Charles University
Faculty of Mathematics and Physics

HABILITATION THESIS

Viktor Johánek

Reactions at surfaces:
from macroscopic to molecular level

Department of Surface and Plasma Science
Prague, 2022

Submitted in the field of Physics – Physics of Surfaces and Interfaces
Acknowledgements

Despite the commonly shared “myth of the lone scientist” (and, to be more accurate, a „mad scientist” as perceived by many outside the field) the truly innovative and efficient research requires a teamwork of, ideally, intellectually diverse groups of scientists with different backgrounds and individual skills. I had the great opportunity to be a part of several such teams during my appointments at CERN, Fritz-Haber Institute of Max-Planck Society in Berlin, University of California Irvine, University of Virginia, and Charles University in Prague. I’m indebted to all the people who inspired, motivated, educated, and supported me on my way through the world of science. The results presented in this thesis could not be accomplished without the valuable contributions of many colleagues with whom I have worked, cooperated, or discussed during the past two decades.

Financial support of the research presented in this thesis was provided by several institutions and organizations, namely by the European Union within its 7th Framework programme, COST European framework, Ministry of Education of the Czech Republic, Czech Science Foundation, National Science Foundation, U.S. Department of Energy, Deutsche Forschungsgemeinschaft, ERIC-CERIC distributed research infrastructure, Charles University, and the Czech Academy of Sciences.

Last but not least, my greatest appreciation belongs to my family for the everlasting support of their, so to speak, very own mad scientist.
“I can hardly doubt that when we have some control of the arrangement of things on a molecular scale, we will get an enormously greater range of possible properties that substances can have, and of different things that we can do.”

– Richard P. Feynman, 1959
Contents

1 Introduction .. 1

2 Heterogeneous catalysis ... 3
 2.1 Common motivation and challenges .. 4
 2.2 Model systems in catalysis .. 5
 2.3 Real heterogeneous catalysis ... 9
 2.4 Preparation of model catalysts .. 10
 2.5 Experimental strategies and characterization techniques .. 13
 2.5.1 Molecular beam system at FHI-MPG .. 15
 2.5.2 Spectro-microscopy system at Charles University .. 16
 2.5.3 Material science beamline at Elettra Synchrotron .. 17

3 Surface chemistry of CO$_x$ and NO$_x$... 20
 3.1 Motivation and background .. 20
 3.2 CO adsorption and catalytic oxidation .. 20
 3.2.1 CO oxidation on Pd/alumina .. 20
 3.2.2 CO oxidation on Pt/ceria and Pt–ceria EMSI .. 25
 3.2.3 CO oxidation on platinum oxide ... 29
 3.3 Nonlinear reaction dynamics on nanoparticles ... 30
 3.4 NO$_x$ reduction on Pd/alumina .. 34

4 Surface chemistry of water .. 36
 4.1 Motivation and background .. 36
 4.2 Water interaction with ceria ... 36

5 Surface chemistry of organic molecules ... 40
 5.1 Motivation and background .. 40
 5.2 Catalysis of alcohols .. 41
 5.2.1 Methanol oxidation on Pd/alumina catalyst ... 41
 5.2.2 Methanol adsorption and decomposition on Pt/ceria catalyst 43
 5.2.3 Methanol oxidation on ceria/Pt inverse catalyst .. 44
 5.2.4 Methanol on cobalt–ceria .. 47
 5.2.5 Isopropanol on Co$_3$O$_4$ and Pt/Co$_3$O$_4$.. 48
 5.3 Catalysis of other hydrocarbon oxygenates ... 49
 5.3.1 Formic acid decomposition on Pt/ceria ... 50
 5.3.2 Acetic acid decomposition on Pt/ceria ... 51
5.4 Hydrocarbons and graphene .. 53
 5.4.1 Ethene decomposition on platinum... 53
 5.4.2 C–H bond activation on platinum ... 54
 5.4.3 CVD of graphene on platinum ... 56
6 Concluding remarks ... 59
7 Outlook ... 60
8 References ... 63
9 List of Abbreviations ... 87
Appendices – Selected presented publications ... 89
Appendix 17 – Decomposition of acetic acid on model Pt/CeO₂ catalysts: The effect of surface crowding

Appendix 18 – Scanning Tunneling Microscopy investigation of the conversion of ethylene to carbon clusters and graphite on Pt(111)

Appendix 19 – C-H bond activation of light alkanes on Pt(111): dissociative sticking coefficients, Evans-Polanyi relation, and gas-surface energy transfer

Appendix 20 – Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K

Appendix 21 – Carbon chain length dependence of graphene formation via thermal decomposition of alkenes on Pt(111)
1 Introduction

Most global challenges of the current world related to science and technology are closely related to the key issues of energy, health, environment, and natural resources. Whether it is the search for clean and renewable energy sources, strategies for energy conversion and storage, efficient drug delivery, biocompatible materials, reduction of pollution, purification, water treatment, replacement of precious elements with new advanced materials, or food processing, a common denominator can be found here: catalysis. It is a pivotal term in chemistry and chemical physics. Moreover, because it is involved in so many things that affect all of us, it actually holds some interest for everyone (not just for chemists and other scientists), especially because the above mentioned challenges are interdependent, i.e., an improvement in one makes it easier to address others.

Indeed, the phenomenon of catalysis has enormous practical consequences in our daily lives. The contribution of catalysis to manufacturing is almost 40% of global GDP. More than 85% of the industrial chemical processes in use throughout the world utilize catalysts in some form (see Figure 1a). They play a decisive role in the production of plastics, synthetic fabrics, medicines, fuels, and many other valuable chemicals. They are also widely applied in the processing of foods or in numerous biological processes (with enzymes serving as the catalysts) – in fact, the very first use of catalysts, albeit somewhat unconscious, is dated back to 4-10 thousands years BC when natural enzymes were used in the production of fermented beer, wine, and bread. Last but not least, the utilization of renewable energy sources and purification of exhaust gases are only two of the many essential contributions of catalysis to the quality of our environment.

![Figure 1: a) Pie charts showing the percentages of all industrial processes that entail the use of heterogeneous, homogeneous, and biocatalysis. Adapted from [1]. b) Schematic showing the combination of theoretical and experimental studies working in concert to provide us with insight into catalyzed processes (here, e.g., electrochemical conversion of water, carbon dioxide, and nitrogen into value-added products) and guides the development of the high-performance (electro)catalysts needed to enable these technologies. Adapted from [2].](image)

Although effectively macroscopic, the origins of reactivity are of a microscopic nature. Molecular (or atomic) level of understanding of chemistry at surfaces and interfaces can be provided through a combination of insights into the structural properties and their interplay with elementary physico-chemical processes. Since the necessary technologies (regarding vacuum, electronics, materials, and others) have reached a sufficient level of maturity about 4-5 decades ago, the field of surface science has developed and expanded tremendously and became a true atomic-scale and molecular-level science. It has built a bridge between chemistry and physics by offering precise analytical tools as well as an unprecedented control over building or modifying small structures with intricate properties.
This thesis comprises a commented collection of works aimed at exploring structure–reactivity relationships of well-defined catalysts from the surface physics perspective. It deals with metal singlecrystals, thin oxide films grown on metal supports, metallic nanoparticles supported on ordered or nanostructured oxides, bimetallic compounds, and other structures used as laboratory playgrounds for various chemical processes. The central motivation behind all these studies has been the explanation and, wherever possible, optimization of the properties of the investigated catalytic systems via detailed comprehension of elementary processes taking part at their surfaces.

As will be shown in the following text, good understanding of molecular origins of reactivity on solid surfaces is crucial for rational design and tuning of catalyst composition and structure, as well as for finding optimal reaction conditions. In my contributions to this quest I have employed several advanced surface characterization techniques combined with analysis of reactants and reaction products, including various spectroscopic (XPS/SRPES/RPES, RAIRS, LEIS, TDS/TPR, AR-QMS, SIMS) [3-23] and microscopic (STM, LEEM, AFM, SEM) [10, 24-27] methods, in most cases in-situ ultra-high vacuum (UHV) compatible ones [28-30]. Since the prerequisite for unraveling the mechanisms of catalyzed reactions is the characterization of all the relevant elementary processes, the projects I participated in were devoted to adsorption [7, 9, 10, 16, 31-41], dissociation or decomposition [4-6, 13, 20, 24, 25, 35, 37, 39, 41-50], co-adsorption [6, 14, 35], recombination, surface diffusion (including spillover, reverse spillover, and local fluctuation phenomena) [3, 11, 19, 41, 51-54], interactions between individual components of a catalyst [8, 11, 16, 17, 19, 21-23, 27, 54-57] and other aspects of surface science and chemical physics. When classified by the type of surface, these works dealt with single crystals [10, 14, 18, 24-26, 34, 44], alloys [7-9, 16, 33, 55, 58, 59], ordered oxides [5, 12, 27, 38, 39, 41, 48, 50, 57], nanostructured and non-continuous oxides [20, 21, 23, 27, 40, 60-65], supported nanoparticles [3, 4, 6, 9, 11-13, 15, 19-22, 31-37, 39, 41-43, 46, 47, 51-57, 66-69], inverse catalysts [17, 63], and fine powders [40, 49, 65]. Several experimental works were also complemented with theoretical calculations or simulations [3, 21, 36, 44, 48, 53, 56, 66, 67, 70].

The presented research was conducted at several institutions and research infrastructures, namely Department of Chemical Physics at Fritz-Haber Institute of Max-Planck Society in Berlin, Department of Chemistry at University of California Irvine, Department of Chemistry at University of Virginia, Department of Surface and Plasma Physics at Faculty of Mathematics and Physics of Charles University, and Elettra Synchrotron in Trieste, together with other collaborating parties involved, as indicated in the respective published articles.

The following chapters and the corresponding appendices are classified topically based on the type of chemistry (rather than chronologically, by the type of catalyst used, or by the method(s) applied). It covers selected aspects of three significant areas of current heterogeneous catalysis – interaction of solid surfaces with CO₂/NOₓ, with water, and with hydrocarbons.
2 Heterogeneous catalysis

A catalyst which is in a different phase than the reactants is called a heterogeneous catalyst [28, 71-73]. The great majority of practical applications involve solids catalysts and reactants in gas or liquid phase. From the composition and structure point of view, heterogeneous catalysts represent, in vast majority of instances, what we nowadays call nanomaterials. In fact, catalysis has been a nanotechnology long before this term was introduced, since efficient catalysts rely on materials with high specific areas, very complicated structures, and containing multiple finely dispersed compounds [74-77]. Materials based on oxide-supported nanometer-sized clusters find their use also beyond catalysis – for example in electronics, magnetism, biointerfaces, or energy conversion applications [78, 79].

The development of new catalytic materials relies on two main strategies which are usually combined in order to achieve desired properties – 1) increasing the active surface area (via structure of the active component and/or the support material) and 2) increasing intrinsic catalytic activity (via, e.g., a proper mixture of elements, activation of reactive sites by dopants or promoters, structural confinement etc.), as can be seen in Figure 2.

![Catalyst development strategies](image)

Figure 2: Schematic overview of various strategies applied in the development of new materials for heterogeneous catalysis, aimed to increase the number of active sites and/or increase the intrinsic activity of each active site. The former strategy is, however, efficient only up to a certain level of nanostructuring and catalyst loading, above which mass or charge transport limitations can hinder the reactivity. Adapted from [2].

Catalysis by metal nanoparticles perceived in more general sense (i.e., not necessarily supported on solids or purely inorganic) is also referred to as “semi-heterogeneous catalysis” [74, 80], positioned at the frontier between homogeneous and heterogeneous catalysis. In this thesis, however, we will remain in the domain of the standard heterogeneous catalysis.
Although the complexity of surfaces employed in experimental and theoretical works has increased dramatically over the last few decades and understanding basic principles of heterogeneous catalysis has been one of the main driving forces for the development of modern surface science [81, 82], this field still remains far from becoming routine.

2.1 Common motivation and challenges

As has already been indicated in the previous chapter, chemists have been practicing nanotechnology (albeit not calling it so) for about two centuries, and for half a century by design. What modern nanotechnology and material physics has brought to chemistry was the ingenuity and the level of control in organizing atoms and molecules into ultrasmall structures with intricate properties and desired functionality.

The catalysis-related issues of carbon management and renewable energy sources received increased recognition by the worldwide scientific, industrial, and political communities. Huge demands are being placed mainly on 1) increasing the efficiency of energy production and utilization of renewable sources, 2) significantly decreasing the carbon intensity of our economy, and 3) improving our ability to capture and sequester atmospheric carbon dioxide. This is why most of the works presented in this thesis deal with carbon management in some way – from catalysis of carbon oxides, through utilization and activation of light hydrocarbons, to clean hydrogen generation, to name just the main topics.

From a practical point of view, apart from the primary motivation of using catalysts to run reactions with higher rates (and thus more affordably) there are a number of particular factors and aims driving the progress in the catalysis research, with the aforementioned environmental benignness in mind. They can be summarized as follows:

- Minimization of the noble material usage, e.g. by their replacement with other elements, structural tailoring (via morphology, crystallography, dispersion, ...), change of their oxidation state, alloying with other elements, etc.;
- High efficiency per amount of the catalytic material used;
- Low energy consumption (typically implying catalysis at lower temperatures and pressures);
- Good tolerance for the presence of impurities in source chemicals;
- High purity of products, putting lower demands on post-reaction purification;
- Affordable and scalable process of the catalyst fabrication;
- Production of novel compounds not achievable otherwise (where the cost does not necessarily have to be a primary concern).

In this endeavor, the main quantitative indicators to be monitored are:

- **Activity** – this essential parameter describes the increase in rate of a chemical reaction due to the presence of a catalyst. Activity is often quantified by turnover frequency (TOF) as the number of times that a given overall catalytic reaction takes place per catalytic site per unit time for a fixed set of reaction conditions (temperature, pressure or concentration, ratio of reactants, extent of reaction) [83]. In realistic applications, the aspect of accessibility of the catalytically active surface, which is related to the factors of heat and mass transport, may also play an important role in the overall activity.

- **Selectivity** towards the desired reaction product is the single most important attribute of the catalyst quality. It determines the specific reaction pathway along which the required product is formed, and the purity of the catalyzed reaction output; ideally 100% selectivity for the desired molecule in multipath reactions should be achieved via the energetically most facile pathway.
Stability is an important practical factor. It reflects the ability of a catalytic system to sustain harsh reaction conditions and an eventual presence of foreign materials, which may lead to its deactivation (via, e.g., morphological changes or poisoning). The original activity and selectivity of a catalyst has to be maintained as long as possible or there has to exist a reasonably facile procedure of catalyst regeneration.

Among the more practical complementary aspects to be included in the catalyst evaluation is the availability of source materials (considering their price, global reserve volume, or environmental burden of their extraction and processing), which possesses a strong driving force in the search of alternative materials and structures.

In order to address the above goals, there have been parallel efforts made by the heterogeneous catalysis research and development in the following directions:

- Detailed molecular-level understanding of the behavior of known (and already utilized) materials and structures;
- Optimization of parameters of traditional catalysts (with respect to the material usage effectiveness, reaction activity or selectivity, stability, etc.), as well as optimization of conditions in which they operate;
- Rational design of new structures based on traditional materials and their combinations;
- Development of completely novel systems based on materials and/or structures considered non-traditional in catalysis.

More specific backgrounds and motivations related to the particular classes of chemical processes presented in this thesis will be provided individually at the beginning of each respective chapter.

2.2 Model systems in catalysis

The conventional route towards the discovery of novel or optimized functional materials in many fields of industry consists of a number of iterative steps, which makes it rather long and expensive process. In particular, application of this concept in catalysis is largely a matter of trial and error. This time consuming procedure can be speeded up through the development of methods for rapidly synthesizing large numbers of new diverse chemical compounds, followed by a quick screening of such a set for qualitative trends in the desired properties. Such approach is the domain of combinatorial methods [84, 85], commonly applied in pharmaceutical industry, exploration of complex metal–oxide compositions for potential use in semiconductors and superconductors, synthesis of new compounds for both homogeneous and heterogeneous catalysis, etc.

Another approach is based on a bottom-up strategy of systematically unraveling fundamental origins of particular surface processes and applying this knowledge in the design of new catalytic materials or their efficacious optimization. For instance, for the class of reactions involving the dissociation of reacting molecules and the subsequent removal of the dissociation products, there exists a correlation between the reaction activation energy and the stability of reaction intermediates, leading to universal relationship between adsorption energies and catalytic activity [86-88]. Scaling relations between activation and reaction energies (such as the Brønsted relation [89-91], the Langmuir–Hinselwood relation [90, 92, 93], the (Bell/Brønsted–-)Evans–Polanyi relations [90, 94–99], or the Hammett equation [100]) have been identified as quantitative implementations of the classical general Sabatier principle [101, 102]. Their merit is to define relatively simple fundamental descriptors of catalytic activity and selectivity, which can be used to pinpoint what it is that determines the best catalyst. Proper classification of materials and reactions based on available values of the activation energies of elementary reaction steps (either experimental or calculated) allows screening for optimum catalyst (or electrocatalyst) for a given reaction and resolving how some of the elements can be replaced by others or combined in a new efficient way [103-105].
Unfortunately, there is a huge obstacle involved in the systematic study of the surface chemistry of industrial (“real”) catalysts, already utilized in many fields of applied chemistry, which stems from their extreme complexity, both structural and compositional (see the example in Figure 3). A catalyst with high activity has to exhibit a rather large specific surface area, which is typically achieved in highly disordered multicomponent porous structures containing irregular nanoparticles at various levels of dispersion and binding to the substrate material. Moreover, under realistic reaction conditions, the catalyst can undergo dramatic changes both in microstructure and chemical composition, including encapsulation, segregation, surface diffusion, oxidation/reduction, redispersion, sintering, alloying, surface passivation, etc., being of either temporary or permanent nature.

Indeed, the inherent complexity of a real catalyst possesses its main strength as it provides ample room for optimization of its properties towards high selectivity and activity for a desired reaction. A whole variety of parameters are thus available for tuning powder or supported-nanoparticle catalysts such as effective surface area, particle size, structure, composition and dispersion, activity of the support material, presence of promotors, etc. But at the same time, it is the main reason why the detailed microscopic-scale characterization of industrially-relevant catalysts as well as the description of particular reaction mechanisms on the molecular level is often lacking and hard to be accessed by the available techniques of surface and material science.

A powerful strategy in overcoming these difficulties is a confinement to experimentally accessible planar or nearly-planar surfaces with reduced and well-defined complexity (see Figure 4), in tandem with well-controlled environments [107-109]. Such systems, capturing some of the complexities of a real catalyst, can be the means of gaining sufficiently detailed understanding of fundamental patterns of reactivity, which could be later extended to the more complex cases of porous, disordered, and more loosely-defined realistic catalytic systems. These simplified and well-defined so-called model systems [28, 107, 108, 110-115] comprise both model catalysts and processes in which they are involved. Moreover, model systems can also be much more intimately connected with theory via microkinetic simulations and calculations based on quantum mechanics.

The first step on the long stairway of complexity [116-119] has been paved with single-crystal metal surfaces [120-123] at the basic level of simplification, i.e., atomically smooth with a single low Miller index crystallographic orientation. However, even with such nominally simple systems non-trivial structures can already be observed due to a surface reconstruction (thermally and/or chemically induced) [124-128]. An additional variety of potential structural features, along with the ordered facets, exists on high-index planes, irregular, or defective surfaces – steps, kinks, corners, and point or line defects [129-131]. The catalytic activity of metals is known to depend substantially on the presence of structural imperfections [132-135] and there are many instances in which steps were identified as active sites as compared to planar low-index surface [15, 129, 135-141].
A partial perturbation from the ordered structure of a monocrystalline solid is represented by dislocations and grain boundaries which are usually a result of excessive strain within a crystal or of inherent polycrystallinity. These bulk imperfections induce formation of the above mentioned surface features and can result in coexistence of domains with different surface orientations.

All the above considerations are as well applicable to bulk metal alloys or near-surface alloys [122, 142-147], representing a simplest extension towards multi-component systems. Bimetallic catalysts often exhibit electronic and chemical properties not present on either of the parent metal surfaces. This synergistic effect is especially important when the surface alloy coverage falls into monolayer or submonolayer regime.

A similar hierarchy can be further applied to metal oxides, starting with ordered and stoichiometric bulk structures [114, 148-150]. The variety of oxides is tremendously rich due to the larger amount of crystallographic structures and different possible bulk terminations for the same orientation. Even for one particular chemical composition (stoichiometry) a variety of structural phases can exist, or even coexist – this is especially true for transition metals which are stable in more oxidation states [151].

A simple classification from the reactivity standpoint differentiates between inert and reducible oxides. One of the key concepts in predicting the stability and reactivity of oxide surfaces is their polarity [148, 152-155]. Most metal oxides are internally ionic (formally O^- ions surrounded by metal cations) [151]. Minimization of surface energy drives the formation of a particular surface arrangement, leading to bulk terminations with different structures and polarities. Polar oxide surfaces (i.e., those with a dipole moment) are often unstable and prone to reconstructions [152, 155-157], except when present in the form of a nanostructure or stabilized by a proper modification [152, 158, 159].

Like in the case of metals, the catalytic relevance of steps on oxides has been recognized as well, e.g., on TiO$_2$ [160-164], CeO$_2$ [165-169], SnO$_2$ [170], Al$_2$O$_3$ [171, 172], Cu$_2$O [173], MgO [174, 175], ZnO [176], and many others [130, 148-150, 177]. Regarding defects on oxides [178-180], besides line and point defects, domain boundaries, dislocations, and cation interstitials, of special importance are oxygen vacancies [48, 164, 178, 180-187] which are associated with a formation of metal cations with lower oxidation state. They can act as a nucleation center for nanoparticle growth (heterogeneous nucleation), adsorbate dissociation site, or anchoring site for adsorption. As one of the descriptors of reactivity, the general concept of basicity and acidity in chemistry [188, 189] can be analogically applied to heterogeneous catalysis as well (or specifically to solid oxides as in Ref. [190]). When the Bronsted and Lewis acid–base theories are related to catalyst surfaces, they lead to a definition of so-called Brønsted or Lewis surface sites: acid strength may be defined as the tendency to give up a proton, while base strength as the tendency to accept a proton. The basic or acidic character of a given surface or a type of surface site is, in general, not only determined by the composition of the material but can be strongly structurally dependent.

Ultra-thin oxides [157, 191-194] can be considered a special class of materials – well-defined systems which mimic surfaces of three-dimensionally structured oxide supports of industrial catalysts and allow to investigate metal-support interactions [195, 196]. Thin oxides are more accessible to surface science methods as they provide the benefits of electrical conductivity (allowing, e.g., electron spectroscopies and STM, owing to the tunneling of neutralizing electrons or holes from the substrate), and good thermal conductivity (reducing temperature gradients). Moreover, the constrained dimensionality of the ultrathin oxide films (with the limit case of two-dimensional single layer [193, 194] or even submonolayer oxides) and the proximity of the substrate may permit a production of more open or unstable (metastable) surface orientations than those achievable by cutting a single crystal, a synthesis of strongly non-stoichiometric phases, or bring a novel functionality not provided by thicker macroscopically-sized oxides [114, 153, 177, 197-200]. Discontinuous ultra-thin oxides form
basis of a special type of catalytically attractive systems called inverse catalysts [177, 200-203]; see also Appendix 11 [63] and Ref. [17]. Last but not least, thin oxides have also been used as templates for spatially controlled growth of nanoparticles [191, 197, 204, 205].

With this being said, it is evident that even the single-component systems based solely on metals or oxides provide an incredible wealth of features and phenomena with relations to heterogeneous catalysis which are worth investigating.

![Figure 4: Schematic scale presenting model catalysts of increasing complexity which are developed in order to bridge the „materials gap” (see Section 2.3 for details) between surface science and industrial heterogeneous catalysis. The bottom panels show STM images of selected model systems with different levels of complexity. Adapted from [206].](image)

However, in order to mimic the composition and structure of a “real” catalyst an elevated degree of complexity has to be achieved via combinations of different materials. A model catalyst based on the conventional configuration comprises active metal nanoparticles (or clusters [78, 207]) supported on an oxide substrate present in the form of a bulk material or a thin film [75, 82, 111, 113, 118, 208-212]. The potential roles of the oxide span from a mere mechanical support (inert oxides, e.g., crystalline alumina or silica) to an active participant in the reactivity (e.g., reducible oxides CeO$_2$, TiO$_2$, WO$_3$, Fe$_2$O$_3$, etc.). Examples from both groups are provided in Section 3.2.1 for Pd-alumina (Appendix 1 [34]) and in Section 3.2.2 for Pt-ceria (Appendix 3 [11] and Appendix 4 [56]), respectively. It is shown, however, that there is no sharp borderline between the inert and the active oxides, since the above described structural variations can considerably alter the active involvement of the oxide component in the reactivity, owing to, e.g., metal–support interaction (MSI) or formation of local bimetallic phases [7-9, 11, 16, 55, 58, 196].
A reverted metal–oxide arrangement (i.e., oxide nanostructures on top of a metal support) leads to an **inverse model catalyst** [177, 200-203, 213], already referred to earlier as a logical outcome of the metal-supported ultra-thin oxide system.

Because the reaction behavior and electronic structure of supported NPs is generally a function of the particle size (or even of limited dimensionality) [118, 129, 214, 215] and its shape [109, 215-217], several related aspects need to be considered here. These include different adsorption at facets, edges, and defects, size-dependent variations of electronic structure, surface diffusion confinement, and eventual formation of surface complexes. Moreover, the chemical composition factor has to be added into the set for oxidic [177, 201, 218, 219] or bimetallic (resp. multimetallic) [182, 189, 220-224] nanoparticles. Nano-size effects associated with the ultrasmall NPs also opens pathways to synthesizing oxides with unusual stoichiometries or bimetallic particles consisting metals immiscible at the atomic level in bulk [225, 226], see the example in Figure 5.

![Figure 5: Pd-Ru solid-solution nanoalloy catalyst, providing high CO-oxidation activity. In these nanoparticles Pd and Ru are mixed with each other at the atomic level (as illustrated on right), although both metals are immiscible in the bulk form due to their different crystallographic structure (see the phase diagram on left). Adapted from [225].](image)

For the purpose of model studies and, more specifically, when establishing correlations of size- and shape-dependent structural and chemical factors, it is desirable to assure the distribution of the NP properties as narrow as possible. It is because most characterization techniques provide integral information, reflecting the contributions from all parts of the analyzed area, but the observed catalytic properties may be dominated by a participation of a small subset of NPs near a specific structure or composition, or even specific reaction sites thereof. Thus, the structure-reactivity relations derived from investigations of catalysts with diverse population of particles may be misleading. The same restriction may apply to the arrangement of supported particles in the situations where surface diffusion is an important factor. It can be characterized by attributes such as particle density, spatial distribution (regular, random), orientation alignment etc.

With current modern techniques an extreme level of control can be achieved, e.g., generating monodispersed clusters with precise numbers of atoms [146, 227, 228], spatially controlled patterns [3, 229, 230], well-defined shapes [216, 217, 231], or achieving confinement to strictly reduced dimensionality [232] (for example by creating 2D arrays of nanoparticles [194, 233, 234], linear (1D) structures [235-237], or isolating single atoms [118, 238-242]).

2.3 Real heterogeneous catalysis

In previous section we have shown that the key advantage of the model study approach is the possibility to identify individual factors determining the properties of catalytic systems and reactions on them via systematically increasing their complexity in highly controlled manner. However, there still remains what we call a **complexity gap** between the amount of complexity we are currently able to handle and the intricacy of the „real-world” catalytic materials (like the one shown in Figure 3).
Therefore the kinetics observed in industrial catalytic reactions do not necessarily follow what we can obtain with simplified model systems. There are two aspects of the complexity gap: 1) the structural and compositional complexity of the surfaces (also denoted separately as a materials gap) and 2) the chemical complexity of the reaction systems.

Nevertheless, this complexity gap keeps steadily closing with the growing capabilities of sample preparation and characterization methods on one side (see also Section 7) and improvement of theoretical models on the other. Several research articles and reviews have been devoted to the issue of bridging the complexity gap and correlations between models and “real-world” catalysts, see e.g. [117, 119, 208, 243-246], including the Ertl’s Nobel Lecture [116].

Another serious simplification of model studies stems from the pressure restraints of the surface characterization techniques (most of them requiring UHV environment), which may lead to misleading conclusions regarding the subject of study. For example, although the CO oxidation over Ru under UHV conditions reveals the lowest catalytic activity among the late transition metals (such as Pt, Rh, and Pd), under strongly oxidizing reaction conditions (e.g., in ambient air) the CO oxidation rate on Ru turns out to be superior to the above metals [114]. This observation can be taken as a clear manifestation of the so-called pressure gap [247]. The transition from an inactive catalyst towards an active one turned out to be, in this case, attributed to a structural transformation of Ru to RuO$_2$.

Similarly, contrary to what experiments conducted with UHV equipment had led us to believe, under atmospheric pressure of reactant gases Pd or Pt metal surfaces establish PdO or PtO$_2$ surface phases, respectively [248], which catalyze the oxidation of CO to CO$_2$ via the Mars–van Krevelen mechanism [249] and not the long-assumed Langmuir–Hinshelwood one [28]. In other words this catalyzed reaction largely proceeds by utilization of lattice oxygen from oxide phase instead of direct involvement of surface chemisorbed oxygen. Hence, the reactivity is not intrinsically linked to the availability of gas-phase oxygen, but rather a certain partial O pressure is required in order to form oxide phase, igniting a reaction channel which does not participate at lower pressures. This observation, for instance, formed the basis of the work presented in Appendix 5.

Like in the previous issue of the complexity gap, surface science has reached a degree of maturity that allows us to cope with the pressure gap to some extent as well. An overview of efforts made towards bridging the pressure gap can be found in Refs. [244, 250, 251] (see also Section 2.5).

In any case, it should be remembered, that industrial catalysis cannot be reduced to merely describing the behavior of the active site, no matter how complex and to what level of detail. When designing a functional chemical reactor the involvement of mass and heat transfer in the process has to be seriously taken into account, too. Moreover, it is often other factors like selectivity or secondary phenomena (such as catalyst deactivation or instability) playing decisive role rather than the catalyst activity alone.

2.4 Preparation of model catalysts

There are two fundamentally distinct strategies in the synthesis of microscopic structures. A so-called top-down approach was typically adopted by material physicists and engineers who developed ways to manipulate and build progressively smaller structures by the means of photolithography and other related techniques. As the size of fabricated structures gets lower (tens of nm range) this strategy becomes very challenging. The bottom-up route, on the other hand, which is more natural to chemists, starts from objects which are nanoscaled by their nature, such as atoms or molecules, to build up more complex and larger nanostructures (see schematic picture in Figure 6b). Although current state-of-the-art technologies from both sides has already merged in terms of the scale in which
they can operate (Figure 6a), each of these two approaches carry its pros and cons and are thus being increasingly more often combined (an example is provided in Appendix 2, see Section 3.2.1).

From the catalysis standpoint, as was already indicated, the true nanoscale is particularly important here because nanometer-sized objects (units of nm rather than tens or hundreds) can provide characteristic structures, exhibit peculiar properties, and perform specific functions, often not achievable otherwise. The bottom-up built structures can be formed as an ensemble of relatively simple entities (such as surface structural patterns, adsorbed molecules, metal atoms, clusters, nanofibers, etc.), or have a complicated structure or chemical composition (such as molecular devices and nanomachines). The fundamental research in model catalysis is positioned around the former class of nanomaterials with the bottom-up approach as the prevailing strategy of sample preparation.

Figure 6: a) Graph illustrating the convergence of top-down and bottom-up nanotechnologies. b) Schematic diagram of the basic principles of top-down and bottom-up approaches in synthesizing nanoparticles. Partially adapted from [252].

An overview of various methods used in the preparation of catalytic materials is given in Refs. [216, 253], spanning from the traditional three-dimensional “wet” chemistry (such as precipitation or impregnation) to the “two-dimensional” methods of physical chemistry. In the following, with regard to the topic of this thesis, we will focus on the latter class of techniques, summarized in Refs. [28, 75, 80, 231, 254], namely the preparation of well-defined solid surfaces and supported nanostructures.

Ordered metal surfaces can be prepared by cutting a single crystal along a particular crystalline orientation and subjecting to a subsequent cleaning treatment in UHV. Similarly, a fresh oriented oxide surface can be obtained by cutting or cleaving a single crystal bulk along the desired plane directly under vacuum [113], or via careful (non-reductive) surface treatment of an ex situ pre-cleaved single crystal in UHV. And, finally, the preparation of bimetallic surfaces can follow the same recipe as suggested for pure metals, however, the attainable compositions of such surfaces is limited to those of bimetallic systems forming stable bulk alloys. A more common and flexible way to fabricate bimetallic surfaces is via depositing one metal onto the other (usually a well-ordered single crystal), as will be briefly described below. Additional advantage of this method is that the admetal can either stay on the surface or diffuse into the subsurface region to produce surface or subsurface bimetallic layer, respectively; the particular behavior can be tuned through sample temperature during deposition.

Thin epitaxial films of a wide variety of materials (metals, oxides, semiconductors) are often grown by a precisely controllable technique of molecular beam epitaxy (MBE) [255-258], representing one of the physical vapor deposition (PVD) techniques. In this process, a nearly atomically clean surface (kept at an elevated temperature to provide sufficient thermal energy to the arriving species to readily
migrate over the surface) is exposed to a beam of atoms or molecules in an UHV environment, forming a crystalline layer in registry with the substrate (epitaxial film). An eventual lattice mismatch between the support and the layer material can result in effects and structural features such as interfacial strain, periodical superstructures (superlattices, surface corrugations), rotational domains, etc. The source beam is usually realized by evaporating the deposited material from a tip or a crucible, using resistive heating or electron-beam sputtering, by ion sputtering, by cathodic arc plasma, or by pulsed laser evaporation.

For the preparation of thin oxide films or oxide nanoparticles three principle routes are at hand [111, 216, 259, 260]: 1) reactive evaporation of an oxide or a metal on a (typically inert) support in oxygen atmosphere [261, 262], 2) deposition of a metal on a suitable (typically inert) support followed by an oxidation procedure [156, 197, 263], or 3) direct oxidation of a metal, semiconductor, or metal alloy surface (usually a single crystal) [254, 264]. A large number of recipes have been developed for the preparation of various ordered oxide films including Al$_2$O$_3$, SiO$_2$, TiO$_2$, FeO or Fe$_2$O$_3$, CeO$_2$, MgO, NiO, ZnO, CuO or Cu$_2$O, Cr$_2$O$_3$, SnO$_2$, Co$_3$O$_4$, V$_2$O$_5$, WO$_3$ and many others (see, e.g., Refs. [192, 259-261] and references therein).

Apart from the above methods, other members of the PVD family are the pulsed laser deposition (PLD) [265, 266] and magnetron sputtering [267-270]. Especially magnetron sputtering has become a very popular versatile technique for preparation of new materials, allowing deposition of a very wide range of compounds and alloy thin films including oxides, nitrides, carbides, fluorides, or arsenides. It is capable of producing thin films of controllable stoichiometry and composition, including multicomponent solids with stoichiometries which would be difficult to achieve by other methods, via using composite sputtering targets or via simultaneous co-deposition from multiple targets. Contrary to conventional evaporation processes magnetron sputtering offers more flexibility and does not require heating of the source material, which has limiting consequences for the composition and morphology of the resulting layer. Direct current (DC) sputtering [271] is typically used for deposition of metals, while the radio frequency (RF) modification [272] is required for the coating by insulating materials or for improved deposition stability; on a larger scale it is usually replaced by a pulsed sputtering [267, 270]. RF sputtering also reduces thermal load to the substrate and can provide higher deposition rates. The magnetron is operated with low pressure glow discharge of either an inert gas (e.g. argon) or a reactive gas (e.g. oxygen), which then directly participates in the growth of the thin film and can be used as one of the means of controlling its stoichiometry (referred to as the reactive sputtering [272, 273]).

In contrast to PVD, chemical vapor deposition (CVD) methods [274] are based on exposing the substrate to one or more volatile precursors, which produce a deposit with desired composition via reaction and/or decomposition on the substrate surface. It can be applied in the preparation of various thin films [275-277], metal [278] or oxide [279] clusters, nanorods [280], nanotubes [281, 282], multilayered [283, 284] or 2D [285, 286] structures, etc. In Section 5.4 of this thesis CVD method is used to grow graphene layers on a metal substrate.

Industrial **supported metal catalysts** on a large scale are typically made by wet impregnation of a porous support (usually an oxide) with a solution of a metal salt, followed by heating in air (calcining) and reduction (usually in hydrogen) [287, 288]. This procedure leads to an ensemble of metal particles non-uniform in size, shape, and spatial distribution, which can hardly be characterized systematically. Better-defined preparation protocols have been established for systematic model studies [75, 111, 231, 254]. Physical vapor deposition (PVD) of metals [78, 111-113] (by either evaporation, magnetron sputtering or pulsed laser deposition) or direct deposition of metal clusters from the gas phase [146, 228, 289] under UHV conditions have been the preferred choice. Various aspects of NP growth, assembly, and modification have been subject of several reviews [111, 216, 231, 253, 254].
2.5 Experimental strategies and characterization techniques

The general concepts and techniques used in catalysis, both experimental and theoretical, are inextricably mingled. Moreover, the experimental results often stimulate implementation or even development of theoretical methods and, in turn, theoretical insight naturally prompts experimental endeavor. The experimental tools of surface science can be divided into two main categories: spectroscopy and microscopy methods [29, 81, 110, 254, 290, 291]. Employing a combination of methods from both categories (multi-scale characterization [292]) and performing kinetic measurements of reactivity allows to identify the connections between structural and electronic features of the surface on one side and their role in the reaction kinetics on the other [75, 109, 129, 157, 293].

A rigorous research aiming at detailed insight into the key stages of reactions and, in particular, the modus operandi of a catalyst, requires a direct monitoring “in action” [125, 250, 292]. Even when a simultaneous characterization of the catalyst state and of the reaction processes is not feasible, the subsequent experimental procedures (including the sample preparation or high-pressure treatments) should be performed under well-controlled conditions, ideally within the same apparatus (typically a UHV system) [121]. This approach gives rise to the field of in-situ research methods [28-30, 254].

In contrast, the ex-situ methods involve sample transfer between different experimental devices (typically after sample preparation or between individual sample treatments) and thus expose the subject of study to different and less controlled environments, usually to ambient air.

![Figure 7: a) Schematic depiction of the restructuring of a stepped surface as a result of reactive environment. b)-d) In-situ TEM images and the corresponding Wulff constructions of Cu nanocrystal in Cu/ZnO catalyst in various gas environments: a) 1.5 mbar of H₂ at 220°C, b) mixture of H₂ and H₂O (53 : 1 ratio at a total pressure 1.5 mbar) at 220°C, and c) gas mixture of H₂ and CO (19 : 1 ratio at a total pressure 5 mbar) at 220°C. Adapted from [30] and [294].](image)

Moreover, one should be aware of the fact that the common view of the catalyst as a physically and chemically rigid system not affected by its environment or by a running reaction is generally not valid. The active heterogeneous catalysts often restructure the metal surface around the adsorption site upon forming a bond to a molecule. This autogenous transformation occurs to optimize the adsorbate-metal bonding and can be of temporal (ultimately limited to the site occupation period), or of permanent nature [25, 109, 125, 126, 189, 295-299]. On somewhat larger scale this restructuring can affect metal nanoparticles by changing their equilibrium shape [76, 109, 128, 211, 294, 300-303] (see the example in Figure 7b–d) or disrupting them into smaller particles [109, 304-306]. On continuous metal surfaces it can lead to a significant amount of mass transport of metal atoms over the surface, altering the whole surface landscape [125-128] (illustrated in Figure 7a), which can even inhibit the reaction, result in structural anisotropy in the reactivity [126], or induce macroscopically detectable oscillatory behavior [299, 301].
Similarly, reducible oxides can undergo chemically induced structural, morphological, or compositional changes via formation of oxygen vacancies (leading to stoichiometry variations) [128, 181, 191, 218, 307-309], rearrangement of steps or surface lattice [150, 191, 310, 311], nanoparticle reshaping [128, 312], or crystallographic transformations [218, 308, 312]. In multicomponent systems (such as, e.g., supported nanoparticles, alloys, or mixed oxides) surface segregation [145, 313, 314], encapsulation [302, 303], redispersion [118, 305, 306, 315, 316], phase separation [145, 313], sintering [302, 315, 317-320], or other phenomena involving mass transfer or material accumulation may occur as an action of temperature and reactive environment, again with potentially fundamental consequences for its catalytic properties. Sometimes, these alterations are an intentional and controlled process serving a purpose of catalyst stabilization or initial activation ("induction period"). All the above reasons emphasize the importance of (whenever possible) in-situ sample characterization in the whole course of the scrutinized chemical process, ideally including monitoring directly under the working conditions of the catalyst.

Figure 8: Illustration of structural and compositional changes that may occur during the transformation of catalysts from the "as-prepared" to the "active state": a) sintering, b) restructuring, c) oxide or hydride formation, d) coking, and e) particle encapsulation or f) surface segregation of bimetallic particles. Adapted from [223].

Nowadays, the main driving force in the development of surface science equipment for heterogeneous catalysis is the effort to bridge the pressure gap [244, 254, 321, 322], mentioned previously in Section 2.3. One of the possible approaches in achieving this goal is to build-up an experimental setup in which UHV chamber is linked to a high-pressure stage, using differential pumping. Implementing this design, XPS (or PES), TEM, SEM, or LEIS can be operated in the mbar regime [30, 250, 290, 323-327]. Another route is using a microreactor separating the UHV section of the apparatus from the high-pressure volume via electron-permeable ultrathin membrane (made from, e.g., graphene or silicon nitride) not interfering with the monitored process; this has been applied in PES, SEM, TEM, and X-ray (spectro-)microscopy setups [250, 328-337]. Some other experimental methods of surface science are intrinsically capable of working under elevated pressures (as such, or with relatively minor modifications), for example IR absorption spectroscopies (e.g., ATR-FTIR, RAIRS, or DRIFTS), Raman spectroscopy, UV/Vis and sum frequency generation laser spectroscopy (SFG), surface X-ray diffraction (SXRD), and X-ray absorption spectroscopy (XAS). These optically based techniques benefit from the low-scattering cross-sections of photons with matter, which allow deep penetration into materials and thus simplify the types of reactor designs that can be utilized for characterization under ambient or even harsh reaction conditions. Scanning probe microscopy (AFM, STM) can be operated under higher pressures as well, with certain limitations (probably more restrictive for STM).

In the following sub-sections, the major instrumentation used in the projects presented herein will be briefly described.

14 | Heterogeneous catalysis
2.5.1 Molecular beam system at FHI-MPG

Molecular beam apparatus installed at Fritz-Haber Institute of Max-Planck Society in Berlin by workgroup of Prof. J. Libuda is an elaborate UHV system employing molecular beam techniques [115, 244, 338-342] and in-situ surface and gas phase detection techniques, realized by reflection absorption infrared spectroscopy (RAIRS) and quadrupole mass spectrometry (QMS), respectively. The details are provided in Ref. [343], the schematic drawing can be seen in Figure 9. The main advantage of the molecular beam approach over a simple reactor study is that the beam experiment is performed under single collision conditions [244, 340, 341], i.e., each reactant molecules undergoes only a single interaction event with the surface in an otherwise collision-free environment (UHV). Moreover, beam flux and modulation can be varied quickly and over a wide range of parameters. Implementation of the molecular beam technique allows for determination of absolute adsorption and reaction probabilities [341, 344, 345], flexible modulation of reactant fluxes on a short timescale [338, 339], control over dynamic properties of incident molecules (kinetic energy, rotational and vibrational states), and collision-free detection of scattered and desorbing molecules.

![Molecular beam apparatus](image)

Figure 9: Molecular beam apparatus in the former Molecular beam group laboratory for combined structural and surface chemistry studies. a) Complete overview of the molecular beam UHV system, b) Detailed view of the internal parts of the main scattering chamber, c) Basic scheme describing principle and geometry of a molecular beam experiment. Adapted from [343].

Two types of molecular sources were installed in the apparatus: effusive and supersonic, differing in the expansion conditions, giving rise to different types of energy distribution of the molecules in the beam [109, 132, 340]. Both sources require an effective multi-stage differential pumping, and include computer-controlled shutters allowing fast beam modulation. The effusive beam uses injection of gases through parallel arrays of small channels with high Knudsen number (glass capillary arrays, GCAs). The supersonic beam operates with an injection nozzle under high pressure difference conditions, producing gas flow with molecules reaching sonic speed on exiting the nozzle and supersonic speed upon further expansion. A small solid angle is extracted from the gas plume by a
skimmer. The main advantages of the supersonic beam source are narrow velocity distribution, very good collimation, widely variable kinetic energy, and a large degree of control over the internal energy of molecules.

Two quadrupole mass spectrometers (QMS) are used for gas phase detection. For simple reactivity experiments a QMS is placed in the scattering chamber out of the line-of-sight of the sample, providing integral rate measurements. For angular resolved studies [341, 346], differentially pumped spectrometer (AR-QMS) with liquid-nitrogen cooled ionizer housing (to reduce background pressure and thus improve the sensitivity) mounted on a motor-driven rotatable platform was employed. Detected molecules enter the QMS ionizer through an aperture tube with its axis directed at the sample. The high level of control over the thermodynamic properties of impinging molecules and the incident geometry generated by molecular beam sources together with the AR-QMS detection opens up the possibility of studying the dynamics of gas-surface interaction [73, 339, 342, 347-351], dynamical parameters of desorbing molecules [341, 352], and experimental probing of potential energy surfaces [341, 342].

The availability of two effusive beams in the above apparatus permitted a transient isotopic exchange experiment [339, 353], which represents a route towards acquisition of transient kinetic data at constant surface coverages. It is realized via fast switching between two identically set-up molecular beams with chemically the same entities, one of them being isotopically labeled (e.g., 14NO and 15NO, 13CH$_3$OH and 1CH$_3$OH, CH$_3$OH and CD$_3$OD, etc.). Such capability was utilized, e.g., in Refs.[35], [66], and [42], respectively. In some cases, isotopically labelled molecules are used only to reduce the background signal during the experiment.

UHV IR spectroscopy [354-356] operated in grazing-incidence-angle reflection mode (Reflection-Absorption IR Spectroscopy, RAIRS) [357-359] was used as a very sensitive tool to study surface adsorbates, providing very specific information on the nature of adsorbates (molecular identification, bond strength and geometry, etc.), their interaction with the substrate, properties of adsorption sites, and character and magnitude of intermolecular interactions within adsorbate layer. It can be used with any reflective surface including thin oxide films on metals. In the spectra evaluation, however, a few factors has to be taken into account, mainly the surface selection rule (limiting the sensitivity to modes with a non-zero component of the dynamic dipole moment perpendicular to the surface), and dipole coupling effects between neighboring adsorbed molecules. The spectrometer also allowed measurements in the time-resolved mode (TR-RAIRS) [360] with temporal resolution in the millisecond range.

Apart from the above described main equipment, other auxiliary devices were installed in the attached preparation chamber (separated from the main chamber by a gate valve) for the sample preparation and quality control, namely low electron energy diffraction (LEED) and Auger spectroscopy (AES) systems, differentially pumped ion sputter gun and gas doser manifold with precise leak valves for chamber back-filling with pure gases, electron beam metal evaporator, and quartz microbalance monitor for deposition rate measurements.

2.5.2 Spectro-microscopy system at Charles University

This multi-probe UHV system combining several complementary in-situ methods of structural and spectroscopic characterization is situated in the Surface Physics group laboratory at Charles University in Prague. It was built primarily by Dr. J. Mysliveček as a low-temperature scanning tunneling microscope (LT-STM) instrument with attached preparation and fast-entry load-lock chambers, but many additional upgrades have been made by him and coworkers over the last decade. Currently, this apparatus offers a rather unique set of surface science methods located in three main chambers (separated by gate valves), between which samples can be transferred by transfer rods without
breaking vacuum. Apart from the aforementioned LT-STM (with "beetle" type head [361, 362] and liquid-nitrogen cryostat), it allows surface and near-surface structural characterization by SPA-LEED (SPECS reverse view ErLEED 150) and XPS (SPECS Phoibos 150 MDC 9 energy analyzer with a dual Al/Mg X-ray source), along with gas analysis by QMS (Pfeiffer Prisma Plus). The QMS is housed in a differentially pumped nozzle making temperature-programmed desorption (TPD) and sticking probability measurements possible. A set of back-fill dosing valves and two simple directional effusive gas beams can be employed for sample preparation or modification and for basic molecular beam experiments on adsorption/desorption properties and surface reactivity of the investigated samples.

Figure 10: Experimental UHV apparatus in the Surface Physics group laboratory at Charles University in Prague for combined structural and surface chemistry studies; a) front view, b) side view (from the sample entry side). The main components of the system are marked in the photo.

The XPS/TPD chamber is also used as a preparation chamber since it is equipped with two ion sputter guns (wide beam and scanned focused beam) for substrate cleaning and controlled surface morphology modifications, two dual electron-beam evaporation sources for controlled metal or oxide deposition, quartz microbalance monitor for direct on-the-fly measurements of the amount of deposited material. The sample holder allows precise (programmed) temperature control over a broad range from approx. 85 K to 1300 K (depending on the type of sample). Five-line gas manifold is used for controlled injection of pure gases or gas mixtures into vacuum via sapphire leak valves or gas dosers.

2.5.3 Material science beamline at Elettra Synchrotrone

The Materials Science Beamline (MSB) at Elettra Synchrotrone in Trieste (Italy) is a versatile multipurpose beamline apparatus suitable for experiments in materials science, surface physics, and catalysis on various surfaces. It was installed in the frame of cooperation between the Institute of
Physics of the Czech Academy of Sciences, Charles University, and Sincrotrone Trieste. The overview of the instrument and a drawing with main components is provided in Figure 11.

MSB was designed to allow surface-sensitive characterization by the means of photoemission spectroscopies with a tunable photon energy (ranging from vacuum ultraviolet to soft X-ray radiation, 22–1000 eV). The photon radiation source is realized by a bending magnet producing mostly linearly polarized light (in the horizontal direction) in tandem with a single grating monochromator (groove density 1200 l/mm) which selects light with a desired photon energy and bandwidth [363]. The spot size on the sample has a diameter of ~100 μm. The maximum attainable light flux is approx. \(2 \times 10^9\)–\(6 \times 10^{10}\) photons/s at the sample depending on the selected resolving power and photon energy.

![Figure 11: a) Endstation of the Material science beamline (MSB) at Elettra Synchrotrone. b) 3D model of the MSB endstation showing main components of the vacuum system. The drawing by courtesy of T. Skála.](image)

The whole system consists of a series of UHV chambers separated by leak valves. Both main chamber and preparation chamber are pumped by a combination of turbomolecular pump and Ti sublimation pump, providing a base pressure in the low \(10^{-9}\) mbar and \(10^{-9}\) mbar range, respectively. Attached to the preparation chamber is a small load-lock fast entry chamber that allows the transfer of samples within 30 minutes from air to vacuum better than \(10^{-8}\) mbar.

Gas composition in the main chamber can be monitored by a quadrupole mass spectrometer. Photoelectrons from the sample are analyzed by hemispherical electron energy analyzer (SPEC “Phoibos 150 with a 100-channel detector) inclined 60° from the beamline axis. Both main and preparation chambers are equipped with Ar+ ion sputter guns, several gas lines with precision dosing leak valves, and a set of evaporators, allowing in-situ preparation of clean well-defined surfaces from various materials. The main sample manipulator allows heating and cooling of the sample (in the range of approx. 100–1200 K).

The MSB instrument offers high-resolution and high-sensitivity photoelectron spectroscopy covering range of both classical UPS and XPS spectroscopies [29, 325]. The tunable excitation energy brings the benefit of variable surface sensitivity and possibility of photoionization cross section optimization. The
monochromatized variable-energy photon source also makes resonant photoemission (RPES) [262, 364, 365] and near edge X-ray absorption fine structure (NEXAFS) [366] spectroscopies possible. Moreover, the utilization of the independent sample rotation capability of the sample manipulator around azimuthal and polar axes (along with x, y and z translations) allows angular resolved photoemission studies (ARPES).
3 Surface chemistry of CO\textsubscript{x} and NO\textsubscript{x}

3.1 Motivation and background

Carbon oxide and nitrogen oxide are one of the most abundant gaseous oxides, being naturally present as well as (by-)produced by many industrial and technological processes. Along with residual hydrocarbons (including partially oxidized volatile organic compounds) they are the main constituents of exhaust gas mixture of a conventional combustion engine [367, 368], apart from harmless water vapor, indeed. Raising CO\textsubscript{x} and NO\textsubscript{x} levels are concern for air quality mainly in metropolitan areas and increasing CO\textsubscript{2} concentration in atmosphere, deemed responsible for the greenhouse effect, became a worldwide issue [369]. The reduction of nitrogen oxide emissions has become one of the greatest challenges in environment protection [367, 370].

The above implies the tremendous importance of CO oxidation and NO\textsubscript{x} (NO and NO\textsubscript{2}) reduction reactions. In a traditional transition-metal-based, three-way car emission control catalyst (TWC), the oxidation of CO and residual hydrocarbon fragments is performed simultaneously with the reduction of NO\textsubscript{x}. Today modern vehicles with three-way catalysts can achieve almost complete removal of all three exhaust pollutants. TWCs are operated with air-to-fuel ratio controllers which maintain the near-stoichiometric fuel mixture composition in order to ensure high conversion efficiency for the competing oxidation and reduction processes.

Both alumina, used as a nanoparticle support material in Section 3.2.1, and ceria, used as an active substrate in Section 3.2.2, found its extensive use in TWC [106, 371, 372]. The main role of alumina is in providing stable supporting structure with high surface area, whereas ceria possesses a dual functionality – operating as a stabilizing component and as an effective oxygen buffer enhancing oxidation activity of the catalyst. A systematic study aimed at unraveling molecular and structural origins of reactivity of metal-alumina and metal-ceria systems towards the aforementioned reactions is expected to aid in catalyst optimization with respect to high reaction yield, good fuel-stoichiometry tolerance, and resistance against deactivation (e.g., via formation of surface carbon).

3.2 CO adsorption and catalytic oxidation

Apart from the numerous practical applications, in fundamental research carbon monoxide has been used frequently as so-called surface probe molecule and CO oxidation as a prototypical reaction for heterogeneous processes at the gas-solid interfaces [373]. A probe molecule can serve as a sensitive local tool to determine, for instance, the exposed surface coverage of the active phase of a catalyst or, when handled spectroscopically, even the abundance and properties of specific adsorption sites.

The CO oxidation is one of the most extensively studied reactions also for being of extreme practical importance itself and of vital concern in environmental protection. Especially catalytic CO oxidation on surfaces consisting of or containing noble metals has attracted a considerable attention over several decades. The main focus has been progressively moving from the simpler systems of single crystal surfaces of metals towards more complex model catalysts (see also Section 2.2), hand in hand with the development of necessary instrumentation. In the following a few examples of particular achievements on this route will be presented.

3.2.1 CO oxidation on Pd/alumina

Aluminum oxide (alumina in short) is often used as a base substrate in industrially produced catalysts because of its high chemical inertness, strength, and hardness [374, 375]. There are many forms (phases) of alumina differing in crystallographic structure and purity [374, 376, 377]. Well-ordered alumina single-crystal substrates (such as α-Al\textsubscript{2}O\textsubscript{3} [376, 378-380] and γ-Al\textsubscript{2}O\textsubscript{3} [376, 381, 382] have been...
commonly considered inert (especially the sapphire phase of α-Al$_2$O$_3$) and therefore suitable for practical catalysts in which the high chemical and thermodynamic stability is required, as well as in model systems of heterogeneous catalysis where an involvement of the substrate in reactivity is not desirable.

A series of experiments was devoted to CO interaction with alumina-supported palladium model catalysts and CO oxidation therein \cite{9, 31-34}. Pd nanoparticles were prepared by physical vapor deposition (PVD) from a metal rod. With increasing amount of deposited Pd, both intensity of XPS signal from Pd 3d level and its binding energy change. The binding energy (BE) monotonically decreases with coverage due to electronic size effect \cite{113, 115, 214, 383-385} (see Figure 12a), originating in finite-size alteration of both initial state (via band structure changes induced by charge redistribution) and final state (via changes in relaxation processes due to reduced screening effects); on non-conducting or poorly conducting substrates a final state may also be affected by coulombic charging of supported particles upon rejection of photoelectron. The BE does not asymptotically approach the Pd bulk value as could be expected but rather drops to lower values, more significantly for γ-Al$_2$O$_3$ than for α-Al$_2$O$_3$. It is explained by metal–support interaction \cite{195, 385} between Pd and alumina involving charge transfer from substrate to NP, which is stronger on the more open crystal plane of γ-Al$_2$O$_3$ \cite{32}. Hence, although ordered alumina surfaces were traditionally considered inert, the close examination proves that MSI can take place even on these oxides; moreover, MSI may become enhanced on defects or reduced surfaces \cite{9, 178, 386}.

Figure 12: a) Variation of Pd 3d, binding energy with relative Pd coverage upon growth on γ-Al$_2$O$_3$ (open symbols) and α-Al$_2$O$_3$ (solid symbols) substrates. The zones I and II based on FWHM analysis of Pd 3d XPS doublet denote the regions of initial growth of three-dimensional clusters (I) and their consequent lateral growth towards flat islands (II); Inset: the series of source XP spectra of Pd 3d obtained on Pd/γ-Al$_2$O$_3$ sample. b) Valence band XP spectra and c) corresponding CO TPD spectra of pristine Pd, Pd NPs on γ-Al$_2$O$_3$, Pd NPs on partially reduced aluminum oxide, and reference PdAl alloy. Adapted from \cite{32} and \cite{9}.

The above conclusion has important consequences for reactivity of these metal–oxide catalysts, as was clearly demonstrated in Appendix 1 (Ref. \cite{34}). An overview of CO TPD spectra from Pt clusters (average thickness approx. 2 nm) deposited on different types of alumina substrates are compared to Pd(111) single crystal in Figure 13. The spectra exhibit maxima at approx. 450–480 K, depending on CO coverage and Pd cluster sizes (as compared to 480–530 K on Pt). In the desorption spectra of Pd NPs supported on γ-alumina prepared by thermal oxidation of Al a distinct additional peak emerges at \sim360 K. It is of different origin than the low temperature shoulder seen on Pd(111), which is a result of CO–CO repulsion within the dense adsorbate layer at higher coverages. On γ-alumina, the low temperature feature was attributed to intermetallic interaction between Pd and Al centers, present on the slightly non-stoichiometric γ-Al$_2$O$_3$ surface. The CO desorption from this surface is accompanied
by CO₂ production via CO disproportionation reaction involving CO dissociation [387]. Upon repeating the adsorption–desorption cycles, partial CO dissociation is evidenced by the gradual accumulation of surface carbon (detected by XPS) and the corresponding loss of CO adsorption capacity seen in TPD [9, 31]. Electronic interaction inducing charge transfer from alumina to Pd NP was found responsible for the CO dissociation activity via the modification of back-donation of Pd 4d electrons to empty CO 2π⁺ orbitals [34, 388, 389].

The assumption of inertness is reasonably valid for the close-packed oxygen-terminated (0001) plane of the sapphire modification of alumina (α-Al₂O₃) [378-380, 390], which exhibits very similar shape of TPD spectra as seen on Pd(111), with only a slight shift towards lower temperature caused by finite-size effect [113, 231, 384, 391-393]. Yet on the (1-102) plane of stoichiometrically identical alumina the low temperature desorption component is evident, albeit much smaller than on γ-Al₂O₃. However, in contrast to γ-Al₂O₃, the CO dissociation was not observed on this system.

![Figure 13: CO TPD spectra (left to right) on Pd(111) single crystal and Pd NPs deposited on α-Al₂O₃(0001), α-Al₂O₃(1-102), and γ-Al₂O₃ measured at different relative CO coverages (indicated in the plots). Adapted from [34].](image)

The role of strong interaction of Pd with Al in adsorption and dissociation of CO was confirmed by intentionally introducing Pd–Al bonds to the catalytic system by 1) partial reduction of a native oxide film on pure Al by ion sputtering (yielding aluminum rich Al₆O₁ thin film) or 2) preparation of stoichiometric PdAl bulk alloy to serve as a reference with maximized concentration of Pd–Al bonds [8, 9, 16]. The correlation between the valence band shape and thermal desorption spectra can be seen in Figure 12b and Figure 12c, respectively. The establishment of Pd–Al bonds affects the position of Pd 4d band shifting it to higher BE with increasing intensity of Pd–Al interaction. The formation of this noble metal-like electronic structure characterized by a lower-lying d-band and a partial depletion of density of states near Fermi level affects the CO adsorption strength via weakening of the Pd 4d—CO 2π⁺ bonding interaction [73, 101, 394, 395]. As a result, temperature of CO desorption on PdAl is substantially decreased and the low temperature peak near 360 K becomes the dominant component in TPD spectra.

Unlike gas-phase spectroscopies (such as QMS or TOF) applied in above studies, infrared absorption spectroscopy permits direct monitoring of the heterogeneous catalyst surface and its interactions with adsorbed molecules, including reaction intermediates [123, 354, 396], thus providing one of the most powerful tools in catalysis research. By employing in-situ IR reflection absorption spectroscopy on a well morphologically characterized sample, gas-solid interactions and surface reactions can be addressed on a microscopic level. An example of such experiment is shown in Figure 14, see also Refs. [15, 43], description of the experimental system [343] and its drawing in Figure 9. The Pd nanoparticles were deposited by evaporation in UHV at room temperature onto an ordered thin aluminum oxide film grown on NiAl(110) single crystal [264, 397, 398]. Such procedure results in Pd aggregates with well-shaped crystallites (average size of approx. 6 nm), predominantly exposing facets with (111)
orientation and a small fraction of (100) facets [111, 399], see the scanning tunneling microscopy (STM) image in Figure 14b and the corresponding atomic model of a single nanoparticle in Figure 14c.

![Figure 14: a) RAIR spectra of CO adsorbed at 300 K on Pd/Al₂O₃/NiAl(110) obtained immediately after preparation (open symbols) and after prolonged exposure to methanol at 440 K (solid symbols), b) STM image of the as prepared sample in two magnifications (inset image size 20x20 nm²), and c) corresponding model of a single nanoparticle. Pd coverage was 2.7x10¹⁵ cm⁻², sample temperature during growth 300 K. Partially adapted from [15, 343].](image)

Linking structural and spectroscopic information allows one to identify CO adsorbed at various types of surface sites and even in particular adsorption geometries. In Figure 14a, the bottom RAIR spectrum of CO-saturated surface (at room temperature) was obtained on a freshly prepared sample, where most CO adsorbs preferentially at hollow and bridge configurations on (111) facets. The sharp feature around 1955 cm⁻¹ reveals additional CO binding to defect sites, mainly Pt atomic steps and particle edges. Upon selective occupation of these low-coordinated surface sites by carbon [15, 43] (as a result of prolonged exposure to methanol at elevated temperature, as will be discussed later in Section 5.2.1) a clear response is seen in the RAIR spectra as the suppression of the 1955 cm⁻¹ band, in contrast to the IR band related to the (111) facet which remains nearly unaffected. The emergence of the feature at approx. 2080 cm⁻¹ (only very weak on the clean sample at ~2060 cm⁻¹) was assigned to CO bonded to Pd on-top adsorption sites.

Through the combination of precise molecular-beam methods (which provide a maximum level of control over the reactants) with simultaneous RAIRS, angle-integrated and angle-resolved mass spectrometries, both global and local reaction kinetics can be probed under steady-state and transient conditions [115, 244, 346]. The basic scheme of such experiment, realized in the former Molecular Beam group at FHI-MPG, is depicted in Figure 15e (see also [343] for technical details).

The behavior of the global (angle-integrated) steady-state reaction rate will be discussed briefly later in Section 3.3 (see also Figure 21) and as the part of the methanol oxidation description on the same model catalyst (Section 5.2.1, Figure 28b). In Appendix 2 (Ref. [53]), the angular distribution of the steady-state production of carbon dioxide desorbing during CO oxidation from oxide-supported Pd nanoparticles has been demonstrated to be size dependent, using the above setup and the evaluation procedure illustrated in Figure 15.
Particle size effects are common phenomena in heterogeneous catalysis [113, 115, 214, 215, 222, 231, 384, 385, 400] and constitute one of the major topics of investigation at present. They are often related to the presence of specific reactive sites on clusters of particular size and structure or to the modification of their electronic or geometric properties due to the limited NP size or due to size-dependent interaction with the support. However, there are also kinetic phenomena which arise solely as result of the limited size of the reaction system like in this case, where surface diffusion on small NPs appears to be confined by their dimension. Unlike for very small NPs (units of nm), on sufficiently large particles (hundreds of nm, see also Figure 21c) regions with different local coverages (depending on the direction of the incident reactant fluxes) can thus develop on NP surface due to the limited surface mobility of adsorbed species, manifesting itself as local reaction rate variations. It result in an asymmetric angular distribution of CO₂ such as shown in Figure 15c is detected.

The variations of the CO₂ angular distribution were analyzed by applying microkinetic simulations as a function of particle size, surface temperature and reactant fluxes, which allowed quantitative calculation of the surface diffusion rates on the catalyst under reaction conditions [51]. It was further shown [53] that the two reaction regimes of the CO oxidation (CO-rich or O-rich) exhibit specific angular CO₂ distributions – while under CO rich conditions, the product distribution strongly depends on the local fluxes of the reactant molecules, under O-rich conditions nearly symmetric distributions are observed. This is in a perfect accord with the higher surface diffusivity of oxygen on Pd, mentioned earlier, as compared to CO. The residence time of oxygen was shown to depend primarily on the surface occupation by CO.

The particular reaction regime also strongly affects the global transient behavior of the supported NP catalyst as a response to abrupt changes of gas flux intensities (both at rising and leading edge of the
pulse) [69]. Considering the stronger binding of CO to Pd (and its lower mobility) as compared to O, transition between the kinetic regimes is primarily driven by the surface mobility of CO. Under certain circumstances (ratio of reactant fluxes and surface temperature), a reaction bistability, i.e., spontaneous switching between the different regimes, can even be observed as a result of the coupling of the surface coverages and reaction rates over the particle surface. This extraordinary phenomenon will be described separately in Section 3.3.

3.2.2 CO oxidation on Pt/ceria and Pt–ceria EMSI

Although similar at the first sight to the previous Pd/Al\textsubscript{2}O\textsubscript{3} or Pd/SiO\textsubscript{2} model catalysts, supported Pt nanosized particles on ceria represent a strikingly distinct physicochemical system. In contrast to the very inert and stable alumina (Al\textsubscript{2}O\textsubscript{3}) and silica (SiO\textsubscript{2}), ceria (CeO\textsubscript{2}) belongs to the class of so-called reducible oxides [401]. These materials, typically characterized by a relatively small band gap (<3 eV), can easily give away oxygen because the lowest available empty states in their conduction band consist of cation d-orbitals energetically located only slightly above the valance band. The removal of oxygen thus results in excess electrons which are subject of redistribution to the cationic empty levels, lowering the oxidation state (in the case of ceria from Ce4+ to Ce3+) [178, 182, 372, 402, 403]. The consequence to reactivity is that upon changing the oxidation state the metal cation can efficiently trap electrons from donor species adsorbed on the surface or from supported NPs, making these materials very attractive for heterogeneous catalysis [372, 403-405].

In the article presented in Appendix 3 (Ref. [11]) we combined several surface science methods to carefully identify adsorption sites participating in CO oxidation on Pt NPs supported on thin-film ceria, oxygen spillover [112, 115, 406] between the two components, and their mutual electronic interaction. Infrared reflection absorption spectroscopy (RAIRS) was used as a main tool in assignment of different adsorption sites. On pristine ceria CO adsorbs only weakly at structural defects (steps, edges) and Ce3+ centers. The occupation of these sites changes upon thermal treatment. After deposition of Pt clusters, CO primarily occupies Pt surface in 3 different configurations (on-top at particle edges and steps, on-top on Pt(111) facets, and bridge-bonded), while the bonding to defects and Ce3+ cations is suppressed due to preferential nucleation of Pt at these sites, making them unavailable for CO adsorption.

Upon surface exposure with CO at low temperature (150 K) followed by TPD (with a linear heating ramp 1K/s), apart from molecular desorption of adsorbed CO, a production of CO\textsubscript{2} can also be seen. This happens via oxygen reverse spillover [406] from the ceria support to the Pt particles at elevated temperatures and its recombination with adsorbed CO molecule. The oxygen spillover has been evidenced directly by RAIRS through an emergence of new absorption bands indicative of metal-oxide interaction [11]. This process is thermally activated between 400–500 K, overlapping with the CO desorption temperature from Pt. As a result, part of CO desorbs whereas the remaining molecules recombine with the spilt-over oxygen to form CO\textsubscript{2}. Both desorbing species are observed by TPD accordingly below 500 K. With the increasing number of consecutive TPD cycles the amount of CO\textsubscript{2} steadily decreases (see Figure 16, top), indicating the irreversible depletion of oxygen from the CeO\textsubscript{2} support and thus formation of oxygen vacancies [182].
Figure 16: Four consecutive cycles of CO$_2$ TPD performed on Pt nanoparticles (average thickness 0.85 Å) deposited on 5 ML CeO$_2$(111) on Cu(111). CO exposure was 18 L at 150 K in all cases. STM image (right) shows the morphology of the as-prepared sample. The schematic representation of the sample structure (cross section through a Pt NP occupying a ceria step) is shown in the bottom left corner. Partially adapted from [11].

In principle, the intrinsic catalytic properties of a solid material are determined completely by its electronic structure which is, in turn, governed by its composition, physical structure and its flexibility. A strong metal–support interaction (SMSI) exists between late transition metal nanosized particles and ceria that can, for very small NPs, produce large electronic perturbations and significantly affect the reactivity [196, 203, 407-409]. In the preceding work [364] it was shown that electron transfer occurs from the Pt nanoparticles to the CeO$_2$ support upon Pt deposition. This effect leads to the buildup of a positive charge carried by the platinum NP and the simultaneous formation of Ce$^{3+}$ centers in the vicinity of NP perimeter, in accord with the observed defect formation on ceria substrates due to electron localization [182].

SMSI was first termed by Tauster et al. [410] and later generalized to account for changes in catalytic activity and selectivity due to interaction of, typically, group-VIII metals with reducible oxide supports, whose surfaces can be reduced to form cations with lower valences [203, 395, 411]. For example, a strong enhancement in the ability of the admetal to dissociate the O–H bonds in water was demonstrated on the Pt/CeO$_2$(111) model system, making this mixed metal–oxide an exceptionally active catalyst for the production of hydrogen [408]. SMSI is also beneficial in maintaining very fine metal dispersion and its stabilization against thermal sintering [409, 412]. At high temperatures (and especially under oxidizing conditions), the metal adatoms or clusters become mobile and can coalesce to larger particles, which irreversibly reduces catalyst performance [319]. This sintering is often size-dependent [11, 317] and its magnitude strongly depends on the interaction strength between the metal and the support. Strongly interacting oxide such as ceria can anchor noble metal (N) clusters via
forming N-O-M surface complexes (M – oxide cation), preventing the undesired sintering, as illustrated in Figure 17 [413, 414]. It can even facilitate redispersion of the metal component by emitting mobile oxidized species from the parent NP which are then effectively trapped by the support, forming stabilized single-atom active centers [415]. Ceria was found capable of stabilizing NPs in even more harsh electrochemical environments [416, 417].

![Figure 17: a) Pt–oxide-support interaction and its relation to Pt sintering in an oxidizing atmosphere (800°C in air). The binding energy of the O 1s electronic level in the oxide support (measured by XPS) reflects the interaction strength, the oxidation state of Pt after aging was quantitatively evaluated from the white line intensity of the Pt L3-edge in XANES, Pt particle size was estimated by CO titration method. b) Model illustration of the Pt sintering on a conventional Pt/Al2O3 catalyst and its inhibition mechanism for a Pt/ceria catalyst. Since the Pt–Al2O3 interaction is weak, Pt metal particles are formed and suffer from sintering upon heating in oxidizing atmosphere. In contrast, strong Pt–ceria interaction generating Pt–O–Ce bond prevents Pt particles from sintering during the aging treatment. After the reductive treatment, the Pt–O–Ce bond breaks, and Pt metal particles remain highly dispersed on the support. Adapted from [413].](image)

The overall surface reactivity is, however, a complex phenomenon involving not only the electronic properties but also structural and size effects. It can be illustrated on the previous example of the Pt/CeO2 model system – the oxygen transfer across the Pt/ceria boundary is a pure nanoscale effect, despite the fact that the electron transfer occurs both on extended ceria surfaces and on ceria nanoparticles [364]. Hence the oxygen spillover to Pt requires nanostructured ceria or ceria nanoparticles in direct contact with metal NPs. The above can be generalized to other similar systems. The vital importance of the metal–support interface in oxygen storage and release was also demonstrated for Fe3O4 support and Pd NPs [206, 418, 419], where the interfacial mechanism of oxygen exchange, involving formation of PdOx interface layer, was found to be strongly NP size-dependent [206, 298, 420], with a distinct maximum of oxygen uptake for NPs around 6-7 nm in diameter [206]. Similarly, ultrasmall gold clusters (tens to hundreds of atoms) on ceria showed size-dependent structural responses to the reactant gas. Reversible transformation from ordered to disordered state with generation of low-coordinated atoms was observed under the catalytic working condition of carbon monoxide oxidation. These dynamic low-coordinated atoms, formed via gold-carbonyl species, can act as dynamic active centers for CO oxidation, effectively boosting the reaction [421].

In the work [56] attached as Appendix 4, the powerful combination of microscopic (STM) and spectroscopic (SRPES, RPES) methods with theory (DFT) led to a first-ever quantification of the charge transfer (CT) between a support and nanoparticles of catalytically relevant sizes. The average size of Pt clusters was calculated from the particle density determined by STM and the total coverage derived from XP spectra, calibrated over the images of larger metal loadings providing better accuracy.
Analysis of particle density and average thickness of metal deposit clearly reveals the regions of nucleation (~1 nm NPs with up to ~25 atoms/NP), particle growth (up to about 400 atoms/NP), and coalescence.

Figure 18: The principle of resonant photoemission spectroscopy (RPES) method applied to cerium oxides. It is based on selective resonant excitations 4d–4f in Ce³⁺ (4d⁰ 4f¹) and Ce⁴⁺ (4d¹⁰ 4f⁰). The excited states (4d¹⁰ 4f⁰ and 4d⁰ 4f¹, respectively) decay via Super-Coster-Kronig processes, leading to a strong enhancement of certain valence band features. For Ce³⁺, the resonance gives rise to a feature at 1.7 eV binding energy (BE), with a maximum enhancement at photon energy (PE) of 121.5 eV, whereas for Ce⁴⁺, the feature appears at 4 eV BE with the maximum enhancement at 124.8 eV PE. a) Series of valence band photoelectron spectra in the Ce 4d–4f photoabsorption region of partially reduced cerium oxide, b) PE dependence of signal intensities at BE of the Ce⁴⁺ feature (black) and the Ce³⁺ feature (red). The level of reduction is quantified by so-called resonant enhancement ratio (RER) defined as $D(Ce³⁺)/D(Ce⁴⁺)$ derived from spectra measured at both resonant conditions (green and red curves) and off the resonance (black curve), as depicted in c) and d) [38, 262, 365]. Partially adapted from [365].

Since the electronic MSI (EMSI) [407] between the oxide surface and the admetal leads to electron transfer across the metal/oxide interface, reducing corresponding number of nearby Ce⁴⁺ cations to Ce³⁺, it can be directly monitored by photoelectron spectroscopy. Apart from the associated changes in core level spectra of Ce 3d and 4d [262, 365, 422], which are rather complicated and difficult to be quantitatively analyzed, resonant photoemission spectroscopy (RPES) offers an extremely sensitive tool for this purpose [262, 364, 365]. The electronic structure of CeO₂ is characterized by unoccupied 4f states of Ce⁴⁺ (4d⁰ 4f⁰) while the Ce₂O₃ carries Ce³⁺ (4d¹⁰ 4f¹) configuration [423], resulting in different structures of the valence band. The net amount of transferred charge is then derived from the enhancement of the corresponding 4d–4f resonance in the valence band photoemission spectra of Ce³⁺ ions within ceria with respect to the Ce⁴⁺ resonance [365] – see Figure 18 for explanation of the experimental determination of the resonant enhancement ratio (RER).

As can be seen in Figure 19, the partial charge per Pt atom reaches a maximum for a particle consisting of approx. 30–70 atoms (yielding CT equivalent to about 1 electron transferred per 8 atoms), representing a region of the strongest EMSI. With increasing doses of platinum the total amount of charge transfer reaches saturation (at approx. 1.2×10^{18} m⁻², corresponding to about 17% of the surface cerium ions), denoted as the charge transfer limit.

The experimental results are complemented by theoretical models, suggesting that the charge transfer can have a profound influence on adsorption and, hence, reactivity. The adsorption energy of CO and
H$_2$O on Pt/CeO$_2$ can be enhanced by as much as 0.5 eV due to charge transfer, whereas the bonding of oxygen on the same surface remains essentially invariant. With the potential relation between the electronic structure and reactivity, the above mechanism offers a straight-forward handle for effectively tuning catalytic properties of a metal-oxide system.

Figure 19: Charge transfer (CT) from Pt NPs to ceria support quantified in terms of electrons per Pt particle (n, green symbols) and per Pt atom (δ, yellow symbols) as a function of Pt particle size. The schematic models (bottom) represent structures in different particle size regions. Adapted from [56].

3.2.3 CO oxidation on platinum oxide

A direct implementation of platinum oxides (PtO$_x$) in catalysis is not very common, however, since Pt is probably the most frequently used metal catalyst, PtO$_x$ has undoubtedly its relevance as well, because a substantial fraction of industrial catalysis is dealing with oxidation reactions or oxidative dehydrogenation processes. Due to the oxidizing environment platinum may exist in the form of an oxide rather than metal [424]. Moreover, since the active metallic material is often deposited in highly dispersed form on an oxide support, the oxygen can also be diffusively interchanged with the substrate, especially in the case of reducible oxides such as CeO$_2$, TiO$_2$, WO$_3$, NiO, Fe$_2$O$_3$, Co$_3$O$_4$, etc.[178], as was thoroughly discussed and demonstrated in the previous section. Therefore, in most cases the active “live” catalyst actually comprises an oxide or a metal–oxide compound, and the reaction follows the sacrificial Mars–van Krevelen (MvK) mechanism [249] in which the oxide is directly involved in reaction via its most reactive oxygen atoms, typically those at under-coordinated defect sites or oxide–metal interfaces [130, 181, 206].

In the study presented in Appendix 5 (Ref. [60]) platinum oxide was deposited ex-situ by reactive RF magnetron sputtering from a cylindrical target [268, 273] on a flat (oxidized Si wafer and
polycrystalline Ta) and highly porous (multi-walled carbon nanotubes, MWCNTs) substrates [425-428]. Unlike the highly-ordered model systems described so far, such thin films, especially in the latter case, mimic the complex porous structures of real catalysts while still being accessible for reliable surface characterization. The catalytic layers were examined by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), temperature-programmed desorption (TPD), and temperature-programmed reaction (TPR) in both UHV and ambient pressure conditions. This research thus represents an example of a successful approach in, to a certain extent, bridging both materials and pressure gaps mentioned above in Section 2.3.

As can be seen in Figure 20a, using a highly porous but relatively inactive support such as MWCNTs can significantly enhance the overall reaction yield (owing to its high specific surface area) while following the same reactivity pattern as on a planar surface. This is what effectively diminishes the materials gap issue, because the flat samples can be much more easily characterized by standard tools of surface science.

On pure platinum, CO$_2$ is generated through Langmuir-Hinshelwood (LH) mechanism between adsorbed CO and O, with oxygen dissociation being the rate limiting step [135, 429, 430]; at lower temperatures the rate of this reaction route becomes very limited due to the surface blocking by adsorbed CO. On partially reduced platinum oxide, on the other hand, the CO oxidation is governed by bifunctional mechanism where CO adsorbed on a metallic platinum site reacts with nearby oxygen bound to a cationic Pt center, which is continuously re-oxidized through Mars-van Krevelen process [249] as long as a sufficient partial pressure of oxygen is provided. This allows achieving much higher (over an order of magnitude) reaction rates at low temperatures (i.e., below ca. 475 K) as compared to pure platinum. XPS data (Figure 20b) show the co-existence of metallic and cationic Pt in this temperature region and give an evidence of the irreversible reduction of the thin film when the surface temperature is exceeded above this point.

3.3 Nonlinear reaction dynamics on nanoparticles

In the second part of Section 3.2.1 we focused mainly on angle-resolved measurements of steady state reactivity of CO oxidation on the Pd/Al$_2$O$_3$/NiAl(110) model catalyst. The kinetics of this reaction was also systematically examined as a function of surface temperature, CO-to-O$_2$ reactant ratio, and metal particle size. Both transient and steady state behavior can be characterized by modulating the
molecular beams and varying sample temperature while measuring integrated QMS signals (see Figure 27 below for an example of such experiment). By analyzing the steady-state kinetics of CO oxidation on supported Pt nanoparticles an existence of two distinct reaction regimes is revealed [431]: under CO rich conditions (i.e., high values of CO fraction in the total flux, x_{CO}), the oxidation reaction is partially inhibited due to limited oxygen adsorption on surface precovered by CO, effectively blocking most of the adsorption sites. The inhibition is stronger the lower is the surface temperature through the temperature dependence of CO desorption kinetics. In the oxygen-rich regime, on contrary, linear dependence is observed because the rate determining step of the reaction is the adsorption of CO, which is governed primarily by the O_2 flux (CO sticking coefficient is rather large under the given conditions). The typical shape of CO oxidation rate versus x_{CO} can be seen in Figure 21d for temperatures between 440–465 K (upper 3 curves).

![Figure 21](image)

Figure 21: Three types of supported Pd model catalysts with different average particle sizes: a) 1.8 nm Pd/Al$_2$O$_3$ (prepared by vapor deposition and growth), b) 6 nm (preparation as in a)), and c) 500 nm (Pd/SiO$_2$ prepared by electron beam lithography). d) Series of CO oxidation reactivity curves as a function of the CO fraction in the impinging gas flux (x_{CO}, total flux equivalent to a local pressure of 10^{-4} Pa) for five temperatures (in 400–465 K range), showing chemical bistability during CO oxidation on a Pd model catalyst (system presented in c)). At sufficiently high surface temperatures, a single well-defined transition point between two (CO- and O-rich) reaction regimes exists; below 440 K a region with two stable reactive states occurs, depending on whether approached from CO-saturated or O-saturated surface (the arrows indicate the direction of the hysteresis). e) Corresponding bistability diagram for the CO oxidation on the above model catalyst. Partially adapted from [3].

A striking deviation from the otherwise well-defined transition point between the two reaction regimes is observed with sufficiently large Pd particles (such as in Figure 21c) and sufficiently low temperatures (in this case below 440 K). As indicated by the lower 2 curves in Figure 21d, the steady state near the transition point differs substantially depending on whether it is approached from an oxygen-precovered or CO-precovered surface. This effect, known as reaction bistability, previously observed [432-434] and simulated [433, 435-437] on well-ordered single crystals, was witnessed for the...
first time on supported nanoparticles of a well-defined model system, as presented in Appendix 6 (Ref. [3]).

Time oscillatory phenomena in chemical reactions have already been known since 19th century in electrochemical systems [438] and somewhat later (1920s) observed in the liquid phase chemistry [439]. Oscillatory reactions, however, did not receive much attention until the discovery of Belousov–Zhabotinskii reaction in the 1950s [440-443]. In heterogeneously catalyzed reactions, rate oscillations were first observed in CO oxidation on platinum in the early 1970s [432, 444]. The switching between different steady states of a surface reaction was also found as a consequence of coupling between regions exposing different crystal planes of the same material, such as in the works of Ertl et al. [116, 445], who (in the late 1980s) pioneered the imaging of surface reactions [116, 446] leading to discovery of spatio-temporal pattern formation in heterogeneous catalytic systems [116, 446-448]. It was soon realized that such oscillatory systems belong to a whole class of self-organization phenomena with many instances in chemistry but even far beyond this field (including biology [449, 450] or social sciences [451]). A common denominator of all these systems is that they require conditions far from thermodynamic equilibrium [452] and that the underlying rate equations be nonlinear [432, 447, 450, 452-454].

In this particular case, the origin of the two metastable kinetic states is the following: Under sufficiently high oxygen flux, the Pd NP surface is to a large extent covered by adsorbed O (O_{ad}) and because sticking probability of CO is only moderately influenced by O_{ad}, the reaction rate is high and nearly proportional to CO flux. Above certain critical value of x_{CO} in the gas beam, a kinetic phase transition [433] to predominantly CO-covered surface occurs, yielding much lower reaction rate, because adsorbed CO efficiently inhibits dissociative adsorption of O_{2}.

Furthermore, size dependence of the reaction bistability was scrutinized, employing Pd NPs prepared by vapor deposition and growth on Al_{2}O_{3}, (1.8 nm and 6 nm average diameter, respectively), as well as the aforementioned much larger monodispersed 500 nm Pd NPs prepared by electron beam lithography on SiO_{2} – see the micrographs of all three samples in Figure 21a-c. The above well-defined bistability window observed on the 500 nm particles (see the diagram in Figure 21e) was found to be much narrower for 6 nm NPs and seemingly non-existent for the smallest (1.8 nm) and the least ordered NPs, in agreement with theoretical predictions [435].
Figure 22: Overview of stochastic mean field simulations, illustrating the combined effect of limited particle size and surface defects on the kinetic bistability of CO oxidation reaction. The heatmaps in a)-e) represent probability distributions in the CO and O coverage space, the insets show the reaction rate on an individual particle for each case. The width of the probability distributions grows with decreasing NP size and increasing density of defects, due to the higher amplitude of fluctuations leading to spontaneous transitions between both reaction regimes. For an ensemble of particles, this results in establishing a dynamic equilibrium between both states. f) The experimental integral reaction rates for 6 nm NPs are compared to the stochastic model, showing that a substantial fraction of defects has to be added to the model in order to reproduce the experimentally observed relaxation times. Adapted from [3].

In fact, a thorough inspection of transient reactivity data [3, 53] revealed that although different reaction rates are initially established by either starting from O- or CO-rich conditions, these differences vanish over a time period strongly varying with the NP size and the concentration of defects on them, see Figure 22. On the largest particles the two states are essentially stable on the timescale of the experiment, while on the smallest ones a common steady state is reached within a few tens of seconds. It has already been known from literature that coupling multistable kinetics to surface
diffusion opens up the possibility for the formation of chemical waves and their propagation over the surface [433, 455, 456], initiating spontaneous transitions from one kinetic regime to the other without an external stimulus. The above mentioned series of experiments supported by theoretical microkinetic modelling lead to a discovery of a relation between the local fluctuations of coverages of adsorbed reaction intermediates and the timescale of these transitions. It was shown that the amplitude of coverage fluctuations increases with both decreasing particle size and increasing surface defect concentration. The impact of adsorbate fluctuations on chemical oscillations far from equilibrium was shortly after supported by microkinetic Monte Carlo simulations of CO oxidation by Zhdanov and Kasemo [457].

3.4 NO\textsubscript{x} reduction on Pd/Alumina

In contrast to oxidation of hydrocarbons and carbon monoxide which is fairly straightforward, direct reduction of NO\textsubscript{x} under lean conditions in modern “lean-burn” diesel engines is a very difficult task [367, 458]. Selective catalytic reduction (SCR) of nitrogen oxides to harmless N\textsubscript{2} and H\textsubscript{2}O or O\textsubscript{2} mixture has been the most often realized by injecting a gaseous reductant (usually ammonia or urea [459]) to the exhaust stream; More recently, SCR by hydrocarbons [460, 461], CO (present naturally in the exhaust flux) [462], both leading to additional side-products (mainly CO\textsubscript{2}), or the most environmentally friendly reduction by H\textsubscript{2} [458] has been employed. Other reaction routes without the need for an additional reductant have also been explored. Probably the most traditional are Rh-based systems [463] but other noble metals like Pt or Pd [464] have been utilized as well. Often the structural properties of the catalyst surface governing its de-NO\textsubscript{x} activity and selectivity (size effects, involvement of different reactive sites and their interplay etc.) are optimized empirically and explanations of microscopic origins of reactivity are in most cases lacking.

A molecular-level characterization of NO interaction (adsorption, dissociation, reduction) with Pd NPs supported on well-ordered alumina (Al\textsubscript{2}O\textsubscript{3}/NiAl(110)), similar to that referred to earlier in Section 3.2.1 (Figure 14), is part of the work published in [4], included herein as Appendix 7 (see also related Refs. [5, 6, 35]). RAIR spectroscopy combined with molecular beams (similar setup like in Section 3.2.1) was used to reveal that specific atomic adsorbates, which are often present under reaction conditions, tend to bind to specific sites of the catalyst. Their presence or absence in the vicinity of these sites can, in turn, control the kinetics of the reaction.

A reference experiment on pristine Al\textsubscript{2}O\textsubscript{3}/NiAl(110) surface [5] showed that NO slowly decomposes at low temperature (100 K) at oxide defect sites (probably along the antiphase domain boundaries), producing a variety of N\textsubscript{2}O\textsubscript{3} surface adspecies, accompanied by strong structural transformations of the alumina thin film. NO decomposition and reduction to N\textsubscript{2}O proceeds via formation of NO dimers, leaving adsorbed oxygen on the surface. By adding platinum this decomposition processes is strongly suppressed due to the preferential coverage of the active sites by the metal deposit. NO adsorption is then observed to occur on the Pd particles only, preferentially populating edge and defect sites, which was also confirmed by isotopic exchange experiments (using 14NO and 15NO) probing the exchange of adsorbed NO with the gas phase. Above 300 K the adsorbed NO dissociates; the dissociation activity on the supported Pd NPs is strongly enhanced as compared to planar Pd surfaces with preferential N-O bond scission at particle edges and steps.

It was further found that the presence of the dissociation products (atomic nitrogen and oxygen) in the vicinity of particle edges and steps controls the NO dissociation activity. Specifically, with the presence of strongly bound atomic nitrogen the probability of NO decomposition is greatly enhanced. The oxygen-precovered surface results in the formation of a mixed adsorbate layer with a higher population of on-top sites by NO. The NO adsorption at particle defects is strongly inhibited due to the strong interaction of oxygen with these types of sites. NO adsorption on a CO adlayer, on the other
hand, gives rise to a compression of the CO layer and a partial shift of the CO adsorbate distribution from the bridge-bonded coordination at particle edges and hollow coordination at (111) facets towards the on-top sites.

Figure 23: a) Schematic representation of an ordered Pd nanocrystalline particle on a flat Al₂O₃ support, exposing (111) and (100) facets. b) Time resolved RAIRS experiment showing the development of the NO absorption bands (labelled 1 and 2) as a function of NO exposure (x_{NO}) and CO pulsing. c) Integral intensity of the two absorption bands in the N–O stretching-frequency region, d) CO₂ mass spectrometer signal recorded during CO pulsing (with scheme of the experimental setup inset). e) Corresponding reaction scheme. Partially adapted from [6].

The above spectroscopic identification of NO adsorption, dissociation, and co-adsorption with O and CO formed a basis for the investigation of the kinetics of thermal NO decomposition process. The IR absorption bands previously assigned to NO binding to threefold hollow sites of (111) facets and to lower-coordinated sites at minority (100) facets, edges and defects, respectively, were monitored by in-situ during NO decomposition by time-resolved RAIRS (TR-RAIRS) at 450 K (here referred to as band 1 and 2, see Figure 23). With continuing exposure an overall loss of NO adsorption capacity is observed, attributed to the accumulation of dissociation products (atomic nitrogen and oxygen) on the NP surface, mainly oxygen, because most of the nitrogen desorbs at 450 K via formation of N₂ or N₂O [465, 466]. This happens preferentially at particle edges (absorption feature 2), leading to faster decay of this IR band as compared to the feature 1, and further confirmed by using CO as a probe molecule [4]. This observation is consistent with an STM study of oxygen adsorption on the same Pd model catalyst, showing preferential adsorption of oxygen at the particle edges [467].

Some strongly adsorbed nitrogen species can, however, remain on the surface [466, 468]. To investigate the potential role of nitrogen adsorbate in the NO adsorption and dissociation kinetics, the initial decomposition was continued with a cycled CO titration experiment as presented in Figure 23. Short CO pulses were periodically applied to the saturated sample by a second beam source, resulting in efficient removal of the adsorbed oxygen through oxidation to CO₂ [244]. The corresponding CO₂ signal detected by the quadrupole mass spectrometer (Figure 23d) represents the amount of initial oxygen coverage prior to the pulse onset. After the oxygen removal the intensity of the IR band 1 is
restored completely unlike the band 2 which is only restored to about 60% of its original intensity. It reveals the presence of strongly bound nitrogen species in the vicinity of NP edge sites partially inhibiting the NO adsorption. The striking observation is that, despite the lower adsorption capacity, the adsorbed nitrogen dramatically increases the rate of NO dissociation (about 5-fold) as can be seen from the much steeper decay of the intensities of both IR bands.

4 Surface chemistry of water

4.1 Motivation and background

As one of the constituents of Earth atmosphere and the most abundant compound in the biosphere, water is essential for all life processes and thus has to be taken into consideration in virtually any environmentally relevant research. Therefore the water–solid interaction has been a topic of interest in a wide variety of scientific disciplines and is one of the most studied adsorption cases since the establishment of modern surface science [469, 470]. The contact layer between water and metals, semiconductors, and oxides [470] is of fundamental importance with respect to issues of corrosion, surface passivation, reoxidation, catalytic activity etc. Regarding the field of heterogeneous catalysis, understanding water–surface interactions is highly relevant in huge number of situations such as water-gas-shift (WGS) reaction, reforming of hydrocarbons, water splitting, automotive exhaust catalysis and many others. Water can be present in catalytic processes in the role of an active agent, intermediate, reaction by-product, chemical medium, or carrier. It is also vital in most electrochemical applications, including the massively expanding field of the fuel cell technology [471]. Last but not least, water molecule also proved an excellent probe for characterization of surface properties like catalytic reactivity, adsorption capacity and competitive coadsorption phenomena, distribution of surface sites, redox processes, role of surface defects, electronic corrugations and charge transfer, etc. [469].

4.2 Water interaction with ceria

Catalysis by ceria represents a very rich matter and thus has been a focus of a number of reviews, see e.g. [372, 404, 405] and references therein. Even on the nominally simple systems of pristine cerium oxides the interaction with water involves quite complex behavior, depending on the oxide structure and stoichiometry. As was already mentioned above, many unique properties of this compound stems from its facile reducibility, making ceria what we call an oxygen buffer. A typical descriptor of the reducibility of an oxide is the cost of oxygen vacancy formation, which measures the tendency of the oxide to lose oxygen or to donate it to an adsorbed species with consequent change in the surface composition. The oxide reducibility can be modified in various ways, for instance, by bulk doping, presence of another metal (see e.g. Section 3.2.2 or Ref. [181]), and/or nanostructuring (as in Section 5.2.3).

Several studies by photoelectron electron spectroscopy [183, 472-475] in accord with first principle calculations [475, 476] suggest that bonding of water to metal surfaces is governed by a complex interplay of a number of factors affecting balance between interaction of water with the surface and via hydrogen bonding with other water molecules. Ambient pressure XPS applied to metals and oxides [324] confirmed a general trend in water adsorption through an initial formation of hydroxyl group, complemented by molecular water adsorption. With Ru(0001) substrate [477], the surface hydroxyl groups together with adsorbed molecular water were observed only for slightly reduced cerium oxide (CeO$_x$), whereas on the stoichiometric ceria (CeO$_2$) only the molecular species were detected. In the former case the OH groups are assumed to be bonded to cerium at the oxygen vacancy site and the released hydrogen atom to nearby surface oxygen of the oxide. A similar conclusion was made for the...
CeO$_x$/Au(111) system used in WGS reaction [478]. This process can ultimately lead to full oxidation of the surface.

In Appendix 8 (published in [38]) this mechanism has been verified thoroughly on ordered cerium oxides using photoelectron spectroscopies (XPS, SRPES, and RPES), scanning tunneling microscopy (STM), and temperature programmed desorption (TPD). The CeO$_2$ thin film model catalyst was prepared by deposition of ceria in oxygen atmosphere onto a Cu(111) single crystal [169, 479, 480]. By Ar$^+$ sputtering of this surface with carefully controlled ion doses (followed by mild annealing to heal the surface) oxygen vacancies were generated, yielding a sub-stoichiometric CeO$_x$ thin film. RPES method already described in Section 3.2.2 provided surface-sensitive quantification of the concentration of surface vacancies exposing trivalent cerium cations [474].

![Figure 24: Comparison of water interaction with stoichiometric ceria (CeO$_2$, panel a) and partially reduced cerium oxide (CeO$_{2-x}$, panel b) on Cu(111) as observed by SRPES and TPD methods. O 1s core level photoelectron spectra were acquired during stepwise annealing of the respective oxide thin film following exposure to approx. 10 L of H$_2$O at 160 K, with photon energy of 650 eV. Series of thermal desorption spectra (signal of mass 18 amu) were acquired after various water doses (1.5 L, 10 L, 30 L, and 100 L) at 100 K on both stoichiometric (a) and partially reduced (b) surfaces. The STM images show morphology of as prepared samples before the water exposure; image size 50x40 nm. Adapted from [12] and [38].](image)

The stoichiometric ceria layer exhibits relatively flat morphology with oriented CeO$_2$(111) terraces, while the ion sputtered CeO$_x$ surface comprises small islands with a characteristic diameter <5 nm, see the STM images in Figure 24. At low temperatures (<120 K) water adsorbs on both cerium oxide surfaces primarily in a molecular form. However, a partial dissociative adsorption accompanied with formation of OH groups is observed. These surface hydroxyls are substantially more stable on the partially reduced CeO$_x$ as evident from the SRPES spectra captured during sample annealing in Figure 24; these species were found to be preferentially bond to oxygen vacancy sites. Upon larger exposures below 120 K the water molecules which cannot accommodate within the first monolayer form a multilayer ice structure. The subsequent annealing leads to molecular desorption of water physisorbed within the multilayer, resulting in a sharp thermodesorption peak with maximum between 145–155 K, followed by the single layer leaving the surface around 170–185 K. The latter peak is noticeably weaker on CeO$_2$ due to its higher dissociation activity and stronger binding of OH radicals. The broad TPD feature around 275 K is attributed to a recombinative desorption of hydroxyl species with surface bond hydrogen. These observations are in accord with the thermal evolution of the photoelectron spectra seen in Figure 24.

An additional piece of evidence for this behavior has been provided in the related work in [12], where SRPES/RPES and RAIRS characterization of both (fully oxidized and partially reduced) thin films of
cerium oxide interacting with water vapor is complemented by density functional (DFT) calculations. Again, mostly molecular H$_2$O adsorption was identified at 160 K on both cerium oxide surfaces, together with partial formation of hydroxyl (OH) groups. Three typical PES characteristics were used to identify OH groups on ceria: 1) presence of 1π and 3σ states in valence band spectra; 2) increase of the BE separation between the O 1s spectral components of lattice oxygen, O$^{2-}$ (Ce$^{4+}$), and OH/H$_2$O; 3) increase of the RER coefficient.

Dissociation of water and formation of hydroxyl adspecies readily takes place on partially reduced CeO$_x$ with OH groups preferentially occupying the positions of the missing lattice oxygen. However, the interaction of water with this surface does not cause any detectable reoxidation of Ce$^{3+}$ to Ce$^{4+}$ – the dissociation of water is fully reversible, either yielding molecular water (via recombination of OH groups) or releasing hydrogen and oxygen into the gas phase. The oxidation state of the reduced ceria after adsorption and subsequent annealing is fully recovered. The differences in dissociation activity of both oxides is further confirmed by the DFT calculations, showing that the energetically most favorable surface species on stoichiometric CeO$_2$ terraces is adsorbed water, while its dissociation is disfavored by about 0.2 eV, except at the steps, where the adsorption energy of water is higher but its dissociation was found to dominate over the molecular adsorption on the step edge sites.

The dissociation of water via filling oxygen vacancies with hydroxyls and leaving adsorbed H, along with the above described reverse process of thermal recombination, is a common behavior of all reduced oxides of cerium [183, 473, 474]. However, experiments on a strongly reduced ceria with stoichiometry approaching Ce$_2$O$_3$ (i.e., nearly all Ce cations in 3+ oxidation state) [169, 479] found these oxides to be extraordinarily effective in hydrogen production upon exposure to water via an irreversible mechanism. The origin of this peculiar activity has been uncovered in Ref. [48] attached as Appendix 9.

Although the probability of water splitting on ceria to yield molecular H$_2$ and lattice O atoms is hardly detectable on the mildly reduced oxides such as those employed in the studies discussed above, it increases slightly with the growing concentration of O vacancies on the CeO$_x$ surface [183, 473, 474, 477]. The slow kinetics of this irreversible process was predicted to be due to a high barrier to form molecular H$_2$ from surface OH groups [481]. On cerium oxide at high level of reduction, however, a new reaction channel opens, with dramatically faster water dissociation kinetics, which is observed as a massive recombinative H$_2$ peak in TPD spectra above approx. 500 K (Figure 25b). It is associated with partial reoxidation of the CeO$_x$ thin film evidenced by an intensity decrease of Ce$^{3+}$ related components of the Ce 3d XPS and by a partial decay of this reaction pathway observed within the following adsorption-desorption cycle. After subjecting a 4 nm thick oxide layer to a total of 4 such cycles the fast dissociation route is effectively suppressed, which quantitatively agrees with a model of gradual incorporation of left-over oxygen within the oxide volume. The structural changes towards ordered cerium oxide phases with higher stoichiometry are observed by both STM and LEED.
A careful analysis in tandem with ab initio calculations revealed that the above bulk-related reaction channel is activated during the interaction of H$_2$O with the bixbyite c-Ce$_2$O$_3$ phase. The stabilization of the key intermediate of this reaction – the hydroxyl group – in the bulk of c-Ce$_2$O$_3$ is mediated by a particular spatial coordination of O vacancies, which is a network of next-nearest-neighbor (NNN) O vacancies in bixbyite c-Ce$_2$O$_3$ structure. In lower amounts these pairs of NNN O vacancies can also be present in less-reduced CeO$_x$ phases, where single vacancies otherwise prevail [182]. The bulk vacancy network of c-Ce$_2$O$_3$ is schematically presented in Figure 25c (top), where it is compared to the cases of isolated single vacancy in only mildly non-stoichiometric ceria (bottom) and of regular vacancy pairs in CeO$_{1.75}$ (middle). The formation of vacancy clusters is driven by the electrons left behind by released oxygen which localize on cerium ions and the tendency to exclusively expose the reduced cerium ions, primarily by including subsurface vacancies [182, 482].

Although the involvement of ceria bulk in the overall reactivity has rarely been considered until recently, the above study clearly substantiates its relevance in all chemical processes incorporating water in interaction with cerium oxides. The general validity of the coordination-specific localized character of the enhanced water dissociation activity (associated with the presence of bulk vacancy clusters) provides explanation of not only the early experiments on H$_2$ generation by thermochemical cycling between Ce$_2$O$_3$ and CeO$_2$ [483], but also in the experiments and applications where CeO$_x$ stoichiometry remains far from Ce$_2$O$_3$ [213, 484-486] and where the accumulation of O vacancies may be expected via strain-driven [487, 488] phenomena such as introduction of dislocations, lattice distortions, heterointerfaces, and grain boundaries or cracks [489-491].
5 Surface chemistry of organic molecules

5.1 Motivation and background

Environmental concerns dictate that the energy sources used in our daily lives be clean and not contribute to global climate changes [79, 492-495]. Hydrogen, the simplest and most abundant element in the universe, has been identified as such a source [496, 497] and the transition to a so-called “hydrogen economy” has been occurring since 1970s. Nowadays, hydrogen is commonly considered a versatile fuel of future and it is forecast to become a major source of energy, offering a potentially non-polluting, efficient, inexhaustible, and cost-attractive energy carrier [496-500]. It begins to find its use as a replacement for conventional liquid or gaseous fuels in internal combustion engines. The interest in hydrogen has also been rising due to technical advances in fuel cells [471], being potential successors to batteries in portable electronics, to power plants, and to combustion engines. The continuous global move from solid (typically wood and coal) through liquid (mainly oil) to gas (mainly natural gas) fuels involves an environmentally important transition process of “decarbonization” (see Figure 26a). It can be quantified as the ratio of hydrogen to carbon (H/C) in a fuel or as a quantity of carbonaceous byproducts (most commonly CO₂) per amount of energy generated (as in Figure 26b). The global H/C ratio has been increasing almost exponentially since last 2 centuries [492]. Indeed, it brings increasing demands on an effective and clean production of, ultimately, pure hydrogen. Apart from industrial production of hydrogen and its transport (which is very challenging issue by itself), on-board generation of H₂ appears to be a convenient strategy mainly in terms of safety and distribution infrastructure. So far the major users of H₂, however, are still the large-scale fertilizer and petroleum industries.

Figure 26: a) The recent history of global energy sources share (% of market) and the projection of an expected transition towards cleaner and less carbon-intensive sources. Adapted from [501] and updated based on BP Statistical Review of World Energy 2018. b) Specific energy (per fuel weight), and CO₂ emissions (expressed as CO₂ to fuel weight ratio) of different fuels; note the break on the Specific energy axis. The red lines represent benchmark values of 50, 60, 80, and 100 g of CO₂ released per each MJ of energy produced. Data source: U.S. Department of Energy.

Generally, the technologies for producing H₂ fall into 4 categories: 1) thermochemical (mainly via steam reforming or pyrolysis), 2) electrochemical (mainly electrolysis of water), 3) photobiological (utilization of the natural photosynthetic activity of bacteria and green algae to produce H₂), and 4) photoelectrochemical (direct production of H₂ by light-induced water splitting on a semiconductor surface) [498, 500, 502, 503]. In vast majority of these processes the role of catalysis is irreplaceable [296, 495, 500, 504, 505].

A long sought goal of energy-related research has been the search for an efficient method to produce hydrogen economically by splitting water using sunlight as the primary energy source [506, 507]. As
we have demonstrated in the previous chapter (Section 4.2), hydrogen can also be generated from water by thermally activated catalysis by ceria [48]. However, a lot of research remains to be done to make the process of water splitting sufficiently feasible and globally available. Hence fossil fuels (mainly natural gas, which is mostly made up of methane [508]) or, in a better case, renewable hydrocarbons (such as ethanol [493, 509, 510] or methanol [61, 62, 500] - see also Section 5.2) are used as primary sources of hydrogen; a comparative overview has been provided in Ref. [500].

Regarding the elementary steps involved in \(\text{H}_2 \) production from hydrocarbons, one of the fundamental concerns is the activation of C–H bond and, eventually, its functionalization [181, 296, 511, 512]. It is typically the step that hinders the reaction, due to the large kinetic barrier associated to the cleavage of an isolated (non-acidic) C–H bond and its apolar nature. Therefore, carefully addressing this elementary process – like in our study in Appendix 16 [44] (see Section 5.4.2 below) – provides a key ingredient for the design of novel efficient catalysts and development of processes for hydrogen production.

In the following, a number of selected contributions in the surface chemistry of simple organic molecules [513] on palladium and platinum based model catalysts, with hydrogen production being of primary concern, will be presented (Sections 5.2 and 0). The last section (5.4) will be devoted to related topics of reactive carbon deposition and graphene formation on metal surfaces.

5.2 Catalysis of alcohols

The most simple alcohol, methanol, has been so far used in chemical industry primarily for petrochemical purposes in synthesis of other organics. However, its global-scale use as an energy carrier and combustion engine fuel has been discussed for decades and, more lately, also as a fuel for alcohol driven fuel cells in vehicles and other mobile devices. Its attractiveness stems mainly from its safety and low production costs [495]. Moreover, methanol can easily be converted to hydrogen by steam reforming or catalytic partial oxidation [514] for further use as an energy carrier or direct onboard utilization as a clean fuel.

A plenty of other, more complex, alcohols find their use in the above mentioned applications due to their chemical similarity and availability. Nevertheless, from the fundamental point of view, most of the knowledge necessary for understanding chemistry of alcohols can be acquired by studying short chain alcohols (i.e., those containing up to 3 carbon atoms), as they incorporate all functional groups and types of bonds present in larger alcohol molecules. Among the most prominent examples extensively investigated in both applied and basic research are ethanol and isopropanol.

5.2.1 Methanol oxidation on Pd/alumina catalyst

In analogy to Chapter 0, we will begin with the chemically more simple case of the traditional oxide-supported metal NP catalyst supported on an inert substrate, namely the \(\text{Pd/Al}_2\text{O}_3/\text{NiAl(110)} \) model system already introduced in Section 3.2.1.

The prerequisite in exploring surface chemistry of methanol oxidation is good understanding of its decomposition on the same catalyst, like it has been addressed in [43] and other related works [15, 42]. It proceeds via two competing reaction pathways: dehydrogenation to CO and C–O bond scission leading to formation of adsorbed carbon species. From the perspective of methanol decomposition the previously presented RAIRS identification of CO adsorbed on clean and carbon-covered Pd NPs (see, for instance, Figure 14) is a perfect example of utilizing CO as a probe molecule, like mentioned previously in Section 3.2. In this particular case we have demonstrated selective deposition of carbon on Pd NPs via the C–O scission pathway, which is shown to take part predominantly at defect sites (steps and edges); on contrary, the dehydrogenation pathway exhibits no such preference. Apart from this qualitative conclusion regarding structure dependent reaction selectivity, reaction rates
corresponding to individual reaction routes were determined from time-resolved IR reflection absorption spectra acquired during isotope exchange experiment [353] (by sudden switching between 12CH$_3$OH and 13CH$_3$OH effusive beams) [43]. In accordance with the above, the kinetics of C–O bond breakage drops rapidly with the occupation of reactive sites by carbon, whereas the dehydrogenation kinetics is almost unaffected.

Figure 27: a) Plot of CO$_2$ signal capturing both transient and steady state production rates of CO$_2$ during methanol oxidation on Pd/Al$_2$O$_3$/NiAl(110) model catalyst as a function of the fraction of methanol $x_{\rm MeOH}$ in the total flux impinging on the sample (surface temperature: 465 K; effective total pressure 2×10^{-6} mbar), average size of Pd particle 5.5 nm; b) Schematic description of the experimental setup used. Adapted from [66].

In the follow-up research the structural sensitivity phenomena has been generalized beyond the pure thermal decomposition case. The first direct experimental evidence of distinct reactivity of different types of surface sites coexisting on a single nanoparticle was shown in [15], using methanol oxidation as a probe reaction. This work was elaborated in more detail in [42], included as Appendix 10.

In Figure 27 the response of the CO$_2$ production rate for a continuous O$_2$ beam and a modulated methanol beam impinging on the surface at 465 K is presented as a function of the fraction of methanol ($x_{\rm MeOH}$) in the gas flux. Such experiment provides two types of kinetic information: steady state reaction rates and transient reactivity. The steady state reaction rates evaluated for different methanol–oxygen stoichiometries exhibit very different behavior as compared to CO oxidation on the exact same model catalyst, as can be seen in Figure 28, although both processes involve dissociation of C–O bond.

Two reaction regimes can be distinguished: Under methanol rich conditions, the steady state is characterized by large CO coverages (arising from the dominant dehydrogenation reaction channel), inhibiting oxygen adsorption and thus limiting oxidation activity, the more the lower is the surface temperature (Figure 28a). The inhibition effect is, however, not as strong as in the case of direct CO dosing (Figure 28b).

Under oxygen-rich reaction conditions the kinetics of methanol and CO oxidation exhibits even larger differences. In the case of CO, linear dependence is observed (already mentioned in Section 3.3, see also Ref. [431] for details), whilst for methanol oxidation the reaction rates are lower and the dependence on methanol–oxygen ratio non-linear in the oxygen-rich regime, because preadsorbed oxygen has a strongly inhibiting effect on the dehydrogenation process. These observations are
consistent with the transient behavior, analyzed in depth in Ref. [66], including a theoretical modelling of the process.

\[\text{CH}_3\text{OH} + \text{O}_2 \rightarrow \text{CO}_2 \]

\[\text{CO} + \text{O}_2 \rightarrow \text{CO}_2 \]

Figure 28: Steady state reaction rates on the Pd/Al$_2$O$_3$/NiAl (110) model catalyst as a function of the fraction of the main reactant (methanol or CO) in the impinging gas flux (x_{MeOH} or x_{CO}) and the surface temperature a) for total oxidation of methanol ($P_{\text{total}} = 2 \times 10^{-6}$ mbar) and b) for CO oxidation ($P_{\text{total}} = 1 \times 10^{-6}$ mbar). Average Pd NP size was 5.5 nm. Adapted from [66].

5.2.2 Methanol adsorption and decomposition on Pt/ceria catalyst

As was already emphasized in Section 3.2.2, in contrast to Section 3.2.1, the use of an active support (here a reducible oxide) opens additional routes for surface chemistry due to the strong interaction between the metal particles and the support [408, 410, 515, 516]. Synergistic effect between Pt and CeO$_2$ has been demonstrated also in electro-oxidation of alcohols when used as anodic material in direct alcohol fuel cells [517-519].

On pristine ceria, methanol adsorbs at low temperatures and partially dissociates to methoxy (CH$_3$O) upon annealing [520, 521]. The consequent formation of surface bond hydroxyls and adsorbed water results in partial reduction of the cerium oxide surface [522]. When exposed above room temperature, methanol dissociates directly upon adsorption [523].

The publication [37] attached as Appendix 11 is aimed at understanding methanol adsorption and decomposition on model Pt/CeO$_2$ thin-film catalyst, grown epitaxially on Cu(111) substrate. It is shown that the chemistry of methanol on the ceria supported Pt nanoparticles monitored by XPS, SRPES, and AFM resembles in many aspects the sputtered pure Pt surface with high concentration of atomic steps, corners, and kinks [10], revealing the involvement of the under-coordinated surface sites present on the metal particles. Unlike on densely packed defect-free Pt(111) surface [524, 525], upon annealing the methanol adsorbate, CO is formed through dehydrogenation of methoxy via formyl intermediate. It is followed by partial dissociation of the C–O bond resulting in an accumulation of surface carbon, which is transformed into metal carbide above 500 K on rough Pt(111).

Apart from this structure-determined behavior inherent primarily to the Pt NPs, on Pt/CeO$_2$ the interaction between the metal and the oxide comes into play via hydrogen spillover from the Pt particles to ceria [52, 526] and simultaneous oxygen spillover in the opposite direction [11]. The latter mechanism facilitates removal of the surface carbon above 500 K, eliminating surface poisoning (i.e., formation of stable carbides) observed on bulk platinum. Dehydrogenation of methanol on Pt NPs followed by hydrogen spillover to ceria, on the other hand, leads to the formation of surface hydroxyl groups and, consequently, to reduction of adjacent Ce$^{4+}$ centers in ceria to Ce$^{3+}$. The high efficiency of the Pt/CeO$_2$ system in methanol decomposition and its resistance to carbon poisoning might explain
the high activity and durability of this catalyst observed in methanol oxidation [516] and electrooxidation [517, 518, 527-530].

Figure 29: SRPES C1s spectra following methanol adsorption at 110 K and its consequent step-wise annealing on a) ion-eroded Pt(111) surface and b) Pt/CeO₂(111) model catalyst surface; primary photon energy was hν=380 eV and 410 eV, respectively. The carbon and carbide peaks are highlighted in yellow and red, respectively. c) AFM image of the Pt/CeO₂(111) catalyst with a selected cross-section showing the surface profile. Adapted from [37].

5.2.3 Methanol oxidation on ceria/Pt inverse catalyst

It is often assumed, for the sake of simplicity, that properties of multicomponent heterogeneous catalysts (the components comprising different materials or different crystal planes of the same material) can be regarded as a superposition of the contributions from each individual structural element. This assumption is, however, in certain cases invalid, generally in any system where a communication (or coupling) between adjacent regions takes place. An example of such cooperative system has already been shown in Sections 3.2.2 and 5.2.2, dealing with chemistry of Pt/CeO₂. A combination of both active metal and active oxide compounds is often suitable for a configuration of so-called inverse catalyst, where oxide nanoparticles (NPs), typically transition metal oxides, are supported on a (typically noble) metal substrate [177, 200-203]. Such concept may seem counterintuitive because the design of the traditional catalyst is based on maximizing the effective surface area of the dispersed metal component and, eventually, taking advantage of size-related phenomena. However, this conventional view loses its relevance whenever the oxide actively participates in the surface chemistry and thus, rather than the metal itself, it is the interface between the two phases that gains importance in overall reactivity.

It has been known for long [195] that influence of metal–oxide electronic interactions on the catalyst activity (in terms of activation energies) is much larger for inverse catalysts than for the conventional ones [531, 532]. This is especially the case of noble metals which have high electron negativity and low oxygen affinity, so that transition metal cations of the oxide bind strongly to substrate atoms at the
interface, forming oxygen-terminated-bilayer nanostructures, exposing under-coordinated (coordinatively unsaturated) sites which may provide a particular activity or selectivity, primarily in oxidation reactions [177, 199, 296]. At the same time, the strong interactions between the two components prevent further oxidation of the bilayer phase, which would otherwise result in deactivation of the active cations due to their saturation with oxygen.

The smaller are the oxide clusters the higher becomes the fraction of the interfacial reactive sites, effectively enhancing the net reactivity. Moreover, the redox processes are often associated with oxide restructuring [181, 218] which is thermodynamically more facile with smaller oxide structures and can give rise to active nano-oxide phases which would not exist in bulk or would not be sufficiently stable under the given environment [533]. The strain induced by a lattice mismatch between metal and oxide in very thin oxide films, as shown for ceria on some metals in [488, 534], can also contribute to increased redox activity.

![Figure 30](image-url)

Figure 30: Examples of ceria-based inverse model catalysts: STM/LEEM images and LEED patterns demonstrate the dramatic effect of support on the structure of the ceria islands in inverse catalysts for Au(111), Pt(111), Re(0001), Rh(111), Ru(0001), and Cu(111) substrates. The lattice spacing for the substrates are indicated, along with the ratio relative to the CeO$_2$ (111) surface. The red solid and blue dashed circles highlight the first order diffraction spots from the substrate and ceria, respectively. Size of all STM and LEEM images is 200×200 nm2; the LEED patterns were acquired at different energies. Adapted from [535].

For ceria, the synergistic interplay between non-continuous oxide and metal substrate has been already demonstrated on Cu [532, 536-542], Au [478, 536, 543-545], Ag [536], Pt [546, 547], Rh [548, 549], Pd [548], Ru [550], and Re [551] surfaces, as well as on other inverse model or powder catalysts [535, 552]. An overview of some of these model systems is given in Figure 30. Recently, our group has also performed a series of detailed characterizations of the inverse model system of ceria on copper [17, 488, 491]. Catalysts consisting of cerium oxide nanoparticles supported on metal surfaces proved very effective in promoting important industrial reactions such as CO oxidation, WGS, and methanol synthesis from CO$_2$.

Corresponding model systems turned out to be very instrumental in clarifying the relevant reaction mechanisms. For instance, the complementary chemical properties of coexisting adjacent metal and oxide sites on a copper-ceria inverse catalyst were found responsible for high efficiency for the chemical activation of CO$_2$ in methanol synthesis [532, 541], which is generally quite challenging task. The extraordinary functionality of the metal-reducible oxide interface was observed in promoting
WGS reaction on CeO$_2$/Au(111). This is remarkable because neither Au(111) nor CeO$_2$ is able to catalyze the WGS reaction, but together they attain high activity [543, 553].

Generally, it was shown that oxygen atoms can be removed from interface sites at much lower cost than in other regions of the surface, which can completely alter the reactivity of a catalyst. The oxide–metal interaction in CeO$_2$/M activates the system by generating numerous Ce$^{3+}$ species within the oxide cluster via a charge transfer from the underlying metal [181, 195, 411, 532, 536, 554]. On both CeO$_2$/Au(111) and CeO$_2$/Cu(111) the catalytic activity is related to the presence of these active Ce$^{3+}$ centers [532, 553, 554] and the same holds true for other metals mentioned above.

In Appendix 12 [63], methanol oxidation on ceria/Pt inverse catalyst has been investigated in the temperature range 360–600 K, using thin films prepared by magnetron sputtering deposition technique. Temperature-programmed reaction (TPR) measurements of reactivity at ambient pressure were correlated with complementary chemical and structural information obtained by spectroscopy (XPS) and microscopy (SEM).

![Figure 31](image_url)

Figure 31: a) Comparison of methanol to hydrogen conversion probability over the non-continuous CeO$_2$ layer (0.2 nm average thickness) deposited over Pt NPs (1 nm average thickness) supported on silicon wafer (red), compared with the reference pure Pt NPs (1 nm) on the same substrate (orange) and the pristine non-continuous CeO$_2$ layer (0.2 nm) on silicon (green). All the samples were prepared by magnetron sputtering deposition. The ratio of methanol to oxygen was 2:1, total pressure 1 bar. The reactivity is presented in the form of an Arrhenius plot. b) A composite 3D-surface image of the non-continuous CeO$_2$/Pt inverse catalyst based on SEM micrographs, showing silicon substrate (blue), Pt NPs (orange) and ceria ad-layer (green). c) Temperature dependence of reaction selectivity in methanol oxidation on the non-continuous CeO$_2$/Pt inverse catalyst presented in b). The reaction proceeds via 4 different pathways (listed on top of the plot) with varying probability. Adapted from [63].

The high overall reactivity of the ceria–platinum inverse system can be attributed to high reducibility of ceria with low dimensionality. This redox capability is further strongly enhanced on discontinuous ceria, exposing very reactive triple-phase boundaries where ceria islands serve as oxygen donors to facilitate the oxidation of methanolic intermediates on the nearby Pt sites. It is in accord with previous findings that the ceria/Pt interface is more active with the oxide in the form of NPs rather than extended bulk surface [182]. When the oxidation of methanol (using stoichiometric 2:1 methanol/oxygen mixture) is quantified in terms of total hydrogen yield per surface area such catalyst outperforms pure platinum by over an order of magnitude at 600 K and nearly 100% selectivity toward the dehydrogenation reaction pathway, while generating undetectable amounts of undesired CO byproduct (see Figure 31). The optimal conditions for partial oxidation of methanol (POM) reaction, yielding H$_2$ and CO$_2$, are found for 0.2 nm ceria on Pt at around 430 K. At higher temperatures,
gradual switching to a competing pathway leads to the production of formic acid (HCOOH) and hydrogen, yet the amount of carbon monoxide remains very low (below 1%).

5.2.4 Methanol on cobalt-ceria

Another material highly suitable for catalysis of oxidation reactions is cobalt oxide. Among various applications (such as lithium-ion batteries, gas sensors, magnetooptics, superconductivity, photocatalysis, etc.), it is very promising and efficient (electro)catalyst for oxidation reactions, hydrocarbon reforming, Fisher-Tropsch synthesis, water splitting and many others. To a large extent, attractiveness of Co-O phases stems from their high tunability owing to the structural and electronic richness of cobalt oxides and their surface terminations, along with facile redox behavior similar to ceria. The two most stable phases of cobalt oxide (cubic rocksalt CoO and spinel Co$_3$O$_4$) can coexist and are mutually reversible between each other under reduction/oxidation conditions. Strong dependencies were found between oxidation state and surface morphology of CoO$_x$ and its catalytic activity towards certain reactions. For instance, Co$_3$O$_4$ was found to be the most active among base metal oxides for catalyzing CO oxidation (even at temperatures below freezing point) [555] or other oxygen transfer reactions at low temperatures. This is mainly because octahedrally coordinated Co$^{3+}$ cation is often the most active species [556], but its abundance at or near surface is determined by a particular surface structure, its termination, and an eventual presence of oxygen vacancies. All these properties provide countless ways in controlling the Co$^{3+}$–Co$^{2+}$ redox coupling and thus tuning the catalyst for a particular process.

Figure 32: Distinctly different thermal behavior of Co$_3$O$_4$ ordered thin films on Ir(100) for pristine oxide and after deposition of very small amount of ceria nanoparticles. Upon annealing, pristine oxide undergoes phase transition to CoO rocksalt, forming large flat islands, whereas ceria hinders the Co$_3$O$_4$ reduction even at 953 K. Real STM images are combined with corresponding atomic models. From [27].

In the work presented in Appendix 13 (ref. [23]), we have focused on oxidative conversion of methanol to hydrogen. We successfully employed a strategy of controlling cobalt oxide redox behavior by combining it with other reducible oxide, ceria. This binary system turned out to be exceptionally interesting due to an intricate interplay between cerium and cobalt oxides via oxygen transfer involving Co$^{3+}$/Co$^{2+}$ and Ce$^{4+}$/Ce$^{3+}$ redox pairs. As demonstrated in Appendix 14 (ref. [27]) for different cobalt-ceria structures, Co$_3$O$_4$ partially covered or doped by ceria exhibits markedly enhanced resistance against undesired irreversible reduction, while retaining its exceptional catalytic capability. Thin films of CeO$_2$/CoO$_x$ performed efficiently in catalyzing methanol conversion to hydrogen under ambient pressures without apparent degradation even in methanol rich environments. The reaction
selectivity of this binary oxide system can be handled via mutual ratios and structural arrangement of both its components.

5.2.5 Isopropanol on Co$_3$O$_4$ and Pt/Co$_3$O$_4$

Reactive interaction of another alcohol, isopropanol (2-propanol), with cobalt oxide thin films (pristine of supporting Pt nanoparticles) is subject of a publication in Appendix 15 (ref. [41]). Selective oxidation of isopropanol to acetone is a key process in catalytic and electrochemical applications involving direct alcohol fuel cells (DAFC) or liquid organic hydrogen carrier (LOHC) systems for efficient energy conversion and storage.

In [41], well-defined Co$_3$O$_4$(111)/Ir(100) and Pt/Co$_3$O$_4$(111)/Ir(100) model catalysts were characterized by a powerful combination of spectroscopic and microscopic methods (SRPES, NAP-XPS, STM, TPD), spanning pressures from UHV to millibar range.

![Figure 33: An overview of different stages of Pt/Co$_3$O$_4$(111)/Ir(100) model catalyst upon interaction with isopropanol. Depending on Pt adlayer morphology and degree of cobalt oxide reduction, reaction selectivity changes significantly. STM images of as prepared Pt/Co$_3$O$_4$ thin film and of the same sample after extensive annealing in isopropanol are shown in background left and right, respectively. Adapted from [41].](image)

On both surfaces, isopropanol adsorbs molecularly at low temperatures (150 K). Annealing triggers decomposition of adsorbed species, with some of them leaving the surface as acetone and water, accompanied by a gradual reduction of the oxide. When Pt is present, the reaction selectivity varies depending on the morphology of Pt nanoparticles and oxidation state of CoO$_x$. When platinum is highly dispersed after deposition, covering majority of the oxide substrate, isopropanol decomposes to acetone and hydrogen. Upon thermally induced sintering of Pt, a preference towards propylene or acetone production is observed. It can be correlated with a degree of reduction of the oxide substrate, which is a subject of lattice oxygen removal during the surface reactions. It is also associated with C–C bond scission, leading to an accumulation of carbon deposits. Ultimately, Co$_3$O$_4$ can be reduced upon interaction with isopropanol to CoO and further to partially metallic phase, which, in the presence of Pt, results in formation of Pt-Co alloy nanoislands.
5.3 Catalysis of other hydrocarbon oxygenates

One of the sustainable routes towards hydrogen production is based on decomposition or reforming of bio-derived hydrocarbons, particularly oxygenates (such as bio-ethanol or bio-oils) [557, 558]. As in many other processes involving catalysis of organics, surface deactivation due to coke formation is a limiting factor for catalyst durability. The accumulation of surface carbon during bio-oil reforming can be suppressed by using reducible supports such as ceria [559]. However, the microscopic origins of the underlying surface reaction mechanism and their kinetics at microscopic scale remain largely unexplored. Some issues related to mechanisms of activation and deactivation in oxygenate catalysis have been uncovered to some degree for formic acid [39], acetic acid [13, 47], and ethylene glycol [47] using a surface-science-based model approach.

![Figure 34: a) Ball-and-stick models of two common types of organic oxygenate molecular structures – a fraction of a cellulose chain (left) and an oleic acid molecule (right). The various dicarbon fragments of these substances comprise bases for ethanol, ethylene glycol, ethylene, and acetic acid molecules; b) Schematic overview of possible elementary surface processes related to chemistry of oxygenates.](image)

In order to understand mechanisms of biomass-based hydrogen production, relevant model compounds with reasonable complexity are explored. As a good starting point, C₂-based bio-derived hydrocarbon oxygenates model compounds (acetic acid, ethanol, ethylene glycol) were chosen in our recent studies [47]. These molecules conveniently contain combinations of various functional groups (e.g. CO, OH, COOH, C=C) with very different chemical properties. They represent a relatively simple compounds with the C–C core situated in different molecular environments, which are present in all oxygenated hydrocarbons – see the molecular illustration in Figure 34a, showing the most abundant organic polymer cellulose and oleic acid, the most common natural fatty acid.

It turns out that the reaction pathways governing the catalyzed decomposition of these basic building blocks of organic molecules (mainly the scission of C–C bond and carbon surface poisoning, see also the overview of surface reactions in Figure 34b) depend substantially on a particular combination of the model compound and the catalyst surface [47], as will be also shown in the rest of this section. A general observation is that ceria actively participates in surface reactions via spillover of surface species between Pt and ceria [11, 13, 39, 52, 364].
5.3.1 Formic acid decomposition on Pt/ceria

On many metallic [560, 561] surfaces, formic acid dissociates to produce formate (HCOO\(^-\)) and hydrogen (H\(^+\)). On oxides, the deprotonation of formic acid occurs via the loss of acidic H\(^+\), yielding formate and hydroxyl radical (OH\(^-\)) [562-564]. The formate can further decompose via dehydrogenation or dehydration route, resulting in desorption of CO\(_2\)+H\(_2\), or CO+H\(_2\)O, respectively. It was found that dehydrogenation is the dominant pathway on metals [560, 561, 565] (which is also the case of Pt(111) [565]) and on basic oxides [566, 567], whereas dehydration pathway prevails on acidic oxides [567, 568]. On the surfaces yielding only a single set of the above products the reaction proceeds via a simple monomolecular decomposition [569, 570], whereas on the surfaces where a mixture of desorbing CO\(_2\), H\(_2\), CO, and H\(_2\)O is formed, the reaction may proceed via a bimolecular mechanism [569], involving interaction between two formate species, or between formate and formic acid molecule.

The reaction selectivity can be often tuned via surface temperature [20-21] and, in the case of oxides, by the introduction of vacancies [562, 564]. From the microscopic point of view the preference for a particular decomposition pathway of the surface formate may be promoted by its particular bonding configuration. The article in Appendix 16 [39] presents a comprehensive characterization of formic acid adsorption and decomposition on cerium oxide thin-film (both fully oxidized and mildly reduced) grown on Cu(111) and Pt/ceria model catalysts by means of SRPES, RPES, RAIRS, and TPD methods.

On these systems, two distinct temperature intervals can be recognized – see Figure 35 where the selected SRPES and TPD data for Pt/CeO\(_2\)(111) have been correlated. Below approx. 400 K a bimolecular decomposition mechanism leads to simultaneous desorption of CO\(_2\), H\(_2\), CO, and H\(_2\)O, with some methanol by-produced above 210-280 K. At higher temperatures (>400 K), the desorption pattern depends substantially on both the cerium oxide stoichiometry and presence of Pt NPs. On the non-stoichiometric CeO\(_{2-x}\) the production of CO\(_2\) is suppressed, whereas its enhancement is observed on Pt/CeO\(_2\)(111).

Unlike for the rather intact pristine stoichiometric ceria, the annealing of molecularly adsorbed formic acid on partially reduced CeO\(_{2-x}\) results in a significant reoxidation of the surface between 250 and 400 K due to an electron transfer from Ce\(^{3+}\) to formate (see the RPES comparison in Figure 35d). With increasing temperature it is followed by an opposite process of reduction due to rapid decomposition of formate via the dehydration route. A completely different scenario is seen on Pt/CeO\(_2\), where hydrogen spillover from Pt to the support (identified by RAIRS) occurs below 260 K, followed by a reverse hydrogen spillover from ceria to Pt NPs at higher temperatures, resulting in desorption of molecular hydrogen starting above 350 K (see Figure 35a-c). Some hydrogen is, in parallel, removed in the form of methane. Moreover, traces of formaldehyde have also been found on all samples.

The above study renders a connection between the reaction selectivity during thermal decomposition of formic acid adsorbed on cerium oxide and the simultaneous change of its oxidation state. Furthermore, it demonstrates the essential role of the spillover phenomena in the presence of active metal nanoparticles on the oxide substrate.
5.3.2 Acetic acid decomposition on Pt/ceria

In several aspects similar to the chemistry of acetic acid on ceria and Pt/ceria model catalysts has been covered in Appendix 17 (ref. [13]). In addition to the formic acid case, acetic acid combines the carboxyl functionality with both C-C and C-H bonds, thus representing an ideal model component for fundamental studies of reforming mechanisms [571].

In analogy to the formic acid the initial step following adsorption of acetic acid at low temperature (150 K) on all surfaces (CeO$_2$(111), CeO$_{2-x}$, and Pt/CeO$_2$(111)) is partial loss of acidic hydrogen yielding surface bond acetate (CH$_3$COO$^-$) species. Several products are formed upon annealing, including ketene (H$_2$C=O), acetaldehyde (CH$_3$CHO), H$_2$, water, CO, CO$_2$, methanol, and methane. In Figure 36a TPD spectra of the most important reaction products are shown for all three systems, along with the corresponding SRPES C 1s signals corresponding to acetate and methoxy radicals and to carbonaceous surface species. As evidenced by SRPES, acetates are relatively stable up to about 425-475 K.
Figure 36: Thermal decomposition of acetic acid on CeO$_2$(111), CeO$_{2-x}$, and Pt/CeO$_2$(111) following exposure to 15 L of CH$_3$COOH at 150 K. a) TPD spectra for selected molecular masses; the spectra are scaled with respect to the topmost one (for m/z=2amu), the assigned molecules for each spectrum are indicated in green. b)-d) Evolution of SRPES integral intensities of selected individual components of C 1s spectra with temperature. e) A schematic depiction of the processes taking place on the cerium oxide and Pt/ceria surfaces during annealing of acetic acid adsorbate, showing reaction intermediates and products. Partially adapted from [13] and [47].

On CeO$_2$, strong water desorption occurs around 300 K, with a second peak near 600 K. Most other products exhibit desorption peaks centered around the latter temperature mark (~580-620 K), with an exception of ketene featuring an additional peak at 506 K. No change in oxidation state of cerium (reduction) is observed during the annealing procedure. On partially reduced CeO$_{2-x}$, no water peak is seen below 500 K. The steady increase of acetate concentration detected by SRPES up to about 250 K reveals continuing conversion of acetic acid to acetate during annealing, presumably activated at oxygen defect sites not present on CeO$_2$. In the higher temperature region the main difference from stoichiometric ceria is that the decomposition route leading to ketene desorption near 500 K is suppressed, as well as the production of CO$_2$ and CO which is nearly eliminated in the whole range above 450 K. It is suggested to be due to the rupture of C−O bond within acetate near Ce$^{3+}$ centers,
giving rise to observed reoxidation of CeO$_2$-x, accompanied with a formation of strongly adsorbed carbonaceous (C$_x$H$_y$) species, not present on pristine CeO$_2$ at all (see Figure 36d).

The situation is somewhat more complex on Pt/ceria. A mixed adsorbate comprising molecular acetic acid and acetic acid is formed at low temperatures on both ceria and platinum. Such identification is allowed owing to the high energy resolution of SRPES in which distinct groups in C 1s spectra (methyl and carboxyl/carboxylate) binding to either ceria or platinum can be resolved by fitting routine. The increase of acetate signal on ceria between 150–200 K results from deprotonation of molecularly adsorbed acetic acid to acetate on Pt particles followed by its spillover to the support. The denser acetate layer on ceria tends to promote binding at different (monodentate) adsorption geometry above 250 K. Decomposition of these monodentate acetate species yields large amounts of hydrogen and CO at the expense of the formation of ketene and acetone, as observed by TPD (Figure 36a). The decomposition process leads to carbon accumulation on both Pt NPs and on ceria, but it is reacted off above 450 K by thermally activated self-cleaning process, related to reverse oxygen spillover from the ceria support to the Pt particles. The carbon deposits are oxidatively removed even from the ceria support above 600 K on Pt/CeO$_2$, effectively preventing carbon deactivation of this catalyst in potential reactions involving acetic acid.

An illustrative overview of different processes which take part on all types of surfaces discussed above is provided in Figure 36e. Again, the interaction of Pt/ceria with acetic acid clearly demonstrates the synergy between metal and oxide components mutually “communicating” via bi-directional spillover, as well as the important role of facile reducibility of the support in the process.

5.4 Hydrocarbons and graphene

Graphene is a two-dimensional honeycomb lattice of sp2-bonded carbon atoms with very distinct physico-chemical properties [572–576]. Although already known since over 4 decades by surface science and catalysis communities [577–581], it has attracted an enormous interest since it has been first isolated in a free-standing form via exfoliation of highly oriented pyrolytic graphite (HOPG) [582, 583], followed by a Nobel prize award relatively shortly after in 2010. Apart from the originally used method of micromechanical cleavage, other means of graphene preparation were developed since then, with the most common being thermal decomposition of SiC [572, 575, 584, 585], reduction of graphene oxide [572, 586, 587], or growth on metal surfaces [577, 588]. The growth on metals is usually realized by either segregation of bulk-dissolved carbon [589], or by chemical vapor deposition (CVD) technique [575, 577, 588, 590, 591], typically using a hydrocarbon as a reactant molecule.

From the surface physics and chemistry standpoint there are two central motivations in studying graphene on metals: 1) understanding passivation mechanisms of catalysts, where deposition of carbon in different forms (of which graphene is often the most resilient) is one of the main deactivation routes [139, 319, 510, 592], and 2) understanding structural nuances and microscopic details of growth of high quality graphene, potentially usable in applications.

5.4.1 Ethene decomposition on platinum

Even before the term “graphene” was coined, flat or two-dimensional graphitic structures were identified on some metal and metal carbide surfaces by diffraction [578, 579, 593–596], spectroscopy [581, 596–598], or scanning probe microscopy [580, 598–600] methods. In our follow-up research extending the previous pioneering study of Comsa et al. [580] we investigated thermal decomposition of ethene (ethylene) on Pt(111) single crystal surface by scanning tunneling microscopy, as can be seen in Appendix 18 [24].
The main goal of this experiment was to provide a clue in determining mechanism of carbon growth via dehydrogenation of ethene, the simplest alkene. Dosing ethene onto Pt(111) at room temperature leads to the formation of partially dehydrogenated intermediate ethylidyne. Further annealing induces progressive dehydrogenation, resulting in homogeneously distributed disordered carbon clusters consisting of about 30–35 carbon atoms, forming above approx. 450 K. The question was whether exposing the surface to additional ethene after the initial decomposition of C₂H₄ adsorbate and its consequent annealing leads preferably to an increase of carbon particle density or of their size; it was found that latter was the case. The sample turned nearly inactive already when approx. 70% of its surface became covered by carbon (after 4-5 dosing/annealing cycles), indicating a possible ensemble effect in the ethene dehydrogenation over Pt(111).

The second most important finding was that 2D graphitic layers had formed near platinum step edges at temperatures significantly lower than observed previously by other groups. It was suggested that the formation of graphene patches can be facilitated via decrease of the activation barrier for carbon phase transition from non-graphitic to graphitic type due to stronger lateral interactions of the increasingly dense carbon deposits.

5.4.2 C–H bond activation on platinum

To understand the interaction of hydrocarbons with catalytically active surfaces, an insight into the mechanisms of C–H bond activation is crucial. For instance, the initial cleavage of C–H bond occurring in alkane dissociative chemisorption to yield chemisorbed alkyl and hydrogen is often the rate-limiting step in industrial catalytic processes involving alkanes [97, 296, 511, 512]. Moreover, dissociative chemisorption of alkanes is a model system for activated polyatomic gas-surface reactions
for which molecular complexity can be varied and multidimensional experimental measurements can be used to challenge emerging theoretical models of gas-surface reactivity.

In Appendix 19 (published in [44] with an erratum in [45]) we combined precise sticking probability measurements of alkanes on Pt(111) single crystal using effusive molecular beams with theoretical model based on microcanonical unimolecular rate theory (MURT) of dissociative chemisorption [602-604]. Two cases were addressed in the study: 1) quasi-thermal dissociative sticking (i.e., gas beam temperature equal to surface temperature, $T_g=T_s=T$), representing conditions comparable to those found in industrial catalysis and 2) non-equilibrium dissociative sticking ($T_g\neq T_s$) for which the reactivity is intimately coupled to gas-surface energy transfer.

![Figure 38: a) Arrhenius plot of quasi-thermal dissociative sticking coefficients, $S_n(T)$, for several alkanes on Pt(111), measured with an effusive molecular beam incident along the surface normal thermalized to the surface temperature (i.e., $T_g=T_s=T$); b) Evans–Polanyi plot of the activation energy for dissociative chemisorption [derived from measured temperature dependence of dissociative sticking coefficient as presented in a)] versus desorption energy for several alkanes on Pt(111) (solid points measured; open points extrapolated). Adapted from [44].

Both thermal effusive beam (determining temperature dependence of dissociative sticking coefficient) and TPD experiments (determining activation energy for desorption) indicate that the activation energy for dissociative chemisorption of n-alkanes falls as the alkane size and desorption energy increases [44, 45, 605], as can be seen in Figure 38b. The experimental activation energy for alkane quasi-thermal dissociative sticking (E_a) exhibits linear correlation with the alkane desorption energy from the physisorption well (E_D), which can be interpreted as an Evans-Polanyi relation [90, 97, 606] because the E_D should approximate the van der Waals stabilization energy [607, 608] of the chemisorbed alkyl radical product of alkane dissociative chemisorption. For the non-equilibrium experiments, explicit accounting of the gas-surface energy transfer [602] becomes increasingly important as the alkane size is increased.

An extension of this work by measurement of angle-resolved thermal dissociative sticking coefficients [609] showed that the obtained values are dynamically biased for the smallest alkanes (methane and ethane) with respect to purely statistical behavior, which brings significant complications in quantitative modeling of catalytic processes. A plausible explanation of these deviations is that the molecular vibrational energy contributes to surmounting the activation barrier to thermal dissociative chemisorption, hence with increasing alkane size (with which the number of vibrational modes...
increases as well) the energy balance will be dominated by vibrations; as an experimental consequence the angular variation of dissociative sticking coefficient will become vanishingly small.

5.4.3 CVD of graphene on platinum

With development of new techniques of surface analysis a visualization of the graphene growth process in real time has been made possible. In the study presented in Appendix 20 (published in [25]), low-energy electron microscopy (LEEM) [610, 611] has been employed, providing 500 ms temporal and 5-10 nm lateral resolution with the given experimental setup and conditions. The LEEM observations were complemented by a set of alkene decomposition experiments using both high-temperature CVD [285] and ambient-temperature post-dosing Auger electron spectroscopy (AES), in order to quantify the carbon deposition process in a spatially averaged manner.

![Figure 39: Graphene growth via CVD on Pt(111) visualized by LEEM. Top: Three regions in the LEED image has been indicated using selected area microdiffraction (μLEED) as Pt(111) and two graphene islands with different orientations [(√19×√19)R23.4° and (√7×√7)R19.1°]. Bottom: The four images illustrate size and density dependence of graphene islands as a function of surface temperature during growth; Right: A sequence of three time snapshots of graphene growth at 1014 K, revealing graphene-induced structural changes of Pt surface. Adapted from [25].](image)

Ethene CVD on single-crystal oriented (111) platinum surface at temperatures near 1000 K results in 2-dimensional graphene islands, in vast majority with (√19×√19)R23.4° and (√7×√7)R19.1° orientations relative to the Pt(111) lattice. Although the initial nucleation takes place at platinum steps, graphene patches grow readily over the steps and step bunches. The growth proceeds in both directions – away from the lower and upper Pt step edges, in contrast to the uni-directional growth exclusively at the lower step edges, previously observed by temperature-programmed growth (TPG) [24, 599, 612]. The average island size increases significantly with temperature, yielding single-orientation high-quality structures with smooth edges and diameters exceeding 10 μm at temperatures only slightly above 1000 K. Quite surprisingly considering the rather decoupled character of the platinum–graphene system, growing graphene is able to induce noticeable morphological changes in the hot platinum surface (step bunching and reshaping), such as in Figure 39 (right).

The graphene coverage captured in LEEM images was further quantified for temperatures between 927 and 1014 K; the values were consistently lower than those determined by an integral method (AES
following exposure of Pt(111) to ethylene), especially at lower temperatures, because the size of the smallest graphene islands and, eventually, carbonaceous clusters was under the resolution of the microscope. The sticking coefficients determined by AES up to 850 K were consistent with a precursor-mediated thermalized trapping model for ethylene dissociative chemisorption [613]. However, this model had to be extended with a parallel reaction to account for the reversed tendency of the reaction rate, effectively increasing apparent sticking probability at higher surface temperatures [25]. It may happen due to surface structural changes such as roughening transitions, or the onset of additional reactive channels that ultimately lead to surface carbon.

Despite the recent boom in graphene literature there has been an ongoing debate on the exact mechanisms of graphene nucleation and growth. The unique two-dimensional polymeric structure of sp²-bonded carbon causes graphene to grow on metal substrates through mechanisms that are different from those known from a conventional heteroepitaxy. Several works has indicated that it happens via attachment from 2D gas of carbonaceous precursors (carbon clusters or C₆Hₓ fragments) rather than via a direct grow from the already established graphene island edges. The recent work presented in Appendix 21 (reference [18]) provided an experimental support to the previously rendered idea of graphene growth via attachment of C₅ clusters, with a predicted optimal size of n=5 [614]; this was later complemented by a theoretical study leading to the same conclusion [615]. It has also been reported that coalescence of much larger pre-organized structures is possible as well [616], yet the C₅ chain appears to be the most elementary preferred building block of graphene growth, sometimes called a principal graphene „feeding species“.

\[\text{Figure 40: Evolution of the photoelectron spectroscopy C} \text{1s signal from Pt(111) pre-exposed to 2 L of (left to right) ethene, propene, 1-pentene, and 1-hexene during annealing from 160 K to 1000 K. The graphene-related signal at 284.4 eV at high temperatures is the strongest when 1-pentene is used, providing one of the indicators of the preference for C}₅ \text{aggregates in graphene growth. The spectra are presented in the form of surface plot - the darker, the higher the SRPES intensity. Adapted from [18].} \]

The spectroscopic characterization of the CVD growth of graphene on Pt(111) using high-resolution synchrotron radiation excited photoelectron spectroscopy (SRPES) confirmed that although the initial dehydrogenation of 1-alkenes to adsorbed alkylidyynes starts to occur at essentially the same temperature (200-240 K) regardless the alkene chain length, the further loss of hydrogen commences
at lower temperatures the longer the hydrocarbon chain. At higher temperature when graphitization takes place, the kinetics of the graphene formation also exhibits a noticeable dependence on the alkene molecule size. The lowest apparent activation energy and the highest turnover rate were obtained for pentene (C_5 alkene) as predicted.
6 Concluding remarks

One of the main goals of this thesis has been to demonstrate that, from an experimental point of view, coupling kinetic reactivity experiments with detailed microscopic information provided by in-situ spectroscopies and microscopies is an extremely powerful tool in elucidating the relationships between the structural and reactivity properties of heterogeneous catalysts. In most cases, model systems with strictly controlled complexity were utilized in order to allow such degree of characterization. But even by employing merely integral methods within a well-designed experiment, local phenomena can, in some cases, be addressed at microscopic level, like in the works included as Appendices 1, 11, and 21. The synergistic power of using multiple experimental methods can be further enhanced by complementing with theoretical calculations or numerical simulations of the investigated systems, see, e.g., Appendices 2, 4, 6, 9, and 19 using this approach.

It has been shown on several examples that the size and structure of metal nanoparticles or stoichiometry and structure of oxides can govern the reaction selectivity in a very distinct manner. For instance, in Appendix 7 the role of different adsorption and reaction sites on supported nanoparticles during NO decomposition is elucidated; a locally-resolved structural dependence of methanol decomposition and oxidation is presented in Appendix 10. An experimental evidence of strong relation between specific arrangement of oxide vacancies and reaction selectivity in water dissociation on cerium oxide, bolstered by theoretical calculations, is given in Appendix 9. Similarly in Appendix 15 the selectivity of isopropanol reaction on pristine and Pt-covered cobalt oxides is shown to depend substantially on their oxidation state. The dissociation and recombination of water on ceria can, in turn, substantially alter its electronics structure, as can be seen in Appendix 8. Reducibility of ceria can be further enhanced in the inverse configuration (Appendix 12) where the oxide is present in the form of small islands on platinum, with potentially positive consequences for reactivity. A purely geometrical particle size effects turned out to be responsible for formation of spatial non-homogeneities on Pd/alumina nanocatalyst during methanol oxidation due to surface diffusion limitations (such as in Appendix 2).

Another key phenomenon in reactivity of multicomponent heterogeneous catalysts is a mutual communication (electronic and/or chemical) between the individual components. The results presented in Appendix 1 indicate that particle-size dependent electronic metal-substrate interaction plays an important role in CO binding and dissociation on alumina supported Pd nanoparticles, especially on the aluminum-rich oxide substrates. A successful attempt to experimentally quantify electron transfer between a strongly interacting reducible oxide support (ceria) and metal nanoparticles of various sizes can be seen in Appendix 4. Intricate interactions between cobalt and cerium cations within their binary oxides are responsible for their increased thermal and chemical stability and tunable catalytic properties as shown in In Appendices 13 and 14. A whole class of communication phenomena is represented by spillover effects, well documented experimentally, e.g., in Appendices 3, 16, and 17. Oxygen spillover from ceria to Pt also plays a decisive role in activity of the inverse catalyst in Appendix 12. These surface diffusion processes are closely related to surface dynamics effects [347, 348] which can eventually lead to macroscopically detectable phenomena such as reaction bistability (or, more generally, multistability); we have demonstrated in Appendix 6 that in some cases atomistic origins of such multistable behavior can be uncovered.

An attempt to at least partially overcome the infamous pressure and complexity gap was made in Appendix 5 (see also related works in [60, 62]) dealing with platinum oxide, considered one of the active phases present during oxidative processes on catalysts containing platinum under realistic conditions. Another example of a complex experiment spanning conditions from UHV to mbar pressures is given in Appendix 15 for Co$_3$O$_4$ and Pt/Co$_3$O$_4$ model catalysts.
Finally, a contribution to the currently hot topic of graphene science has been provided in Appendices 18, 20, and 21 by combining microscopic and spectroscopic methods to shed some light on the formation of this unique 2D material via decomposition of hydrocarbons, supported by the combined experimental and theoretical insight into the activation of C–H bond on platinum (Appendix 19).

7 Outlook

With environmental concerns getting into the front of public interest, several implications arise for the ever-growing field of catalysis. Currently in the forefront of interest are the sustainability and energetic issues [494] stirring up topics such as catalytic breakdown of biomass, functionalization of abundant naturally occurring hydrocarbons, and facile electrolysis of water. The need for protection of limited natural resources motivates continued search for cheaper, earth-abundant, replacements of noble metals or reduction of their use via improved material utilization and/or enhanced catalytic effectiveness, e.g., through development of novel tailored structures. Increasing emphasis has also been given to catalyst recovery issues (their regeneration or recycling [28, 74, 617]). Last but not least, a related issue of potential health impacts of exposures to increasingly abundant nanomaterials [618, 619], which has emerged only relatively recently, should definitely not be overseen as well.

All the above points impose numerous challenges for both industrial and academic research [620]. From the academic point of view, even getting to “merely” understand atomistic details of reaction mechanisms of already known catalytic systems can lead to much more rational optimization, as well as to development of brand new catalysts. Many degrees of freedom are available in the fabrication of novel catalytic materials, including structural aspects (dispersion, porosity, periodicity, vacations, low-coordinated surface sites such as steps, edges, or controlled defects [129-131, 178-180, 211, 487, 621], surface strain [488, 622-626], limited dimensionality [194, 232-235], etc.) or combinations of different materials (such as bimetals, mixed oxides, core-shell structures, etc.). One of the recent frontiers in heterogeneous catalysis is known as single-atom catalysis, representing a limiting case of metal dispersion and thus maximized material utilization [238-240, 242, 315, 412, 627, 628]. Single-atom catalysis shares the advantages of both homogeneous catalysts (isolated active sites) and heterogeneous catalysts (stability and facile separation), and are therefore expected to be able to bridge the fields of homo- and heterogeneous catalysis.

With continuing innovations of surface science tools and methods [79, 81, 251], including all areas from sample design through characterization to theoretical models, the vital question of relevance of model systems to their real-life analogues in catalysis has been becoming an increasingly significant issue [629]. It has stimulated the progress in the development of so-called operando methods [30, 125, 250, 292, 322, 630, 631], capable of monitoring catalytic surfaces directly under realistic reaction conditions. Some of these techniques also represent an outreach of surface science to liquid-phase chemistry or to electrocatalysis, which had been an almost exclusive domain of chemists until recently.

Amongst modern implementations of enhanced instrumental equipment aimed at bridging pressure and materials gap are the near-ambient pressure XPS (NAP-XPS) [30, 41, 54, 250, 290, 323-325, 328, 329] (see Figure 41, left panel), operando FTIR [223, 290, 354, 355, 396] and in-situ UV/vis [632], IR/vis sum frequency generation (SFG) [223, 633], Raman [634], or electrochemical IR spectroscopy [356, 601], operando or high-pressure STM (HP-STM, also called Reactor STM) [128, 250, 290, 635-638], electrochemical AFM (EC-AFM) [639, 640], operando SXRD [250, 641], operando or environmental transmission electron microscopy (ETEM) [30, 128, 250, 290, 326, 335, 642], environmental (or atmospheric) scanning electron microscopy (ESEM, ASEM) [327, 331, 332, 336], X-ray spectromicroscopy (SPEM) [337], and scanning transmission X-ray microscopy (STXM) [333, 643], to
name just some of them. Special microreactors providing integration of multiple analytical methods has been designed as well [644], see also an example in Figure 41 (right). Apart from advances on the analysis side, nanomaterial engineering has been taking its part by employing, e.g. nanoscale ion beam lithography (IBL) [229, 645, 646], nanoimprint lithography (NIL) [229, 647], ion projection lithography (IPL) [646, 648], pulsed laser deposition (PLD) [265, 266], self-assembled nanostructures or monolayers (SAMs) [236, 649-653] or their patterning [230, 654], graphene supports [650, 655] and templates based on carbon [656] or other materials [657], controlled surface faceting [127], and several other techniques.

![Schematic of a microcell allowing ambient pressure reaction observations by Differential pumping](image)

Figure 41: Two different approaches to operando research in heterogeneous catalysis. **Left: Differential pumping** – Cross section of NAP-XPS (SPECs Phoibos 150) recently installed at the Department of surface and plasma science at Charles University. The schematic shows simulated electron trajectories with an angle span of ±22° and three different energies. The four differential pumping zones are colored in different shades of blue. Courtesy of SPECs Surface Nano Analysis GmbH. **Right: Separation** – Schematic of a microcell allowing ambient pressure reaction observations by standard surface science tools. The catalyst is confined between two silicon nitride windows, and the reaction gases flow through the system to interact with the confined catalyst at atmospheric pressure. In this case, four different beams (electron, X-ray, IR, and laser) probe different parts of the catalytic system simultaneously. Adapted from [644].

However, even the established, currently considered “standard” instrumentation may allow to achieve a higher degree of understanding by employing new strategies (experimental or theoretical), implementing a greater control over the investigated systems, and by finding links between catalysis and other nanomaterial-oriented fields (e.g., colloid chemistry or nanoelectronics [658]). For instance, a sophisticated nanofabrication recipe was recently utilized to prepare controlled and precisely tunable model system in order to quantify hydrogen spillover phenomena in Ref. [659]. Preparation of materials with accurately size-selected clusters [227, 391] or with high level of control over cluster shapes [217], synthesis of tailored alloy nanoparticles [222], and fabrication of self-assembled solid structures [660] (just to give a few examples) have made a significant progress in the last years as well.

Hand in hand with the rise in computing power, more emphasis is being put on engaging multiple characterization methods mentioned above in tandem with theoretical calculations. Theory has been making rapid progress in the area of catalysis, providing insights into the mechanistic details and energetics of chemical reactions or even giving directions in the design of new catalytic materials [142, 661-666]. The complexity of the systems which the theory is able to handle keeps increasing; the current capabilities of theoretical modelling cover, e.g., relatively large supported clusters, crystal slabs with dopants or structural defects, thin films, extended adsorbate assemblies, and material growth processes. Intensive recruitment of computational and modelling approaches [667, 668] utilizing microkinetic simulations [250, 666, 669-674] and quantum mechanics methods such as ab initio [250,
density functional theory (DFT) [661, 666, 671, 672, 677-679], quantum molecular dynamics [671, 672, 680, 681], and their variants [666] became almost routine in modern trends of surface science and catalysis.

Industrial catalysis is a multidisciplinary activity with fundamental research being one of the key components [620]. In contrast to the extensive and sometimes rather intuitive approaches natural to chemical engineering, the surface science approach relies heavily on the reductionist view that if all the key factors affecting individual discrete steps involved (such as adsorption, desorption, poisoning, surface diffusion, reorganization and restructuring, etc.) are sufficiently evaluated, one ought to be in a better position to rationally design superior catalysts. Although it is fair to admit that the chemist’s way has been typically more successful in finding altogether new catalysts so far, it is largely a merit of the model system studies that the face of heterogeneous catalysis has changed substantially over the course of past few decades, through providing an unprecedented level of insight into the – sometimes seemingly mysterious – realm of catalysis.
8 References

References | 63
References

References

94. Evans, M.G. and M. Polanyi, Further considerations on the thermodynamics of chemical equilibria and reaction rates. Transactions of the Faraday Society. 32(o), 1936, 1333-1360.

68 | References
References | 69

References

277. Rand, M.J., Chemical Vapor Deposition of Thin-Film Platinum. J. Electrochem. Soc. 119(8), 1972, C238-

References | 73
References

References

References | 81

References

References | 83
References

Vitrimers: directing chemical reactivity to control material properties. Chemical Science. 11(19), 2020, 4855-4870.

Strain-Driven Moire Superstructures of Epitaxial Graphene on Transition Metal Surfaces. ACS Nano. 5(7), 2011, 5627-5634.

Towards stable single-atom catalysts: strong binding of atomically dispersed transition metals on the surface of nanostructured ceria. Catalysis Science & Technology. 6(18), 2016, 6806-6813.

Molecular studies of catalytic reactions on crystal surfaces at high pressures and high temperatures by infrared-visible sum frequency generation (SFG) surface vibrational spectroscopy. J. Phys. Chem. B. 103(10), 1999, 1623-1638.

List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>AES</td>
<td>Auger Electron Spectroscopy</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic Force Microscopy</td>
</tr>
<tr>
<td>AR-QMS</td>
<td>Angle Resolved Quadrupole Mass Spectrometry</td>
</tr>
<tr>
<td>ATR-FTIR</td>
<td>Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>BE</td>
<td>Binding Energy</td>
</tr>
<tr>
<td>CNT</td>
<td>Carbon Nanotube</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical Vapor Deposition</td>
</tr>
<tr>
<td>DAFC</td>
<td>Direct Alcohol Fuel Cell</td>
</tr>
<tr>
<td>DFT</td>
<td>Density Functional Theory</td>
</tr>
<tr>
<td>DPF</td>
<td>Diesel Particulate Filter</td>
</tr>
<tr>
<td>DRIFTS</td>
<td>Diffuse Reflectance Infrared Fourier Transform Spectroscopy</td>
</tr>
<tr>
<td>EMSI</td>
<td>Electronic Metal-Support Interaction</td>
</tr>
<tr>
<td>fcc</td>
<td>Face Centered Cubic</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier-Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full Width at Half Maximum</td>
</tr>
<tr>
<td>GCA</td>
<td>Glass Capillary Array</td>
</tr>
<tr>
<td>HC</td>
<td>Hydrocarbon</td>
</tr>
<tr>
<td>hcp</td>
<td>Hexagonal Close-Packed</td>
</tr>
<tr>
<td>HOPG</td>
<td>Highly Oriented Pyrolytic Graphite</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>IRAS</td>
<td>Infrared Absorption Spectroscopy (equivalent to RAIRS)</td>
</tr>
<tr>
<td>ISS</td>
<td>Ion Scattering Spectroscopy (equivalent to LEIS)</td>
</tr>
<tr>
<td>KE</td>
<td>Kinetic Energy</td>
</tr>
<tr>
<td>LEED</td>
<td>Low-Energy Electron Diffraction</td>
</tr>
<tr>
<td>LEEM</td>
<td>Low-Energy Electron Microscopy</td>
</tr>
<tr>
<td>LEIS</td>
<td>Low-Energy Ion Scattering Spectroscopy (equivalent to ISS)</td>
</tr>
<tr>
<td>LH</td>
<td>Langmuir-Hinshelwood</td>
</tr>
<tr>
<td>LOHC</td>
<td>Liquid Organic Hydrogen Carrier</td>
</tr>
<tr>
<td>LT</td>
<td>Low Temperature</td>
</tr>
<tr>
<td>MB</td>
<td>Molecular Beam</td>
</tr>
<tr>
<td>MBE</td>
<td>Molecular Beam Epitaxy</td>
</tr>
<tr>
<td>MC</td>
<td>Monte-Carlo</td>
</tr>
<tr>
<td>ML</td>
<td>Monolayer</td>
</tr>
<tr>
<td>μLEED</td>
<td>Low-Energy Electron Microdiffraction</td>
</tr>
<tr>
<td>MSI</td>
<td>Metal-Support Interaction</td>
</tr>
<tr>
<td>MURT</td>
<td>Microcanonical Unimolecular Rate Theory</td>
</tr>
<tr>
<td>MvK</td>
<td>Mars–van Krevelen</td>
</tr>
<tr>
<td>MWCNT</td>
<td>Multiwall Carbon Nanotube</td>
</tr>
<tr>
<td>NAP-XPS</td>
<td>Near-ambient Pressure X-ray Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>NIL</td>
<td>Nanoimprint Lithography</td>
</tr>
<tr>
<td>NP</td>
<td>Nanoparticle, Nanometer-sized Particle</td>
</tr>
<tr>
<td>PES</td>
<td>Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>PLD</td>
<td>Pulsed Laser Deposition</td>
</tr>
<tr>
<td>PVD</td>
<td>Physical Vapor Deposition</td>
</tr>
<tr>
<td>QMS</td>
<td>Quadrupole Mass Spectrometry, Quadrupole Mass Spectrometer</td>
</tr>
<tr>
<td>PEEM</td>
<td>Photoemission Electron Microscopy</td>
</tr>
<tr>
<td>RAIRS</td>
<td>Reflection Absorption Infrared Spectroscopy (equivalent to IRAS)</td>
</tr>
<tr>
<td>RPES</td>
<td>Resonance Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>RT</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>SAM</td>
<td>Self-assembled Monolayer</td>
</tr>
<tr>
<td>SCR</td>
<td>Selective Catalytic Reduction</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SFG</td>
<td>Sum Frequency Generation Laser Spectroscopy</td>
</tr>
<tr>
<td>SIMS</td>
<td>Secondary Ion Mass Spectrometry</td>
</tr>
<tr>
<td>SMSI</td>
<td>Strong Metal-Support Interaction</td>
</tr>
<tr>
<td>SPA-LEED</td>
<td>Spot Profile Analysis Low Energy Electron Diffraction</td>
</tr>
<tr>
<td>SPEM</td>
<td>Scanning Photoemission Microscopy (a.k.a. X-ray Spectromicroscopy)</td>
</tr>
<tr>
<td>SPM</td>
<td>Scanning Probe Microscopy</td>
</tr>
<tr>
<td>SRPES</td>
<td>Synchrotron Radiation Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>STM</td>
<td>Scanning Tunneling Microscopy</td>
</tr>
<tr>
<td>SXRD</td>
<td>Surface X-ray Diffraction</td>
</tr>
<tr>
<td>TDS</td>
<td>Thermal Desorption Spectroscopy (equivalent to TPD)</td>
</tr>
<tr>
<td>TMP</td>
<td>Turbomolecular Pump</td>
</tr>
<tr>
<td>TOF</td>
<td>Turnover Frequency; Time-of-Flight Spectrometry</td>
</tr>
<tr>
<td>TPD</td>
<td>Temperature-Programmed Desorption (equivalent to TDS)</td>
</tr>
<tr>
<td>TPG</td>
<td>Temperature-Programmed Growth</td>
</tr>
<tr>
<td>TPR</td>
<td>Temperature-Programmed Reaction</td>
</tr>
<tr>
<td>TR-FTIR</td>
<td>Time-resolved Fourier-Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>TR-RAIRS</td>
<td>Time-resolved Reflection Absorption Infrared Spectroscopy</td>
</tr>
<tr>
<td>TWC</td>
<td>Three-Way Catalyst</td>
</tr>
<tr>
<td>UHV</td>
<td>Ultra-High Vacuum</td>
</tr>
<tr>
<td>WGS</td>
<td>Water-Gas Shift</td>
</tr>
<tr>
<td>XANES</td>
<td>X-ray Absorption Near Edge Structure</td>
</tr>
<tr>
<td>XAS</td>
<td>X-ray Absorption Spectroscopy</td>
</tr>
<tr>
<td>XPEEM</td>
<td>X-ray Photoemission Electron Microscopy</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray Photoelectron Spectroscopy</td>
</tr>
</tbody>
</table>
Appendix – Selected presented publications

 DOI: [10.1016/S0079-6816(01)00022-3](https://doi.org/10.1016/S0079-6816(01)00022-3).

 DOI: [10.1016/j.jcat.2012.01.022](https://doi.org/10.1016/j.jcat.2012.01.022).

 DOI: [10.1038/NMAT4500](https://doi.org/10.1038/NMAT4500).

 DOI: [10.1016/j.apsusc.2015.03.108](https://doi.org/10.1016/j.apsusc.2015.03.108).

 DOI: [10.1126/science.1097513](https://doi.org/10.1126/science.1097513).

 DOI: [10.1021/Jp044271f](https://doi.org/10.1021/Jp044271f).

 DOI: [10.1016/j.cattod.2011.05.022](https://doi.org/10.1016/j.cattod.2011.05.022).

 DOI: [10.1021/acscatal.7b04409](https://doi.org/10.1021/acscatal.7b04409).

DOI: 10.1021/jp508177k.

DOI: 10.1021/acs.jpcc.8b07165.