

This communication allows the islands to effectively coop-

erate with each other on solving the optimization problem

at hand. If one of the islands converges to some local opti-Sub-populations are also a good

way to increase diversity in the

population and can be used for

this reason even without paral-

lelization.

mum, it can still receive better individuals from the other

islands and continue in the optimization, hopefully finding

the global optimum.

In cellular models, each individual is assigned to a com-

puting node. Similarly to island models, there is topologyThis is also called the diffuse

model, or fine-grained paral-

lelization.

defined among the computing nodes (often either grid or

torus topology is used here), and the genetic operators are

only performed on individuals which are neighbors in the

topology. This limits the speed with which the information

about new promising solutions can propagate in the pop-

ulation and increases the diversity of the solutions in the

population. There are multiple ways, how the whole pop-

ulation can be updated, the simplest among them is the

synchronous update where every node first generates new

individual and then all of them are evaluated and replace

the original one if they are better. There are, however, also

asynchronous variants of this update.

In both the island and the cellular models the topology

defines which nodes can communicate with which other

nodes. An important feature of the topology is the diameterThe graph diamater is the length

of the longest of the shortest

paths between any two nodes

in the graph.

of the graph as it affects how long it takes for the information

to propagate to the whole population.

There are some less common variants of the island models

with heterogeneous islands, i.e. such where each island uses

different settings of the algorithm (Gong and Fukunaga 2011)

or a different fitness function (Mambrini, Sudholt, and Yao

2012; Pilát and Neruda 2010).
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3.2 Asynchronous Evolutionary

Algorithms

The parallelization of evolutionary algorithms described

above can speed up the computation significantly. Most of

the techniques work best, if each of the fitness evaluations

takes the same amount of time. However, there are problems

where the fitness evaluation time is variable. Such problems

exist for example in the area of automated machine learning

(AutoML) (He, Zhao, and Chu 2021), where the goal is to

find the best machine learning pipeline for a given dataset. In

this case, evaluation of the fitness function typically includes

training of the machine learning pipeline which is slow, and

different machine learning pipelines can take even orders of

magnitude different times to train.

In such cases using the master-worker parallelization with

number of CPUs equal to the number of individuals in the

population means that we have to wait for the slowest fitness

evaluation in each generation. That in turn means that we

waste a lot of the computational power by waiting. For this

reason, so called asynchronous evolutionary algorithms are

commonly used. Asynchronous evolutionary algorithms do

not wait for the whole generation to finish fitness evaluation,

but instead generate new offspring as soon as an individual is

evaluated. The algorithm thus first generates a random initial

population and submits all the individuals for evaluation.

Once enough individuals are evaluated, the algorithm runs

the selection to select parents, runs the genetic operators

on them to create new offspring and submits the offspring

for evaluation whenever a free CPU is available. This im-

plementation ensures that all the CPUs are always utilized,

however, the algorithm itself is biased towards the areas of

the search space where the individuals evaluate faster (Scott

and De Jong 2015).

3.3 GPU Implementation of

Evolutionary Algorithms

Using graphic cards (or, more formally, graphic processing

units, GPUs) for computation has led to significant advances
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in machine learning and especially deep learning. Evolution-

ary algorithms can also benefit from their GPU implemen-

tation and such implementations started appearing as soon

as GPU computing became available (Jaros 2012; Krömer

et al. 2011). However, as we already mentioned above, in

evolutionary algorithms the most time-consuming part is

typically the fitness function. Therefore, if the fitness function

is not evaluated on a GPU, the overall algorithm may not run

much faster.

For GPU implementation, even finer grained parallelization

than the one used in cellular models is often needed (Cheng

and Gen 2019) and these implementations often use so called

gene-level granularity, where a computing thread is assignedA gene is a specific position in

the individuals. For example, an

individual encoded as a vector

of 𝑛 numbers consists of 𝑛 genes.

to each gene in every individual. This is possible thanks

to the fact that GPUs typically have thousands of parallel

computing threads.

There is a number of general-purpose libraries for GPU

computing, such as pyTorch (Paszke et al. 2019) and Ten-

sorflow (TensorFlow Developers 2022), these are however

typically not used for implementation of evolutionary algo-

rithms. Recently, we have shown (Valkovič and Pilát 2022)

that such implementations are possible and quite simple us-

ing the pyTorch library, if the genetic operators are carefully

selected and some tricks are used to make the implementation

more suitable for GPU computing.
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Surrogate models are another option, how to speed up evo-

lutionary algorithms. They are a fast approximation of the

original slow or expensive fitness function. These approxima-

tions are typically created by using the individuals evaluated

in previous generations to fit a regression model of the fitness

function. The main advantage of using surrogate models com-

pared to parallelization is that they can reduce the number of

the fitness evaluations in the first place. This can be important

in cases, when the fitness evaluation is not only slow, but also

expensive because, for example, some real-life experiments

need to be performed to measure it. On the other hand, the

most significant disadvantage of using surrogate models

is the overhead caused by the need to train them. A very

nice survey on the use of surrogate models in evolutionary

computation was published by Jin (2011) and a more recent

survey was published by Tong et al. (2021).

In this chapter, we describe, how surrogate models are used

in evolutionary algorithms.

4.1 Building a Surrogate Model

In a typical surrogate-based evolutionary algorithm, we use

the individuals evaluated during the optimization as a base

for a training set for the model. Essentially, we have an

archive of evaluated individuals that is sampled to provide

the training set. The initial training set may be obtained in

various ways, one of them is not using the surrogate model in

the initial generations of the EA. Alternatively, the algorithms

can use Latin Hypercube Sampling (McKay, Beckman, and

Conover 1979) or other advanced sampling mechanisms to

create more diverse initial population with the goal to train

a better model.

Regarding the types of models, any regression model can

be used, however, low order polynomials, support-vector

regression, or RBF networks are commonly used based on our

experience as well as the survey (Tong et al. 2021) mentioned

above. Kriging is also quite often used, as it can provide
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not only the prediction itself, but also the uncertainty of

the model for the specific point. This allows for greater

flexibility while selecting the individuals to be evaluated

by the expensive objective function. Apart from regression

models, some algorithms also use ranking models, such as

rankSVM (Joachims 2002).

4.2 Using a Surrogate Model

Surrogate models can be used in multiple ways in evolution-

ary algorithms. The survey by Jin (2011) divides the types of

uses into three groups – generation-based, individual-based,

and population-based ones. Generation-based surrogates are

used in some generations, while in others the real fitness

function is used. In individual-based approaches some of the

individuals are evaluated by the real fitness, while others are

evaluated only by the surrogate. Finally, in the population-

based ones the population is divided into sub-populations

(similarly to the island models for parallelization) and each

of the sub-populations uses a different surrogate model.

Surrogate models can also be used for pre-selection of indi-

viduals. In this case, after the offspring are generated, they

are all evaluated using the surrogate models, then, only some

of them are evaluated using the real fitness function. In this

case, selection is based only on the real fitness function, in

contrast to the individual-based technique described above,

where some individuals may be evaluated only with the

surrogate.

If we use kriging or other techniques that also return un-

certainty in addition to the prediction, we have additional

options, how to select the individuals for evaluation. For

example, we can decide to evaluate not only the best individ-

uals according to the model, but also individuals with high

uncertainty of the prediction. Evaluating these and adding

them to the training set may improve the quality of the model

in areas that are not as well explored.

One of the criterions that combine both the quality of the

individual and the uncertainty (variance) of the model is the

expected improvement – the expected value of max( 𝑓 ∗− 𝑓 , 0),
where 𝑓 is the value predicted by the model (viewed here as a

random variable with a distribution given by the model) and
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𝑓 ∗ is the current best value found by the algorithm. Another

option that combines the quality with the uncertainty is the

lower confidence bound.

Using the expected improvement is also the idea of the Effi-

cient Global Optimization (EGO) algorithm (Jones, Schonlau,

and Welch 1998). In this algorithm, the objective function is This technique was also ex-

tended to multi-objective opti-

mization (Knowles 2006).

modelled using the kriging model, whenever a point is eval-

uated by the real objective function, the model is retrained.

The next sampled point is then the one that maximizes the

expected improvement according to the model.

Surrogate models can also be used in multi-objective opti-

mization. Apart from the simple solution of using a different

model for each of the objectives, it is also possible to create

so called aggregated surrogate models. These models try to

predict, whether a given solution is non-dominated in the

current population. One of the first algorithms using this

technique was described by Loshchilov, Schoenauer, and

Sebag (2010), who used a combination of OneClass SVM and

Regression SVM. We have also published an algorithm based

on a similar technique (Pilát and Neruda 2011), however, we

used a model based on the distance to the non-dominated

front, and we also used the model in a mutation to generate

new non-dominated individuals by running and internal

evolutionary algorithm optimizing the model.

4.3 Surrogate Models Outside of

Continuous Optimization

Surrogate models are most commonly used in continuous

optimization, where the individuals are encoded as vectors of

numbers. This makes training the surrogate models simple,

as most regression models expect vectors of numbers as their

inputs. However, surrogate models can also be useful in

other areas, such as combinatorial optimization, or genetic

programming.

While the problem of using surrogate models in combinato-

rial optimization was already mentioned as an open question

in the survey by Jin (2011), there does not seem to be a lot

of research done in this area. Bartz-Beielstein and Zaefferer

(2017) published a survey on this use that divides the ap-

proaches into several categories based on the way how they
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deal with the problem. Among these are approaches that

use custom models, usable only for the specific problem

at hand, similarity-based approaches, or feature extraction

based approaches.

An interesting special case is using surrogate models in

genetic programming. As we described in Chapter 2, in

genetic programming, individuals are encoded as trees. For

such individuals, Hildebrandt and Branke (2015) used so

called phenotypic features. These features are obtained by

using a fixed set of inputs for the genetic programs and using

their outputs as the features. For each individual we thus

get a vector of numbers and then any common regression

technique can be used to build a model. In this paper, nearest

neighbor regression was used.

The technique described above is usable, if the tree can be

easily evaluated on some inputs. However, it is not possible to

compute the phenotypic features in such cases, where the tree

represents a complex structure, such as in automated machine

learning, or any other application where the individual is not

a program but rather a description of a structure. For such

cases, we developed an algorithm based on feature extraction

from the trees (Pilát and Neruda 2016). These features contain

the size of the tree, the types of nodes in the tree and similar.

Later, we also used graph neural networks that can work

directly with trees as their inputs (Pilát and Suchopárová

2022). Both these papers are a part of this thesis and will be

discussed in more detail in the next part.

4.4 Surrogate Models and Neural

Architecture Search

Predicting the quality of individuals in evolutionary algo-

rithms is closely related to the problem of performance

estimation in the area of neural architecture search. In neural

architecture search, the goal if to find a neural network archi-

tecture that maximizes the performance of the model on a

given dataset. Such problems can be solved by evolutionary

algorithms or by reinforcement learning. In both cases, eval-

uating the quality of the neural architecture is a complex and

slow task that requires training the neural network. Elsken,
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Metzen, and Hutter (2019) and Y. Liu et al. (2021) published

recent surveys of the area.

Many techniques were created in the recent years to predict

the quality of the architectures without the need to fully train

them. One of the options in this area is to train the model

only for a few epochs and predicting its final performance

based on this short training (Rawal and Miikkulainen 2018;

Baker et al. 2017). Another option is to train the model only

on a subset of the data (P. Liu et al. 2019).

While these papers do not call the techniques they use “surro-

gate models”, it is obvious that the idea is similar. Especially

the training for only a few epochs and predicting the rest of

the learning curve seems quite similar to the idea of using

phenotypic features to build surrogate models in genetic

programming, in the sense that we use data that are more

easily obtainable to predict the performance. We also believe In evolutionary neural architec-

ture search, parallelization and

caching is also a popular tech-

nique to speed up the algorithm.

that some of the techniques used in surrogate-based evolu-

tionary algorithms can be usable for performance prediction

in neural architecture search, and vice versa, some of the

techniques used to speed up neural architecture search can

be adapted to evolutionary algorithms.
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In this chapter, we give a brief overview of the papers selected

as the main part of this thesis. The main goal of the chapter

is to put these papers in a context, mention some of the

circumstances that led to the writing of the papers, explain

my contribution to the papers, and, finally, discuss further

developments after these papers were published.

The part is divided into four chapters, dealing with differ-

ent topics. Chapter 6 (Parallelization) contains two papers

discussing parallelization of evolutionary algorithms, one of

them describes the idea of interleaving generations, while

the other uses heterogenous island model to implement

online parallel portfolio optimization algorithm. Chapter 7

(Surrogate Modelling) contains two papers implementing

surrogate modelling in genetic programming. The first one

performs feature selection from the trees and uses these

features to train the surrogate models, the other one uses two

different types of graph neural networks to create the models.

Chapter 8 (User Preferences) contains a single paper that

discusses user preferences in multi-objective optimization,

its goal is to adaptively change the decomposition weights

in the MOEA/D algorithm with the goal to focus the search

to the areas of the search space that contain solutions inter-

esting to the user. Finally, Chapter 9 (Applications) contains

three papers that use evolutionary algorithms for optimiza-

tion problems with expensive objective functions. In one

of these papers, we use genetic programming in the area

of AutoML to create whole machine learning pipelines, in-

cluding pre-processing and ensembles. Another one uses

simple neuro-evolution to coordinate the charging of electric

vehicles. Finally, the last paper in this chapter shows the use

of differential evolution to create adversarial examples for

image classification.

5.1 Parallelization

Parallelization of evolutionary algorithms is an important

step to make them more usable, especially nowadays, when
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evolutionary algorithms are used for complex problems,

like neural architecture search. Chapter 6 (Parallelization)

contains two paper related to this topic; these are briefly

described here.

5.1.1 Evolutionary Algorithm with Interleaving

Generations

The first paper on the parallelization topic proposes an

evolutionary algorithm with interleaving generations (Pilát

and Neruda 2017). This paper focuses on problems with

slow objective functions whose evaluation additionally takes

variable amount of time. We mentioned (cf. Section 3.2) that

in such cases using asynchronous evolutionary algorithms is

beneficial. This type of algorithms does not wait for the whole

generation to be evaluated, but rather creates new individuals

as soon as one is evaluated (assuming enough parents are

available and a free CPU is also available). However, we also

mentioned that these algorithms are biased towards areas of

the search space that evaluate faster.

In the paper, we first briefly demonstrate this bias and then

offer a solution – an evolutionary algorithm with interleaving

generations. We first carefully analyze two special versions

of evolutionary algorithms (namely the (𝜇, 𝜇) and (𝜇 + 𝜇)
algorithms with tournament selection) and then implement

them in such a way that individuals from multiple genera-

tions can be evaluated at the same time. This idea is simpler

to explain in the (𝜇, 𝜇) case. In this case, there is no envi-

ronmental selection, therefore any generated offspring in

one generation is directly used in the mating selection in the

next generation, and can be used as a parent. In order to

decide which of these will actually be used as parents, we

run the tournament selection – for that we need to randomly

select two of these offspring; the better of them is the parent

in the next generation. The pairs of (indices of) individuals

that will be compared by the tournament selection can be

generated before the population is available. Once both the

individuals in the pair are evaluated, we can run the tour-

nament selection and select the parent. Once both parents

are selected, we can run the genetic operators to create new

offspring in the next generation. The algorithm thus does not

have to wait for the slowest individuals in each generation

to finish evaluation. It generates new individuals in the next
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generation as soon as both their parents are available. This

leads to much better utilization of CPU resources and, at the

same time, ensures that the algorithm is still equivalent to the

generational version and does not suffer from the evaluation

time bias. Similar analysis is also done for the (𝜇+𝜇) version

in the paper.

This work was later extended by Noguchi, Sonoda, et al.

(2021), who added tentative evaluation of individuals to the

algorithm. If there are free CPUs available, they generate

offspring even before it is known which of the two possible

individuals in the previous generation will become the parent.

They generate both possible offspring and submit both of

them for evaluation. Once the correct parent becomes known,

one of these tentative offspring will not be needed and its

evaluation is suspended. The other offspring should however

finish the evaluation sooner than if the algorithm waited for

both parents to become available. In another paper (Noguchi,

Harada, and Thawonmas 2021), similar group of authors

also created a version of differential evolution based on the

same idea.

Independently of this research, I have also supervised a

master thesis (Záboj 2020) that also considers the case of

speculative creation of new offspring for evaluation. Addi-

tionally, it also considers the possibility to use surrogate

models to decide which of the potential parents will be better

according to the tournament selection. This should improve

the utilization of CPU resources further by increasing the

chance that the speculative individual will be indeed the

correct one. We have, however, observed some discrepancies

between the implemented algorithm and the generational

one that should be equivalent. So far, we were unable to

explain what causes them – it may be some bias caused by

the use of surrogate models or a simply a bug in the rather

complicated implementation. This is also the reason, why

these results have not yet been published in a paper, but

we intend to work on them further and once the issues are

resolved, the work will be published.

My Contribution In this case, I was the author of the idea

of interleaving generations and implemented the algorithm

itself. Roman Neruda provided valuable discussion and

insights during the work and feedback during the writing of

the paper itself.
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5.1.2 Heterogeneous Island Models

The other paper on the topic of parallelization deals with

heterogeneous island models. In this paper (Balcar and Pilát

2020), we used the idea of dividing the population of the

evolutionary algorithm into multiple sub-populations, simi-

lar to the way how island models work. In this case, however,

each of the sub-population uses a completely different op-

timization algorithm and, at the same time, the types of

optimization algorithms used by each of the islands change

dynamically during the run of the algorithm. This essentially

uses the framework of island models to implement an online

parallel portfolio of optimization algorithms.

The implementation of the islands themselves is the same as

in the island model used for parallelization of evolutionary

algorithms – each of the islands run an optimization algo-

rithm. These algorithms can however be different on each

of the islands, they only need to share the encoding of the

individuals. The migration operation is also implemented

in order to allow the exchange of individuals among the

islands. Additionally, the method also implements a central

planner that observes the quality of the individuals shared

by each of the islands running specific optimization methods

and based on these observations decides, how to change the

optimization algorithm on some of the islands for another

one with the goal to improve the overall convergence speed

of the algorithm. We implemented a number of different

planners based on the number of different criteria and the pa-

per compares them to homogeneous island models and static

heterogeneous island models, demonstrating the advantages

of the later one.

The paper is one of a small series of publications we had

with Štěpán Balcar on this topic. The idea was first presented

as a poster at GECCO 2018 (Balcar and Pilát 2018a), then as

a full paper at ICTAI 2018 (Balcar and Pilát 2018b), where it

was selected for the special issue of the Journal on Artificial

Intelligence Tools (Balcar and Pilát 2020). This last paper is

included this as it contains most of the information from the

former publications and also some additional experiments

that were allowed by the fact that the journal publication has

no page limits, it thus gives the most complete picture of this

area of research.
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My contribution I am the author of the idea to use different

optimization algorithms on different islands and changing

the types of algorithms adaptively. I also proposed some of

the planner types described in the paper and wrote most of

the paper. Štěpán Balcar implemented the method as part of

his master thesis and continued to extend the idea during

the first year of his Ph.D. studies. He also proposed some of

the types of the planners.

5.2 Surrogate Modelling

Chapter 7 (Surrogate Modelling) contains two related papers

on using surrogate models in the area of genetic program-

ming. Use of surrogate models in this area is still relatively

uncommon compared to their use, for example, in continu-

ous optimization. The main reason is that creating models

that use trees and similar complex structures as inputs is

harder and less common.

In the first paper (Pilát and Neruda 2016), we approached

the problem of constructing the surrogate model by first

extracting some features from the trees. We only considered

features that can be extracted without any evaluation of the

trees, as our main intended application was for problems,

where the trees encode some structure, whose evaluation

is costly. This was mainly inspired by our previous work,

where we used genetic programming in automated machine

learning (Křen, Pilát, and Neruda 2017b). The extracted

features consist mainly of various statistics about the size of

the tree, the frequency of how often each of the terminals and

non-terminals is used, and what are the values of constants.

Additionally, we also included the fitness of parents of each

individual as one of the features. We then use random forests

for regression to predict the quality of the individuals. It

turns out that such models give around 0.5-0.6 Spearman’s

correlation, which is not perfect, but seems to be enough to

guide the evolutionary algorithm and reduce the number of

fitness evaluations required.

The other paper in this chapter (Pilát and Suchopárová

2022) describes our latest results in this area. It replaces the

feature extraction and random forests by using graph neural

networks. Graph neural networks are models that can operate

directly on graph structures. In the paper, we used two types
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of graph neural networks – graph isomorphism network (Xu

et al. 2019) and treeLSTM (Tai, Socher, and Manning 2015). For

both of these models, we need to specify node features. These

encode what each of the nodes in the graph represents – in

this case, they are a simple one-hot encoding of the terminals

and non-terminals used in each of the nodes. Additionally,

for constants, we also encode their values. Compared to the

previous paper, graph neural networks can also capture the

structure of the tree and thus provide better prediction of

its quality. This paper was presented as a poster at GECCO

2022, and it was included in this thesis to demonstrate the

current direction of our research in this area.

The model proposed in the first paper was later used by Bi,

Xue, and M. Zhang (2021b) for feature learning in image

classification. The area of using surrogate models in genetic

programming is also becoming much more active and mul-

tiple new methods appeared in the recent years (F. Zhang

et al. 2022; Bi, Xue, and M. Zhang 2021a).

My contribution For the first paper (Pilát and Neruda

2016), I came up with the idea to use surrogate models based

on feature extraction in genetic programming, implemented

the methods and tested them. Roman Neruda helped with

valuable discussion and insights, and also gave feedback on

the paper itself.

The idea of the other paper (Pilát and Suchopárová 2022)

came to my mind after I reviewed the master thesis of Gabriela

Suchopárová (Suchopárová 2021), where she studied graph

neural networks for performance prediction in neural archi-

tecture search. I realized that similar techniques could be

also used in genetic programming. After Gabriela started her

Ph.D. studies at our department, we tested how well graph

neural networks perform as surrogate models in genetic pro-

gramming. Gabriela provided the implementation she used

in her master thesis, and I implemented the treeLSTM-based

model and ran all the experiments.

5.3 User Preferences

The paper included in Chapter 8 (User Preferences) improves

the effectiveness of evolutionary algorithms in a different
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way than those in the previous chapters. It does not reduce

the number of fitness evaluations, nor does it run them in

parallel, but it makes sure that the algorithm is looking for

the solutions the user is interested in. In the paper (Pilát and

Neruda 2015) we deal with the problem of incorporating user

preferences into the MOEA/D algorithm. As we mentioned

in Section 2.4 MOEA/D uses a set of weight vectors to

decompose a multi-objective problem into a set of single-

objective ones. These weight vectors directly affect which

solutions of the multi-objective problem will be found. There

had been some existing work on tuning the distribution of

the weights in order to provide more uniform distribution of

the solutions (Siwei et al. 2011; Qi et al. 2014).

Our goal with the paper, however, was not to fine-tune

the distribution of the solutions, but rather to change the

distribution in such a way that the algorithm respects user

preferences. We assume the user (decision-maker) specifies

which areas of the Pareto front are interesting for them. The

algorithm then changes the weights is such a way, that the

solutions found by the algorithm lie in this area. We used

co-evolution for this changing of the weights. The algorithm

thus has a population of solutions and a population of weight

vectors. The population of solutions is evolved the same as

in MOEA/D, the population of weight vectors is changed by

a random Gaussian mutation and every weight is compared

to its parent. To this end, we first assign each weight to an

individual in the population (the one for which is gives the

best fitness) and then the fitness of the weight vector is the

distance of its assigned individual to the closest individual

in the preferred region (this is minimized by the algorithm).

If the assigned individual is already in the preferred region,

then the fitness is defined is such a way to provide as uniform

distribution of the preferred individuals as possible.

The paper described above is among the first to consider

user preferences in MOEA/D. The area of incorporating user

preferences to MOEA/D and multi-objective optimization

algorithms in general has grown significantly since the paper

was published (L. Li et al. 2018; Zhu et al. 2018; Fernández

et al. 2022).

My contribution I proposed the idea of using co-evolution

of weights to incorporate the user preferences, designed

and tested the algorithm. Roman Neruda provided valuable
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insights in discussion and feedback during the writing of the

paper itself.

5.4 Applications

The last chapter of the thesis (Chapter 9) contains three

papers that use evolutionary algorithms in order to solve

expensive optimization problem.

5.4.1 Evolution of Machine Learning Pipelines

In the first paper (Křen, Pilát, and Neruda 2017b) we used

genetic programming in order to design whole machine

learning pipelines. At that point in time, automated machine

learning was a relatively new area and only a few algorithms

existed. Most of them were unable to create more complex

machine learning pipelines, they typically only combined a

few methods. For example, auto-sklearn (Feurer et al. 2015)

uses Bayesian optimization to find a pipeline consisting

of data preprocessor, feature preprocessor and classifier.

Multiple of these can also be automatically combined into

an ensemble.

Our goal was to create a system, that could (at least in

principle) generate any machine learning pipeline, combining

any preprocessing and machine learning steps together and,

at the same time, automatically creating ensembles of these

methods. In such systems, it is essential to make sure that

any pipeline created by the system makes sense from the

machine learning point of view. For example, preprocessing

should not be run after machine learning, but rather before,

and if data are split into several groups, these groups should

be combined again later. To this end, we used typed genetic

programming, with the types ensuring that the pipelines

make sense. In addition to selecting the methods, we also

need to select their hyper-parameters – this could however

be solved quite simply in the genetic programming.

A similar system to ours, called T-POT, was also created

independently at roughly the same time (Olson et al. 2016).

T-POT also uses genetic programming and creates pipelines

with tree-like structure, where data flow from leaves to the

root. In each internal node, the data are merged together,
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potentially with predictions provided by machine learning

methods in the sub-trees. Compared to our system, T-POT

cannot split data and the pipelines produced by T-POT are

not as expressive as the ones produced by our system. Since

then, the field of automated machine learning has become

one of the main fields in machine learning and especially

deep learning (in the form of neural architecture search),

with many new algorithms being proposed in the last few

years.

The paper presented in this thesis is actually one of a series of

four papers we published in this area. The first iteration of the

method was presented at SSCI 2015 (Křen, Pilát, and Neruda

2015), later improvements were published at ICTAI 2016

(Pilát, Křen, and Neruda 2016) (this one added, among other

things, asynchronous evolution to speed up the optimization).

The ICTAI paper was selected for the special issue of the

International Journal on Artificial Intelligence Tools (Křen,

Pilát, and Neruda 2017b). Later, we also published a version of

the paper using multi-objective optimization to also minimize

the size of the pipelines or their training time (Křen, Pilát,

and Neruda 2017a). I selected the journal paper for this thesis

as it contains the most detailed description of the system

thanks to the journal not having any page limits.

This research also strongly affected our other research. For

example, the time-consuming nature of needing to train the

machine learning pipelines in order to evaluate fitness led

us to the work on surrogate models in genetic program-

ming. At the same time, the training time for the pipelines is

variable, which motivated us to explore the asynchronous

evolutionary algorithms and led to the evolutionary algo-

rithm with interleaving generations. Both of these directions

were described above and form a part of this thesis.

My contribution In this work, I implemented the evalua-

tion of the machine learning workflows and designed the

asynchronous evolutionary algorithms. I also assisted Tomáš

Křen with the design of the type system, mainly from the

machine learning point of view (what must hold, so that

the pipeline makes sense), but most of the work on the type

system itself was done by him. Roman Neruda has been the

supervisor of Tomáš during his Ph.D.
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5.4.2 Coordination of the Charging of Electric

Vehicles

Coordination of charging of electric vehicles is an important

problem that whose importance only increases nowadays

with the number of electric vehicles quickly growing. Given

that most people have similar schedule, if everyone started

charging their car once they come home in the afternoon, the

electrical grid would be quickly overloaded. Therefore, we

worked on algorithms that would coordinate the charging –

the user would plug the vehicle in the charger and set a time,

when the car needs to be fully charged (Pilát 2018a). The

charger would then decide when and how quickly the vehicle

would charge with the goal to smoothen the consumptions

during the day and night.

Algorithms for this problem have existed, however, most of

them either required a central planner (Clement, Haesen, and

Driesen 2009), or they required some communication with

third parties (Gan, Topcu, and Low 2013; Ma, Callaway, and

Hiskens 2013). This could lead to loss of privacy for the users.

Therefore, we wanted to create an algorithm that would solve

the problem without any outside communication from the

household. To this end, we designed a controller based on a

small neural network. This network would get information

about the current electricity consumption in the household

(and in one version also in the whole neighborhood) and

information about the charging request (how much and

how quickly needs to be charged). The output from the

network would then be the charging speed for the next

15 minutes. The weights in the neural network were set

using either an evolutionary algorithm or a gradient-based

optimization that used numerically computed gradient. The

goal was to minimize the variance of the consumption of

the whole neighborhood. The consumption during the day

was computed using simulation of multiple households for

several days.

The results of this work were actually first presented in

an EvoApplications 2018 short paper (Pilát 2018b), but the

main result is from ĲCNN 2018 (Pilát 2018a). The ideas were

also later extended by using imitation learning instead of

direct optimization and present at ICTAI 2021 (Pilát 2021). In

this paper, the networks were trained to imitate the optimal

charging schedule to a relaxed version of the problem. In the
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relaxation, we assumed that all the requests and electricity

consumptions are known in advance. I selected the ĲCNN

2018 paper as part of this thesis, as it contains full description

of the problem and algorithm and in contrast to the newer

ICTAI 2021 paper it uses evolutionary algorithms, and thus

is closer to the main topic of this thesis.

5.4.3 Adversarial Examples in Image

Classification

The last paper included in this thesis (Kumová and Pilát 2021)

is an application of differential evolution to the problem of

finding adversarial examples for image classification. Ad-

versarial examples are an interesting phenomenon observed

first in the area of deep learning. Szegedy et al. (2013) ob-

served that the image classification models are sensitive to

small, specially crafted, perturbations in the input images.

These perturbations are typically invisible to humans when

looking at the image, but they are able to cause the deep

learning model to classify the input incorrectly, even though

the original image was classified correctly. Over the years

following this discovery, there were many attempts to create

more robust machine learning models and at the same time

to create adversarial examples that would be able to fool

these models.

In the paper, we focused on finding adversarial examples

for models that already used some form of defense. At that

time, the defense proposed by Hu et al. (2019) showed that it

can detect adversarial examples created by several white-box

attacks. White-box attacks use the knowledge of the complete

structure of the neural network, including its parameters to

find the adversarial example. In our paper, we have shown

that black-box attacks (those that rely only on the outputs

of the network) can actually quite easily beat this specific

defense and create adversarial examples that it cannot detect.

The attack is based on differential evolution that directly finds

the perturbation of the input image that causes the network to

classify it incorrectly. In order to lower the dimensionality of

the problem, we have used a tiling trick – instead of searching

for a perturbation of every pixel, the image is divided into

areas of 𝑘 × 𝑘 pixels and the same change is applied to all of

them.
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My Contribution I was the supervisor of the master thesis

written by Věra Kumová (Kumová 2021). I helped mostly with

consultations related to adversarial examples and differential

evolution in general. I also prepared the paper for publication

based on the experiments in her thesis. However, the idea to

use the tiling trick is Věra’s, she also implemented and tested

the algorithm.
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Martin Pilát, Roman Neruda (2017): ’Parallel Evolutionary

Algorithm with Interleaving Generations’. In: Proceedings of
the Genetic and Evolutionary Computation Conference. GECCO
2017. Berlin, Germany: Association for Computing Machinery,

pp. 865-872. DOI: 10.1145/3071178.3071309

Štěpán Balcar, Martin Pilát (2020). ’Heterogeneous Island

Models and Their Application to Recommender Systems and
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Cham: Springer International Publishing, pp. 335-344. DOI:

10.1007/978-3-319-45823-6_31

Martin Pilát, Gabriela Suchopárová (2022). ’Using Graph

Neural Networks as Surrogate Models in Genetic Program-

ming’. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion. GECCO 2022. Boston, Mas-
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585. DOI: 10.1145/3520304.3529024
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http://dx.doi.org/10.1145/2739480.2754801




Applications 9

This chapter contains the papers:

Tomáš Křen, Martin Pilát, and Roman Neruda (2017). ’Auto-

matic Creation of Machine Learning Workflows with Strongly

Typed Genetic Programming’. In: International Journal on Arti-
ficial Intelligence Tools 26.05, World Scientific, p. 1760020. DOI:

10.1142/S021821301760020X

Martin Pilát (2018). ’Controlling the Charging of Electric

Vehicles with Neural Networks’. In: 2018 International Joint
Conference on Neural Networks (ĲCNN 2018), IEEE, pp. 1-8.

DOI: 10.1109/ĲCNN.2018.8489027

Věra Kumová, Martin Pilát (2021). ’Beating White-Box De-

fenses with Black-Box Attacks’. In: 2021 International Joint
Conference on Neural Networks (ĲCNN 2021), IEEE, pp. 1-8.

DOI: 10.1109/ĲCNN52387.2021.9533772

http://dx.doi.org/10.1142/S021821301760020X
http://dx.doi.org/10.1109/IJCNN.2018.8489027
http://dx.doi.org/10.1109/IJCNN52387.2021.9533772




Conclusion 10

10.1 Future Research . 140We have discussed evolutionary algorithms for optimization

problems with expensive objective functions. We have shown

two techniques how to make them faster – parallelization

and surrogate modelling, and we have presented our results

in these areas.

Regarding parallelization, we presented an evolutionary al-

gorithm with interleaving generations (Pilát and Neruda

2017) that allows for better parallelization of evolutionary

algorithms while avoiding the evaluation time bias inher-

ent to asynchronous evolutionary algorithms. We have also

discussed heterogeneous island models that were used as par-

allel portfolios of optimization algorithms with automated

algorithm selection (Balcar and Pilát 2020).

In surrogate modelling, we discussed two techniques for

implementation of surrogate models in genetic programming.

One of them was based on features statically extracted from

the genetic programs (Pilát and Neruda 2016), the other

was based on modern graph neural networks (Pilát and

Suchopárová 2022). Both these techniques can predict the

quality of the individual in genetic programming without the

need to evaluate the program itself. This makes them useful

in problems, where the program encodes a complex structure

that cannot be easily evaluated, such as in automated machine

learning.

Additionally, we have presented a multi-objective evolution-

ary algorithm that uses co-evolution in order to consider

user preferences (Pilát and Neruda 2015). This makes the

algorithm more effective, as computation is not wasted on

individuals that are not interesting for the user.

We have also shown three different applications of evolution-

ary algorithms in problems with complex objective functions.

In one of them, we used evolutionary algorithms in the area

of automated machine learning (Křen, Pilát, and Neruda

2017b), in another, we used it to implement controllers for

coordinated charging of electric vehicles (Pilát 2018a), and in

the last one we use differential evolution to find adversarial

examples in image classification with deep neural networks



140 10 Conclusion

(Kumová and Pilát 2021). These applications are important

not only by themselves, but they also help to steer other

parts of our research. This is most obvious with the one in

automated machine learning. The problems we encountered

while working on this task led us to create the algorithm with

interleaving generations and also to the work on surrogate

models in genetic programming.

10.1 Future Research

In the future, we would still like to focus on evolutionary algo-

rithms for problems with expensive objective functions. We

believe that such problems will become even more common

with evolutionary algorithms finding new applications in

automated machine learning and neural architecture search

– two very quickly developing areas.

We will still work on surrogate models, and we are especially

interested in using surrogate models in areas other than

continuous optimization, especially in genetic programming.

We have presented some of the newer results using graph

neural networks in this thesis, and we would like to ex-

tend them further. We also believe that ideas from surrogate

modelling are transferable to the area of performance predic-

tion in automated machine learning and neural architecture

search.

Parallel implementations of evolutionary algorithms are

another area, we find interesting, especially in cases where

the fitness evaluation time is long and variable. So far, we have

explored mostly single-objective algorithms for problems of

this nature, but we would like to extend some of these ideas

to multi-objective optimization. In this case, the situation is

even more interesting as some of the objectives may be fast

to evaluate, while others are slow.

Finally, we will also focus on applications of evolutionary

algorithms especially in areas with expensive objective func-

tions. We are mostly interested in machine learning and

problems such as automated machine learning, neural archi-

tecture search, and adversarial examples. We believe these

applications will be able to guide our future research in

evolutionary algorithms.
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