STUDIJNÍ PLÁNY
Matematicko-fyzikální fakulty
2019/2020

Magisterské studium
Obsah

1. Uvodní slovo ... 3

2. Průběh studia .. 3

 2.1 Průběžná kontrola studia ... 3
 2.2 Zapis do ročníku a zapis předmětu ... 6
 2.3 Zkoušky a zápočty .. 7

3. Státní závěrečná zkouška ... 9

4. Výuka jazyků ... 8

5. Telesní výchova ... 8

6. Peče o studenty se speciálními potřebami 9

7. Nekolik rad závěrem .. 13

8. Podrobný harmonogram akademického roku 2019/2020 11

9. Přehled studijních programů a oborů na MFF UK 15

10. Magisterské studium ... 15

11. Garanti studijních programů .. 16

12. Studijní plány studijního programu MATEMATIKA 18

 12.1 Magisterské studium ... 18

13. Studijní obory magisterského studia studijního programu Matematika ... 18

14. Všeobecné zásady studia .. 19

15. Studijní plány jednotlivých oborů ... 21

 15.1 Matematické struktury ... 21
 15.2 Matematické metody informační bezpečnosti 24
 15.3 Matematická analýza ... 25
 15.4 Numerická a výpočtová matematika 28
 15.5 Matematické modelování ve fyzice a technice 33
 15.6 Pravděpodobnost, matematická statistika a ekonometrie 37
 15.7 Finanční a pojišťová matematika ... 42
 15.8 Matematika pro informační technologie 45

16. Studijní plány jednotlivých oborů ... 51

 16.1 Matematické modelování ve fyzice a technice 51

17. Všeobecné informace .. 52

18. Studijní plány jednotlivých oborů ... 53

 18.1 Astronomie a astrofyzika .. 53
 18.2 Geofyzika .. 59
 18.3 Meteorologie a klimatologie .. 63
 18.4 Teoretická fyzika .. 69
 18.5 Fyzika kondenzovaných soustav a materiálů 73
 18.6 Optika a optoelektronika ... 85
 18.7 Fyzika povrchů a ionizovaných prostředí 91
 18.8 Biofyzika a chemická fyzika .. 96
 18.9 Jaderná a subjaderná fyzika .. 103
 18.10 Matematické a počítačové modelování ve fyzice 109
Obsah

<table>
<thead>
<tr>
<th>Část</th>
<th>Název</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>Učitelství fyziky</td>
</tr>
<tr>
<td>Studijní plány studijního programu INFORMATIKA</td>
<td>119</td>
</tr>
<tr>
<td>Magisterské studium</td>
<td>120</td>
</tr>
<tr>
<td>Zahájení studia v roce 2015 nebo později</td>
<td>120</td>
</tr>
<tr>
<td>1.</td>
<td>Základní informace</td>
</tr>
<tr>
<td>2.</td>
<td>Studijní plány jednotlivých oborů</td>
</tr>
<tr>
<td>1.</td>
<td>Diskrétní modely a algoritmy</td>
</tr>
<tr>
<td>2.</td>
<td>Teoretická informatika</td>
</tr>
<tr>
<td>3.</td>
<td>Softwarové a datové inženýrství</td>
</tr>
<tr>
<td>4.</td>
<td>Softwarové systémy</td>
</tr>
<tr>
<td>5.</td>
<td>Matematická lingvistika</td>
</tr>
<tr>
<td>6.</td>
<td>Umělá inteligence</td>
</tr>
<tr>
<td>7.</td>
<td>Počítačová grafika a vývoj počítačových her</td>
</tr>
<tr>
<td>Záhájení studia v roce 2014 nebo dříve</td>
<td>160</td>
</tr>
<tr>
<td>1.</td>
<td>Základní informace</td>
</tr>
<tr>
<td>2.</td>
<td>Studijní plány jednotlivých oborů</td>
</tr>
<tr>
<td>1.</td>
<td>Teoretická informatika</td>
</tr>
<tr>
<td>2.</td>
<td>Softwarové systémy</td>
</tr>
<tr>
<td>3.</td>
<td>Matematická lingvistika</td>
</tr>
<tr>
<td>4.</td>
<td>Diskrétní modely a algoritmy</td>
</tr>
<tr>
<td>5.</td>
<td>Učitelství informatiky pro střední školy v kombinaci s odbornou informatikou</td>
</tr>
<tr>
<td>Studijní plány učitelského studia</td>
<td>187</td>
</tr>
<tr>
<td>Magisterské studium</td>
<td>188</td>
</tr>
<tr>
<td>Zahájení v roce 2015 nebo později</td>
<td>188</td>
</tr>
<tr>
<td>1.</td>
<td>Základní informace</td>
</tr>
<tr>
<td>2.</td>
<td>Studijní plány jednotlivých oborů</td>
</tr>
<tr>
<td>1.</td>
<td>Učitelství fyziky</td>
</tr>
<tr>
<td>2.</td>
<td>Učitelství matematiky</td>
</tr>
<tr>
<td>3.</td>
<td>Učitelství deskriptivní geometrie</td>
</tr>
<tr>
<td>4.</td>
<td>Učitelství informatiky</td>
</tr>
<tr>
<td>Zahájení v roce 2014 nebo dříve</td>
<td>204</td>
</tr>
<tr>
<td>1.</td>
<td>Učitelství fyziky-matematiky pro střední školy</td>
</tr>
<tr>
<td>2.</td>
<td>Učitelství matematiky-informatiky pro střední školy</td>
</tr>
<tr>
<td>3.</td>
<td>Učitelství matematiky-deskriptivní geometrie pro střední školy</td>
</tr>
<tr>
<td>Vyučování všeobecně vzdělávacích předmětů</td>
<td>223</td>
</tr>
<tr>
<td>Průběh studia a způsob hodnocení</td>
<td>223</td>
</tr>
<tr>
<td>Studijní plány</td>
<td>232</td>
</tr>
<tr>
<td>Vyučování všeobecně vzdělávacího předmětu fyzika</td>
<td>232</td>
</tr>
<tr>
<td>Vyučování všeobecně vzdělávacího předmětu matematika</td>
<td>233</td>
</tr>
<tr>
<td>Vyučování všeobecně vzdělávacího předmětu informatika</td>
<td>234</td>
</tr>
</tbody>
</table>
Úvodní slovo

Vážené studentky a vážení studenti,

tato publikace, nazývaná též Oranžová Karolinka, slouží jako aktuální a důkladný průvodce studijními programy, které nabízí Matematicko-fyzikální fakulta Univerzity Karlovy. Publikace je každoročně aktualizovaná a obsahuje podrobné informace o studijních plánech těchto studijních programů. Další, detailnější, informace o jednotlivých předmětech naleznete ve Studijním informačním systému.

Hlavními studijními programy na magisterské úrovni jsou Matematika, Fyzika a Informatika; každém z nich je věnována jedna kapitola této publikace. Každý z těchto programů se dále dělí na několik studijních oborů (viz dále) a v rámci jednoho oboru je v některých případech nabízeno ještě několik zaměření. Od ak. roku 2015/16 je otevřen nový studijní program Bioinformatika, uskutečňovaný společně s Přírodovědeckou fakultou UK; studenti tohoto programu jsou zapsáni na PřF UK a proto studijní plány tohoto programu nejsou zařazeny do této publikace. Pokud vás zajímají, najdete je též na stránce http://bioinformatika.mff.cuni.cz/.

Tradičně naše fakulta nabízí také studijní obory určené budoucím učiteli. Tyto učitelské studijní obory jsou formálně začleněny do tří výše uvedených odborných studijních programů, ale pro větší přehlednost jim v této publikaci věnujeme samostatnou kapitolu. Jiné formě přípravy na učitelské povolání nabízené na naší fakultě je běžné v rámci celoživotního vzdělávacího předmětu matematika, fyzika, informatika, nabízené v rámci celoživotního vzdělávání především (budoucím) absolventům odborných oborů na naší fakultě.

Na MFF se snažíme dodržovat zásadu, že student studuje podle pravidel a studijních plánů platných v době jeho nástupu na fakultu, tudíž ani v dalších letech by se změny způsobené novou akreditací neměly dotknout studentů navazujících magisterských oborů, kteří zahájili studium v akademickém roce 2019/20 nebo dříve. Protože ale při studiu mohou nastat různé nečekané situace, není vždy důsledné dodržení této zásady možné. Proto doporučujeme sledovat, zda nedošlo zejména ve studijních plánech na další rok ke změnám, a případným změnám se přizpůsobit. Zároveň upozorňujeme na možnost změnit studijní obor v rámci téhož studijního programu, pokud se rozhodnete svou pozornost zaměřit trochu jiným směrem, než jste plánovali na začátku studia.

Průběh studia

Navazující magisterské studijní programy akreditované na MFF mají standardní dobu studia 2 roky. Standardní doba studia je doba, za kterou je možno studijní program zdárně vystudovat při studiu podle doporučených studijních plánů. Doporučený průběh studia je pro každý obor vypracován tak, aby na sebe povinné předměty navazovaly, aby student získal každý rok kredity potřebné pro zápis do dalšího roku studia a aby včas splnil podmínky pro přihlášení ke státní zkoušce. Doporučený průběh studia je podporován také při tvorbě celofakultního rozvrhu.

Studium je ukončeno státní závěrečnou zkouškou a její úspěšné složení vede v magisterských studijních programech k získání titulu magistr (Mgr.). Pokud standardní dobu studia přesáhnete o více než jeden rok, jste povinni hradit fakultě tzv. poplatek za delší studium, jehož výše je určena Přílohou č. 2 Statutu UK Poplatky spojené se studiem. Maximální doba studia je v magisterských studijních programech 5 let; pokud během této doby nesložíte státní závěrečnou zkoušku, bude vám studium ukončeno.

Studium je členěno do tzv. úseků studia, což jsou většinou ročníky (v bakalářských studijních programech v prvním roce studia semestry). Studium ve studijním programu se řídí studijním plánem příslušného studijního oboru, případně zaměření. Studijní plán určuje, které předměty jsou povinné (ty je třeba v každém případě před státní závěrečnou zkouškou úspěšně absolvovat), které předměty jsou povinně volitelné (těch je třeba v každém případě absolvovat tolik, abyste získali předepsaný počet kreditů), které jsou volitelné, jaké jsou mezi předměty časové návaznosti, a dále požadavky ke státní zkoušce. Na konci každého úseku studia probíhá tzv. průběžná kontrola studia, při které se ověřuje, zda výsledky vašeho dosavadního studia umožňují zápis do dalšího úseku studia. Pokud jste letos nastoupili ke studiu v nějakém bakalářském studijním programu, první průběžná kontrola vás čeká již po konci zkouškového období po prvním semestru (viz Podrobný harmonogram ak. roku).

Výuka předmětů probíhá v českém nebo anglickém jazyce. Povinné předměty jsou vyučovány každý rok, povinně volitelné předměty alespoň jednou za dva roky.

Pokud jste během svého bakalářského studia absolvováli nad rámec svých povinností některý z povinných nebo povinně volitelných předmětů magisterského studia, můžete v magisterském studiu požádat děkana o uznání kreditů za splnění této povinnosti. Přesné podmínky pro uznávání těchto kreditů se řídí čl. 12 Pravidel pro organizaci studia na MFF UK účinných od 1.10.2017.
Díky programu Erasmus+ a některým dalším mezuniverzitním dohodám máte možnost jeden či dva semestry studia absolvovat na některé zahraniční univerzitě; podrobné informace najdete na stránce http://www.mff.cuni.cz/studium/zahraniici/.

Průběžná kontrola studia

Průběžnou kontrolou studia se rozumí kontrola celkového počtu kreditů získaných za vaše dosavadní studium; tato kontrola se koná na konci každého úseku studia. Započítávají se do ní vždy pouze kredity získané do konce předchozího zkouškového období.

Získáte-li v dosavadních úsecích studia celkem nejméně tzv. minimální počet kreditů, máte právo na zápis do dalšího úseku studia. Pokud se vám ale podaří získat tzv. normální počet kreditů (odpovídající obvykle součtu kreditů při studijním plánem doporučeném průběhu studia v dosavadních úsecích studia) a zároveň dosáhnete určitého průměru, splněte tím základní podmínku pro přiznání stipendia za vynikající studijní výsledky; podrobnosti jsou popsány v Pravidlech pro přiznávání stipendií na MFF UK. Nezískáte-li alespoň minimální počet kreditů, posuzuje se tato skutečnost jako nesplnění požadavků vyplývajících ze studijního programu, což vede k ukončení studia. Normální a minimální počty kreditů nutné pro zápis do dalšího úseku studia jsou stanoveny takto (bez závorky jsou uvedeny normální počty kreditů a v závorce minimální počty kreditů):

Normální a minimální počty kreditů

Bakalářské studijní programy - pro studenty zapsané od ak. roku 2014/2015 a později

a) 30 (12) kreditů pro zápis do druhého úseku studia (tj. letního semestru 1. ročníku),
b) 60 (45) kreditů pro zápis do třetího úseku studia (tj. 2. ročníku),
c) 120 (90) kreditů pro zápis do čtvrtého úseku studia (tj. 3. ročníku),
d) 180 (135) kreditů pro zápis do pátého úseku studia (tj. 4. ročníku),
e) 240 (180) kreditů pro zápis do šestého úseku studia (tj. 5. ročníku),
f) 300 (225) kreditů pro zápis do sedmého úseku studia (tj. 6. ročníku).

Magisterské studijní programy - pro všechny studenty

a) 60 (45) kreditů pro zápis do druhého úseku studia (tj. 2. ročníku),
b) 120 (90) kreditů pro zápis do třetího úseku studia (tj. 3. ročníku),
c) 180 (135) kreditů pro zápis do čtvrtého úseku studia (tj. 4. ročníku),
d) 240 (180) kreditů pro zápis do pátého úseku studia (tj. 5. ročníku).

Pro účely průběžné kontroly studia se započítávají všechny kredity za absolvované povinné a povinně volitelné předměty; za absolvované volitelné předměty se započítávají kredity až do následujícího rozsahu (v závorce je uveden procentuální podíl tohoto počtu kreditů vzhledem k normálnímu počtu kreditů příslušnému dané průběžné kontrole studia):

Maximální počty kreditů za volitelné předměty v oblastech vzdělávání

Matematika, Fyzika a Informatika

Bakalářské studijní programy

a) 4 kredity (15 %) pro zápis do druhého úseku studia,
b) 9 kreditů (15 %) pro zápis do třetího úseku studia,
c) 18 kreditů (15 %) pro zápis do čtvrtého úseku studia,
d) 54 kreditů (30 %) pro zápis do pátého úseku studia,
e) 72 kreditů (30 %) pro zápis do šestého úseku studia,
f) 90 kreditů (30 %) pro zápis do sedmého úseku studia.

Magisterské studijní programy
a) 18 kreditů (30 %) pro zápis do druhého úseku studia,
b) 60 kreditů (50 %) pro zápis do třetího úseku studia,
c) 126 kreditů (70 %) pro zápis do čtvrtého úseku studia,
d) 167 kreditů (70 %) pro zápis do pátého úseku studia.

Maximální počty kreditů za volitelné předměty v oblasti vzdělávání Učitelství

Bakalářské studijní programy - pro studenty zapsané od ak. roku 2019/2020
a) 3 kredity (10 %) pro zápis do druhého úseku studia,
b) 6 kreditů (10 %) pro zápis do třetího úseku studia,
c) 12 kreditů (10 %) pro zápis do čtvrtého úseku studia,
d) 45 kreditů (25 %) pro zápis do pátého úseku studia,
e) 60 kreditů (25 %) pro zápis do šestého úseku studia,
f) 75 kreditů (25 %) pro zápis do sedmého úseku studia.

Magisterské studijní programy - pro studenty zapsané od ak. roku 2019/2020
a) 6 kreditů (10 %) pro zápis do druhého úseku studia,
b) 24 kreditů (20 %) pro zápis do třetího úseku studia,
c) 81 kreditů (45 %) pro zápis do čtvrtého úseku studia,
d) 108 kreditů (45 %) pro zápis do pátého úseku studia.

Zápis do ročníku a zápis předmětů

Nárok na zápis do prvního úseku studia jste získali rozhodnutím děkana o přijetí na fakultu. Splněte-li požadavky průběžné kontroly studia, máte nárok na zápis do dalšího úseku studia. Zápis do úseku studia je potvrzením toho, že v daném úseku studia na fakultě studujete.

Zápis předmětů může být omezen určitými podmínkami, z nichž nejčastější jsou následující:
Úvodní slovo

prerekvizita – pro zápis předmětu X je vyžadováno absolvování jiného předmětu nebo předmětů,

korekvizita – pro zápis předmětu X je vyžadován současný zápis jiného předmětu nebo předmětů, nebo jejich absolování

neslučitelnost – zápis předmětu X je vyloučen předchozím absolvováním nebo současným zápisem jiného předmětu

V některých případech je stanoveno, že absolvování jednoho předmětu Y je z hlediska plnění studijního plánu považováno za absolvování jiného předmětu X (tzv. **záměnnost**).

Prerekvizity a korekvizity předmětu se nevztahují na studenty těch studijních programů, oborů nebo plánů, ve kterých daný předmět (ani žádný předmět s ním záměnný) není povinný ani povinně volitelný (viz Pravidla pro organizaci studia na MFF UK, čl. 6).

Zkoušky a zápočty

U většiny předmětů vyučovaných na fakultě potřebujete pro jejich úspěšné absolvování na konci semestru získat zápočet (klasifikace započteno - Z, v případě neúspěchu pak nezapočteno - K) nebo složit zkoušku (klasifikace výborně, velmi dobře, dobře, neprospěl/a) nebo obojí; u některých předmětů je formou kontroly studia předmětu klasifikovaný zápočet. Zkouška může obsahovat písemnou i ústní část. O úspěšné složení zkoušky se můžete pokusit nejvýše třikrát. Je-li pro absolvování předmětu předepsán zápočet i zkouška, není získání zápočtu podmínkou pro konání zkoušky z daného předmětu, pokud garant předmětu nestanoví na začátku semestru v SIS jinak. Je-li zápočet klasifikován K, není již možné v daném úseku studia předmět úspěšně absolvovat. Podmínky pro získání zápočtu označuje vyučující podmínkou po schválení garanTEM předmětu na začátku semestru (viz Pravidla pro organizaci studia na MFF UK, čl. 8). Pokud se Vám některý zapsaný předmět nepodaří v daném semestru úspěšně absolvovat, máte možnost si ho zapsat v některém dalším úseku studia znovu, ale během celého studia celkem nejvýše dvakrát.

Státní závěrečná zkouška

Státní závěrečná zkouška se skládá z několika částí (podle odpovídajícího studijního plánu), z nichž jednou je v bakalářských studijních programech vždy obhajoba bakalářské práce a v magisterských studijních programech obhajoba diplomové práce. S výjimkou učitelských studijních oborů je předpokladem pro přihlášení se ke státní zkoušce absolvování povinných a povinně volitelných předmětů v rozsahu stanoveném studijním plánem a dále v případě bakalářského studia získání alespoň 180 kreditů a v případě magisterského studia získání alespoň 120 kreditů; předpoklady pro konání státní závěrečné zkoušky na jednotlivých učitelských oborech jsou podrobně rozepsány.
Úvodní slovo

v kapitole Studijní plány učitelského studia. Požadované znalosti ke státní zkoušce a přesné podmínky pro přihlášení se ke státní zkoušce nebo její části jsou součástí studijních plánů a jsou podrobně popsány u jednotlivých studijních oborů.

Výuka jazyků

Výuku jazyků na fakultě zajišťuje Katedra jazykové přípravy (KJP). Ve všech bakalářských studijních programech poskytuje výuku angličtiny na různých úrovních jako přípravu na povinnou zkoušku z anglického jazyka.

Po složení povinné zkoušky se studentům doporučuje dále pokračovat ve specializovaných kurzech odborné angličtiny (Angličtina pro matematiky, Angličtina pro fyziky, Angličtina pro informatiky, Obchodní angličtina, Akademická angličtina) a v přípravných kurzech na mezinárodní zkoušky (First Certificate in English, Certificate in Advanced English, Certificate of Proficiency in English).

KJP, jako člen mezinárodní organizace CERCLES (Confédération Européenne des Centres de Langues de l’Enseignement Supérieur) a akreditované testovací centrum Unicert (Unicert© Language Accreditation Unit for Universities in Central Europe), umožňuje svým studentům skládat mezinárodní univerzitní zkoušku z odborného anglického jazyka English for Mathematicians, UNICert© III na úrovni C1 dle mezinárodní klasifikace úrovní jazykových zkoušek. Studenti mohou navštěvovat další jazykové kurzy (francouzština, němčina, španělština, ruština a čeština pro cizince) na různých stupních pokročilosti. Podrobnosti najdete na webové stránce http://www.mff.cuni.cz/fakulta/kjp/.

Tělesná výchova

Výuku tělesné výchovy zajišťuje Katedra tělesné výchovy (KTV). Student v bakalářském studijním programu musí povinně získat 4 kredity z tělesné výchovy, z toho alespoň 3 kredity za absolvování pravidelné semestrální výuky. Čtvrtý kredit lze získat formou absolvování dalšího semestru, nebo účastí na letním nebo zimním výcvikovém kurzu.

Kromě těchto aktivit nabízí KTV zájmovou tělesnou výchovu, která je určena zejména pro studenty se splněnými studijními povinnostmi z TV, buď ve formě pravidelné semestrální výuky nebo letních a zimních výcvikových kurzů.

Úvodní slovo

Péče o studenty se speciálními potřebami

Prvním předpokladem toho, aby se fakulta mohla postarat o studenty se speciálními potřebami, je to, že o nich musí vědět. Typicky se to dozví již prostřednictvím přihlášek uchazečů ke studiu. Uchazeči mohou vyznačit již při podání přihlášky, zda mají nějaké znevýhodnění a zda potřebují modifikaci přijímacího řízení (např. prodloužený čas, technická úprava zadání).

Jsou-li studenti přijatí, jsou informováni o možnosti podpůrných služeb, a v případě, že je potřebují, jsou studijním oddělením odkázáni na kontaktní osobu, která je bude jejich studiem provázet. Kontaktní osoba s každým studentem vždy dělá osobní pohovor, aby zjistila vše potřebné, a domluví se na dalším postupu, frekvenci dalších konzultací apod. Student je poslán na funkční diagnostiku a následně s hotovou diagnostikou na studijní oddělení, kde se registruje jako student se speciálními potřebami. Kontaktní osoba pak pomáhá studentovi zajistit služby a modifikace, které z funkční diagnostiky vyplynou.

Pokud by se nutnost speciálního přístupu objevila až v průběhu studia, může student kdykoliv kontaktovat svou příslušnou referentku studijního oddělení, nebo přímo kancelář kontaktní osoby, která je v současnosti personálně obsazená kontaktní osobou Mgr. Lukášem Krumpem, PhD., a asistentkou Kateřinou Šauflovou.

Několik rad závěrem

Na tomto místě bych rád využil rady, které do předešlých vydání této publikace napsal můj předchůdce ve funkci, doc. Kolman. Dávají totiž podle mého názoru nejlepší návod na překonání potíží, které vás zejména při studiu v prvním ročníku bakalářských oborů mohou potkat. Proto je doporučuji zejména těm z vás, kteří se studiem na naší fakultě letos začínáte.

Píšte si. Většinou se toho více naučíte, když si budete nejen číst a poslouchat, ale také psát. K řadě přednášek jsou dnes k dispozici výborne psané materiály, přesto pro řadu z vás bude užitečné dělat si při přednášce vlastní poznámky. Především si ale píšte a počítejte při učení na zkoušku. Mysli, s, že už rozumíte důkazu? Celý si ho pěkně z hlavy napište, s potřebnými detaily. A chcete-li se naučit dobře programovat, programujte.

Pracujte. A to i tehdy, když vás k tomu nikdo nenutí. Na rozdíl od střední školy vás během semestru písemka či domácí úkol potká spíše ojediněle, zato na konci semestru vás toho na vyzkoušení bude čekat hromada. Počítejte s tím a nenechte si všechno učení až na zkouškové období, ale pracujte už během semestru. Ze školy si toho více odnesete a zkouškové bude lehčí.

S přáním zdárného akademického roku

doc. RNDr. Vladislav Kuboň, Ph.D.
proděkan pro koncepci studia
Podrobný harmonogram akademického roku 2019/2020

<table>
<thead>
<tr>
<th>Data</th>
<th>udělení/rozhodnutí</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. – 10. 9. 2019</td>
<td>Přípravné soustředění a zápis studentů do 1. ročníku Bc. studia (prezenční forma studia) - Albeř</td>
</tr>
<tr>
<td>2. – 13. 9. 2019</td>
<td>Podzimní termín bakalářských státních závěrečných zkoušek</td>
</tr>
<tr>
<td>4. – 17. 9. 2019</td>
<td>Podzimní termín magisterských státních závěrečných zkoušek - promoce absolventů se bude konat v prosinci 2019</td>
</tr>
<tr>
<td>9. – 22. 9. 2019</td>
<td>Elektronický zápis předmětů vyučovaných v ZS (studenti si zapisují předměty výhradně prostřednictvím systému UK SIS) - přednostní</td>
</tr>
<tr>
<td>11. 9. 2019</td>
<td>Zápis studentů do 1. ročníku Bc. studia, kteří již studovali na MFF</td>
</tr>
<tr>
<td>13. 9. 2019</td>
<td>Zápis studentů do 1. ročníku Bc. studia (zápis studentů, kteří se nezúčastnili soustředění na Albeři)</td>
</tr>
<tr>
<td>18. 9. 2019</td>
<td>Zápis studentů do 1. ročníku Mgr. studia</td>
</tr>
<tr>
<td>23. 9. – 13. 10.9.2019</td>
<td>Elektronický zápis předmětů vyučovaných v ZS (studenti si zapisují předměty výhradně prostřednictvím systému UK SIS) - volný</td>
</tr>
<tr>
<td>1. 10. 2019</td>
<td>Zahájení akademického roku a zimního semestru akademického roku 2019/2020</td>
</tr>
<tr>
<td>1. – 4. 10. 2019</td>
<td>Zápis studentů do 1. ročníku Ph.D. studia</td>
</tr>
<tr>
<td>1. – 15. 10. 2019</td>
<td>Zpracování ISP doktorandy prvního ročníku</td>
</tr>
<tr>
<td>1. 10. – 31. 12. 2019</td>
<td>Zpracování ISP školiteli</td>
</tr>
<tr>
<td>1. 10. 2019 – 12. 1. 2020</td>
<td>Výuka v zimním semestru</td>
</tr>
<tr>
<td>1. 10. 2019 – 31. 1. 2020</td>
<td>Projednání ISP oborovými radami</td>
</tr>
<tr>
<td>do 2. 10. 2019</td>
<td>Doporučený termín vypsání témat diplomových a bakalářských prací</td>
</tr>
<tr>
<td>14. – 25. 10. 2019</td>
<td>Studijní oddělení provede kontrolu a potvrzení elektronického zápisu předmětů</td>
</tr>
<tr>
<td>29. 10. 2019</td>
<td>Imatrikulace studentů 1. ročníku Bc. a Mgr. studia</td>
</tr>
<tr>
<td>do 1. 11. 2019</td>
<td>Doporučený termín zadání bakalářských prací</td>
</tr>
<tr>
<td>12. 11. 2019</td>
<td>Děkanský sportovní den</td>
</tr>
<tr>
<td>Datum</td>
<td>Úkol</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>12. – 13. 11. 2019</td>
<td>Promoce - Bc. studium</td>
</tr>
<tr>
<td>21. 11. 2019</td>
<td>Den otevřených dveří</td>
</tr>
<tr>
<td>5. – 6. 12. 2019</td>
<td>Promoce - Mgr. studium (pro absolventy letního a podzimního termínu SZZ)</td>
</tr>
<tr>
<td>13. 12. 2019</td>
<td>Promoce - Ph.D. studium</td>
</tr>
<tr>
<td></td>
<td>do 6. 1. 2020 Odevzdání bakalářských a diplomových prací pro zimní termín státních závěrečných zkoušek - elektronická verze práce</td>
</tr>
<tr>
<td></td>
<td>do 7. 1. 2020 Odevzdání bakalářských a diplomových prací pro zimní termín státních závěrečných zkoušek - listinná verze práce</td>
</tr>
<tr>
<td>13. 1. – 16. 2. 2020</td>
<td>Zkouškové období v ZS</td>
</tr>
<tr>
<td></td>
<td>do 17. 1. 2020 Kontrola splnění všech podmínek závěrečných ročníků bakalářského a magisterského studia pro připuštění k zimnímu termínu SZZ</td>
</tr>
<tr>
<td></td>
<td>Přihlášení se k zimnímu termínu bakalářských a magisterských státních závěrečných zkoušek</td>
</tr>
<tr>
<td>3. – 14. 2. 2020</td>
<td>Zimní termín bakalářských a magisterských státních závěrečných zkoušek</td>
</tr>
<tr>
<td>3. – 9. 2. 2020</td>
<td>Elektronický zápis předmětů vyučovaných v LS (studenti si zapisují předměty výhradně prostřednictvím systému UK SIS) - přednostní</td>
</tr>
<tr>
<td>10. 2. – 8. 3. 2020</td>
<td>Elektronický zápis předmětů vyučovaných v LS (studenti si zapisují předměty výhradně prostřednictvím systému UK SIS) - volný</td>
</tr>
<tr>
<td></td>
<td>do 14. 2. 2020 Doporučený termín zadání diplomových prací</td>
</tr>
<tr>
<td>17. 2. – 24. 5. 2020</td>
<td>Výuka v letním semestru (u předmětů zařazených v doporučeném průběhu Bc. studia do 6. semestru jen do 15. 5. 2020)</td>
</tr>
<tr>
<td></td>
<td>do 28. 2. 2020 Průběžná kontrola studia po 1. úseku studia bakalářského studia a zápis do 2. úseku bakalářského studia</td>
</tr>
<tr>
<td></td>
<td>2. – 3. 3. 2020 Zápis studentů do 1. ročníku Ph.D. studia</td>
</tr>
<tr>
<td></td>
<td>9. – 20. 3. 2020 Studijní oddělení provede kontrolu a potvrzení elektronického zápisu předmětů</td>
</tr>
<tr>
<td>21. 4. 2020</td>
<td>Promoce - Mgr. studium (pro absolventy ze zimního termínu SZZ)</td>
</tr>
<tr>
<td>6. 5. 2020</td>
<td>Rektorský den</td>
</tr>
<tr>
<td></td>
<td>do 7. 5. 2020 Odevzdání diplomových prací pro letní termín státních závěrečných zkoušek - elektronická verze práce</td>
</tr>
<tr>
<td></td>
<td>do 11. 5. 2020 Odevzdání diplomových prací pro letní termín státních závěrečných zkoušek - listinná verze práce</td>
</tr>
<tr>
<td></td>
<td>do 14. 5. 2020 Odevzdání bakalářských prací pro letní termín bakalářských státních závěrečných zkoušek - elektronická verze práce</td>
</tr>
<tr>
<td>15. 5. 2020</td>
<td>Promoce - Ph.D. studium</td>
</tr>
</tbody>
</table>
do 18. 5. 2020 Odevzdání bakalářských prací pro letní termín
bakalářských státních závěrečných zkoušek - listinná verze
práce

do 25. 5. 2020 Kontrola splnění všech podmínek závěrečných ročníků
magisterského studia pro přípustění k letnímu termínu SZZ
Přihlášení se k letnímu termínu magisterských státních
závěrečných zkoušek

25. 5. – 30. 6. 2020 Zkouskové období v LS

28. 5. – 8. 6. 2020 Doktorandský týden - konkrétní termín bude sdělen
dodatečně

do 7. 6. 2020 Kontrola splnění všech podmínek závěrečných ročníků
bakalářského studia pro přípustění k letnímu termínu SZZ
Přihlášení se k letnímu termínu bakalářských státních
závěrečných zkoušek

8. – 19. 6. 2020 Letní termín státních závěrečných zkoušek magisterského
studia - promoce absolventů se bude konat v prosinci 2020

15. – 26. 6. 2020 Letní termín státních závěrečných zkoušek bakalářského
studia

1. 7. – 31. 8. 2020 Letní prázdniny

1. 7. – 30. 9. 2020 Roční hodnocení ISP Ph.D. studentů ze strany studentů

1. 7. – 15. 10. 2020 Roční hodnocení ISP Ph.D. studentů ze strany školitelů

1. 7. – 31. 10. 2020 Roční hodnocení ISP Ph.D. studentů oborovými radami

do 23. 7. 2020 Odevzdání bakalářských a diplomových prací pro podzimní
termín státních závěrečných zkoušek - elektronická verze
práce

do 24. 7. 2020 Kontrola splnění všech podmínek závěrečných ročníků
bakalářského a magisterského studia pro připustění
k podzimnímu termínu SZZ
Přihlášení se k podzimnímu termínu bakalářských
a magisterských státních závěrečných zkoušek

1. 7. – 30. 9. 2020 Roční hodnocení ISP Ph.D. studentů ze strany studentů

do 27. 7. 2020 Odevzdání bakalářských a diplomových prací pro podzimní
termín státních závěrečných zkoušek - listinná verze práce

1. – 11. 9. 2020 Podzimní termín bakalářských státních závěrečných
zkoušek

2. – 15. 9. 2020 Podzimní termín magisterských státních závěrečných
zkoušek - promoce absolventů se bude konat v prosinci
2020

21. – 25. 9. 2020 Zkouskové období

do 30. 9. 2020 Odevzdání ročního hodnocení Ph.D. studentů za rok
2019/20, včetně aktualizace individuálních studijních plánů
na ak. r. 2020/2021
Průběžná kontrola studia za ak. r. 2019/2020 a zápis
studentů do 2. a vyšších ročníků Bc., Mgr. studia do ak. r.
2020/2021

30. 9. 2020 Konec akademického roku 2019/2020
Přehled studijních programů a oborů na MFF UK

Pro větší přehlednost uvádíme všechny učitelské obory v samostatném odstavci, ač jsou formálně součástí různých studijních programů.

Magisterské studium

Studijní program Matematika

- Finanční a pojistná matematika
- Matematická analýza
- Matematické metody informační bezpečnosti
- Matematika pro informační technologie
- Matematické modelování ve fyzice a technice
- Matematické struktury
- Numerická a výpočtová matematika
- Pravděpodobnost, matematická statistika a ekonometrie

Studijní program Fyzika

- Astronomie a astrofyzika
- Geofyzika
- Meteorologie a klimatologie
- Teoretická fyzika
- Fyzika kondenzovaných soustav a materiálů
- Optika a optoelektronika
- Fyzika povrchů a ionizovaných prostředí
- Biofyzika a chemická fyzika
- Jaderná a subjaderná fyzika
- Matematické a počítačové modelování ve fyzice

Studijní program Informatika

- Diskrétní modely a algoritmy
- Teoretická informatika
- Softwarové a datové inženýrství
- Softwarové systémy
- Matematická lingvistika
- Umělá inteligence
- Počítačová grafika a vývoj počítačových her
Učitelské obory

- Učitelství fyziky (dvouoborové studium)
- Učitelství matematiky (dvouoborové studium)
- Učitelství informatiky (dvouoborové studium)
- Učitelství deskriptivní geometrie (dvouoborové studium)

Studijní obor Učitelství matematiky je možno studovat v kombinaci také s některými studijními obory Přírodovědecké fakulty (Učitelství biologie pro střední školy, Učitelství geografie pro střední školy a Učitelství chemie pro střední školy - spadá pod PřF) a Fakulty tělesné výchovy a sportu (Učitelství tělesné výchovy pro střední školy - spadá pod FTVS).

Studijní program Bioinformatika

Uskutečňován spolu s Přírodovědeckou fakultou UK. Studenti jsou zapsáni na PřF UK.

Garanti studijních programů

- Magisterské studium matematiky: doc. Mgr. Petr Kaplický, Ph.D.
- Magisterské studium informatiky: doc. RNDr. Tomáš Bureš, Ph.D.
Studijní plány studijního programu
MATEMATIKA
Magisterské studium

Garant studijního programu: doc. Mgr. Petr Kaplický, Ph.D.

1. Základní informace

Studijní obory magisterského studia studijního programu Matematika

Studijní program Matematika nabízí osm odborných oborů magisterského studia.

<table>
<thead>
<tr>
<th>Obor</th>
<th>2.1</th>
<th>2.2</th>
<th>2.3</th>
<th>2.4</th>
<th>2.5</th>
<th>2.6</th>
<th>2.7</th>
<th>2.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematické struktury</td>
<td></td>
<td>Matematické metody informační bezpečnosti</td>
<td>Matematická analýza</td>
<td>Numerická a výpočtová matematika</td>
<td>Matematické modelování ve fyzice a technice</td>
<td>Pravděpodobnost, matematická statistika</td>
<td>Finanční a pojistná matematika</td>
<td>Matematika pro informační technologie</td>
</tr>
</tbody>
</table>

Součástí studijního programu Matematika jsou i obory připravující budoucí učitele, zejména „Učitelství matematiky“ a „Učitelství deskriptivní geometrie“. Studijní plány učitelských oborů jsou uvedeny ve zvláštní části této publikace.

V souvislosti s minulými změnami akreditace bylo potřeba na studijních oborech magisterkého studia zavést různé studijní plány. To je důvod proč stále existují tři studijní plány dobíhajícího oboru Matematické metody informační bezpečnosti.

Obor Matematické struktury navazuje na bakalářský obor „Obecná matematika“, zaměření „Matematické struktury“. Tento obor má studijní plán

Matematické struktury

Obor Matematické metody informační bezpečnosti navazuje na stejnojmenný bakalářský obor. Tento obor má tři studijní plány:

Matematické metody informační bezpečnosti, plán NN (zahájení studia v roce 2015)
Matematické metody informační bezpečnosti, plán N (zahájení studia v letech 2013 a 2014)
Matematické metody informační bezpečnosti, plán S (zahájení studia do roku 2012)

Obor Matematická analýza navazuje na bakalářský obor „Obecná matematika“, zaměření „Matematická analýza“. Tento obor má studijní plán

Matematická analýza
Obor **Numerická a výpočtová matematika** navazuje na bakalářský obor „Obecná matematika“, zaměření „Numerická analýza a matematické modelování“. Tento obor má studijní plán

Numerická a výpočtová matematika 2.4

Obor **Matematické modelování ve fyzice a technice** navazuje na bakalářský obor „Obecná matematika“, zaměření „Numerická analýza a matematické modelování“. Tento obor má studijní plán

Matematické modelování ve fyzice a technice 2.5

Obor **Pravděpodobnost, matematická statistika a ekonometrie** navazuje na bakalářský obor „Obecná matematika“, zaměření „Stochastika“. Tento obor má studijní plán

Pravděpodobnost, matematická statistika a ekonometrie 2.6

Obor **Finanční a pojišťná matematika** navazuje na bakalářský obor „Obecná matematika“, zaměření „Stochastika“. Tento obor má studijní plán

Finanční a pojišťná matematika 2.7

Obor **Matematika pro informační technologie** navazuje na stejnojmenný bakalářský obor a také na obor Matematické metody informační bezpečnosti. Má studijní plán

Matematika pro informační technologie 2.8

Všeobecné zásady studia

Přechod z bakalářského studia

Jednotlivé obory mají specifické vstupní požadavky na znalosti, které se předpokládají na počátku studia. Studenti, kteří tyto požadavky nesplňují, studují podle individuálního studijního plánu stanoveného garantem studijního programu dle čl. 5 Pravidel pro organizaci studia na Matematicko-fyzikální fakultě.

Některé povinné či povinně volitelné předměty magisterského studia mohl student absolvovat již v průběhu studia bakalářského. Splnění těchto předmětů může být uznáno na základě podané žádosti o uznání splněných studijních povinností. Převádění kreditů za předměty absolvované v bakalářském studiu do magisterského studia upravuje čl. 12 Pravidel pro organizaci studia na Matematicko-fyzikální fakultě. **Pokud předvedení kreditů za předměty absolvované v bakalářském studiu není možné, důrazně doporučujeme, aby si studenti nechali uznat tyto předměty bez kreditů a kredity do magisterského studia získávali výhradně zápisem a splněním předmětů, které v bakalářském studiu neabsolvovali.**

Základní informace

Standardní doba studia magisterských oborů je dva roky. Celkem je požadováno získání minimálně 120 kreditů za celé studium. Pro úspěšné ukončení studia je nutné
absolvovat všechny předměty, které jsou studijním plánem stanoveny jako povinné, nebo předměty s nimi záměrně. Studijní plán může též vyžadovat získání určitého počtu kreditů z jednotlivých skupin povinně volitelných předmětů.

Studijní plány

Studijní plán předepisuje povinné předměty oboru, požadované počty kreditů z jednotlivých skupin povinně volitelných předmětů, podmínky pro přihlášení ke státní závěrečné zkoušce a požadavky u státní závěrečné zkoušky. Průběh studia není studijními plány pevně určen. Student si zapisuje povinné, povinně volitelné a volitelné předměty tak, aby průběžně splňoval kreditní limity pro zápis do dalšího roku studia a aby splnil podmínky pro přihlášení ke státní závěrečné zkoušce.

Předmětové rekvizity

Doporučujeme všem studentům, aby při zápisu předmětů věnovali předmětovým rekvizitám nejvyšší pozornost.

Doporučený průběh studia

V následujících částech jsou uvedeny studijní plány pro jednotlivé obory a doporučené průběhy studia, které rozepisuji povinné předměty a některé povinně volitelné předměty do jednotlivých ročníků a uvádějí další podrobnosti studijních plánů. Povinné předměty jsou v tabulkách uvedeny **tučně**, povinně volitelné předměty obyčejným písmem a volitelné předměty **kurzívou**. V této kapitole jsou rovněž specifikovány podmínky pro přihlášení ke státní závěrečné zkoušce a požadavky k ústní části SZZ.

Doporučený průběh studia není závazný, je však vhodné jej co nejvíce dodržovat, protože je sestaven s ohledem na rekvizity, návaznosti předmětů, tvorbu rozvrhu a na podmínky pro přihlášení ke státní závěrečné zkoušce.

Ukončení studia

Požadavky k ústní části státní závěrečné zkoušky jsou uvedeny u studijních plánů jednotlivých oborů. Diplomová práce je zadávána zpravidla v průběhu 1. ročníku. Doporučujeme vybírat si téma především z nabídky pracoviště garantujícího zvolený studijní obor; v případě zájmu o téma z nabídky jiného pracoviště nebo o téma vlastní důrazně doporučujeme konzultovat vhodnost tématu s garantem studijního oboru. V souvislosti s diplomovou prací jsou vyžadovány zápočty z předmětů.

Termíny pro zadání diplomové práce, odevzdání diplomové práce a podání přihlášky ke státní závěrečné zkoušce určuje harmonogram školního roku.

Projekt

Student může požádat děkana o zadání projektu. Jeho ohodnocení (max. 9 kreditů) stanoví děkan na základě doporučení zadávajícího učitele a garanta studijního programu Matematika.

2. Studijní plány jednotlivých oborů

2.1 Matematické struktury

Garantující pracoviště: Katedra algebry
Garant oboru: doc. RNDr. Jan Šťovíček, Ph.D.

Obor matematické struktury je na magisterské úrovni zaměřen na rozšíření všeobecného matematického základu (algebraická geometrie a topologie, Riemannova geometrie, universální algebra a teorie modelů) a na získání hlubších znalostí ve zvolených partiích algebry, geometrie, logiky, či kombinatoriky. Cílem je poskytnout na jedné straně dostatečnou všeobecnou znalost moderní strukturní matematiky, na druhé straně vzdělanost posluchače na práh samostatné tvůrčí činnosti. Důraz je kladen na disciplíny, ve kterých jsou k dispozici vyučování, které se světové špičce blíží nebo do ní přímo patří.

Absolvent má velmi pokročilé znalosti algebry, geometrie, kombinatoriky a logiky, které mu v rámci hlubšího studování zvoleného užšího zaměření umožnily být v tvůrčím kontaktu s aktuálními vědeckými výsledky. Absolutní povaha, rozsah a náročnost studia a absolventa podporily rozvoj schopnosti analyzovat, strukturovat a řešit problémy složité a náročné povahy. Uplatnění nalezne vedle akademické sféry v nejrozsáhlejších oblastech lidské činnosti, kde je potřeba zvládat a využívat nové poznatky a rozsáhlé systémy.

Obor Matematické struktury má jeden studijní plán.

Vstupní požadavky

Předpokládáme, že student tohoto oboru má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Kvalitní základy lineární algebry, komplexní a reálné analýzy, teorie pravděpodobnosti.
Matematika Mgr.

- Základy teorie grup (Sylowovy věty, volné grupy, nilpotence), Lieových grup, analýzy na varietách, teorie okruhů a modulů nad okruhy (podmínky konečnosti, projektivita a injektivita modulu), komutativní algebry (Galoisova teorie a celistvá rozšíření).
- Mírně pokročilá znalost matematické logiky (výroková logika a logika prvního řádu, neúplnost, nerozhodnutelnost).
- Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přednáškám a odborným textům.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr_ob_str.shtml

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAG401</td>
<td>Algebraická geometrie</td>
<td>5</td>
<td>2/2 Z+Zk —</td>
<td></td>
</tr>
<tr>
<td>NMAG403</td>
<td>Kombinatorika</td>
<td>5</td>
<td>2/2 Z+Zk —</td>
<td></td>
</tr>
<tr>
<td>NMAG405</td>
<td>Universální algebra 1</td>
<td>5</td>
<td>2/2 Z+Zk —</td>
<td></td>
</tr>
<tr>
<td>NMAG408</td>
<td>Algebraická topologie 1</td>
<td>5</td>
<td>2/2 Z+Zk —</td>
<td></td>
</tr>
<tr>
<td>NMAG411</td>
<td>Riemannova geometrie 1</td>
<td>5</td>
<td>2/2 Z+Zk —</td>
<td></td>
</tr>
<tr>
<td>NMAG407</td>
<td>Teorie modelů</td>
<td>3</td>
<td>2/0 Zk —</td>
<td></td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td></td>
<td>Volitelné a povinně volitelné</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>předměty</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z —</td>
<td></td>
</tr>
<tr>
<td>NSZZ028</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
<tr>
<td></td>
<td>Volitelné a povinně volitelné</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>předměty</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shrnutí studijního plánu

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAG401</td>
<td>Algebraická geometrie</td>
<td>5</td>
<td>2/2 Z+Zk —</td>
<td></td>
</tr>
<tr>
<td>NMAG403</td>
<td>Kombinatorika</td>
<td>5</td>
<td>2/2 Z+Zk —</td>
<td></td>
</tr>
<tr>
<td>NMAG405</td>
<td>Universální algebra 1</td>
<td>5</td>
<td>2/2 Z+Zk —</td>
<td></td>
</tr>
<tr>
<td>NMAG407</td>
<td>Teorie modelů</td>
<td>3</td>
<td>2/0 Zk —</td>
<td></td>
</tr>
<tr>
<td>NMAG408</td>
<td>Algebraická topologie 1</td>
<td>5</td>
<td>2/2 Z+Zk —</td>
<td></td>
</tr>
<tr>
<td>NMAG411</td>
<td>Riemannova geometrie 1</td>
<td>5</td>
<td>2/2 Z+Zk —</td>
<td></td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z —</td>
<td></td>
</tr>
</tbody>
</table>
Povinně volitelné předměty

Je třeba získat alespoň 35 kreditů z povinně volitelných předmětů.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAG462</td>
<td>Modulární formy a L-funkce I</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAG473</td>
<td>Modulární formy a L-funkce II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAG455</td>
<td>Kvadratické formy a třídová tělesa I</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAG456</td>
<td>Kvadratické formy a třídová tělesa II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAG431</td>
<td>Kombinatorická teorie grup</td>
<td>1</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAG432</td>
<td>Kombinatorická teorie grup 2</td>
<td>5</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAG433</td>
<td>Riemannovy plochy</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAG434</td>
<td>Kombinatorická teorie grup</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMAG435</td>
<td>Teorie svazů 1</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAG436</td>
<td>Krivky a funkční tělesa</td>
<td>6</td>
<td>—</td>
<td>4/0 Zk</td>
</tr>
<tr>
<td>NMAG437</td>
<td>Seminář z diferenciální geometrie</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMAG438</td>
<td>Reprezentace grup 1</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMAG439</td>
<td>Binární systémy</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAG440</td>
<td>Teorie reprezentací</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMAG441</td>
<td>Kombinatorika na slovech</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAG442</td>
<td>Logika a složitost</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAG443</td>
<td>Teorie invariantů</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMAG450</td>
<td>Universální algebra 2</td>
<td>4</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NMAG451</td>
<td>Úvod do diferenciální topologie</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAG452</td>
<td>Fibrované prostory a kalibrační pole</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMAG453</td>
<td>Aproximace modulů</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAG454</td>
<td>Algebraická topologie 2</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMAG455</td>
<td>Harmonická analýza 1</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAG456</td>
<td>Harmonická analýza 2</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMAG457</td>
<td>Důkazová složitost a P vs. NP problém</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAG458</td>
<td>Automaty a konvoluční kódy</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDM1043</td>
<td>Kombinatorická a výpočetní geometrie II</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDM1028</td>
<td>Aplikace lineární algebry</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDM1055</td>
<td>Analytická a kombinatorická teorie čísel</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NDM1073</td>
<td>Kombinatorika a grafy III</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDM1074</td>
<td>Pravděpodobnostní techniky</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDM1084</td>
<td>Základy složitosti a vyčíslitelnost</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
</tbody>
</table>
Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

– Získání alespoň 120 kreditů.
– Splnění všech povinných předmětů studijního plánu.
– Splnění povinně volitelných předmětů v rozsahu alespoň 35 kreditů.
– Odevzdání vypracované diplomové práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky studijního oboru Matematické struktury se skládá ze společných požadavků z z tématického okruhu 1. Matematické struktury a z požadavků užšího zaměření. Toto zaměření si posluchač určí volbou jednoho z tématických okruhů 2A, 2B, 2C nebo 2D uvedených níže.

Požadavky k ústní části státní závěrečné zkoušky

Společné požadavky

1. Matematické struktury

Základy algebraické geometrie, univerzální algebry, Riemannovy geometrie, algebraické topologie, teorie modelů a kombinatoriky.

Užší zaměření

2A. Geometrie

Harmonická analýza a invarianty klasických grup. Riemannovy plochy. Algebraická topologie. Fibrované prostory a kovariantní derivace.

2B. Teorie reprezentací

2C. Obecná a kombinatorická algebra

Konečné grupy a jejich reprezentace, kombinatorická teorie grup, binární systémy (pologrupy, kvazigrupy, aj.). Pokročilá universální algebry (svazy, klony, malceovské podmínky, aj.). Sloučitost a vyčíslitelnost, nerozhodnutelnost v algebraických systémech.

2D. Kombinatorika

Aplikace lineární algebry v kombinatorice a teorii grafů. Užití pravděpodobnostní metody v kombinatorice a teorii grafů. Analytická a kombinatorická teorie čísel. Kombinatorická a výpočetní geometrie. Strukturální a algoritmická teorie grafů.

2.2 Matematické metody informační bezpečnosti

Garantující pracoviště: Katedra algebry

Garant oboru: prof. RNDr. Aleš Drápal, CSc., DSc.

Obor Matematické metody informační bezpečnosti má tři studijní plány.

Plán NN (zahájení v roce 2015) 2.2.1
Plán N (zahájení v roce 2013 a 2014) 2.2.2
Plán S (zahájení do roku 2012) 2.2.3

2.3 Matematická analýza

Garantující pracoviště: Katedra matematické analýzy
Garant oboru: prof. RNDr. Ondřej Kalenda, Ph.D., DSc.

Matematická analýza zahrnuje řadu oblastí matematiky — teorii funkcí reálné a komplexní proměnné, teorii míry a integrálu, funkcionální analýzu, obyčejné i parciální diferenciální rovnice, teorii potenciálu aj. Jejich vývoj byl inspirován také potřebami fyziky, biologie, ekonomie a jiných věd. Díky velmi vysoké adaptabilitě získané studiem a schopnosti podílet se tvořivě na řešení problémů z celé řady oborů je uplatnění absolventů značně univerzální a není omezeno na pracoviště s čistě badatelským zaměřením.

Obor Matematická analýza má jeden studijní plán.

Vstupní požadavky

Předpokládáme, že student tohoto oboru má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Zákłady obecné topologie (metrické a topologické prostory, úplnost a kompaktnost), komplexní analýzy (Cauchyova věta, reziduová věta, konformní zobrazení), funkcionální analýzy (Banachovy a Hilbertovy prostory, duály, omezené operátory, kompaktní operátory, základy teorie distribucí).
- Základy teorie obyčejných diferenciálních rovníc (základní vlastnosti řešení a maximálních řešení, soustavy lineárních rovnic, stabilita) parciálních diferenciálních rovníc (kvazilineární rovnice prvního řádu, Laplaceova rovnice a rovnice vedení tepla – fundamentální řešení a princip maxima, vlnová rovnice – fundamentální řešení, konečná rychlost šíření vlny).
- Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přednáškám a odborným textům.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

Doporučený průběh studia

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMA401</td>
<td>Funkcionální analýza 1</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA405</td>
<td>Parciální diferenciální rovnice 1</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA407</td>
<td>Obyčejné diferenciální rovnice 2</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA403</td>
<td>Reálné funkce 1</td>
<td>4</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA406</td>
<td>Funkcionální analýza 2</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA408</td>
<td>Parciální diferenciální rovnice 2</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>0/4 Z</td>
<td>—</td>
</tr>
</tbody>
</table>
Shrnutí studijního plánu

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMA401</td>
<td>Funkcionální analýza 1</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA402</td>
<td>Funkcionální analýza 2</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMMA403</td>
<td>Reálné funkce 1</td>
<td>4</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA404</td>
<td>Reálné funkce 2</td>
<td>4</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMMA405</td>
<td>Parciální diferenciální rovnice 1</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA406</td>
<td>Parciální diferenciální rovnice 2</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMMA407</td>
<td>Obyčejné diferenciální rovnice 2</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA408</td>
<td>Komplexní analýza 1</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMMA409</td>
<td>Algebraická topologie 1</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA410</td>
<td>Riemannovy plochy</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA412</td>
<td>Deskriptivní teorie množin 1</td>
<td>4</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty

Volitelné a povinně volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMA402</td>
<td>Funkcionální analýza 2</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMMA501</td>
<td>Nelineární funkcionální analýza 1</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA502</td>
<td>Nelineární funkcionální analýza 2</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

Skupina I.

Tuto skupinu tvoří přednášky, které jsou úvodem do jednotlivých oblastí výzkumu v matematické analýze, do aplikací matematické analýzy či do vybraných oblastí jiných oborů, které s matematickou analýzou souvisejí. Za předměty z této skupiny je třeba získat alespoň 12 kreditů.
<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMA434</td>
<td>Deskriptivní teorie množin 2</td>
<td>4</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMMA435</td>
<td>Topologické metody ve funkcionální analýze 1</td>
<td>4</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA436</td>
<td>Topologické metody ve funkcionální analýze 2</td>
<td>4</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMMA437</td>
<td>Derivace a integrál pro pokročilé 1</td>
<td>4</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA438</td>
<td>Derivace a integrál pro pokročilé 2</td>
<td>4</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMMA439</td>
<td>Diferenciální rovnice v Banachových prostorech</td>
<td>4</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMMA531</td>
<td>Parciální diferenciální rovnice 3</td>
<td>4</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA532</td>
<td>Úvod do teorie interpolací 1</td>
<td>4</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA533</td>
<td>Úvod do teorie interpolací 2</td>
<td>4</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMMA534</td>
<td>Mechanika kontinua</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA440</td>
<td>Matematická teorie Navierových-Stokesových rovnic</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMMA535</td>
<td>Matematické metody v mechanice stlačitelných tekutin</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMMA430</td>
<td>Metoda konečných prvků 1</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

Skupina II.

Tuto skupinu tvoří vybrané vědecké či pracovní semináře. Za předměty z této skupiny je třeba získat alespoň 12 kreditů (za každý z těchto seminářů lze získat 3 kredity za každý semestr). Semináře lze zapisovat opakovaně.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMA431</td>
<td>Seminář z diferenciálních rovnic</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMA432</td>
<td>Seminář z geometrické analýzy</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMA433</td>
<td>Seminář z parciálních diferenciálních rovnic</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMA434</td>
<td>Seminář z prostorů funkcí</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMA435</td>
<td>Seminář z reálné a abstraktní analýzy</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMA436</td>
<td>Seminář z teorie reálných funkcí</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMA437</td>
<td>Seminář ze základních vlastností prostorů funkcí</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMA438</td>
<td>Topologický seminář</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMA439</td>
<td>Seminář ze základů funkcionální analýzy</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
</tbody>
</table>

Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMA461</td>
<td>Regularita Navier — Stokesových rovnic</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMA462</td>
<td>Obecná topologie 2</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMMA463</td>
<td>Řešitelský seminář</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMA464</td>
<td>Kapitoly z diskrétních dynamických systémů</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
</tbody>
</table>
Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů ze skupiny I. v rozsahu alespoň 12 kreditů.
- Splnění povinně volitelných předmětů ze skupiny II. v rozsahu alespoň 12 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky studijního oboru Matematická analýza se skládá z pěti okruhů, jimiž jsou Reálná analýza, Komplexní analýza, Funkcionální analýza, Obyčejné diferenciální rovnice a Parciální diferenciální rovnice. Z každého okruhu dostane uchazeč zpravidla jednu otázku.

Požadavky k ústní části státní závěrečné zkoušky

1. **Reálná analýza**

2. **Komplexní analýza**

3. **Funkcionální analýza**

4. **Obyčejné diferenciální rovnice**
5. Parciální diferenciální rovnice

2.4 Numerická a výpočtová matematika

Garantující pracoviště: Katedra numerické matematiky
Garant oboru: doc. Mgr. Petr Knobloch, Dr., DSc.

Numerická a výpočtová matematika se zabývá zpracováním matematických modelů pomocí výpočetní techniky. Realizuje přechod od teoretické matematiky k praktickým použitelným výsledkům. S jejím použitím se lze setkat v technice a v přírodních vědách, v ekonomice, lékařských vědách aj. Student se seznámí jak s teorií výpočtových procesů a algoritmů, tak s aplikacemi v oblastech počítačového modelování, simulace a řízení složitých struktur a procesů. Důraz je kladen též na tvorivou práci s počítačem a vytváření software na vysoké úrovni.

Absolventi nacházejí uplatnění především tam, kde se systematicky používá výpočetní technika (průmysl, školství, základní i aplikovaný výzkum, veřejná správa, justice, banky apod.).

Obor Numerická a výpočtová matematika má jeden studijní plán.

Vstupní požadavky

Předpokládáme, že student tohoto oboru má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Základy funkcionální analýzy (Banachovy a Hilbertovy prostory, duální, omezené operátory, kompaktní operátory, základy teorie distribucí), teorie obyčejných diferenciálních rovnic (základní vlastnosti řešení a maximálních řešení, soustavy lineárních rovnic, stabilita) a parciálních diferenciálních rovnic (kvazilineární rovnice prvního řádu, Laplaceova rovnice, rovnice vedení tepla, vlnová rovnice).
- Základy numerické matematiky (numerická kvadratura, základy numerického řešení obyčejných diferenciálních rovnic, metoda konečných diferencí pro parciální diferenciální rovnice) a analýzy maticových výpočtů (Schurova věta, ortogonální transformace, rozklady matic, základní iterační metody).
- Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přednáškám a odborným textům.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

Doporučený průběh studia

Matematika Mgr.

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMA405</td>
<td>Parciální diferenciální rovnice 1</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV410</td>
<td>Maticové iterační metody 1</td>
<td>6</td>
<td>4/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV411</td>
<td>Funkcionální analýza</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV413</td>
<td>Numerický software 1</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV415</td>
<td>Metoda konečných prvků 1</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV451</td>
<td>Seminář numerické matematiky</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NMMA408</td>
<td>Parciální diferenciální rovnice 2</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NMNV402</td>
<td>Nelineární funkcionální analýza</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMNV402</td>
<td>Numerický software 2</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMNV451</td>
<td>Seminář numerické matematiky</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td></td>
<td>Volitelné a povinně volitelné předměty</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Volitelné a povinně volitelné předměty

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NMNV451</td>
<td>Řešení nelineárních algebraických rovnic</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV451</td>
<td>Seminář numerické matematiky</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
<tr>
<td>NMNV451</td>
<td>Seminář numerické matematiky</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td></td>
<td>Volitelné a povinně volitelné předměty</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shrnutí studijního plánu

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMA405</td>
<td>Parciální diferenciální rovnice 1</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA408</td>
<td>Parciální diferenciální rovnice 2</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMNV411</td>
<td>Funkcionální analýza</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV414</td>
<td>Numerický software 2</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV416</td>
<td>Metoda konečných prvků 1</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV417</td>
<td>Maticové iterační metody 1</td>
<td>6</td>
<td>4/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV451</td>
<td>Řešení nelineárních algebraických rovnic</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>
Povinně volitelné předměty

Je třeba získat alespoň 28 kreditů z povinně volitelných předmětů. Výběr povinně volitelných předmětů je vhodné činit s ohledem na zamýšlenou volbu tématu třetího okruhu požadavků k ústní části státní závěrečné zkoušky. Téma (3A, 3B nebo 3C), pro něž je předmět doporučen, je uvedeno v závorce. Předmět NMNV451 Seminář numerické matematiky lze zapisovat opakovaně; doporučujeme jeho zapsání v každém semestru studia.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMNV436</td>
<td>Metoda konečných prvků 2 (3B)</td>
<td>5</td>
<td>2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMNV438</td>
<td>Maticové iterační metody 2 (3C)</td>
<td>5</td>
<td>2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMNV451</td>
<td>Seminář numerické matematiky</td>
<td>2</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>NMNV561</td>
<td>Paralelní maticové výpočty (3C)</td>
<td>5</td>
<td>2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMNV562</td>
<td>Řídké matice v přímých metodách (3C)</td>
<td>5</td>
<td>2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMNV559</td>
<td>Numerické metody optimalizace</td>
<td>5</td>
<td>2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMNV552</td>
<td>Nelineární diferenciální rovnice (3B)</td>
<td>3</td>
<td>2</td>
<td>Z</td>
</tr>
<tr>
<td>NMNV531</td>
<td>Inverzní úlohy a regularizace</td>
<td>5</td>
<td>2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMNV532</td>
<td>Úlohy a regularizace</td>
<td>5</td>
<td>2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMNV533</td>
<td>Inverzní úlohy a regularizace</td>
<td>5</td>
<td>2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMNV534</td>
<td>Numerické řešení evolučních rovin (3A)</td>
<td>3</td>
<td>2</td>
<td>Z</td>
</tr>
<tr>
<td>NMNV535</td>
<td>Matematické metody v mechanice tekutin 1 (3A)</td>
<td>3</td>
<td>2</td>
<td>Z</td>
</tr>
<tr>
<td>NMNV536</td>
<td>Matematické metody v mechanice tekutin 2 (3A)</td>
<td>3</td>
<td>2</td>
<td>Z</td>
</tr>
<tr>
<td>NMNV537</td>
<td>Numerické řešení ODR (3B)</td>
<td>5</td>
<td>2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMNV541</td>
<td>Základy nespojitě Galerkinovy metody (3B)</td>
<td>3</td>
<td>2</td>
<td>Z</td>
</tr>
<tr>
<td>NMNV542</td>
<td>Tvarová a materiálová optimalizace 1 (3A)</td>
<td>3</td>
<td>2</td>
<td>Z</td>
</tr>
<tr>
<td>NMNV543</td>
<td>Tvarová a materiálová optimalizace 2 (3A)</td>
<td>3</td>
<td>2</td>
<td>Z</td>
</tr>
<tr>
<td>NMNV544</td>
<td>Teorie aproximace</td>
<td>4</td>
<td>2</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM0536</td>
<td>Kvalitativní vlastnosti slabých řešení parciálních diferenciálních rovin</td>
<td>3</td>
<td>2</td>
<td>Z</td>
</tr>
<tr>
<td>MM0410</td>
<td>Mechanika kontinua</td>
<td>6</td>
<td>2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>MM0411</td>
<td>Seminář z mechaniky kontinua</td>
<td>3</td>
<td>2</td>
<td>Z</td>
</tr>
<tr>
<td>MM0412</td>
<td>Počítačové řešení úloh fyziky kontinua</td>
<td>5</td>
<td>2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>MM0555</td>
<td>Matematické metody v mechanice pevných látek</td>
<td>3</td>
<td>2</td>
<td>Z</td>
</tr>
<tr>
<td>MM0556</td>
<td>Matematické metody v mechanice stlačitelných tekutí</td>
<td>3</td>
<td>2</td>
<td>Z</td>
</tr>
<tr>
<td>MM0557</td>
<td>Sedlovodové úlohy a jejich řešení</td>
<td>5</td>
<td>2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>Kód</td>
<td>Název Kurzu</td>
<td>ECTS</td>
<td>Zkr.</td>
<td>Stav</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>NMNO539</td>
<td>Matematické metody v mechanice nenewtonovských tekutin</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV361</td>
<td>Fraktály a chaotická dynamika</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV460</td>
<td>Techniky aposteriorního odhadování chyb</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV466</td>
<td>Numerické modelování problémů elektrotechniky</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMNV469</td>
<td>Afferiorní numerická analýza metodou vyvážených toků</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMNV561</td>
<td>Bifurkační analýza dynamických systémů 1</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV562</td>
<td>Bifurkační analýza dynamických systémů 2</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMNV568</td>
<td>Teorie aproximace 2</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMNV569</td>
<td>Numerické výpočty s verifikací</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMST442</td>
<td>Maticové výpočty ve statistice</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Ziskání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů v rozsahu alespoň 28 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky studijního oboru Numerická a výpočtová matematika se skládá z požadavků tří okruhů, přičemž u třetího okruhu si student volí jedno ze tří témat.

Požadavky k ústní části státní závěrečné zkoušky

1. **Matematická a funkcionální analýza**

 Parciální diferenční rovnice, spektrální analýza lineárních operátorů, monotónní a potenciální operátory, řešení variačních úloh

2. **Numerické metody**

 Metoda konečných prvků, základní maticové iterační metody, metody pro řešení soustav nelineárních algebraických rovnic, základy implementace numerických metod

3. **Volba jednoho z následujících témat:**

 3A. **Průmyslová matematika**

 Matematické metody v mechanice tekutin, metody materiálové optimalizace, metody řešení evolučních rovnic

 3B. **Numerická analýza**

 Nelineární diferenční rovnice, numerické metody pro obyčejné diferenční rovnice, numerické řešení úloh konvekce-difúze

32
3C. Maticeové výpočty

Metody krylovovských podprostorů, projekce a problém momentů, souvislost spektrální informace a konvergence, přímé metody pro řídké matice

2.5 Matematické modelování ve fyzice a technice

Garantující pracoviště: Matematický ústav UK
Garant oboru: prof. RNDr. Josef Málek, CSc., DSc.

Studijní obor Matematické modelování ve fyzice a technice je mezioborovým studiem, které spojuje matematiku a fyziku.

Fyzikální část vede studenta k získání schopnosti formulovat matematické modely pro kvantitativní i kvalitativní analýzu fyzikálních systémů, přičemž studium je zaměřeno především na fyzikální systémy v termodynamice spojitého prostředí. (Proudění tekutin a jejich směsí, deformace pevných látek, vzájemná interakce pevných látek a tekutin a další.) V rámci rozsáhlé spolupráce s dalšími pracovišti Univerzity Karlovy či Akademie věd se ovšem studenti mohou věnovat i matematickému modelování v jiných oborech přírodních či společenských věd.

Matematická část studia je zaměřena na teorii parciálních diferenciálních rovnic. Student se důkladně seznámí s moderními metodami pro teoretickou analýzu systémů nelineárních parciálních diferenciálních rovnic, a dále také s příslušnými numerickými metodami pro jejich řešení, a to včetně implementace daných metod s pomocí moderních softwarových nástrojů.

Obecným cílem studia je připravit studenta k tvůrčímu využití soudobých matematických prostředků při zkoumání rozmanitých jevů reálného světa a souvisejících ryze matematických problémů. Absolventi matematického modelování jsou připraveni působit jak v akademickém tak v komerčním sektoru, a to nejen díky vynikajícím znalostem matematiky a fyziky, ale také díky samostatnosti, schopnosti rychle se zorientovat v nové problematice a schopnosti konzultovat a řešit problémy ve spolupráci se specialisty z různých vědních oborů jako jsou například fyzikové, inženýři, lékaři, ekonomové a programátoři.

Obor Matematické modelování ve fyzice a technice má jeden studijní plán.

Vstupní požadavky

Předpokládáme, že student tohoto oboru má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Základy lineární algebry (vektorové prostory, matice, determinanty, Jordanův kanonický tvar, ortogonalizace, vlastní čísla a vlastní vektory, základy multilineární algebry, kvadratické formy). Numerické řešení soustav lineárních algebraických rovnic (Schurova věta, QR rozklad, LU rozklad, singulární rozklad, úlohy nejmenších čtverců, částečný problém vlastních čísel, metoda sdružených gradientů, GMRES, zpětná chyba, citlivost a numerická stabilita, QR algoritmus).
- Základy komplexní analýzy (Cauchyova věta, reziduová věta, konformní zobrazení, Laplaceova transformace).
Základy funkcionální analýzy a teorie metrických prostorů (Banachovy a Hilbertovy prostory, operátory a funkcionály, Hahn-Banachova věta, duální prostory, omezené operátory, kompaktní operátory, základy teorie distribucí).

Základy teorie obyčejných diferenciálních rovnic (základní vlastnosti řešení a maximálních řešení, soustavy lineárních rovnic, stabilita) a parciálních diferenciálních rovnic (kvazilineární rovnice prvního řádu, Laplaceova rovnice a rovnice vedení tepla – fundamentální řešení a princip maxima, vlnová rovnice – fundamentální řešení, konečná rychlost šíření vlny).

Základy klasické mechaniky (Newtonovy pohybové zákony, Lagrangeovy rovnice, Hamiltonovy rovnice, variáční formulace, mechanika tluhého tělesa, setrvačníky).

Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přednáškám a odborným textům.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

Doporučený průběh studia

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMA401</td>
<td>Funkcionální analýza 1</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA405</td>
<td>Parciální diferenciální rovnice 1</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMO401</td>
<td>Mechanika kontinua</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NCPY001</td>
<td>Termodynamika a statistická fyzika</td>
<td>6</td>
<td>3/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMN403</td>
<td>Metoda konečných prvků 1</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMN404</td>
<td>Parciální diferenciální rovnice 2</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NSZD021</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NMMO402</td>
<td>Termodynamika a mechanika nenewtonovských tekutín</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NMMO405</td>
<td>Počítačové řešení úloh fyziky kontinua</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMMO406</td>
<td>Termodynamika a mechanika pevných látek</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td></td>
<td>Volitelné a povinně volitelné předměty</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSZD022</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NMMN407</td>
<td>Maticové iterační metody 1</td>
<td>6</td>
<td>4/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSZD023</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
<tr>
<td></td>
<td>Volitelné a povinně volitelné předměty</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

34
Shrnutí studijního plánu

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMA401</td>
<td>Funkcionální analýza 1</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA405</td>
<td>Parciální diferenciální rovnice 1</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA406</td>
<td>Parciální diferenciální rovnice 2</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMMO401</td>
<td>Mechanika kontinua</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMO402</td>
<td>Termodynamika a mechanika nenewtonovských tekutin</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NMMO403</td>
<td>Počítačové řešení úloh fyziky kontinua</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMMO404</td>
<td>Termodynamika a mechanika pevných látek</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NMNV403</td>
<td>Metoda konečných prvků 1</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV404</td>
<td>Maticové iterační metody 1</td>
<td>6</td>
<td>4/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOFY036</td>
<td>Termodynamika a statistická fyzika</td>
<td>6</td>
<td>3/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty

Je třeba získat alespoň 16 kreditů z povinně volitelných předmětů.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMA407</td>
<td>Obyčejné diferenciální rovnice 2</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA408</td>
<td>Parciální diferenciální rovnice 3</td>
<td>4</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA409</td>
<td>Klasické úlohy mechaniky kontinua</td>
<td>4</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NMMO403</td>
<td>Biotermodynamika</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMO404</td>
<td>Matematická teorie Navierových-Stokesových rovnic</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMMO405</td>
<td>Nelineární diferenciální rovnice a nerovnice 1</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMO406</td>
<td>Nelineární diferenciální rovnice a nerovnice 2</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMMO407</td>
<td>Matematické metody v mechanice pevných látek</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMO408</td>
<td>Matematické metody v mechanice stlačitelných tekutin</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMMO409</td>
<td>Sedlobodové úlohy a jejich řešení</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMMO410</td>
<td>Matematické metody v mechanice nenewtonovských tekutin</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMO411</td>
<td>Teorie směsi</td>
<td>4</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV401</td>
<td>Numerický software 1</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV402</td>
<td>Numerický software 2</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>
Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMA452</td>
<td>Seminář z parciálních diferenciálních rovnic</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMA461</td>
<td>Regularita Navier — Stokesových rovnic</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMA583</td>
<td>Kvalitativní vlastnosti slabých řešení parciálních diferenciálních rovnic</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA584</td>
<td>Regularita slabých řešení parciálních diferenciálních rovnic</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMO461</td>
<td>Seminář z mechaniky kontinua</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMO561</td>
<td>Regularita řešení Navier-Stokesových rovnic</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMO562</td>
<td>Vybrané problémy matematického modelování</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMNV402</td>
<td>Nelineární funkcionální analýza</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMNV581</td>
<td>Tvarová a materiálová optimalizace 1</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV582</td>
<td>Tvarová a materiálová optimalizace 2</td>
<td>3</td>
<td>—</td>
<td>2/0 Z</td>
</tr>
</tbody>
</table>

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů v rozsahu alespoň 16 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Student po předchozí přípravě ústně zodpovídá šest otázek z teorie parciálních diferenciálních rovnic (jedna otázka), funkcionální analýzy (jedna otázka), teorie metody konečných prvků (jedna otázka), teorie řešení algebraických rovnic (jedna otázka), kinematiky a dynamiky kontinua (jedna otázka) a teorie konstitutivních vztahů pro tekutiny a pevné látky (jedna otázka).

Požadavky pro ústní část státní závěrečné zkoušky

1. Termodynamika a mechanika kontinua

2. Funkcionální analýza a parciální diferenciální rovnice

3. Numerické metody

2.6 Pravděpodobnost, matematická statistika a ekonometrie

Garantující pracoviště: Katedra pravděpodobností a matematické statistiky

Garant oboru: doc. RNDr. Daniel Hlubinka, Ph.D.

Obor Pravděpodobnost, matematická statistika a ekonometrie je určen pro zájemce o získání teoretických i aplikovaných poznatků v oblasti matematiky náhodných jevů. Hlavní charakteristikou oboru je soulad mezi rigurozní matematickou teorií, hloubkou vhludu do jednotlivých oblastí oboru (pravděpodobnost, statistika, ekonometrie) a aplikacemi v nejrůznějších oblastech života. Studenti získávají společný základ absolvovalně nových povinných předmětů z pravděpodobnosti, optimalizace, statistického modelování a náhodných procesů, na které navazují vlastním výběrem povinné volitelných a volitelných předmětů a seminarů, čímž si rozšířují vzdělání a volí si oblast, které se budou hlouběji věnovat. Na seminarách se učí samostatně pracovat a řešit rozhodující projekty samostatně i v týmu. Velký důraz je kladen na rozvoj analytického a kritického myšlení. Pravděpodobnost, matematická statistika a ekonometrie má blízký vztah k ostatním matematickým oborům (matematické analýze, numerické matematice, diskrétní matematice). V aplikacích se obor inspiruje problémy z ekonomie, lékařství, techniky, přírodních věd a fyziky, informatiky. Hlavním cílem oboru je připravit absolventy pro úspěšné uplatnění jak v praxi (finance, průmysl, telekomunikace, marketing, lékařství, přírodní vědy), tak i v akademické kariéře.

Absolvent oboru Pravděpodobnost, matematická statistika a ekonometrie je do hlubokého seznámení s matematickým modelováním náhodných jevů a procesů a jeho aplikacemi v praxi. Vyzná se v základech teorie pravděpodobnosti, matematické statistiky, teorie náhodných procesů a teorie optimalizace. Všeobecný základ si rozšířil o hlubší znalosti teorie náhodných procesů a stochastické analýzy, moderních metod matematické statistiky, nebo pokročilé optimalizace a analýzy časových řad. Rozumí podstatné studovaných metod, má přehled o jejich vzájemném vztahu a je schopen je aktivně rozvíjet a kriticky používat. Teoretické poznatky umí tvůrčím způsobem aplikovat v praxi. Své schopnosti logicky myslet, analyzovat problémy a nalézat řešení netriviálních úloh využívá k tvůrčí a samostatné práci s přesahem do dalších vědních oborů v praxi nebo v akademické oblasti.
Matematika Mgr.

Studijní obor Pravděpodobnost, matematická statistika a ekonometrie má jeden studijní plán.

Vstupní požadavky

Předpokládáme, že student tohoto oboru má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Diferenciální a integrální počet více proměnných, teorie míry a Lebesgueův integrál, vektorové prostory a maticová algebra, základy funkcionální a komplexní analýzy.
- Základy teorie pravděpodobnosti.
- Základy matematické statistiky a analýzy dat.
- Teorie markovských řetězců.
- Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přednáškám a odborným textům.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

Doporučený průběh studia

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMSA407</td>
<td>Lineární regrese</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMSA409</td>
<td>Náhodné procesy 2</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMSA410</td>
<td>Teorie optimalizace</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMSA412</td>
<td>Teorie pravděpodobnosti 2</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMSA415</td>
<td>Oborový seminář</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Volitelné a povinně volitelné předměty</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>0/4 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>—</td>
<td>0/6 Z</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
<tr>
<td></td>
<td>Volitelné a povinně volitelné předměty</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shrnutí studijního plánu

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMSA410</td>
<td>Oborový seminář</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NMSA412</td>
<td>Teorie optimalizace</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMSA414</td>
<td>Teorie pravděpodobnosti 2</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMSA407</td>
<td>Lineární regrese</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

38
<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSMA409</td>
<td>Náhodné procesy 2</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ028</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>0/4 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ029</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>—</td>
<td>0/6 Z</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty

Skupina I.

Z této skupiny je třeba získat alespoň 7 kreditů. Studenti si obvykle zapisují dva ekonometrické nebo dva statistické nebo dva pravděpodobnostní semináře. Zápis pokročilejších seminářů je omezen prerekvizitami.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMEK450</td>
<td>Ekonometrický seminář 1</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMEK551</td>
<td>Ekonometrický projektový seminář</td>
<td>5</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NMST450</td>
<td>Statistický seminář 1</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMST551</td>
<td>Statistický projektový seminář</td>
<td>5</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NMTP450</td>
<td>Pravděpodobnostní seminář 1</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMTP551</td>
<td>Pravděpodobnostní seminář 2</td>
<td>5</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
</tbody>
</table>

Skupina II.

Z této skupiny je třeba získat alespoň 43 kreditů. Při volbě povinně volitelných předmětů doporučujeme brát ohled na vybraná témata volitelných okruhů státní závěrečné zkoušky a také na téma diplomové práce. Povinně volitelné předměty by měly posluchačům umožnit získat jak širší základ oboru, tak i základní specializaci.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMEK432</td>
<td>Ekonometrie</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMEK436</td>
<td>Výpočetní aspekty optimalizace</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMEK531</td>
<td>Matematická ekonomie</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMEK532</td>
<td>Optimalizace s aplikací ve financích</td>
<td>8</td>
<td>—</td>
<td>4/2 Z+Zk</td>
</tr>
<tr>
<td>NMTE431</td>
<td>Analýza investic</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMTE437</td>
<td>Matematika ve financích</td>
<td>6</td>
<td>4/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMTE438</td>
<td>Finanční deriváty 1</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMTE439</td>
<td>Finanční deriváty 2</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMTE531</td>
<td>Stochastická analýza ve finanční matematice</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMTE532</td>
<td>Kreditní riziko v bankovnictví</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMST431</td>
<td>Bayesovské metody</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMST432</td>
<td>Pokročilej regresní modely</td>
<td>8</td>
<td>—</td>
<td>4/2 Z+Zk</td>
</tr>
<tr>
<td>NMST438</td>
<td>Moderní statistické metody</td>
<td>8</td>
<td>—</td>
<td>4/2 Z+Zk</td>
</tr>
<tr>
<td>NMST435</td>
<td>Návrhy experimentů</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMST436</td>
<td>Výběrová šetření</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMST437</td>
<td>Výpočetní prostředí pro statistickou analýzu dat</td>
<td>4</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMST432</td>
<td>Maticové výpočty ve statistice</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMST431</td>
<td>Analýza censorovaných dat</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>Kód</td>
<td>Název</td>
<td>Kredity</td>
<td>ZS</td>
<td>LS</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>NMST532</td>
<td>Plánování a analýza lékařských studií</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NMST533</td>
<td>Asymptotické metody inference</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NMST535</td>
<td>Simulační metody</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NMST537</td>
<td>Casové řady</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NMST539</td>
<td>Mnohorozměrná analýza</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NMST541</td>
<td>Statistická kontrola jakosti</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NMST544</td>
<td>Prostorová statistika</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NSM552</td>
<td>Statistické konzultace</td>
<td>2</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMTP432</td>
<td>Stochastická analýza</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP433</td>
<td>Principy invariance</td>
<td>6</td>
<td>4/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP436</td>
<td>Spojité martingaly a čítací procesy</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP437</td>
<td>Prostorové modelování</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP439</td>
<td>Ergodická teorie</td>
<td>4</td>
<td>3/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP440</td>
<td>Aplikovaná stochastická analýza</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP442</td>
<td>Vybrané partie z teorie míry *</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP443</td>
<td>Limitní věty pro součty náhodných veličin</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP444</td>
<td>Metody Markov Chain Monte Carlo</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP445</td>
<td>Stochastická geometrie</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP446</td>
<td>Stochastické diferencinální rovnice</td>
<td>6</td>
<td>4/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP447</td>
<td>Teorie pravděpodobnostních rozdělení</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
</tbody>
</table>

Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMST570</td>
<td>Vybraná témata z psychometrie</td>
<td>3</td>
<td>1/1 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NMST571</td>
<td>Seminář z psychometrie</td>
<td>2</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>NMTP401</td>
<td>Demografie</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP452</td>
<td>Markovské procesy</td>
<td>6</td>
<td>4/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP458</td>
<td>Vybrané partie pravděpodobnosti pro statistiku</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP467</td>
<td>Vybrané partie ze stochastické analýzy</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP470</td>
<td>Rozdělení s těžkými chvosty</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP471</td>
<td>Markovské distribuce nad grafy</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NMTP476</td>
<td>Struktury podmíněné nezávislosti</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
</tbody>
</table>

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů ze skupiny I. v rozsahu alespoň 7 kreditů.
- Splnění povinně volitelných předmětů ze skupiny II. v rozsahu alespoň 43 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.
Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky se skládá ze tří okruhů. První okruh, Základy pravděpodobnosti, statistiky a náhodných procesů, je společný pro všechny posluchače oboru. Pro druhý a třetí okruh si student volí z nabídky tří, respektive sedmi volitelných témat.

Požadavky pro ústní část státní závěrečné zkoušky

Společný okruh

1. Základy pravděpodobnosti, statistiky a náhodných procesů

Okruh 2. Pokročilé modely

 Student si zvolí jedno ze tří témat

 Téma 2A: Ekonometrické a optimalizační metody.
 - Stacionární posloupnosti a časové řady. Ekonometrie. Pokročilá optimalizace.

 Téma 2B: Pokročilá statistická analýza.
 - Moderní metody odhadování parametrů a statistické inference. Regresní modely pro nenormální a korelovaná data.

 Téma 2C: Procesy v čase i v prostoru.

Okruh 3. Speciální partie

 Student si zvolí jedno ze sedmi témat

 Téma 3A: Ekonometrické modely
 - Matematická ekonomie. Časové řady s aplikací ve finančních. Pokročilé ekonometrické a statistické metody. Mnohorozměrná statistická analýza.

 Téma 3B: Optimalizační modely
 - Obecné optimalizační úlohy, optimální řízení. Aplikace optimalizace v ekonomii a ve finančních. Matematická ekonomie. Časové řady.

 Téma 3C: Prostorové modelování

 Téma 3D: Stochastická analýza

 Téma 3E: Statistika pro průmysl, obchod a hospodářství

 Téma 3F: Statistika v přírodních vědách
Téma 3G: Teoretická statistika

2.7 Finanční a pojistná matematika

Garantující pracoviště: Katedra pravděpodobnosti a matematické statistiky

Garant oboru: prof. RNDr. Tomáš Cipra, DrSc.

Absolventi oboru získají vzdělání požadované profesními organizacemi pojistných matematiků v EU. Kombinace vzdělání v teorii pravděpodobnosti a finanční vědě je základem pro jejich uplatnění při řízení finančních rizik. Mají znalosti finančního modelování s použitím moderního matematického softwaru.

Studium je odbornou přípravou na výkon profese matematika ve financích institucích a pro samostatnou tvorbu či vědeckou činnost v oblastech matematické teorie financí a pojišťovnictví. Znalosti získané v bakalářském studiu jsou rozvíjeny do matematických teorií finančních trhů, kapitálové příměřenosti, oceňování náhodných peněžních toků, tvorby pojistných rezerv apod. Výklad se z velké části opírá o matematické modelování s použitím moderního softwaru. Studium představuje současnou formu studia aktuárních věd, která má na Univerzitě Karlově osmdesátiletou tradici. Absolventi se uplatní v pojišťovnách, penzijních a investičních fondech, ve bankách, ve státní správě a jako odpovědní pojistní matematikové.

Obor Finanční a pojistná matematika má jeden studijní plán.

Vstupní požadavky

Předpokládáme, že student tohoto oboru má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Diferenciální a integrální počet více proměnných, teorie míry a Lebesgueův integrál, vektorové prostory a maticová algebra.
- Základy teorie pravděpodobnosti, matematické statistiky a analýzy dat. Teorie markovských řetězců.
- Základy finanční matematiky a účetnictví.
- Základy funkcionálního programování.
- Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přednáškám a odborným textům.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMSA407</td>
<td>Lineární regrese</td>
<td>8</td>
<td>4/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMSA409</td>
<td>Náhodné procesy 2</td>
<td>8</td>
<td>4/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMFM400</td>
<td>Matematika neživotního pojištění 1</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMFM402</td>
<td>Životní pojištění 1</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMFM409</td>
<td>Náhodné procesy 2</td>
<td>6</td>
<td>—</td>
<td>0/4</td>
</tr>
<tr>
<td>NMFM403</td>
<td>Matematika neživotního pojištění 2</td>
<td>5</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NMFM404</td>
<td>Účetnictví pojišťoven</td>
<td>5</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NMFM406</td>
<td>Vybraný software pro finance a pojišťovnictví</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NMFM407</td>
<td>Životní pojištění 2</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NMFM408</td>
<td>Pravděpodobnost pro finance a pojišťovnictví</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NMFM409</td>
<td>Životní pojištění 2, cvičení</td>
<td>2</td>
<td>—</td>
<td>0/2</td>
</tr>
<tr>
<td>NMFM410</td>
<td>Volitelné a povinně volitelné předměty</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6</td>
<td>Z</td>
</tr>
<tr>
<td>NMFM503</td>
<td>Teorie rizika</td>
<td>8</td>
<td>4/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Časové řady</td>
<td>8</td>
<td>4/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMFM501</td>
<td>Aktuářský seminář 1</td>
<td>2</td>
<td>0/2</td>
<td>Z</td>
</tr>
<tr>
<td>NMFM501</td>
<td>Pokročilé partie finančního managementu</td>
<td>2</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMFM505</td>
<td>Stochastické modely pro finance a pojišťovnictví</td>
<td>5</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NSZZ026</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10</td>
</tr>
<tr>
<td>NMFM505</td>
<td>Aktuářský seminář 2</td>
<td>1</td>
<td>—</td>
<td>0/2</td>
</tr>
<tr>
<td>NMFM505</td>
<td>Volitelné a povinně volitelné předměty</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shrnutí studijního plánu

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMFM401</td>
<td>Matematika neživotního pojištění 1</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMFM402</td>
<td>Matematika neživotního pojištění 2</td>
<td>5</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NMFM404</td>
<td>Vybraný software pro finance a pojišťovnictví</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NMFM405</td>
<td>Životní pojištění 1</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

43
Matematika Mgr.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMFM406</td>
<td>Životní pojištění 2</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMFM408</td>
<td>Pravděpodobnost pro finance a pojišťovnictví</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMFM410</td>
<td>Účetnictví pojištoven</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMFM412</td>
<td>Životní pojištění 2, cvičení</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMFM413</td>
<td>Aktuárský seminář 1</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NMFM414</td>
<td>Aktuárský seminář 2</td>
<td>1</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMFM415</td>
<td>Teorie rizika</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMFM416</td>
<td>Stochastické modely pro finance a pojišťovnictví</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMFM431</td>
<td>Pokročilé partie finančního managementu</td>
<td>2</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMSA407</td>
<td>Lineární regrese</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMSA409</td>
<td>Náhodné procesy 2</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMSA410</td>
<td>Časové řady</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NSZZ026</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ027</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty

Je třeba získat alespoň 5 kreditů z povinně volitelných předmětů.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMFM531</td>
<td>Analýza investic</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMFM532</td>
<td>Finanční deriváty 1</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMFM533</td>
<td>Finanční deriváty 2</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMSA413</td>
<td>Teorie optimalizace</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSMS1531</td>
<td>Analýza censorovaných dat</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSMS1532</td>
<td>Mnohorozměrná analýza</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMEK532</td>
<td>Ekonometrie</td>
<td>8</td>
<td>—</td>
<td>4/2 Z+Zk</td>
</tr>
<tr>
<td>NMEK533</td>
<td>Optimalizace s aplikací ve financích</td>
<td>8</td>
<td>—</td>
<td>4/2 Z+Zk</td>
</tr>
<tr>
<td>NMFM1601</td>
<td>Demografie</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMFM1602</td>
<td>Praktické aspekty měření a řízení finančních rizik</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMFM540</td>
<td>Stochastická analýza ve finanční matematice</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMSA571</td>
<td>Teorie informace ve financích a statistice</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMFM540</td>
<td>Kreditní riziko v bankovnictví</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 120 kreditů.
– Splnění všech povinných předmětů studijního plánu.
– Splnění povinně volitelných předmětů v rozsahu alespoň 5 kreditů.
– Odevzdání vypracované diplomové práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky studijního oboru Finanční a pojistná matematika se skládá z okruhů Aplikovaná pravděpodobnost, Pojištění a Finance a účetnictví.

Požadavky pro ústní část státní závěrečné zkoušky

1. Pravděpodobnost a statistika

2. Životní a neživotní pojištění

3. Finance a účetnictví

2.8 Matematika pro informační technologie

Garantující pracoviště: Katedra algebry
Garant oboru: prof. RNDr. Aleš Drápal, CSc., DSc.

Obor Matematika pro informační technologie má jeden studijní plán. Tento studijní plán je shodný se studijním plánem NN dobíhajícího oboru Matematické metody informační bezpečnosti.

Zaměření oboru Matematika pro informační technologie

Obor Matematika pro informační technologie umožňuje specializaci na jedno ze dvou zaměření.

1. Zaměření Matematika pro informační bezpečnost (IB) poskytuje hlubší znalosti teorie čísel, teorie samoopravňujících kódů, teorie eliptických křivek, a dále počítačové algebry aplikované na některé z těchto teorií. Pozornost je věnována ale i praktickým aspektům jako jsou kryptoanalytické útoky, zabezpečení toku internetových dat, kryptografické standardy a právní ochrana dat.

2. Zaměření Počítačová geometrie (PG) umožňuje získat hlubší znalosti v algebraických a geometrických oborech spolu s jejich použitím v geometrii počítačového
vidění a robotiky, počítačové grafice a zpracování obrazu, optimalizačních metodách a numerické lineární algebře.

Volba zaměření

Volba zaměření zahrnuje tři postupně kroky:

- **Výběr tématu diplomové práce** na počátku prvního ročníku.
- **Výběr povinně volitelných předmětů** během studia.
- **Výběr dvou volitelných okruhů ústní částí státní závěrečné zkoušky**, při přihlášení ke státní závěrečné zkoušce.

Vstupní požadavky

Předpokládáme, že student tohoto oboru má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Kvalitní základy lineární algebry, reálné analýzy a teorie pravděpodobnosti.
- Základy teoretické kryptografie a geometrického modelování. Programování v jazyce C.
- Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přehléděním a odborným textům.

Studentům, které tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

Doporučený průběh studia

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMB405</td>
<td>Složitost pro kryptografii</td>
<td>6</td>
<td>4/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMB409</td>
<td>Konvexní optimalizace</td>
<td>9</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMB403</td>
<td>Počítačová algebra 2</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMB407</td>
<td>Pravděpodobnost a kryptografie</td>
<td>6</td>
<td>4/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
</tbody>
</table>

Volitelné a povinně volitelné předměty

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>
Zaměření oboru se rozlišují podle doporučených povinně volitelných předmětů.

Povinně volitelné předměty pro zaměření Matematika pro informační bezpečnost

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMB333</td>
<td>Základy analýzy dat</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMB331</td>
<td>Booleovské funkce</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTIN103</td>
<td>Foundations of theoretical cryptography</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NMMB301</td>
<td>Automaty a konvoluční kódy</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMB302</td>
<td>Číselné algoritmy</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMMB304</td>
<td>Kryptoanalytické útoky</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMMB305</td>
<td>Zabezpečení síťových protokolů</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAG331</td>
<td>Křivky a funkční tělesa</td>
<td>6</td>
<td>—</td>
<td>4/0 Zk</td>
</tr>
<tr>
<td>NMMB303</td>
<td>Antentifikační schémata *</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMMB306</td>
<td>Steganografie a digitální média</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMB307</td>
<td>Právní aspekty ochrany dat</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMB308</td>
<td>Číselné síto</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMB309</td>
<td>Standardy a kryptografie</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMMB310</td>
<td>Matematický software *</td>
<td>3</td>
<td>1/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMB311</td>
<td>Kvantová informace</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMMB312</td>
<td>Eliptické křivky a kryptografie</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMMB313</td>
<td>Algoritmy na eliptických křivkách</td>
<td>4</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
</tbody>
</table>

* Tyto předměty nebudou od akademického roku 2018/19 vyučovány.

Povinně volitelné předměty pro zaměření Počítačová geometrie

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMB333</td>
<td>Základy analýzy dat</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAG401</td>
<td>Algebraická geometrie</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMB341</td>
<td>Geometrie počítačového vidění</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMMB342</td>
<td>Geometrické problémy v robotice</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMAG553</td>
<td>Úvod do složitosti CSP</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMB301</td>
<td>Optimalizace a aproximace CSP</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMNV551</td>
<td>Inverzní úlohy a regularizace</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV540</td>
<td>Maticové iterační metody 1</td>
<td>6</td>
<td>4/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMNV435</td>
<td>Maticové iterační metody 2</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMNV545</td>
<td>Numerické metody optimalizace</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMMB555</td>
<td>Komprimované snímaní</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPGR013</td>
<td>Speciální funkce a transformace ve zpracování obrazu</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NPGR010</td>
<td>Počítačová grafika III</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMB401</td>
<td>Geometrie pro počítačovou grafiku</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>
Shrnutí studijního plánu

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMB403</td>
<td>Počítačová algebra 2</td>
<td>6</td>
<td>3/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMMB405</td>
<td>Složitost pro kryptografii</td>
<td>6</td>
<td>4/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMMB407</td>
<td>Pravděpodobnost a kryptografie</td>
<td>6</td>
<td>4/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMMB409</td>
<td>Konvexní optimalizace</td>
<td>9</td>
<td>4/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NSZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6</td>
<td>Z</td>
</tr>
<tr>
<td>NSZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td></td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMB401</td>
<td>Automaty a konvoluční kódy (IB)</td>
<td>6</td>
<td>3/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMMB333</td>
<td>Základy analýzy dat (IB, PG)</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMMB331</td>
<td>Booleovské funkce (IB)</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NTIN104</td>
<td>Foundations of theoretical cryptography (IB)</td>
<td>5</td>
<td></td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NMMB402</td>
<td>Číselné algoritmy (IB)</td>
<td>6</td>
<td></td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMMB500</td>
<td>Kryptoanalytické útoky (IB)</td>
<td>6</td>
<td></td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMMB501</td>
<td>Zabezpečení síťových protokolů (IB)</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMAE501</td>
<td>Křivky a funkční tělesa (IB)</td>
<td>6</td>
<td></td>
<td>4/0 Zk</td>
</tr>
<tr>
<td>NMMB404</td>
<td>Autentifiční schémata *, (IB)</td>
<td>3</td>
<td></td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMMB406</td>
<td>Steganografie a digitální média (IB)</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMMB407</td>
<td>Právní aspekty ochrany dat (IB)</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMMB531</td>
<td>Číselné síto (IB)</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMMB532</td>
<td>Standardy a kryptografie (IB)</td>
<td>3</td>
<td></td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMMB533</td>
<td>Matematický software *, (IB)</td>
<td>3</td>
<td>1/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMMB534</td>
<td>Kvantová informace (IB)</td>
<td>6</td>
<td></td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMMB387</td>
<td>Eliptické křivky a kryptografie (IB)</td>
<td>6</td>
<td></td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMAE300</td>
<td>Algebraická geometrie (PG)</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMAE301</td>
<td>Geometrie počítačového vidění (PG)</td>
<td>6</td>
<td></td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMAE242</td>
<td>Geometrické problémy v robotice (PG)</td>
<td>6</td>
<td></td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMAE350</td>
<td>Úvod do složitosti CSP (PG)</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMMB350</td>
<td>Optimalizace a aproximace CSP (PG)</td>
<td>6</td>
<td></td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NAMV350</td>
<td>Inverzní úlohy a regularizace (PG)</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NAMV401</td>
<td>Maticové iterační metody 1 (PG)</td>
<td>6</td>
<td>4/0</td>
<td>Zk</td>
</tr>
</tbody>
</table>
Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů v rozsahu alespoň 45 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky studijního oboru Matematické metody informační bezpečnosti se skládá z dvou tematických okruhů. Z tematického okruhu 1 dostane student jednu otázku. Z tematického okruhu 2 si student zvolí buď dvě z variant 2A, 2B, 2C pro zaměření Matematika pro informační bezpečnost, nebo dvě z variant 2D, 2E, 2F, 2G pro zaměření Počítačová geometrie. Z každé zvolené varianty dostane jednu otázku.

Požadavky k ústní části státní závěrečné zkoušky

Společný základ

1. **Základní matematické obory.**

 Složitostní třídy a výpočetní modely, náhodnost a pseudonáhodnost, algoritmy pro práci s algebraickými strukturami, konvexní optimalizace.

Užší zaměření

2A **Informace a kódy**

2B **Číselné algoritmy**

2C **Eliptické křivky**

2D **Počítačové vidění a robotika**

2E **Zpracování obrazu a počítačová grafika**

 Modelování inverzních problémů, regularizační metody, digitalizace obrazu, zaostřování a odšumování obrazu, detekce hran, obrazová registrace, komprese, syntéza obrazu, metody compressed sensing, analytická, kinematická a diferenciální geometrie.

2F **Aproximace a optimalizace**

2G **Numerická lineární algebra**

 LU a Choleského rozklad matice, metody nejmenších čtverců, Krylovovské prostory, maticové iteracní metody (Arnoldiho, Lanczosova metoda, metoda sdružených gradientů, zobecněná metoda minimálních reziduí), QR algoritmus, regularizační metody pro řešení lineárních inverzních problémů, numerická stabilita.
Studijní plány studijního programu FYZIKA
Magisterské studium

1. Základní informace

V rámci magisterského studijního programu Fyzika lze studovat tyto studijní obory:

1. Astronomie a astrofyzika
2. Geofyzika
3. Meteorologie a klimatologie
4. Teoretická fyzika
5. Fyzika kondenzovaných soustav a materiálů
6. Optika a optoelektronika
7. Fyzika povrchů a ionizovaných prostředí
8. Biofyzika a chemická fyzika
9. Jaderná a subjaderná fyzika
10. Matematické a počítačové modelování ve fyzice
11. Učitelství fyziky

Obor 11 je popsán v samostatné kapitole věnované učitelským studijním oborům. Tato kapitola popisuje studijní plány uvedených oborů od roku 2015; studijní plány pro studenty, kteří nastoupili na fakultu v roce 2014 či dříve, se mohou v některých drobnostech lišit a jsou popsány ve starších vydáních této publikace.

Průběh studia není studijními plány pevně určen, posluchač si volí jednotlivé předměty tak, aby vyhověl požadavkům zvoleného oboru a získal potřebný počet kreditů požadovaných při kontrole studia na konci každého studijního roku. Je však vhodné dodržovat doporučený průběh studia, protože je sestaven s ohledem na návaznosti mezi jednotlivými předměty i na podmínky pro přihlášení ke státní závěrečné zkoušce.

Celkem je požadováno získání minimálně 120 kreditů za celé dvouleté studium, z toho podstatnou část kreditů posluchač obdrží za povinné a povinně volitelné předměty (včetně 30 kreditů za vypracování diplomové práce), zbylý počet kreditů (alespoň 12) si doplní absolvovalním volitelných předmětů. Ty si může vybrat zcela libovolně, doporučuje se však zvolit si je z široké nabídky povinně volitelných předmětů daného oboru.

Do seznamu doporučené výuky jsou zařazeny také některé důležité předměty bakalářského studijního programu Fyzika, které posluchači zpravidla absolvují již během svého dvouletého bakalářského studia jako předměty povinně volitelné. Pro každý obor jsou tyto předměty uvedeny na začátku odstavce Doporučený průběh studia.

Absolvování předmětů z předchozího bakalářského studia na MFF bude všem posluchačům v navazujícím magisterském studiu uznáno na základě kontroly údajů v evidenci studijního oddělení. Posluchač přicházející na MFF po získání bakalářského vzdělání na jiné univerzitě může požádat o uznání povinných nebo povinně volitelných předmětů z bakalářského studia na základě předchozího absolvovalní jejich vhodných ekvivalentů. Žádost individuálně posoudí a doporučí garant příslušného oboru. Zbyvající předměty si musí každý posluchač doplnit během svého navazujícího magisterského studia.
Předměty absolvované v předchozím studiu se zpravidla uznávají bez přidělení kreditů. Posluchač může požádat o uznání dříve splněného předmětu včetně jeho kreditů, jestliže splňuje stanovené podmínky (jedná o povinný nebo povinně volitelný předmět studovaného magisterského oboru, přitom to není povinný bakalářský předmět a kredity za něj získané v bakalářském studiu měl posluchač navíc nad počet stanovený pro úspěšné absolvování bakalářského studia, viz Směrnice děkana č. 10/2010).

Kurz bezpečnosti práce

Státní závěrečná zkouška

Studium je zakončeno státní závěrečnou zkouškou, která se skládá ze dvou částí:

- z obhajoby diplomové práce
- z ústní zkoušky

Na některých studijních oborech se ústní zkouška skládá z bloku Společné požadavky a z bloku Úžší zaměření. Oba bloky však tvoří nedílnou součást, která je hodnocena jedinou známkou.

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného oboru
- splnění povinně volitelných předmětů zvoleného oboru v určeném počtu kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia. Na učitelských oborech má ústní zkouška několik oddělených částí. Specifické podmínky pro přihlášení k nim jsou uvedeny u jednotlivých oborů.

Diplomová práce

Diplomová práce se zpravidla zadává v zimním semestru prvního roku studia. Téma diplomové práce si student volí z nabídky pracovišt zajišťujících výuku v příslušném oboru fyziky.

Požadavky k ústní části státní závěrečné zkoušky

Jsou specifické pro příslušný obor.

2. Studijní plány jednotlivých oborů

V následujících vzorových studijních plánech jsou předměty povinné ke státní závěrečné zkoušce vytvářeny tučně, povinně volitelné předměty normálním písmem, doporučené volitelné předměty kurzivou.

1. Astronomie a astrofyzika

Garantující pracoviště: Astronomický ústav UK

Garant oboru: prof. RNDr. David Vokrouhlický, DrSc.
Charakteristika studijního oboru:

Magisterské studium oboru Astronomie a astrofyzika zdokonaluje základní znalosti z fyziky, matematiky a programování. Studenti jsou vedeni k porozumění základům klasické astronomie, tj. astrometrie a nebeské mechaniky, a základům klasické astrofyziky, tj. fyzice plazmatu ve vesmíru, stavbě a vývoji hvězd, teorii hvězdých atmosfér, fyzice těles sluneční soustavy a stavbě a dynamice galaxií. Seznámují se rovněž se sluneční fyzikou, relativistickou astrofyzikou, extragalaktickou astronomií a kosmologií. Prostřednictvím pravidelných seminářů, diplomové práce, praxe na observatořích a tematicky zaměřených přednášek externích odborníků získávají studenti představu o současných problémech řešených v jednotlivých oborech astronomie a astrofyziky a o metodách vědecké práce.

Profil absolventa studijního oboru a cíle studia:

Cílem studia je, aby absolventi měli hlubší přehled o svém oboru a byli schopni v něm tvořivě pracovat. Absolventi mají pokročilé znalosti v hlavních partích klasické a moderní astronomie, astrofyziky a kosmologie, opírající se o spolehlivý základ v obecných oblastech fyziky – teoretické mechanice, kvantové fyzice, termodynamice, statistické fyzice a obecné teorie relativity. Mají přehled o moderní pozorovací technice a metodách, jsou připraveni na analýzy pozorovacích dat a tvorbu numerických modelů. Jsou zdobilé ve sdělování odborných poznatků formou prezentací anebo psaných textů, a to též v anglickém jazyce. U mnoha absolventů se předpokládá nástup profesní dráhy vědeckého pracovníka. Nabýté obecné vzdělání ve fyzice dovoluje absolventům uplatnění i v příbuzných oborech a všude, kde je třeba abstraktní uvažování nebo řešení komplikovaných problémů.

Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto oboru je získání základních znalostí na úrovni následujících předmětů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOFY042</td>
<td>Základy kvantové teorie</td>
<td>9</td>
<td>4/2</td>
<td>Zk</td>
</tr>
<tr>
<td>NAST035</td>
<td>Základy astronomie a astrofyziky</td>
<td>12</td>
<td></td>
<td>6/2 Zk</td>
</tr>
<tr>
<td>NAST036</td>
<td>Analýza dat a modelování v astronomii</td>
<td>3</td>
<td></td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTMF111</td>
<td>Obecná teorie relativity</td>
<td>4</td>
<td></td>
<td>3/0 Zk</td>
</tr>
</tbody>
</table>

Tyto předměty se obvykle zapisují ve třetím roce bakalářského studia programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jiný ekvivalentní předměty neabsolvoval, měl by si je vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

1. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAST013</td>
<td>Astrofyzika I</td>
<td>6</td>
<td>4/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NAST014</td>
<td>Astrofyzika II</td>
<td>6</td>
<td></td>
<td>4/0 Zk</td>
</tr>
<tr>
<td>NAST005</td>
<td>Nebeská mechanika I</td>
<td>6</td>
<td>4/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NAST008</td>
<td>Kosmická elektrodynamika</td>
<td>5</td>
<td>3/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NTMF037</td>
<td>Relativistická fyzika I</td>
<td>9</td>
<td>4/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>Kód</td>
<td>Název</td>
<td>Kredity</td>
<td>ZS</td>
<td>LS</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>NAST024</td>
<td>Elementární procesy v kosmické fyzice</td>
<td>4</td>
<td>—</td>
<td>2/1 Zk</td>
</tr>
<tr>
<td>NAST018</td>
<td>Galaktická a extragalaktická astronomie I</td>
<td>4</td>
<td>—</td>
<td>3/0 Zk</td>
</tr>
<tr>
<td>NAST011</td>
<td>Sluneční fyzika I</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NAST017</td>
<td>Speciální praktikum I</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NAST018</td>
<td>Speciální praktikum II</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NAST011</td>
<td>Nebeská mechanika II</td>
<td>6</td>
<td>—</td>
<td>4/0 Zk</td>
</tr>
<tr>
<td>NTMF002</td>
<td>Relativistická fyzika II</td>
<td>9</td>
<td>—</td>
<td>4/2 Z + Zk</td>
</tr>
<tr>
<td>NAST012</td>
<td>Hvězdné atmosféry</td>
<td>4</td>
<td>—</td>
<td>3/0 Zk</td>
</tr>
<tr>
<td>NAST008</td>
<td>Kosmologie I</td>
<td>4</td>
<td>—</td>
<td>3/0 Zk</td>
</tr>
<tr>
<td>NAST003</td>
<td>Galaktická a extragalaktická astronomie I</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NAST011</td>
<td>Seminář Astronomického ústavu UK (PV)</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NAST051</td>
<td>Diplomový seminář</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NTMF070</td>
<td>Zářivé procesy v astrofyzice</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NAST014</td>
<td>Dvojhvězdy</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

2. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAST101</td>
<td>Seminář Astronomického ústavu UK I</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NAST102</td>
<td>Seminář Astronomického ústavu UK II</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
<tr>
<td>NAST111</td>
<td>Galaktická a extragalaktická astronomie II</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAST107</td>
<td>Cvičení z galaktické a extragalaktické astronomie</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NAST107</td>
<td>Sluneční fyzika II</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAST107</td>
<td>Fyzika malých těles sluneční soustavy</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAST121</td>
<td>Vybrané kapitoly z astrofyziky</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAST139</td>
<td>Kosmologie II</td>
<td>4</td>
<td>3/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAST108</td>
<td>Pokročilé metody sluneční fyziky</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAST141</td>
<td>Úvod do radioastronomie</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAST126</td>
<td>Dějiny astronomie</td>
<td>3</td>
<td>1/1 Z</td>
<td>1/1 Z</td>
</tr>
</tbody>
</table>

Některé předměty se přednášejí ve dvouletém intervalu anebo se zaměřují každý rok na jiná tématy. Zapisuje se ten předmět, který se v daném školním roce koná.

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného oboru
- splnění povinně volitelných předmětů zvoleného oboru v rozsahu alespoň 23 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

55
Předmět lze splnit jeho úspěšným absolováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

1. Obecné požadavky, fyzikální základ

2. Astronomie a astronomická pozorování

Astronomie a astrofyzika

3. Astrofyzika, hvězdy, galaxie

B. Užší zaměření

Student si volí jeden z následujících čtyř tematických okruhů.

1. Nebeská mechanika a fyzika těles sluneční soustavy

2. Galaktická a extragalaktická astronomie

3. Sluneční fyzika a hvězdné atmosféry

4. Relativistická fyzika a kosmologie

2. Geofyzika

Garantující pracoviště: Katedra geofyziky
Garant oboru: prof. RNDr. Ondřej Čadek, CSc.

Charakteristika studijního oboru:

Obor Geofyzika se zabývá studiem Země a jejího blízkého okolí fyzikálními metodami. Zahrnuje fyziku zemětřesení a problematiku šíření seismických vln, termální vývoj a deformaci zemského tělesa na různých časových škálech, studium tříhového a elektromagnetického pole Země pozemskými i satelitními metodami a výzkum planet a jejich měsíců. K interpretaci geofyzikálních jevů používá metod matematického modelování. Studium prohlušuje základní znalosti fyziky, matematiky a programování a rozvíjí dovednosti potřebné pro uplatnění v základním i aplikovaném geofyzikálním výzkumu. Při výuce je kladen důraz na úzké sejednocení studia s posledním vývojem vědeckého bádání, do něhož se studenti zpravidla zapojují již v rámci své diplomové práce.

Profíl absolventa studijního oboru a cíle studia:

Absolvent má spolehlivé znalosti v obecných oblastech fyziky, zejména v mechanice kontinua, termodynamice a teorii elektromagnetického a gravitačního pole, a hlubší znalosti a dovednosti v hlavních oblastech geofyzikálního výzkumu. Je schopen tvorivě řešit problémy související se vznikem zemětřesení a šířením seismických vln zemským nitrem, analyzovat a interpretovat jevy pozorované v elektromagnetickém a tříhovém poli Země a provádět počítačové simulace termálního a deformačního vývoje planet a jejich měsíců. Při řešení téhoto problémů používá metody numerické matematiky a matematického modelování, které dokáže efektivně počítačově implementovat. Výsledky své odborné práce je schopen přehledně a srozumitelně sdělovat formou prezentací a odborných textů v češtině i angličtině. Absolventi se uplatňují ve výzkumných
i komerčních pracovištích geofyzikálního a geodetického zaměření u nás a v zahraničí. Dobrá průprava v matematickém modelování, počítačové fyzice a pokročilých partiích programování vede k bezproblémovému uplatnění i v jiných oborech.

Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto oboru je získání základních znalostí na úrovni následujících předmětů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGEO029</td>
<td>Přehled geofyziky</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NGEO018</td>
<td>Počítač v geofyzice</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NGEO078</td>
<td>Mechanika kontinua</td>
<td>5</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td>NGEO088</td>
<td>Fourierova spektrální analýza</td>
<td>5</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td>NGEO076</td>
<td>Obrácené úlohy a modelování ve fyzice</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
</tbody>
</table>

Tyto předměty se obvykle zapisují ve třetím roce bakalářského studia programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

1. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGEO082</td>
<td>Seismologie</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NGEO180</td>
<td>Geomagnetismus a geoelektřina</td>
<td>6</td>
<td>3/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NGEO183</td>
<td>Dynamika pláště a litosféry</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NGEO185</td>
<td>Mechanika kontinua II</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NGEO092</td>
<td>Šíření seismických vln</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NGEO085</td>
<td>Obrácené úlohy a modelování</td>
<td>6</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NGEO057</td>
<td>Metody zpracování</td>
<td>5</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td>NGEO026</td>
<td>Numerické metody ve Fortranu</td>
<td>6</td>
<td>—</td>
<td>3/1</td>
</tr>
<tr>
<td>NSZZ028</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4</td>
</tr>
<tr>
<td>NGEO077</td>
<td>Fyzika zemětřesného zdroje</td>
<td>5</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td>NGEO110</td>
<td>Praktikum ze seismologie</td>
<td>3</td>
<td>—</td>
<td>0/2</td>
</tr>
<tr>
<td>NGEO172</td>
<td>Desková tektonika a subdukce</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NGEO174</td>
<td>Struktura a dynamika planet</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NGEO167</td>
<td>Elektromagnetická indukce</td>
<td>5</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td>NMAF001</td>
<td>Vybrané kapitoly z parciálních diferenciálních rovnic</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NGEO083</td>
<td>Seismický seminář</td>
<td>5</td>
<td>0/3</td>
<td>Z</td>
</tr>
<tr>
<td>NGEO087</td>
<td>Geodynamický seminář</td>
<td>3</td>
<td>0/2</td>
<td>Z</td>
</tr>
</tbody>
</table>
2. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGEO010</td>
<td>Stavba Země</td>
<td>4</td>
<td>3/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NGEO011</td>
<td>Tíhové pole Země a planet</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
<tr>
<td>NGEO012</td>
<td>Vybrané partie z teorie geodynamy</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NGEO013</td>
<td>Cvičení z geodynamiky</td>
<td>6</td>
<td>0/4 Z</td>
<td>—</td>
</tr>
<tr>
<td>NGEO014</td>
<td>Inverzní modelování v geodynamics</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NGEO015</td>
<td>Seismické povrchové vlny</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NGEO016</td>
<td>Seismologie silných pohybů</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NGEO017</td>
<td>Vlastní kníry Země</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NGEO018</td>
<td>Paprskové metody v seismice</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NGEO019</td>
<td>Rotace Země</td>
<td>4</td>
<td>3/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NGEO020</td>
<td>Základy rotační seismologie</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NGEO021</td>
<td>Fyzika ionosféry a magnetosféry</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NGEO022</td>
<td>Fortran 95 a paralelní programování</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NGEO023</td>
<td>Seismický seminář</td>
<td>5</td>
<td>0/3 Z</td>
<td>0/3 Z</td>
</tr>
<tr>
<td>NGEO024</td>
<td>Geodynamický seminář</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného oboru
- splnění povinně volitelných předmětů zvoleného oboru v rozsahu alespoň 24 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

1. **Tíhové pole a pohyby Země**

2. **Stavba Země**

3. **Dynamické procesy v Zemi**

Fyzika Mgr.

4. **Seismické vlny**

5. **Seismologie**

6. **Geomagnetismus a geoelektřina**

7. **Mechanika kontinua**

8. **Metody zpracování časových řad**

9. **Řešení obrácených úloh**

10. Aplikace metod numerické matematiky v geofyzice

B. Užší zaměření

Student si volí jeden z následujících tří tematických okruhů.

1. Seismologie

2. Geodynamika

3. Magnetické pole Země

3. Meteorologie a klimatologie

Garantující pracoviště: Katedra fyziky atmosféry
Garant oboru: doc. RNDr. Petr Pišoft, Ph.D.
Charakteristika studijního oboru:

Obor meteorologie a klimatologie vychází především z hydrodynamiky a termodynamiky atmosféry, přičemž široce využívá poznatky dalších fyzikálních disciplín a matematických metod, zejména metod numerické matematiky a statistiky. Je orientován na studium celého spektra atmosférických dějů včetně šíření elektromagnetických vln, jevů atmosférické optiky, akustiky a elektriny, záření v atmosféře, fyziky oblaků a srážek, atmosférické turbulence, extraterestrických vlivů apod. Soustřeďuje se především na aplikaci dynamiky, energetiky a cirkulace atmosféry, na problematiku kvality ovzduší, antropogenních vlivů na atmosféru, modelování klimatu, studium klimatických změn anebo metod distančního sondování atmosféry. Uplatňují se i významné interdisciplinární přesály například do anorganické a organicke chemie. V základním přístupu se dnes uplatňuje i obecný kontext fyziky planetárních atmosfér.

Profiler absolventa studijního oboru a cíle studia:

Absolvent má široké znalosti základních fyzikálních disciplín ve vztahu k fyzice atmosféry (hydrodynamika, termodynamika, teorie elektromagnetických vln, optika, akustika a elektrina, teorie nelineárních dynamických systémů, vlnové procesy apod.) a adekvátních matematických metod (řešení parciálních diferenciálních rovnic, numerická matematika, matematická statistika) se zahrnutím znalostí soudobých informačních technologií. Je připraven pro řešení úkolů základního i aplikovaného výzkumu a rozsáhlého spektra činností v praxi. Obsahově a metodologicky je zaměřen na problematiku dynamiky, energetiky a cirkulace v nelineárním systému atmosféry v oblasti numerických prognostických modelů, kvality ovzduší včetně postupů modelování, na aplikaci teorie a modelování turbulence a na oblast teorie klimatického systému a problematiku modelování klimatu, antropogenních vlivů na klima a klimatických změn. Má rovněž znalosti z optiky, akustiky, elektriny a chemismu atmosféry umožňující jeho efektivní uplatnění v řadě technických aplikací výzkumného i provozního charakteru.

Cílem studia je rozsáhlé spektrum znalostí a kompetencí v oblasti fyziky atmosféry, základního výzkumu i aplikované meteorologie a klimatologie s perspektivou uplatnění ve výzkumných ústavech, na pracovištích vysokých škol, v Českém hydrometeorologickém ústavu, v oblasti krizového manažmentu v souvislosti s extrémními meteorologickými jevy anebo v řadě hospodářských odvětví ovlivňovaných atmosférickými procesy (letecká a ostatní doprava, energetika, zemědělství, lesní hospodářství atd.).

Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto oboru je získání základních znalostí na úrovni následujících předmětů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMET034</td>
<td>Hydrodynamika</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMET004</td>
<td>Šíření akustických a elektromagnetických vln v atmosféře</td>
<td>4</td>
<td>3/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMET012</td>
<td>Všeobecná klimatologie</td>
<td>6</td>
<td></td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMET051</td>
<td>Statistické metody zpracování fyzikálních dat</td>
<td>6</td>
<td></td>
<td>2/2 Zk</td>
</tr>
<tr>
<td>NMET084</td>
<td>Synoptická meteorologie I</td>
<td>3</td>
<td></td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAT028</td>
<td>Deterministický chaos</td>
<td>3</td>
<td></td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>
Tyto předměty se obvykle zapisují ve třetím roce bakalářského studia programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jiné ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

1. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMET074</td>
<td>Dynamika atmosféry 1</td>
<td>6</td>
<td>3/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMET039</td>
<td>Synoptická meteorologie II</td>
<td>4</td>
<td>3/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMET002</td>
<td>Fyzika mezní vrstvy</td>
<td>4</td>
<td>3/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMET018</td>
<td>Analýza povětrnostní mapy</td>
<td>6</td>
<td>1/3</td>
<td>KZ</td>
</tr>
<tr>
<td>NMET067</td>
<td>Stratosféra</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMET013</td>
<td>Metody numerické matematiky I</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMAT015</td>
<td>Metody numerické matematiky II</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMAT012</td>
<td>Klimatické změny a jejich příčiny</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NMAT024</td>
<td>Distanční pozorování a detekční metody v meteorologii I</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NMAT005</td>
<td>Fyzika oblaků a srážek</td>
<td>4</td>
<td>—</td>
<td>3/0 Zk</td>
</tr>
<tr>
<td>NMAT001</td>
<td>Synoptická interpretace</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NMET010</td>
<td>Statistické metody v meteorologii a klimatologii</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMET009</td>
<td>Regionální klimatologie a klimatografie ČR</td>
<td>6</td>
<td>4/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMET032</td>
<td>Turbulence v atmosféře</td>
<td>4</td>
<td>3/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMET029</td>
<td>Dynamické předpovědní metody</td>
<td>7</td>
<td>3/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMET062</td>
<td>Uživatelský právělský Linux</td>
<td>4</td>
<td>2/1</td>
<td>KZ</td>
</tr>
<tr>
<td>NMET029</td>
<td>Vlnové pohyby a energetika</td>
<td>4</td>
<td>—</td>
<td>3/0 Zk</td>
</tr>
<tr>
<td>NMET014</td>
<td>Objektivní analýza meteorologických polí</td>
<td>6</td>
<td>—</td>
<td>4/0 KZ</td>
</tr>
<tr>
<td>NMET063</td>
<td>Metody zpracování časových řad</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NMET071</td>
<td>Užitá klimatologie I</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMET065</td>
<td>Meteorologický počítačový seminář</td>
<td>4</td>
<td>—</td>
<td>0/3 Z</td>
</tr>
<tr>
<td>NMET065</td>
<td>Oceány v klimatickém systému</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMET061</td>
<td>Aerosolové inženýrství</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMET072</td>
<td>Klimatické extrémy a jejich modely</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

1 Místo této přednášky lze zapsat NMET023 (Dynamická meteorologie).
Podmínky pro přihlášení ke státní závěrečné zkoušce

– získání alespoň 120 kreditů
– splnění všech povinných předmětů zvoleného oboru
– splnění povinně volitelných předmětů zvoleného oboru v rozsahu alespoň 20 kreditů
– odevzdání vypracované diplomové práce ve stanoveném termínu

Podmínky pro přihlášení ke státní závěrečné zkoušce

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

1. Statika a dynamika atmosféry

Horizontální a vertikální rozdělení meteorologických prvků, denní a roční chody. Atmosféra v hydrostatické rovnováze - homogenní, adiabatická, izotermní atmosféra. Vertikální stabilita atmosféry - metoda částice, metoda vrstvy, vtahování, teplotní inverze a příčiny jejich vzniku. Kinematika a dynamika proudění vzduchu, vliv tření na proudění, základní typy proudění (geostrofický, ageostrofický vítr a jeho složky, gradientový, divergentní, nedivergentní proud apod.). Změny větru s výškou, střihu větru, termální vítr. Vzduchové hmoty - vznik, rozdělení, transformace, charakteristiky a podmínky počasí. Atmosférické fronty - definice, dynamická a kinematická podmínka, tlakové pole, druhy front, počasí. Tlakové útvary - barotropní a baroklinní instabilita. Stavba a vývoj tlakových útvarů, regenerace, změny tlaku, změny teplot, podmínky...
2. Termodynamické děje v atmosféře

Termodynamicky ideální plyny a reálné plyny, stavové veličiny, základní termodynamické děje (polytropický, izotermský, izobarický, izosterický, adiabatický děj), termodynamické solenoidy, termodynamická práce, I. a II. hlavní termodynamická věta, entropie, entalpie, měrná a skupenská tepla, stavové rovnice, Poissonovy rovnice, fázové přechody, Clausius–Clapeyronova rovnice, termodynamické potenciály.

3. Šíření elektromagnetických a akustických vln v atmosféře

Maxwellovy rovnice a jejich aplikace pro atmosférické prostředí, vlnové rovnice, om, odráz, rozptyl a útlum elektromagnetických vln v atmosféře jezmena pro viditelné a infračervené záření a pro radioloučně, radioloučně, Rayleighův rozptyl, Mieova teorie rozptylu, astronomická refrakce, spodní, srážní a boční zrcadlení, fata morgána, snížení a zvednutí obzoru, deformace a laminace slunečního disku, zelené šedé, barvy oblohy, soumrak a soumrakové jevy, duhy, koróny, glórie, halové jevy, dohlednost, polarizace světla oblohy.

Všeobecná cirkulace troposféry a stratosféry, pasátová a monzunová cirkulace, intertropická zóna konvergence, místní cirkulační systémy. Typy klimatu a jeho klasifikace, základní rysy klimatu ČR. Cirkulace v oceánech. Interakce atmosféra-oceán, měděnou, půlměsíčové vazby. Při-
rozené a antropogenní změny klimatu, příčiny klimatických změn, Milankovičova teorie klimatu, cítivost klimatického systému na vnější a vnitřní vlivy, zpětné vazby, globální a regionální klimatické modely. Metody statistické analýzy klimatických prvků a polí.

5. Mezní vrstva atmosféry

Pojem mezní vrstvy atmosféry. Teorie vazkého proudění, Stokesovy a Navierovy rovnice, charakteristiky podobnosti. Turbulence v atmosféře, mechanické a termické příčiny turbulentní difúze, rovnice turbulentního proudění, Prandtlova teorie směšovací dély, koeficient turbulentní difúze, izotropní a neizotropní turbulence, intenzita turbulence, dynamická (friční) rychlost. Teorie přízemní a spirální vrstvy, laminární podvrstva, vertikální profily proudění v přízemní vrstvě, Taylorova (Ekmanova) spirála a její zobecnění vzhledem k déjům v reálné atmosféře. Difúze tepla a vodní pary v mezní vrstvě, chody teploty a charakteristik vlhkosti vzduchu, konvekce v mezní vrstvě, turbulentní a konvekční toky tepla a vodní páry, podmínky výparu z hlediska déjů v mezní vrstvě, radiační děje v blízkosti zemského povrchu. Transformace kinetické energie v mezní vrstvě, kinetická energie turbulentních fluktuací rychlosti proudění, teorie podobnosti, Richardsonovo číslo, Moninova a Obuchovova délka, bezrozměrné vertikální profily složek hybnosti, teploty a vlhkosti, problém uzávěru. Přízemní přes horské překážky, modely mezní vrstvy atmosféry.

6. Fyzika oblaků a srážek

Mikrostruktura a makrostruktura oblaků, morfologická klasifikace oblaků, termodynamické a dynamické podmínky pro vznik a vývoj oblaků, vodní, smíšené a ledové oblaky, kondenzace vodní páry v atmosférických podmínkách, úloha a mechanismy působení kondenzečních jader, koalescence vodních kapek, kondenzační růst a zamrzání oblačních kapek, ledové jádra, přechlazená voda v oblacích, primární a sekundární produkce ledu v oblacích, spektrum velikostí oblachných kapek a tvarů ledových částic, vodní obsah oblaků, mechanizmy vzniku srážek, vývoj srážek ve vrstevnatých a konvektivních oblacích, znečištění oblačné s srážkové vody.

Frontální systémy oblaků a oblačny uvnitř vzdudcových hmot, buněčná cirkulace v oblacích, struktura bouřkových oblaků (Cb), konvektivní bouře a s nimi spojené extrémní meteorologické jevy.

7. Metody dálkového průzkumu atmosféry

B. Užší zaměření

Posluchači si volí dva z následujících tří tematických okruhů.
1. Metody numerického modelování atmosféry

Formulace rovnic předpovědních modelů, zjednodušující aproximace, zahrnutí vlunových poloh, předpovědní model v hydrostatickém přiblížení, rovnice mělké vody, formulace počátečních a okra jových úloh předpovědních modelů (globální model, model na omezené oblasti), horizontální i vertikální souřadnice používané v modelech, transformovaná vertikální souřadnice kopírující terén, příprava vstupních údajů, objektivní analýza a asimilace dat, inicializace, normální mody, metody časové integrace rovnice meteorologických modelů (explicitní a semiimplicitní metody časové aproximace), stabilita aproximace a konverge schémata časové integrace, prostorová aproximace rovnice - diferenciální metody, Galerkinovy aproximace - spektrální metody a metoda konečných prvků, metody faktorizace, aproximace lineárních členů rovnice v Eulerově tvaru semi-Lagrangeovou metodou, parametrizace některých fyzikálních dějů (fázové změny vody v atmosféře, srážek, konvekce, dějů v mezinní vrstvě, záření apod.). Synoptická interpretace výstupů modelů, hlavní faktory limitující úspěšnou předpověď meteorologických polí, prediktabilita atmosférických procesů, teoretické a praktické meze prediktability.

2. Klimatické modely, jejich druhy, struktura a aplikace

3. Antropogenní znečištění atmosféry

Typické antropogenní příměsí a jejich zdroje, přístupy ke klasifikacím zdrojů, emise, exhalační, imise, emisní bilance a databáze, difúzy příměsí v atmosféře a její prostranová měřítka, hlavní typy modelů pro transport znečišťujících příměsí v atmosféře, lagrangeovské a eulerovské modely, gaussovské modely, vlečkové modely, tzv. puff modely, disperzní a receptorové modelování, fyzikální modelování, značkovací látky, suchá a mokrá depozice příměsí.

Zákłady troposférické a stratosférické chemie, reakce oxidů síry a oxidů dusíku, oxidu uhelnatého, metanu a formaldehydu, benzen, polycyklické aromatické uhlovodíky, benzo(a)pyren apod., PANs, halogenované uhlovodíky, látky ohrozující ozonosféru, radikály OH a HO2 a jejich roli v chemismu atmosféry, antropogenní a biogenní těkavé organické látky a jejich reakce, příznění a stratosférický ozon, redukční a oxidární smog, prekurzory ozonu, procesy nukleace, primární a sekundární atmosférické aerosoly, spektra aerosolových částic, frakce PM.

Typizace meteorologických podmínek pro účely ochrany čistoty ovzduší, monitorování znečištění vzduchu, ekologické problémy související se znečištěním ovzduší.

4. Teoretická fyzika

Garantující pracoviště: Ústav teoretické fyziky
Garant oboru: doc. RNDr. Oldřich Semerák, Dr., DSc.

Charakteristika studijního oboru:

Pojem teoretická fyzika znamená spíše přístup k vědeckému zkoumání, než specifickou oblast fyziky. Jako studijní obor seznámuje studenty hluběji s matematickými
metodami a základními pilíři moderní fyziky, teorií relativity a kvantovou teorii a jejich základními aplikacemi v astrofyzice a kosmologii, atomové fyzice a fyzice kondenzovaného stavu. Podle zaměření diplomové práce se pak studenti seznamují s teoretickým zázemím dalších oblastí fyziky, jako je fyzika plazmatu, chemická fyzika, jaderná a subjaderná fyzika, mechanika kontinua atd.

Profil absolventa studijního oboru a cíle studia:

Absolvent má ucelený přehled o základních oborech fyziky a pokročilé znalosti stěžejních směrů teoretické fyziky, především statistické fyziky, obecné teorie relativity, kvantové teorie a teorie kondenzovaného stavu. Podle výběru ze široké nabídky povinně volitelných předmětů se dále profiluje v některých ze speciálnějších oblastí, jako například ve fyzice plazmatu, v astrofyzice a kosmologii, v atomové a molekulové fyzice, fyzice mnohočásticových systémů či fyzice vysokých energií. Vedle toho má přehled o matematických a numerických metodách obecnější platnosti, které umí použít při řešení složitých problémů v moderní fyzice i jinde. Absolvent je schopen pracovat s literaturou, prezentovat své výsledky a odborně komunikovat, a to i v anglickém jazyce.

Cílem studia je spolehlivá znalost pokročilých partií teoretické fyziky a matematiky, která absolventa kvalifikuje pro vlastní vědeckou práci v oboru, ale kterou může využít i v jiných oblastech při analýze a modelování přírodních, technologických i společenských procesů.

Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto oboru je získání základních znalostí na úrovni následujících předmětů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTMF043</td>
<td>Termodynamika a statistická fyzika I</td>
<td>7</td>
<td>3/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NTMF066</td>
<td>Kvantová mechanika I</td>
<td>9</td>
<td>4/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NTMF067</td>
<td>Kvantová mechanika II</td>
<td>9</td>
<td>—</td>
<td>4/2 Z+Zk</td>
</tr>
<tr>
<td>NTMF111</td>
<td>Obecná teorie relativity</td>
<td>4</td>
<td>—</td>
<td>3/0 Zk</td>
</tr>
</tbody>
</table>

1 Ve studijních plánech bakalářského oboru Obecná fyzika jde o povinný předmět.
2 Místo této přednášky lze zapsat NJSF094 (Kvantová mechanika I).
3 Místo této přednášky lze zapsat NJSF095 (Kvantová mechanika II).

Tyto předměty se obvykle zapisují ve třetím roce bakalářského studia programu Fyzika jako povinné volitelné. Pokud posluchač tyto nebo jiné ekvivalentní předměty neabsolvoval, měl by si je v vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

1. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTMF037</td>
<td>Relativistická fyzika I</td>
<td>9</td>
<td>4/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NJSF068</td>
<td>Kvantová teorie pole I</td>
<td>9</td>
<td>4/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NTMF028</td>
<td>Základy teorie plazmatu</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NTMF057</td>
<td>Počítačové metody v teoretické fyzice I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

70
<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTMF044</td>
<td>Termodynamika a statistická fyzika II</td>
<td>7</td>
<td>3/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NPLT010</td>
<td>Teorie kondenzovaného stavu I</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NSZZ028</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>0/4 Z</td>
<td></td>
</tr>
</tbody>
</table>

1 Místo této přednášky lze zapsat NJSF145 (Kvantová teorie pole I).

2. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAF006</td>
<td>Vybrané partie z matematiky pro fyziky</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NTMF059</td>
<td>Geometrické metody teoretické fyziky I</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF060</td>
<td>Geometrické metody teoretické fyziky II</td>
<td>4</td>
<td>—</td>
<td>3/0 Zk</td>
</tr>
<tr>
<td>NTMF061</td>
<td>Teorie grup a její aplikace ve fyzice</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF062</td>
<td>Symetrie rovnic matematické fyziky a zákony zachování</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAF037</td>
<td>Pokročilá lineární algebra pro fyziky</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAF038</td>
<td>Pokročilé partie z teorie grup pro fyziky</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

Matematické metody

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTMF063</td>
<td>Relativistická fyzika II</td>
<td>9</td>
<td>4/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NTMF088</td>
<td>Přesné prostoročasy 1</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF089</td>
<td>Gravitační vlcy I 1</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF090</td>
<td>Gravitační vlcy II 1</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF091</td>
<td>Astrophysics of gravitational wave sources 1</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF092</td>
<td>Black hole thermodynamics: classical and quantum 1</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF093</td>
<td>Teoretická kosmologie I 1</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF095</td>
<td>Teoretická kosmologie II 1</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF096</td>
<td>Vybrané partie obecné relativity I 1</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF097</td>
<td>Vybrané partie obecné relativity II 1</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF098</td>
<td>Úvod do kvantové teorie pole na křivém pozadí 1</td>
<td>4</td>
<td>2/1 Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

Relativistická fyzika a astrofyzika

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAF006</td>
<td>Interpretace kvantové mechaniky 1</td>
<td>4</td>
<td>2/1 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF040</td>
<td>Kvantová teorie rozptylu</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>Kód</td>
<td>Název</td>
<td>Z + Zk</td>
<td>Zk</td>
<td>Nota</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>NTMF130</td>
<td>Teorie srážek atomů a molekul</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NTMF029</td>
<td>Vybrané kapitoly z matematické fyziky</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

Kvantová teorie pole

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Z + Zk</th>
<th>Zk</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSF069</td>
<td>Kvantová teorie pole II</td>
<td>9</td>
<td>—</td>
<td>4/2 Z+Zk</td>
</tr>
<tr>
<td>NJSF082</td>
<td>Vybrané partie teorie kvantovaných polí I</td>
<td>4</td>
<td>3/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NJSF083</td>
<td>Vybrané partie teorie kvantovaných polí II</td>
<td>4</td>
<td>—</td>
<td>3/0 Zk</td>
</tr>
<tr>
<td>NTMF022</td>
<td>Teorie kalibračních polí</td>
<td>4</td>
<td>3/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NJSF085</td>
<td>Základy teorie elektroslabých interakcí</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

Moderní metody statistické fyziky

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Z + Zk</th>
<th>Zk</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTMF031</td>
<td>Statistická fyzika kvantových mnohočásticových systémů I</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF032</td>
<td>Statistická fyzika kvantových mnohočásticových systémů II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTMF035</td>
<td>Renormalizační teorie fázových přechodů</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTMF071</td>
<td>Fyzika komplexních systémů</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

Teorie kondenzovaných soustav mimo rovnováhu

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Z + Zk</th>
<th>Zk</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTMF106</td>
<td>Teorie kondenzovaného stavu II</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF063</td>
<td>Vybrané kapitoly z nerovnovázné statistické fyziky I</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF068</td>
<td>Vybrané kapitoly z nerovnovázné statistické fyziky II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

Teorie plazmatu a záření

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Z + Zk</th>
<th>Zk</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTMF028</td>
<td>Teorie kosmického plazmatu</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTMF120</td>
<td>Teorie vysokoteplotního plazmatu</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTMF070</td>
<td>Zářivé procesy v astrofyzice</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTMF014</td>
<td>Klasická teorie záření</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

Počítačová fyzika

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Z + Zk</th>
<th>Zk</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTMF058</td>
<td>Počítačové metody v teoretické fyzice II</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NTMF024</td>
<td>Simulace ve fyzice mnoha částic</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTMF023</td>
<td>Pokročilé simulace ve fyzice mnoha částic</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

Další povinně volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Z + Zk</th>
<th>Zk</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTMF027</td>
<td>Pravděpodobnost a matematika fázových přechodů I</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTMF041</td>
<td>Pravděpodobnost a matematika fázových přechodů II</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
</tbody>
</table>
Tyto předměty se přednášejí ve dvouletém intervalu.
Místo této přednášky lze zapsat NJSF146 (Kvantová teorie pole II).

Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTMF008</td>
<td>Seminář ústavu teoretické fyziky</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NTMF009</td>
<td>Relativistický seminář</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NTMF010</td>
<td>Seminář atomové fyziky</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NTMF101</td>
<td>New developments in astrophysics and theoretical physics</td>
<td>2</td>
<td>0/1 Z</td>
<td>0/1 Z</td>
</tr>
<tr>
<td>NTMF102</td>
<td>Odborné soustředění ÚTF</td>
<td>2</td>
<td>0/1 Z</td>
<td>—</td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného oboru
- splnění povinně volitelných předmětů zvoleného oboru v rozsahu alespoň 36 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

1. Relativistická fyzika

2. Kvantová fyzika

3. Statistická fyzika

4. Fyzika plazmatu a pevných látek

5. Počítačová fyzika

B. Užší zaměření

Student si volí dva z následujících osmi tematických okruhů.

1. Matematické metody

2. Relativistická fyzika a astrofyzika

3. Pokročilá kvantová mechanika

4. Kvantová teorie pole

5. Moderní metody statistické fyziky

6. *Teorie kondenzovaných soustav mimo rovnováhu*

7. *Teorie plazmatu a záření*

8. *Počítačová fyzika*

5. *Fyzika kondenzovaných soustav a materiálů*

Garantující pracoviště: Katedra fyziky kondenzovaných látek

Garant oboru: prof. RNDr. Radomír Kužel, CSc.

Charakteristika studijního oboru:

Obor je věnován experimentálnímu i teoretickému studiu vlastností kondenzovaných soustav, jejich mikrofyzikální interpretaci a možnostem aplikací, zejména se zřetelem na současný rozvoj materiálového výzkumu. K výuce společné pro celý obor si studenti mohou volit jedno ze zaměření: Fyzika atomových a elektronových struktur, Fyzika makromolekulárních látek, Fyzika materiálů, Fyzika nízkých teplot, Fyzika povrchových modifikací. Každý z uvedených tématických bloků zabezpečuje obecné vzdělání v oboru na současné úrovni poznání a profiluje absolventa ve zvoleném zaměření.

Profil absolventa studijního oboru a cíle studia:

Absolventi mají široké znalosti základů kvantové teorie, termodynamiky a statistické fyziky kondenzovaných soustav a příslušných výpočetních metod. Dodělou popsat strukturu těchto látek v různých formách, jejich mechanické, elektrické, magnetické i optické vlastnosti. Mají přehled o řadě experimentálních metod charakterizace struktury, složení a vlastností kondenzovaných látek jako jsou metody difrákční, spektroskopické i mikroskopické a dovedou je prakticky používat. Vhodným uplatněním jsou zejména pracoviště základního fyzikálního, chemického a biomedicínského výzkumu, vysoké školy uvedeného zaměření, laboratoře aplikovaného materiálového výzkumu a vývoje, zkoušební laboratoře strojírenského, elektrotechnického, metalurgického a chemického průmyslu (především v oblasti makromolekulárních látek a organické chemie), ústavy zaměřené na ochranu a modifikaci materiálů a pracoviště v hygienické a ekologické službě.

Cílem studia je poskytnout široké vzdělání v kvantové teorii, termodynamice a statistické fyzice ve vazbě na současné přístupy teorie kondenzovaných soustav, a to soustav jak anorganických, tak organických a makromolekulárních. Současně poskytnout přehled o principech moderních experimentálních metod a technologických postupů. Ve vybraném zaměření poskytnout hlubší vzdělání a praktické dovednosti.
Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto oboru je získání základních znalostí na úrovni následujících předmětů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM110</td>
<td>Kvantová teorie I</td>
<td>9</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL502</td>
<td>Úvod do fyziky pevných látek</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NFPL503</td>
<td>Úvod do fyziky měkkých materiálů</td>
<td>3</td>
<td>—</td>
<td>1/1 Z+Zk</td>
</tr>
<tr>
<td>NFPL142</td>
<td>Proseminář fyziky kondenzovaných soustav</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NFPL141</td>
<td>Kvantová teorie II1</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
</tbody>
</table>

1 Pro magisterské studium studijní plány: Fyzika atomových a elektronových struktur a Fyzika nízkých teplot. Lze zapisovat v ZS i LS.

Tyto předměty se obvykle zapisují ve třetím roce bakalářského studia programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jiné ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

Povinné a povinně volitelné předměty – skupina 1 (25 kreditů)

Studenti si volí jedno z pěti zaměření Fyzika atomových a elektronových struktur, Fyzika makromolekulárních látek, Fyzika materiálů, Fyzika nízkých teplot a Fyzika povrchových modifikací.

1. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPL145</td>
<td>Experimentální metody fyziky kondenzovaných soustav I</td>
<td>9</td>
<td>3/3 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL146</td>
<td>Experimentální metody fyziky kondenzovaných soustav II</td>
<td>9</td>
<td>—</td>
<td>3/3 Z+Zk</td>
</tr>
<tr>
<td>NFPL800</td>
<td>Termodynamika kondenzovaných soustav</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL801</td>
<td>Oborový seminář I1</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NFPL802</td>
<td>Oborový seminář II1</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NSZZ028</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
</tbody>
</table>

Fyzika atomových a elektronových struktur

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPL143</td>
<td>Fyzika pevných látek I</td>
<td>9</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL144</td>
<td>Struktura látek a strukturní analýza</td>
<td>7</td>
<td>3/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL147</td>
<td>Fyzika pevných látek II</td>
<td>9</td>
<td>—</td>
<td>4/2 Z+Zk</td>
</tr>
</tbody>
</table>

Fyzika makromolekulárních látek

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM066</td>
<td>Základy makromolekulární chemie</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM208</td>
<td>Základy makromolekulární fyziky</td>
<td>4</td>
<td>—</td>
<td>3/0 Zk</td>
</tr>
<tr>
<td>NBCM038</td>
<td>Relaxační chování polymerů</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NBCM058</td>
<td>Elektrické a optické vlastnosti polymerů</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>
Fyzika kondenzovaných soustav a materiálů

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM231</td>
<td>Aplikovaná termodynamika</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

Fyzika materiálů

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPL134</td>
<td>Teorie kondenzovaných látek</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL134</td>
<td>Struktura materiálů</td>
<td>4</td>
<td>3/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL134</td>
<td>Fyzika materiálů I</td>
<td>4</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL134</td>
<td>Fyzika materiálů II</td>
<td>4</td>
<td>—</td>
<td>2/1 Zk</td>
</tr>
<tr>
<td>NFPL137</td>
<td>Technologie materiálů</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NFPL136</td>
<td>Speciální praktikum fyziky materiálů</td>
<td>4</td>
<td>—</td>
<td>0/3 Z</td>
</tr>
</tbody>
</table>

Fyzika nízkých teplot

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPL134</td>
<td>Fyzika pevných látek I</td>
<td>9</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL134</td>
<td>Fyzika a technika nízkých teplot</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL134</td>
<td>Hyperjmemné interakce a jaderný magnetismus</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NFPL134</td>
<td>Radiofrekvenční spektroskopie pevných látek</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NFPL134</td>
<td>Vybrané kapitoly z kvantové fyziky pevných látek</td>
<td>7</td>
<td>—</td>
<td>3/2 Z+Zk</td>
</tr>
</tbody>
</table>

Fyzika povrchových modifikací

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM066</td>
<td>Základy makromolekulární chemie</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM213</td>
<td>Fyzika přípravy tenkých vrstev</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM233</td>
<td>Metody analýzy povrchů a tenkých vrstev</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM233</td>
<td>Procesy plazmové polymerace</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM241</td>
<td>Aplikovaná termodynamika</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

1. Jako Oborový seminář studenti navštěvují právě jeden z následujících seminářů: Seminář strukturní analýzy (NFPL037), Seminář teorie kondenzovaného stavu (NFPL062), Seminář z magnetismu (NFPL118), Seminář z fyziky nízkých teplot (NFPL098), Seminář fyziky materiálů (NFPL113), Seminář z fyziky polymerů (NBCM091), Studijní seminář plazmových polymerů (NBCM200).

2. rok magisterského studia

Kód | Název | Kredity | ZS | LS
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPL124</td>
<td>Experimentální metody fyziky kondenzovaných látek III</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Fyzika atomových a elektronových struktur

Kód | Název | Kredity | ZS | LS
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM232</td>
<td>Moderní směry ve fyzice makromolekul</td>
<td>4</td>
<td>3/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM242</td>
<td>Diplomový seminář KMF</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
</tbody>
</table>
Fyzika Mgr.

Fyzika materiálů

—

Fyzika nízkých teplot

—

Fyzika povrchových modifikací

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM219</td>
<td>Vybrané problémy fyziky reálných povrchů</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM142</td>
<td>Diplomový seminář KMF</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty – skupina 2 (15 kreditů)

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kód</td>
<td>Název</td>
<td>Kredity</td>
<td>ZS</td>
<td>LS</td>
</tr>
</tbody>
</table>

Fyzika atomových a elektronových struktur

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPL115</td>
<td>Elektronová mikroskopie</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL122</td>
<td>Magnetické vlastnosti pevných látek</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL134</td>
<td>Dielektrické vlastnosti pevných látek</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL140</td>
<td>Aplikovaná strukturalní analýza</td>
<td>3</td>
<td>—</td>
<td>1/1 Z+Zk</td>
</tr>
<tr>
<td>NFPL152</td>
<td>Neutronové a synchrotronové záření v magnetických látkách</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NFPL158</td>
<td>Rtg metody studia struktury a mikrostruktury materiálů</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NFPL154</td>
<td>Magnetismus a elektronová struktura kovových systémů</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL156</td>
<td>Rozptyl rtg záření na tenkých vrstvách</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL157</td>
<td>Studium reální struktury pevných látek</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL158</td>
<td>Fyzika ve vysokých magnetických polích</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL159</td>
<td>Fyzika ve vysokých tlacích</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL160</td>
<td>Magnetické struktury</td>
<td>4</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL161</td>
<td>Tepelná kapacita pevných látek</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL162</td>
<td>Výpočtová fyzika a návrh materiálů</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL163</td>
<td>Neorovnovázná statistická fyzika a termodynamika</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL164</td>
<td>Metody řešení a upřesňování krystalových struktur monokrystalů</td>
<td>3</td>
<td>—</td>
<td>1/1 Z+Zk</td>
</tr>
<tr>
<td>NFPL165</td>
<td>Moderní materiály s aplikačním potenciálem</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NFPL166</td>
<td>Korelace v mnohoelektronových systémech</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

78
Fyzika makromolekulárních látek

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název akademického oboru</th>
<th>Zk</th>
<th>Zk</th>
<th>Zk</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM098</td>
<td>Rentgenová strukturní analýza biomolekul a makromolekul</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NBCM211</td>
<td>Měřicí metody elektrických vlastností polovodivých a nevodivých materiálů</td>
<td>3</td>
<td>1/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NFPL015</td>
<td>Transportní a povrchové vlastnosti pevných látek</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NBCM231</td>
<td>NMR spektroskopie polymerů</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NBCM202</td>
<td>Pravděpodobnostní metody fyziky makromolekul</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NBCM079</td>
<td>Teorie polymerních struktur</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NBCM072</td>
<td>Základy molekulární elektroniky</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NBCM062</td>
<td>Strukturní teorie relaxačního chování polymerů</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
</tbody>
</table>

Fyzika materiálů

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název akademického oboru</th>
<th>Zk</th>
<th>Zk</th>
<th>Zk</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPL017</td>
<td>Základy krystalografie</td>
<td>3</td>
<td>1/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NFPL013</td>
<td>Elektronová mikroskopie</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NFPL057</td>
<td>Kinetika fázových transformací</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NFPL081</td>
<td>Magnetismus materiálů</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NFPL017</td>
<td>Základy mechaniky kontinua a teorie dislokací</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NFPL088</td>
<td>Teorie poruch krystalu</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NFPL010</td>
<td>Akustika ve fyzice kondenzovaého stavu</td>
<td>6</td>
<td>—</td>
<td>3/1</td>
</tr>
<tr>
<td>NFPL008</td>
<td>Fyzika materiálů III</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NFPL008</td>
<td>Anihilace pozitronů v pevných látkách</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
</tbody>
</table>

Fyzika nízkých teplot

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název akademického oboru</th>
<th>Zk</th>
<th>Zk</th>
<th>Zk</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPL171</td>
<td>Makrospkopické kvantové jevy I</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NFPL172</td>
<td>Makrospkopické kvantové jevy II</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NFPL086</td>
<td>Vybrané kapitoly z teorie a metodiky magnetické rezonance</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NFPL097</td>
<td>Jaderné spektroskopické metody studia hyperjemných interakcí</td>
<td>3</td>
<td>—</td>
<td>1/1</td>
</tr>
<tr>
<td>NFPL172</td>
<td>Základy mechaniky tekutin a turbulence</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NFPL173</td>
<td>Móssbauerova spektroskopie</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NFPL175</td>
<td>NMR v magneticky uspořádaných látkách</td>
<td>3</td>
<td>1/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NFPL091</td>
<td>NMR vysokého rozlišení</td>
<td>4</td>
<td>3/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NFPL141</td>
<td>Jaderné metody studia magnetických systémů</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NFPL095</td>
<td>Základy kryotechniky</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
</tbody>
</table>
Fyzika Mgr.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPL103</td>
<td>Anihilace pozitronů v pevných látkách</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL125</td>
<td>Vybrané partie z pozitronové anihilaceální spektroskopie</td>
<td>3</td>
<td>1/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL110</td>
<td>Elektronová struktura ultratenkých magnetických vrstev</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL113</td>
<td>Seminář radiofrekvenční spektroskopie kondenzovaných látek</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NFPL114</td>
<td>Magnetické nanočástice</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL118</td>
<td>Kvantový popis NMR</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
</tbody>
</table>

Fyzika povrchových modifikací

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPL117</td>
<td>Základy krystalografie</td>
<td>3</td>
<td>1/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM234</td>
<td>Konstrukce depozičních aparatur</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM235</td>
<td>Základy fyziky plazmatu</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL144</td>
<td>Rentgenografické studium reálné struktury tenkých vrstev</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NBCM220</td>
<td>Modifikace povrchů a její aplikace</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NBCM221</td>
<td>Nanokompozitní a nanostrukturované tenké vrstvy</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NBCM224</td>
<td>Tvrdé a supertvrdé vrstvy a jejich aplikace</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM225</td>
<td>Elektrické vlastnosti tenkých vrstev</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM226</td>
<td>Optické vlastnosti tenkých vrstev</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPL137</td>
<td>Seminář strukturní analýzy</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NFPL139</td>
<td>Seminář teorie kondenzovaného stavu</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NFPL158</td>
<td>Seminář z magnetismu</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NFPL128</td>
<td>Seminář z fyziky nízkých teplot</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NFPL123</td>
<td>Seminář fyziky materiálů</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NBCM091</td>
<td>Seminář z fyziky polymerů</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NBCM201</td>
<td>Studijní seminář plazmových polymerů</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NFPL150</td>
<td>Praktické užití mikroskopie atomárních sil (AFM)</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NFPL088</td>
<td>Difrakce rentgenového záření dokonalými krystaly</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL172</td>
<td>Systémy s korelovanými f-elektrony</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL177</td>
<td>Supravodivost</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL195</td>
<td>Řešení výpočetně náročných úloh ve fyzice</td>
<td>3</td>
<td>1/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM068</td>
<td>Základy vytváření polymerních struktur</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

80
Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného oboru
- získání alespoň 25 kreditů z povinně volitelných předmětů oboru ze skupiny 1
- získání alespoň 15 kreditů z povinně volitelných předmětů oboru ze skupiny 2
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznaním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

1. Principy kvantového popisu kondenzovaných soustav

Popis pevné látky jako problém mnoha částic — skládání momentu hybnosti, Hundova pravidla, důsledky symetrie — symetrie vlnové funkce, Blochův teorém. Typy vazeb v molekulách a kondenzovaných soustavách.

Elektronové stavy v pevných látkách — pásová struktura a metody jejího výpočtu: jednoelektronové přiblížení a metody řešení efektivních rovnic (metoda LCAO, téměř volné elektrony, LAPW, pseudopotenciály). Adiabatická aproximace, variační princip a poruchový počet.
Fyzika Mgr.

Interakce mezi elektrony — druhé kvantování, Hartree-Fockova aproximace, teorie funkcionálu hustoty. Kvazičástice v kondenzovaných soustavách.

Interakce elektromagnetického záření s látkou — absorpce a emise fotonu. Stimulovaná a spontánní emise, výběrová pravidla. Doba života kvantových stavů, přirozená šírka spektrální čáry.

2. Termodynamika a statistická fyzika kondenzovaných soustav

3. Základy fyziky kondenzovaných látek

Struktura kondenzovaných soustav — krystalová struktura, bodová a translační symetrie, zákazy krystalografie. Reciproký prostor, Brillouinova zóna.

Reálná struktura látek — poruchy krystalické struktury, uspořádání na dlouhou a kratkou vzdálenost. Amorfní látky a jejich popis, párové distribuční funkce. Popis topologie, prostorové a elektronové struktury makromolekul.

Pohyb atomů a molekul v kondenzovaných látkách: Difuze. Knity mřížky, fonony, teplá kapacita.

Mechanické silové pole: elastická a plastická deformace, viskozita. Viskoelasticit a kauchuková elasticit polymerních systémů, skelný přechod, princip časově-teplotní superpozice.

4. Experimentální metody

Metody určování struktury — základní difrakční metody: difrakce a rozptyl rtg záření, elektronů, neutronů, atomů a iontů. Mikroskopické metody — světlá, řádková a transmisní elektronová mikroskopie.

Makroskopické a mikroskopické metody studia mechanických, teplých, dielektrických, optických, dopravních a magnetických vlastností látek.

Základní spektroskopické metody (radiofrekvenční, mikrovlnné, optické, rentgenové, gama, fotoemisní) a jejich použití.

B. Užší zaměření

Student si volí okruh otázek odpovídající jeho zaměření.

1. Fyzika atomových a elektronových struktur

Atomová struktura látek

Bodové a prostorové grupy. Symetrie fyzikálních vlastností. Struktura krystalů, kvazikrystalů, modulovaných struktur a amorfních látek. Používání strukturních data-

Elektronová struktura a fyzikální vlastnosti látek

Kolektivní jevy

2. Fyzika makromolekulárních látek

Struktura makromolekul

Konfigurace, konformace, takticit a stereo regularita polymerních řetězců. Architektura makromolekulárních systémů. Způsoby přípravy makromolekulárních systémů, chemická struktura polymerů, způsoby výstavby polymerních sítí, bod gelace. Distribuce a průměry molárních hmotností.

Fyzikální vlastnosti makromolekulárních systémů

Experimentalní metody

3. Fyzika materiálů

Poruchy krystalové mřížky

Krystalová mřížka, vakance, intersticiály, vrstevné chyby, subhranice, hranice zrn, dvojčata, inkluze, dispersoidy, precipitáty. Interakce poruch krystalové mřížky. Expo-
mentální metody studia poruch krystalové mřížky: mechanické zkoušky, difrakční a zobrazovací metody, termická analýza, akustická emise.

Mechanické vlastnosti
Plastická deformace, teorie zpevnění, creep a lom. Statické a dynamické odpevnění, zotavení poruch mřížky, superplasticita, nestabilita plastické deformace, tvarová paměť.

Termodynamika vícesložkových systémů
Binární a ternární fázové diagramy, model párových vazeb, pákové pravidlo, intermedialní fáze. Fázové transformace, tuhnutí slitin, segregační procesy. Difuzní a bezdifuzní transformace v pevných látkách, TTT-diagramy, Avramiovo rovnice. Difuze v pevných látkách.

Moderní materiály a technologie
Intermetalické sloučeniny, keramické a kompozitní materiály, submikrokrystalické a nanokrystalické materiály, kvazikrystaly, materiály s tvarovou pamětí, technologie přípravy moderních materiálů.

4. Fyzika nízkých teplot

Elektronová struktura pevných látek
Metody výpočtu elektronové struktury. Elektronová struktura a magnetické vlastnosti pevných látek. Magnetické momenty volného atomu/ióntu, interakce s krystalovým polem, korelační jevy, vyměnné interakce, lokalizované a itinerantní magnetické momenty.

Fyzika a technika nízkých teplot
Metody získávání nízkých a velmi nízkých teplot, základní vlastnosti kryokapalin. Nízkoteplotní termometrie.

Makroskopické kvantové jevy
Supravodivost, Cooperovy páry, Meissnerův jev, slabá supravodivost. Supravodič I. a II. druhu, vysokooteplotní supravodivost. Supratekutost 4He, 3He, makroskopická vlnová funkce, Boseova-Einsteinova kondenzace.

Hyperjerné interakce a jaderný magnetismus
Elektrické a magnetické momenty atomových jader, elektrická a magnetická hyperjerná interakce. Spinový hamiltonián, hyperjerné štěpení energetických hladin, role symetrie okolí jádra.

Experimentální metody studia hyperjerných interakcí (jaderná magnetická rezonance, elektronová paramagnetická rezonance, mionová spinová rotace, Moessbauerův jev, jaderná orientace, metoda porušených úhlových korrelací) a jejich využití pro studium atomové, elektronové a magnetické struktury.

5. Fyzika reálných povrchů

Fyzika povrchů
Vazba molekuly na povrchu, absorpce, ideální a reálný povrch, elektronová struktura povrchů, povrchové stavy, výstupní práce, emise nabitéch částic, emise elektronu, princip elektronové spektroskopie, interakce částic a záření s povrchem, fotoemise, princip fotoelektronové spektroskopie, sekundární elektronové emise, difrakce. Energie povrchů a rozhraní.

Experimentální metody studia povrchu
Metody elektronové spektroskopie (AES, REED), metody iontové spektroskopie (SIMS, SNMS), metody fotoelektronové spektroskopie (UPS, XPS) a jejich praktické

Příprava tenkých vrstev

Definice tenké vrstvy, pojem tloušťky tenké vrstvy, počáteční stadium a mechanismy růstu vrstvy. Základní metody jejich přípravy: vyparování ve vakuum, stejnoměrné a vysokofrekvenční rozprašování, CVD, PE CVD anorganických a organických vrstev (plazmová polymerace). Metody diagnostiky růstu tenké vrstvy, měření rychlosti nanášení a tloušťky, určování struktury a morfologie, mechanických, elektrických a optických vlastností. Modifikace povrchu, změny povrchové energie a chemické aktivity. Použití tenkých vrstev — tvrdá, oderuivzdorná pokrytí, ochranné a pasivační vrstvy, optické tenké vrstvy, vrstvy pro mikroelektroniku.

6. Optika a optoelektronika

Garantující pracoviště: Katedra chemické fyziky a optiky

Garant oboru: prof. RNDr. Petr Malý, DrSc.

Charakteristika studijního oboru:

Obor je nabízen studentům, kteří chtějí získat širší fyzikální rozhled a detailní znalosti i praktické dovednosti potřebné k výzkumné a vědecké činnosti v oboru optiky a optoelektroniky. Výuka připravuje studenty jak pro samostatnou tvůrčí činnost, tak i pro týmovou spolupráci. Získaný sírší přehled vytváří předpoklady také pro práci v mezioborových oblastech na rozhraní fyziky, biologie a technických oborů. Důraz je kladen na vysokou profesionalitu v optice a optoelektronice s dobrou znalostí výpočetní techniky.

Student si vybírá podle zájmu a tématu diplomové práce jedno ze tří zaměření. Kromě obecných společných předmětů tak získává hlubší znalosti ve zvolených oblastech. Zaměření Kvantová a nelineární optika se soustřeďuje zejména na vlastnosti světelných polí v rámci klasické i kvantové optiky, na nelineární optické jevy. Zaměření Optoelektronika a fotonika se podrobně zabývá interakcí světla s pevnými látkami, detekcí světla, a technologií přípravy polovodičových materiálů pro optoelektronické a fotonické aplikace. V zaměření Teorie a modelování pro kvantovou optiku a optoelektroniku se vyučuje teoretický fyzikální aparát a rozvíjí metody modelování a počítačového prográmování pro teoretické řešení náročných problémů z oblasti kvantové i klasické optiky, interakce světla s látkami (včetně biologických objektů).

Součástí studijního plánu na všech zaměřených je praktická výuka vedená v laboratořích vybavených na současné světové úrovni, která zajišťuje kompetence absolventů v oblasti experimentálního výzkumu, optické spektroskopie, aplikované optiky, optoelektroniky a spintroniky. Výběrové přednášky pokrývají ve světě se nově rozvíjející obory jako opto-spintronika, fyzika metamateriálů či terahertzová spektroskopie. Zasahování optiky do řady oborů (fyzika, biologie, chemie, medicína) i její stále růstoucí aplikace v každodenním životě zvyšuje adaptibilitu absolventů a možnosti jejich uplatnění ve vědecké práci i v praxi.

Profil absolventa studijního oboru a cíle studia:

Absolvent má teoretické i experimentální znalosti z klasické i kvantové optiky a optoelektroniky. Zvládá matematické modelování fyzikálních procesů v optice a optoelektronice. Tyto znalosti a dovednosti je schopen uplatnit v další výzkumné a vědecké
činnosti v oborech optika, optoelektronika, spintronika, fotonika, fyzika laserů, statistická a koherenční optika, nelineární optika, optické sdělování a zpracování informace, přístrojová optika, i v řadě oborů, kde se optika nebo optická spektroskopie využívá (biologie, chemie, medicína). Ovládá moderní informační technologie a zpracování vědeckých informací ze světových elektronických databází a je schopen odborně komunikovat v českém i anglickém jazyce. Má i zkušenosti s přípravou a navrhováním grantových projektů a s organizací vědecké práce. Je mu otevřena možnost dalšího doktorského studia nebo vědecké a pedagogické činnosti na vysokých školách a vědeckých ústavech v ČR i v zahraničí. Absolventi se uplatní i jako vědecko-výzkumní a vývojoví pracovníci nebo řídící pracovníci v soukromých firmách a institucích.

Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto oboru je získání základních znalostí na úrovni následujících předmětů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM110</td>
<td>Kvantová teorie I</td>
<td>9</td>
<td>4/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NOOE021</td>
<td>Vlnová optika</td>
<td>9</td>
<td>—</td>
<td>4/2</td>
</tr>
<tr>
<td>NOOE001</td>
<td>Základy optické spektroskopie</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
</tbody>
</table>
| NMAT035 | Numerické metody zpracování
experimentálních dat | 3 | — | 2/0 | Z |

Tyto předměty se obvykle zapisují ve třetím roce bakalářského studia programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jiné ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce návazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

Povinné a povinně volitelné předměty – skupina 1 (24 kreditů)

Studenti si volí jedno ze tří zaměření Kvantová a nelineární optika, Optoelektronika a fotonika a Teorie a modelování pro kvantovou optiku a elektroniku.

1. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFPL182</td>
<td>Teorie pevných látek</td>
<td>9</td>
<td>4/2</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>
| NOOE027 | Základy kvantové a nelineární
optiky I | 6 | 3/1 | Z+Zk|
| NOOE028 | Základy kvantové a nelineární
optiky II | 6 | — | 3/1 | Z+Zk|
| NOOE069 | Fyzika polovodičů pro
optoelektroniku I | 3 | 2/0 | Z |
| NOOE072 | Teorie prostorových symetrií
pro optiku | 3 | — | 2/0 | Z |
| NOOE080 | Speciální praktikum pro OOE I | 6 | 0/4 | KZ | |
| NOOE081 | Speciální praktikum pro OOE II | 6 | — | 0/4 | KZ |
| NSZZ028 | Diplomová práce I | 6 | — | 0/4 | Z |
Optika a optoelektronika

NCOE041K	Kvantová optika I	5	2/1 Z+Zk	—
NCOE042K	Kvantová optika II	5	—	2/1 Z+Zk
NOOE048K	Optoelektronické materiály a technologie	3	2/0 Zk	—

Optoelektronika a fotonika

NCOE048K	Optoelektronické materiály a technologie	3	2/0 Zk	—
NCOE049K	Fyzika polovodičů pro optoelektroniku II	3	—	2/0 Zk
NBCM096	Elektronový transport v kvantových systémech	5	—	2/1 Z+Zk

Teorie a modelování pro kvantovou optiku a elektroniku

NRCM067	Kvantová optika I	5	2/1 Z+Zk	—
NRCM093	Kvantová optika II	5	—	2/1 Z+Zk
NEPL011	Nerovnovážná statistická fyzika a termodynamika	3	2/0 Zk	—

2. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Kvantová a nelineární optika

NCOE041K	Integrovaná a vláknová optika	3	2/0 Zk	—
NCOE046K	Nelineární optika polovodičových nanostruktur	5	2/1 Z+Zk	—
NCOE048K	Speciální seminář z kvantové a nelineární optiky	3	0/2 Z	0/2 Z

Optoelektronika a fotonika

NCOE048K	Fyzika polovodičů pro optoelektroniku III	5	2/1 Z+Zk	—
NCOE046K	Nelineární optika polovodičových nanostruktur	5	2/1 Z+Zk	—
NCOE049K	Speciální seminář z optoelektroniky	3	0/2 Z	0/2 Z

Teorie a modelování pro kvantovou optiku a elektroniku

NCOE041K	Integrovaná a vláknová optika	3	2/0 Zk	—
NRCM083	Vybrané partie z kvantové teorie	5	2/1 Z+Zk	—
NCOE049K	Speciální seminář z kvantové a nelineární optiky	3	0/2 Z	0/2 Z
Fyzika Mgr.

Povinně volitelné předměty – skupina 2 (15 kreditů)

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Společné</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCKE025</td>
<td>Spektroskopie s vysokým časovým rozlišením</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NCKE123</td>
<td>Fotonické struktury</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NCKE124</td>
<td>Nanooptika</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NCKE127</td>
<td>Rentgenové lasery a rentgenová optika</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NCKE128</td>
<td>Spektroskopie v terahertzové spektrální oblasti</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NCKE012</td>
<td>Exkurze</td>
<td>2</td>
<td>—</td>
<td>0/1</td>
</tr>
<tr>
<td>NCKE013</td>
<td>Seminář</td>
<td>2</td>
<td>—</td>
<td>0/1</td>
</tr>
<tr>
<td></td>
<td>Kvantová a nelineární optika</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCKE120</td>
<td>Optická spektroskopie ve spintronice</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NCKE015</td>
<td>Základy konstrukce a výroby optických prvků</td>
<td>2</td>
<td>0/1</td>
<td>Z</td>
</tr>
<tr>
<td>NCKE033</td>
<td>Luminiscenční spektroskopie polovodičů</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NCKE047</td>
<td>Integrovaná optika</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NCKE048</td>
<td>Mikrodutiny</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NCKE049</td>
<td>Teorie laseru</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NCKE050</td>
<td>Fyzika polovodičů pro optoelektroniku II</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NRCM096</td>
<td>Elektronový transport v kvantových systémech</td>
<td>5</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td></td>
<td>Optoelektronika a fotonika</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCKE024</td>
<td>Optická spektroskopie ve spintronice</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NCKE047</td>
<td>Základy konstrukce a výroby optických prvků</td>
<td>2</td>
<td>0/1</td>
<td>Z</td>
</tr>
<tr>
<td>NCKE033</td>
<td>Luminiscenční spektroskopie polovodičů</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NCKE047</td>
<td>Integrovaná optika</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NCKE048</td>
<td>Mikrodutiny</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NRCM096</td>
<td>Kvantová optika I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NRCM096</td>
<td>Kvantová optika II</td>
<td>5</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td></td>
<td>Teorie a modelování pro kvantovou optiku a elektroniku</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCKE025</td>
<td>Mikrodutiny</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NCKE047</td>
<td>Teorie laseru</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NCKE050</td>
<td>Fyzika polovodičů pro optoelektroniku II</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
</tbody>
</table>

88
Optika a optoelektronika

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM096</td>
<td>Elektronový transport v kvantových systémech</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NBCM111</td>
<td>Kvantová teorie II</td>
<td>7</td>
<td>3/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NBCM112</td>
<td>Kvantová teorie molekul</td>
<td>7</td>
<td>3/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NTMF031</td>
<td>Statistická fyzika kvantových mnohočásticových systémů I</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NTMF032</td>
<td>Statistická fyzika kvantových mnohočásticových systémů II</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
</tbody>
</table>

Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOOE126</td>
<td>Seminar femtosekundové laserové spektroskopie</td>
<td>2</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NBCM323</td>
<td>Seminar teorie otevřených kvantových systémů</td>
<td>1</td>
<td>0/1 Z</td>
<td>0/1 Z</td>
</tr>
<tr>
<td>NOOE049</td>
<td>Holografie</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOOE026</td>
<td>Laserová metrologie</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOOE011</td>
<td>Ultrakrátke laserové pulzy</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOOE011</td>
<td>Optika tenkých vrstev a vrstevnatých struktur</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení ke státní závěrečné zkoušce

– získání alespoň 120 kreditů
– splnění všech povinných předmětů zvoleného oboru
– získání alespoň 24 kreditů z povinně volitelných předmětů oboru ze skupiny 1
– získání alespoň 15 kreditů z povinně volitelných předmětů oboru ze skupiny 2
– odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

1. **Pokročilá kvantová mechanika**
 Variační princip a poruchový počet.
 Symetrie vlnové funkce, bosony a fermiony. Pauliho princip. Symetrie a zákony zachování. Štěpení hladin při snížení symetrie.
 Orbitální a spinový moment hybnosti, jejich operátory a kvantování. Skládání momentů hybností. Orbitální a spinový magnetický moment a jejich interakce s vnějším polem. Spin-orbitální interakce.
2. **Kvantová teorie molekul a pevných látek**

3. **Termodynamika a statistická fyzika molekulárních soustav**

4. **Vlnová optika**

5. **Experimentální metody**

B. **Užší zaměření**

Student si volí okruh otázek odpovídající jeho zaměření.

1. **Kvantová a nelineární optika**

2. **Optoelektronika a fotonika.**

3. Teorie a modelování pro kvantovou optiku a elektroniku

7. Fyzika povrchů a ionizovaných prostředí
Garantující pracoviště: Katedra fyziky povrchů a plazmatu
Garant oboru: doc. RNDr. Jan Wild, CSc.
Charakteristika studijního oboru:
Fyzika povrchů a ionizovaných prostředí je oborem interdisciplinárního charakteru, který zahrnuje základní poznatky o pohybu neutrálních a nabitých částic ve vakuu, plynu i kondenzované fázi a o jejich interakcích s těmito prostředím, s jejich rozhraním i mezi sebou navzájem. Spojením vakuové fyziky, fyziky povrchů, fyziky laboratorního a kosmického plazmatu a fyziky tenkých vrstev poskytuje obor základ pro řadu aplikací jako jsou moderní diagnostické metody v materiálovém výzkumu, vakuové a plazmové technologie, výroba elektronických prvků, řízená termoelektrické říše nebo kosmický výzkum. Jednotlivé disciplíny mohou být studovány jak experimentálně, tak teoreticky nebo metodami počítačové fyziky. Témata diplomových prací si studenti vybírají ve shodě s zvolenými povinně volitelnými předměty studijního plánu z oblastí: vakuová fyzika, fyzika plazmatu, kosmická fyzika, fyzika povrchů a fyzika tenkých vrstev. Práce mohou mít těžiště jak v experimentu, tak v počítačovém modelování nebo i v automatizaci a kybernetizaci experimentu.

Profil absolventa studijního oboru a cíle studia:
Absolvent má široké teoretické i experimentální znalosti základů fyziky i matematiky, je odborníkem v užití pokročilých měřicích metod jak hardwarových, tak i softwarových a prokazuje porozumění příslušnému matematickému aparátu včetně schopnosti ho aplikovat. Z hlediska oboru disponuje nejen hlubokými teoretickými znalostmi, ale dokáže použít řadu experimentálních technik od nanotechnologií po výzkum kosmu. Ovládá návrh a řízení vakuových systémů, použití moderních spektroskopických metod i různých typů mikroskopů a aplikace současných plazmatických technologií. Je schopen samostatně formulovat hypotézy, vytvářet počítačové simulace a kriticky analyzovat výsledky. Své poznatky a závěry dokáže představit odborné i laické veřejnosti.
formou prezentací nebo psaných textů, a to i v cizím jazyce. Získané dovednosti je scho- pen uplatnit také v jiných oborech zaměřených jak na základní, tak aplikovaný výzkum na vysokých školách, v ústavech Akademie, ve velkých vědeckých a technologických centrech (ITER, ELI), ale i v průmyslové sféře a veřejné správě.

Čilem studia je vychovat odborníka orientujícího se v moderních experimentálních metodách, metodách matematického a počítačového modelování a ve využití počítačů k řízení a automatizaci. Absolvent s dobrým teoretickým základem širokého spektra moderních disciplín úzce navazovaných na materiálový výzkum a nové technologie má perspektivu dobrého uplatnění na vysokých školách, v ústavech Akademie věd i dalších pracovištích zabývajících se fyzikou povrchů, kosmickým i materiálovým výzkumem nebo aplikujících vakuové a plazmové technologie.

Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto oboru je získání základních znalostí na úrovni následujících předmětů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOFY042</td>
<td>Základy kvantové teorie</td>
<td>9</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NEVF158</td>
<td>Základy fyziky povrchů</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NEVF165</td>
<td>Vakuová technika</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NEVF140</td>
<td>Úvod do fyziky povrchů</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NEVF110</td>
<td>Úvod do fyziky plazmatu</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

Tyto předměty se obvykle zapisují ve třetím roce bakalářského studia programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

1. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEVF129</td>
<td>Fyzika povrchů</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NEVF126</td>
<td>Vakuová fyzika</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NEVF122</td>
<td>Fyzika plazmatu I</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NEVF111</td>
<td>Základy počítačové fyziky I</td>
<td>6</td>
<td>2/2 ZK</td>
<td>—</td>
</tr>
<tr>
<td>NEVF127</td>
<td>Kybernetizace experimentu I</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NEVF161</td>
<td>Diplomový seminář FPP I</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NEVF162</td>
<td>Diplomový seminář FPP II</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NEVF131</td>
<td>Experimentální metody FPP I</td>
<td>7</td>
<td>0/5 ZK</td>
<td>—</td>
</tr>
<tr>
<td>NEVF132</td>
<td>Experimentální metody FPP II</td>
<td>7</td>
<td>—</td>
<td>0/5 ZK</td>
</tr>
<tr>
<td>NEVF138</td>
<td>Odborné soustředění I</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
</tbody>
</table>

Blok A

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEVP14</td>
<td>Fyzika tenkých vrstev I</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NEVP15</td>
<td>Adsorpace na povrchích látka</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NEVP16</td>
<td>Elektronové spektroskopie</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>Kód</td>
<td>Název</td>
<td>Kredity</td>
<td>ZS</td>
<td>LS</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>NEVF130</td>
<td>Elektronová difrakce</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blok B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEVF115</td>
<td>Elektronika pro fyziky</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NEVF120</td>
<td>Fyzika plazmatu II</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NEVF121</td>
<td>Plazma v kosmickém prostoru</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NEVF122</td>
<td>Modelování ve fyzice plazmatu</td>
<td>3</td>
<td>1/1 KZ</td>
<td></td>
</tr>
</tbody>
</table>

1 Posluchači zapisují zpravidla jeden z bloků A nebo B.

2. rok magisterského studia

Společné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEVF152</td>
<td>Diplomový seminář FPP III</td>
<td>1</td>
<td>0/1 Z</td>
<td></td>
</tr>
<tr>
<td>NEVF153</td>
<td>Diplomový seminář FPP IV</td>
<td>1</td>
<td>0/1 Z</td>
<td></td>
</tr>
<tr>
<td>NEVF154</td>
<td>Odborné soustředění II</td>
<td>2</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td></td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>0/10 Z</td>
<td></td>
</tr>
</tbody>
</table>

Blok A

1 Posluchači zapisují zpravidla jeden z bloků A nebo B.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEVF160</td>
<td>Řádkovací mikroskopie — STM, AFM</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NEVF161</td>
<td>Molekulová a iontová spektroskopie</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NEVF162</td>
<td>Moderní trendy ve fyzice povrchů</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NEVF163</td>
<td>Elektrochemie povrchů a rozhraní</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NEVF164</td>
<td>Pokročilé metody fyziky povrchů</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
</tbody>
</table>

Blok B

1 Posluchači zapisují zpravidla jeden z bloků A nebo B.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEVF167</td>
<td>Vysokofrekvenční elektrotechnika 2</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NEVF168</td>
<td>Laserová absorpční spektroskopie plazmatu 2</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NEVF169</td>
<td>Kybernetizace experimentu II</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
</tbody>
</table>

Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEVF170</td>
<td>Vlny v plazmatu</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NEVF171</td>
<td>Proseminář k přednášce Modelování ve fyzice plazmatu</td>
<td>3</td>
<td>0/2 KZ</td>
<td></td>
</tr>
<tr>
<td>NEVF172</td>
<td>Hmotnostní spektrometrie</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NEVF173</td>
<td>Programování v IDL — zpracování a vizualizace dat</td>
<td>3</td>
<td>1/1 KZ</td>
<td></td>
</tr>
<tr>
<td>NEVF174</td>
<td>Statistika a teorie informace</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NEVF175</td>
<td>Technologie vakuových materiálů</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
</tbody>
</table>

93
<table>
<thead>
<tr>
<th>Kód</th>
<th>Název Kurzu</th>
<th>Kredity</th>
<th>Sem.</th>
<th>Zk + Zk</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEVF160</td>
<td>Moderní počítačová fyzika I</td>
<td>5</td>
<td>2/1 KZ</td>
<td>—</td>
</tr>
<tr>
<td>NEVF165</td>
<td>Vybrané kapitoly z nanoelektroniky</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NEVF163</td>
<td>Fusion plasma</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NEVF107</td>
<td>C++ pro fyziky</td>
<td>3</td>
<td>—</td>
<td>1/1 KZ</td>
</tr>
<tr>
<td>NEVF106</td>
<td>Fyzika tenkých vrstev II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NEVF110</td>
<td>Vakuové měřící metody</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NEVF111</td>
<td>Fortran 90/95 pro fyziky</td>
<td>3</td>
<td>—</td>
<td>1/1 KZ</td>
</tr>
<tr>
<td>NEVF116</td>
<td>Aplikovaná elektronika</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NEVF124</td>
<td>Elektronová a iontová optika</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NEVF120</td>
<td>Vybrané partie z fyzikální chemie</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NEVF128</td>
<td>Základy počítačové fyziky II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NEVF127</td>
<td>Vakuové systémy</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NEVF129</td>
<td>Elementární procesy a reakce v plazmatu</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NEVF151</td>
<td>Fluktuace ve fyzikálních systémech</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NEVF161</td>
<td>Moderní počítačová fyzika II</td>
<td>5</td>
<td>—</td>
<td>2/1 KZ</td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného oboru
- splnění povinně volitelných předmětů zvoleného oboru v rozsahu alespoň 24 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

Student dostane jednu otázku z okruhů 1 až 3, jednu otázku z okruhů 4 a 5, a jednu otázku z okruhů 6 a 7 (odpovídající volbě tématu diplomové práce).

1. **Kvantová mechanika a elektronika**

2. **Termodynamika a statistická fyzika**

3. **Teorie pevných látek**

Krystalografie a struktura pevných látek (PL). Typy vazeb, struktura prvků a jednoduchých sloučení, rtg difrakce. Kmity krystalové mříže, optické a akustické fonony, interakce elektromagnetického záření s krystalovou mřížkou. Sommerfeldův model kovu,

4. Vakuová fyzika

5. Experimentální a počítačové metody

6. Fyzika plazmatu (pro zaměření Fyzika povrchů a rozhraní)

7. Fyzika tenkých vrstev a povrchů (pro zaměření Fyzika plazmatu a ionizovaných prostředí)

B. Užší zaměření

Student dostane otázku z části 1 nebo 2 odpovídající jeho zaměření.

1. Fyzika plazmatu a ionizovaných prostředí

Fyzika Mgr.

2. Fyzika povrchů a rozhraní

8. Biofyzika a chemická fyzika

Garantující pracoviště: Fyzikální ústav UK
Garant oboru: prof. RNDr. Vladimír Baumruk, DrSc.

Charakteristika studijního oboru:

Těžiště tohoto oboru leží na rozhraní fyziky, biologie a chemie. Výuka navazuje na základní fyzikální vzdělání, které prohlušuje v oblastech teoretické a experimentální fyziky důležitých pro popis a zkoumání molekul, biopolymerů, nadmolekulárních soustav a biologických objektů, a zároveň je doplňuje předměty pokrývajícími potřebné vybrané partie z chemie a biologie. Absolvent získá teoretické znalosti zejména z kvantové teorie, kvantové chemie, modelování molekul a molekulárních procesů, a dále znalosti experimentálních metod biofyziky a chemické fyziky, zejména optických a dalších spektroskopických metod, strukturní analýzy a zobrazovacích technik. Podle výběru povinné volitelných předmětů studijního plánu a diplomové práce se absolventům rovněž dostává vzdělání ve vybraných oblastech obecné fyziky, biologie, molekulární a buňčné biologie. Prostřednictvím vědeckých seminářů, diplomové práce, a tematicky zaměřených přednášek získávají studenti představu o současných problémech řešených v jednotlivých oborech a o metodách vědecké práce. Díky širokému okruhu znalostí mají absolventi možnost uplatnění ve výzkumných i aplikovaných oborech souvisejících s fyzikou, biologií, chemií, medicínou, materiálovým výzkumem, bio- a nano-technologiemi, farmacií apod.

Profil absolventa studijního oboru a cíle studia:

Cílem studia je, aby absolventi získali široké spektrum znalostí na rozhraní fyziky, chemie a biologie, měli hlubší přehled o svém oboru a byli schopni v něm tvořivě pracovat. Absolventi mají spolehlivý základ v kvantové fyzice, termodynamice a statistické fyzice, kvantové teorii molekul a molekulární spektroskopii. Mají praktické zkušenosti s experimentálními metodami biofyziky a chemické fyziky i s kvantově-chemickými
výpočty a molekulárně-dynamickými simulacemi. Jsou zběhlí ve sdělování odborných poznatků formou prezentací anebo psaných textů, a to též v anglickém jazyce. U mnoha absolventů se předpokládá nástup profesní dráhy vědeckého pracovníka. Nabyté obecné vzdělání ve fyzice spolu se znalostmi z fyzikální chemie a molekulární biologie dovoluje absolventům hledat uplatnění i v mezioborových týmech zabývajících se fyzikou, biologii, chemií, medicínou, materiálovým výzkumem, bio- a nanotechnologiemi či farmacií a všude tam, kde je požadováno abstraktní uvažování a komplexní přístup k řešení složitých problémů.

Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto oboru je získání základních znalostí na úrovni následujících předmětů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM110</td>
<td>Kvantová teorie I</td>
<td>9</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM035</td>
<td>Obecná chemie</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAF035</td>
<td>Numerické metody zpracování</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td></td>
<td>experimentálních dat</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tyto předměty se obvykle zapisují ve třetím roce bakalářského studia programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jiné ekvivalentní předměty neabsolvoval, měl by si je vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

Povinné a povinně volitelné předměty – skupina 1 (40 kreditů)

Studenti si volí jedno ze tří zaměření Biofyzika, Chemická fyzika a Teorie molekulárních systémů.

1. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM010</td>
<td>Bioorganická chemie</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM039</td>
<td>Kvantová teorie molekul</td>
<td>7</td>
<td>—</td>
<td>3/2 Z+Zk</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
</tbody>
</table>

Biofyzika

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRCA093</td>
<td>Rentgenová strukturní analýza biomolekul a makromolekul</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NRCA111</td>
<td>Metody optické spektroskopie v biofyzice</td>
<td>5</td>
<td>4/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NRCA092</td>
<td>Praktikum z experimentálních metod biofyziky a chemické fyziky I</td>
<td>7</td>
<td>0/5 KZ</td>
<td>—</td>
</tr>
<tr>
<td>NRCA102</td>
<td>Biochemie</td>
<td>4</td>
<td>—</td>
<td>3/0 Zk</td>
</tr>
<tr>
<td>NRCA112</td>
<td>Metody magnetické rezonance v biofyzice</td>
<td>4</td>
<td>—</td>
<td>3/0 Zk</td>
</tr>
<tr>
<td>NRCA103</td>
<td>Praktikum z experimentálních metod biofyziky a chemické fyziky II</td>
<td>7</td>
<td>—</td>
<td>0/5 KZ</td>
</tr>
<tr>
<td>Kód</td>
<td>Název</td>
<td>Kredity</td>
<td>ZS</td>
<td>LS</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>NBCM098</td>
<td>Rentgenová strukturní analýza biomolekul a makromolekul</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NBCM051</td>
<td>Teoretické základy molekulární spektroskopie</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NBCM080</td>
<td>Molekulární spektroskopie I</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NBCM097</td>
<td>Praktikum z experimentálních metod biofyziky a chemické fyziky I</td>
<td>7</td>
<td>0/5 KZ</td>
<td></td>
</tr>
<tr>
<td>NBCM141</td>
<td>Seminář chemické fyziky a optiky I</td>
<td>2</td>
<td>0/1 Z</td>
<td></td>
</tr>
<tr>
<td>NBCM087</td>
<td>Molekulární spektroskopie II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NBCM116</td>
<td>Biofyzika fotosyntézy</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NBCM110</td>
<td>Praktikum z experimentálních metod biofyziky a chemické fyziky II</td>
<td>7</td>
<td>—</td>
<td>0/5 KZ</td>
</tr>
<tr>
<td>NBCM162</td>
<td>Seminář chemické fyziky a optiky II</td>
<td>2</td>
<td>—</td>
<td>0/1 Z</td>
</tr>
</tbody>
</table>

Teorie molekulárních systémů

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM031</td>
<td>Teoretické základy molekulární spektroskopie</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NBCM111</td>
<td>Kvantová teorie II</td>
<td>7</td>
<td>—</td>
<td>3/2 Z+Zk</td>
</tr>
<tr>
<td>NBCM121</td>
<td>Ab-initio metody a teorie hustotního funkcionálu I</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NBCM122</td>
<td>Ab-initio metody a teorie hustotního funkcionálu II</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NBCM055</td>
<td>Molekulární simulace v chemické fyzice</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NBCM110</td>
<td>Výpočetní experimenty v teorii molekul I</td>
<td>6</td>
<td>0/4 KZ</td>
<td></td>
</tr>
<tr>
<td>NBCM027</td>
<td>Symetrie molekul</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
</tbody>
</table>

2. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td></td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Biofyzika

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM105</td>
<td>Molekulární a buněčná biologie pro biofyziky</td>
<td>4</td>
<td>3/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NBCM151</td>
<td>Seminář z biofyziky I</td>
<td>3</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>NBCM152</td>
<td>Seminář z biofyziky II</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
</tbody>
</table>

Chemická fyzika

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM163</td>
<td>Seminář chemické fyziky a optiky III</td>
<td>2</td>
<td>0/1 Z</td>
<td></td>
</tr>
<tr>
<td>NBCM166</td>
<td>Seminář chemické fyziky a optiky IV</td>
<td>2</td>
<td>—</td>
<td>0/1 Z</td>
</tr>
</tbody>
</table>
Biofyzika a chemická fyzika

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM044</td>
<td>Seminář optické spektroskopie vysokého rozlišení</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
</tbody>
</table>

Teorie molekulárních systémů

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM115</td>
<td>Seminář chemické fyziky a optiky III</td>
<td>2</td>
<td>0/1 Z</td>
<td>—</td>
</tr>
<tr>
<td>NBCM162</td>
<td>Seminář chemické fyziky a optiky IV</td>
<td>2</td>
<td>—</td>
<td>0/1 Z</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty – skupina 2 (26 kreditů)

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM114</td>
<td>Optická mikroskopie a vybrané biofyzikální zobrazovací techniky</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NBCM088</td>
<td>Biofyzika fotosyntézy</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NOOE012</td>
<td>Rozptylové metody v optické spektroskopii</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NEPL173</td>
<td>Kvantový popis NMR</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NBCM014</td>
<td>Transformace a přenos energie v biosystémech</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM016</td>
<td>Struktura, dynamika a funkce biologických membrán</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM029</td>
<td>Význam a funkce kovových iontů v biologických systémech</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NEPL185</td>
<td>Pokročilá NMR spektroskopie vysokého rozlišení</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM347</td>
<td>Molekulární dynamika: základy</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM348</td>
<td>Molekulární dynamika: pokročilá témata</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NOOE014</td>
<td>Exkurze</td>
<td>2</td>
<td>—</td>
<td>0/1 Z</td>
</tr>
<tr>
<td>NOOE012</td>
<td>Seminář</td>
<td>2</td>
<td>—</td>
<td>0/1 Z</td>
</tr>
</tbody>
</table>

Chemická fyzika

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM026</td>
<td>Experimentální technika v molekulární spektroskopii</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NBCM055</td>
<td>Molekulární simulace v chemické fyzice</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM066</td>
<td>Fyzikální základy fotosyntézy</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM044</td>
<td>Seminář optické spektroskopie vysokého rozlišení</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NBCM101</td>
<td>Detekce a spektroskopie jednotlivých molekul</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM113</td>
<td>Vědecká fotografie a příbuzné zobrazovací techniky</td>
<td>3</td>
<td>1/1 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM102</td>
<td>Základy klasické radiometrie a fotometrie</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
</tbody>
</table>
Fyzika Mgr.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM346</td>
<td>Molekulární dynamika: základy</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM347</td>
<td>Molekulární dynamika: pokročilá téma</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NBCM027</td>
<td>Symetrie molekul</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
</tbody>
</table>

Teorie molekulárních systémů

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCM051</td>
<td>Molekulární spektroskopie I</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM052</td>
<td>Metody molekulové dynamiky a Monte Carlo</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM099</td>
<td>Rentgenová strukturní analýza biomolekul a makromolekul</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NFPL001</td>
<td>Nerovnovázná statistická fyzika a termodynamika</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM116</td>
<td>Praktická cvičení z kvantové teorie molekul II</td>
<td>4</td>
<td>0/3 Z</td>
<td>—</td>
</tr>
<tr>
<td>NBCM086</td>
<td>Molekulární spektroskopie II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NBCM125</td>
<td>Výpočetní experimenty v teorii molekul II</td>
<td>6</td>
<td>—</td>
<td>0/4 KZ</td>
</tr>
<tr>
<td>NBCM098</td>
<td>Praktická cvičení z kvantové teorie molekul I</td>
<td>4</td>
<td>—</td>
<td>0/3 Z</td>
</tr>
<tr>
<td>NOFY036</td>
<td>Termodynamika a statistická fyzika</td>
<td>6</td>
<td>3/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM018</td>
<td>Počítačové modelování biomolekul</td>
<td>4</td>
<td>1/2 Z+Zk</td>
<td>1/2 Z+Zk</td>
</tr>
<tr>
<td>NBCM019</td>
<td>Turnusová praktika z biochemie</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NFPL003</td>
<td>Syntetické problémy kvantové teorie</td>
<td>3</td>
<td>—</td>
<td>2/0 Z</td>
</tr>
</tbody>
</table>

Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOFY036</td>
<td>Termodynamika a statistická fyzika</td>
<td>6</td>
<td>3/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NBCM018</td>
<td>Počítačové modelování biomolekul</td>
<td>4</td>
<td>1/2 Z+Zk</td>
<td>1/2 Z+Zk</td>
</tr>
<tr>
<td>NBCM019</td>
<td>Turnusová praktika z biochemie</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NFPL003</td>
<td>Syntetické problémy kvantové teorie</td>
<td>3</td>
<td>—</td>
<td>2/0 Z</td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného oboru
- získání alespoň 40 kreditů z povinně volitelných předmětů oboru ze skupiny 1
- získání alespoň 26 kreditů z povinně volitelných předmětů oboru ze skupiny 2
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

1. **Pokročilá kvantová mechanika**

a pevných látek. Typy vazeb v molekulách a kondenzovaných systémech. Molekula vol-
vaná a spontánní emise. Výběrová pravidla. Doby života kvantových stavů. Šířka a tvar spektrálních čáry.

2. **Kvantová teorie molekul**

Typy vazeb. Bornova–Oppenheimerova a adiabatická aproximace. Vibrační a ro-

3. **Termodynamika a statistická fyzika molekulárních soustav**

Termodynamická rovnováha, stavové veličiny, hlavní termodynamické věty a jejich důsledky. Termodynamické potenciály, podmínky rovnováhy a stability, fázové přechody. Popis nerovnovázných procesů. Statistický popis stavu, distribuční funkce a ma-

4. **Základy molekulární fyziky**

Typy základních intra- a intermolekulárních interakcí. Konformace molekul. Fázové stavy a přechody u molekulárních systémů.

B. Užší zaměření

Student si volí jeden tematický okruh otázek odpovídající jeho zaměření.

Biofyzika

1. **Experimentální metody v biofyzice**

Difrakce rentgenového záření, elektronů a neutronů. Principy základních difrakč-
ích metod. Symetrie a struktura krystalů a jejich určení z difrakčního obrazu.

Mnohoatomová molekula, její stacionární stav a přechody mezi nimi. Teoretické základy optické spektroskopie. Projevy mezimolekulárních interakcí v optických spek-

Gyromagnetická částice, jejz magnetické rezonance. Elektrické a magnetické mo-
menty atomových jader, energie v elektrickém a magnetickém poli. Jaderný paramag-
netismus, relaxační procesy. NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi—spinový hamiltonián, typy interakcí, projevy ve spektrech. Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev. Jednodimenzionální a dvoudimenzi-
2. Biochemie a molekulární biofyzika

Buňka—struktura bakteriálních a eukaryotických buněk, buněčné dělení, buněčný cyklus. Molekulární genetika—struktura a složení nukleových kyselin a proteinů. Uspořádání DNA v buňkách, struktura a funkce chromosomů, chromatinu a nukleosomů, funkce centromer a telomer, histony a jejich modifikace, epigenetická dědičnost, příomy. Zpracování genetické informace (centrální dogma molekulární biologie), replikace DNA, replikace chromosomů a replikace konců lineárních chromosomů, transkripce a úpravy RNA, sestřihové mechanismy, ribozymy, RNA svět, prokaryotická a eukaryotická translace, chaperony, degradace proteinů. Základní principy regulace genové exprese, aktivátory a represory transkripce, regulace prokaryotické a eukaryotické iniciace transkripce, atenuace, změny ve struktuře chromatinu a umlčování genů. Mutace a mutageneze, molekulární podstata mutací, mutagensy, poškození DNA a reparace poškozené DNA, oprava chyb vzniklých při replikaci DNA. Metody studia DNA (sekvenace) a genové exprese (na úrovni mRNA i proteinu), genové inženýrství (rekombinantní DNA in vitro, transgenoe organizmů), fluorescenční proteinů.

Chemická fyzika

1. Experimentální metody chemické fyziky

2. Struktura kondenzovaných soustav a spektroskopické metody

Teorie molekulárních systémů

1. **Molekulární simulace v chemické fyzice**

2. **Ab initio výpočty v chemii a biochemii**

3. **Základy molekulární spektroskopie**

9. **Jaderná a subjaderná fyzika**

Garantující pracoviště: Ústav částicové a jaderné fyziky

Garant oboru: prof. RNDr. Pavel Cejnar, Dr., DSc.

Charakteristika studijního oboru:
Subjaderná fyzika (fyzika vysokých energií, částicová fyzika) zkoumá strukturu hmoty na úrovni elementárních částic a jejich fundamentálních interakcí. Jaderná fyzika ji doplňuje výzkumem systémů silně interagujících částic, především atomových jader. Studium tohoto oboru je založeno na výuce teoretické a experimentální jaderné a částicové fyziky, podepřené detailním pochopením kvantové mechaniky, kvantové teorie pole a fenomenologie jaderných a subjaderných procesů. Důraz je kladen na zvládnutí relevantních teoretických výpočetních postupů a na osvojení si metod získávání a zpracování experimentálních dat, včetně efektivního ovládání výpočetní techniky. Volbou povinně volitelných předmětů a tématu diplomové práce student získá hlubší vzdělání ve vybrané oblasti a volí tak příklon k teorii nebo experimentu.

Profil absolventa studijního oboru a cíle studia:
Cílem studia tohoto oboru je získat detailní a ucelené vzdělání v teoretické a experimentální částicové fyzice a fyzice atomového jádra, včetně základů aplikované jaderné fyziky. V oblasti, na kterou se studenti zaměří výběrem diplomové práce, jsou během studia dověděni na práh samostatného vědeckého výzkumu.

Absolventi do hloubky rozumějí relativistické a nerealistické kvantové teorie a umějí ji používat při analýzách interakcí elementárních částic a při popisu struktury atomového jádra. Ovládají různé metody měření v částicové a jaderné fyzice, principy urychlovačů a detektorů, mají praxi v provádění komplexních experimentů a jsou schopni zapojit se do jejich navrhování. Jsou zběhlí v práci s výpočetní technikou, zejména ve jejích pokročilých aplikacích, při modelování jaderných a subjaderných procesů, při simulaci interakcí částic s hmotou a při zpracování experimentálních dat. Nacházejí uplatnění jak v základním, tak v relevantním aplikovaném výzkumu a jsou připraveni začlenit se do mezinárodních vědeckých týmů.

Doporučený průběh studia
Předpokladem úspěšného magisterského studia tohoto oboru je získání základních znalostí na úrovni následujících předmětů:
1. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSF064</td>
<td>Fyzika atomového jádra</td>
<td>7</td>
<td>3/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NJSF065</td>
<td>Fyzika elementárních částic</td>
<td>7</td>
<td>3/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NJSF066</td>
<td>Experimentální a aplikovaná jaderná fyzika</td>
<td>6</td>
<td>4/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NJSF067</td>
<td>Kvantová teorie pole I</td>
<td>9</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NJSF068</td>
<td>Mikroskopická teorie jádra</td>
<td>6</td>
<td>4/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NJSF069</td>
<td>Základy teorie elektroslabých interakcí</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NJSF070</td>
<td>Kvarky, partony a kvantová chromodynamika</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
</tbody>
</table>

1. Místo této přednášky lze zapsat NJSF145 (Kvantová teorie pole I).

2. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSF191</td>
<td>Seminář částicové a jaderné fyziky III</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NJSF192</td>
<td>Seminář částicové a jaderné fyziky IV</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSF069</td>
<td>Kvantová teorie pole II</td>
<td>9</td>
<td>—</td>
<td>4/2 Z+Zk</td>
</tr>
<tr>
<td>NJSF074</td>
<td>Kvantová teorie pole III</td>
<td>9</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
</tbody>
</table>
Jaderná a subjaderná fyzika

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSF139</td>
<td>Částicová fyzika za standardním modelem I</td>
</tr>
<tr>
<td>NJSF140</td>
<td>Částicová fyzika za standardním modelem II</td>
</tr>
<tr>
<td>NJSF082</td>
<td>Vybrané partie teorie kvantovaných polí I</td>
</tr>
<tr>
<td>NJSF083</td>
<td>Vybrané partie teorie kvantovaných polí II</td>
</tr>
<tr>
<td>NJSF084</td>
<td>Částicová fyzika za standardním modelem II</td>
</tr>
<tr>
<td>NJSF085</td>
<td>Chirální symetrie silných interakcí</td>
</tr>
<tr>
<td>NJSF086</td>
<td>Kvantová teorie pole při konečné teplotě</td>
</tr>
<tr>
<td>NJSF087</td>
<td>Pokročilé koncepce symetrie</td>
</tr>
<tr>
<td>NJSF088</td>
<td>Teorie grup a algebry v částicové fyzice</td>
</tr>
</tbody>
</table>

Teorie mnohočásticových systémů

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSF139</td>
<td>Teorie jaderných reakcí</td>
</tr>
<tr>
<td>NJSF140</td>
<td>Statistická jaderná fyzika</td>
</tr>
<tr>
<td>NJSF141</td>
<td>Kolektivní dynamika mnohočásticových systémů</td>
</tr>
<tr>
<td>NJSF142</td>
<td>Teorie nanoskopických systémů I</td>
</tr>
<tr>
<td>NJSF143</td>
<td>Teorie nanoskopických systémů II</td>
</tr>
<tr>
<td>NJSF144</td>
<td>Klasický a kvantový chaos</td>
</tr>
<tr>
<td>NJSF145</td>
<td>Aktuální problémy jaderné fyziky</td>
</tr>
</tbody>
</table>

Experimentální částicová fyzika

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSF073</td>
<td>Experimentální prověrka standardního modelu</td>
</tr>
<tr>
<td>NJSF119</td>
<td>Silná interakce při vysokých energiích</td>
</tr>
<tr>
<td>NJSF102</td>
<td>Jaderná astrofyzika</td>
</tr>
<tr>
<td>NJSF130</td>
<td>Kosmické záření</td>
</tr>
<tr>
<td>NJSF131</td>
<td>Difrakce v částicové fyzice</td>
</tr>
</tbody>
</table>

Experimentální metody, zpracování dat, aplikace

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSF104</td>
<td>Urychlovače nabitých částic</td>
</tr>
<tr>
<td>NJSF105</td>
<td>Polovodičové detektory v jaderné a subjaderné fyzice.</td>
</tr>
<tr>
<td>NJSF019</td>
<td>Software a zpracování dat ve fyzice částic I</td>
</tr>
<tr>
<td>NJSF106</td>
<td>Software a zpracování dat ve fyzice částic II</td>
</tr>
<tr>
<td>NJSF107</td>
<td>Zpracování experimentálních dat</td>
</tr>
<tr>
<td>NJSF108</td>
<td>Neuronové sítě v částicové fyzice</td>
</tr>
<tr>
<td>NJSF010</td>
<td>Jaderné analytické metody</td>
</tr>
<tr>
<td>NJSF011</td>
<td>Biologické účinky ionizujícího záření</td>
</tr>
</tbody>
</table>
Další povinně volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSF091</td>
<td>Seminář částicové a jaderné fyziky I</td>
<td>3</td>
<td>0/2</td>
<td>Z</td>
</tr>
<tr>
<td>NJSF092</td>
<td>Seminář částicové a jaderné fyziky II</td>
<td>3</td>
<td>—</td>
<td>0/2</td>
</tr>
</tbody>
</table>

1. Místo této přednášky lze zapsat NJSF146 (Kvantová teorie pole II).

Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSF143</td>
<td>Statistické metody ve fyzice vysokých energií</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NJSF071</td>
<td>Úvod do supersymetrie</td>
<td>4</td>
<td>2/1</td>
<td>Zk</td>
</tr>
<tr>
<td>NJSF074</td>
<td>Vybrané partie z teorie superstrun</td>
<td>4</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td>NJSF023</td>
<td>Elektronika pro jaderné fyziky</td>
<td>4</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td>NJSF038</td>
<td>Matematické metody kvantové teorie I</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NJSF039</td>
<td>Matematické metody kvantové teorie II</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NJSF045</td>
<td>Jaderné reakce s těžkými ionty</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NJSF046</td>
<td>Extrémní stavy hmoty</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NJSF127</td>
<td>Kalibrační teorie</td>
<td>5</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NJSF137</td>
<td>Scattering methods for nuclear and condensed matter research</td>
<td>4</td>
<td>—</td>
<td>3/0</td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného oboru
- splnění povinně volitelných předmětů zvoleného oboru v rozsahu alespoň 25 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

Požadavky k ústní části státní závěrečné zkoušky

Student dostane tři otázky z následujících tří tematických okruhů A, B, C (z každého okruhu právě jednu).

A. Kvantová teorie

1. Formalismus kvantové teorie

2. Evoluce kvantového systému

3. Symetrie a zákony zachování v kvantové mechanice
4. **Poruchový počet v kvantové mechanice.**
Stacionární poruchová teorie pro nedegenerované a degenerované spektrum. Ne-stacionární poruchová metoda, skoková a periodická porucha, Fermiho pravidlo.

5. **Moment hybnosti v kvantové mechanice**
Kvantování momentu hybnosti. Skládání 2 či více momentů hybnosti. Tenzorové operátory, vyběrová pravidla.

6. **Teorie rozptýlu**

7. **Systémy nerozlišitelných částic**

8. **Rovnice relativistické kvantové mechaniky pro volnou částici se spinem 0, 1/2 a 1**

9. **Diracova rovnice pro částici v elektromagnetickém poli**
Přechod k Pauliho rovnici a spínový magnetický moment. Atom vodíkového typu a jemná struktura hladin energie.

10. **Kvantování volných polí a jejich částicová interpretace**

11. **Interakce polí, poruchový rozvoj S-matice a Feynmanovy diagramy**

12. **Základy kvantové elektrodynamiky**

B. Fyzika elementárních částic

1. **Klasifikace elementárních částic**

2. **Vlastnosti hadronů a jejich měření**

3. **Vlastnosti leptónů**

4. **Metody měření a identifikace částic v experimentech.**
Měření energie, hybnosti a doby letu, čerenkovské a přechodové záření, invariantní hmota produktů rozpadu. Příklady použití detekčních technik při objevení elementárních částic.
5. **Experimenty na urychlovačích částic**
 Lineární a kruhové urychlovače částic, vstřícné svazky, luminozita. Současné urychlovače. Produkce částic v hadronových a leptonových srážkách.

6. **Pojmové základy standardního modelu elektroslabých interakcí**

7. **Typy interakcí částic ve standardním modelu elektroslabých interakcí**
 Interakce vektorových bosonů, interakce Higgsova bosonu, neutrální a nabité proudy. Objev vektorových bosonů W a Z, objev Higgsova bosonu.

8. **Směšování v kvarkovém sektoru standardního modelu**
 Generování hmot prostřednictvím yukawovských interakcí, Cabibbo-Kobayashi-Maskawova matice, narušení CP. Objev kvarků c, b a t.

9. **Systémy neutrálních mezonů**
 Oscilace a regenerace. Přímé a nepřímé narušení CP a jejich projevy.

10. **Struktura nukleonu a partonový model**
 Pružný rozptyl elektronu na protonu a formfaktory. Hluboce nepružný rozptyl, strukturní funkce, Bjorkenovo škálovaní. Formulace partonového modelu a pojem partonové distribuční funkce.

11. **Aplikace partonového modelu**

12. **Kvantová chromodynamika**
 Lagrangian QCD a princip kalibrační invariance. Běžící vazbová konstanta, asymptotická volnost, uvěznění barvy. Popis kvarkonií. Infračervené a kolineární singularity, jety, evoluční rovnice pro partonové distribuční funkce.

C. Jaderná fyzika

1. **Charakteristiky jader a jejich měření**

2. **Rozpad jader a radioaktivita**
 Rozpad beta, spektrum elektronu/pozitronu, výběrová pravidla, záchyt elektronu. Rozpad alfa, rozpadové řady. Rozpad gama, základy teorie elektromagnetických přechodů, typy a multipolarity, výběrová pravidla.

3. **Nukleon-nukleonové interakce**
 Fenomenologické a mikroskopické nukleon-nukleonové potenciály, principy symetrie, izospin, výměny mezonů a jejich kvarková interpretace. Efektivní interakce v jaderním prostředí. Deuteron.

4. **Střední pole a jednočásticové pohyby v jádřech**

5. **Párování nukleonů a jeho důsledky**
6. **Kolektivní pohyby jader**
Rotační a vibrační spektra jader a jejich fenomenologický a mikroskopický popis. Gigantické rezonance. Štěpení jader.

7. **Jaderné reakce a vysoce excitované stavy**
Přímé reakce a reakce přes složené jádro, příklady a charakteristické vlastnosti, základy teoretického popisu. Produkce excitovaných stavů a statistické modelování jejich rozpadu, yrst linie.

8. **Průchod ionizujícího záření prostředím**
Procesy při průchodu těžkých a lehkých nabitých částic látkou. Interakce záření gama s látkou. Průchod neutronů.

9. **Principy detekce jaderného záření**
Spektrometrie nabitých a neutrálních částic. Základní typy používaných detektorů a jejich charakteristiky.

10. **Využití jaderné fyziky k materiálovým analýzám a datování**

11. **Aplikace jaderné fyziky v medicíně**
Zobrazování pomocí jaderného záření, funkční tomografie. Radioterapie a hadrová terapie.

12. **Jaderná energie**

10. **Matematické a počítačové modelování ve fyzice**

Garantující pracoviště: Ústav teoretické fyziky
Garant oboru: doc. RNDr. Martin Čížek, PhD.

Charakteristika studijního oboru:
Studijní obor Matematické a počítačové modelování ve fyzice je mezioborovým studiem, které spojuje matematiku a fyziku. Ve společném základu si studenti prohledávají znalosti z moderních partií matematiky s důrazem na diferenciální rovnice a numerické metody. V oblasti fyzikálních disciplín si vyberou jeden směr užšího zaměření, ve kterém získají hlubší znalosti o jednotlivých částech vědy. Fyzikální předměty jsou přednášeny odborníky z řad fyziků, matematické předměty pak podávány specialisty z řad matematiků. Studijní obor je svou náplní obdobný oboru "Matematické modelování ve fyzice a technice" studijního programu Matematika, liší se ale tím, že absolventi bakalářského studia vstupují do magisterského studia s hlubším základem v fyzice a naopak si více doplňují svůj matematický rozhled. Znalosti z fyziky si pak prohledávají především v jednom zvoleném směru užšího zaměření.

Profil absolventa studijního oboru a cíle studia:
Absolvent oboru má dobrý přehled v matematické analýze parciálních diferenciálních rovnic, v funkcionální analýze a v numerických metodách, a to jak pro problémy modelování kontinua, tak pro diskretní systémy a je připraven, aby řešil otázky okamžitě pochopil studium specializovaných prací. Absolvent si umí klást otázky ohledně fyzikální podstaty přírodních jevů a umí navrhnout a vybrat vhodný matematický model, provést jeho matematickou analýzu a následně za použití odpovídajících metod provést numerické simulace. Je schopen posoudit kvalitu výsledných simulací, a to jak z hlediska...
aplikovatelnosti zvoleného matematického modelu na daný jev, tak z hlediska analýzy chyb vzniklých při numerickém řešení matematického modelu. Absolvent je seznámen s konkrétní aplikací matematických a numerických modelů ve zvolené oblasti moderní fyziky, dle užšího zaměření. Je připraven pracovat v mezioborových týmech a dokáže formulovat aplikačně zajímavé otázky ve formě přístupné rigoróznímu matematickému zkoumání a umí naopak použít abstraktní matematické výsledky ke studiu praktických problémů. Absolventi oboru jsou připraveni se uplatnit při řešení matematických a numerických modelů fyzikálních systémů, jak v akademické tak i v komerční sféře u nás i v zahraničí.

Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto oboru je získání základních znalostí na úrovni následujících předmětů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTMF066</td>
<td>Kvantová mechanika I</td>
<td>9</td>
<td>4/2 Z+Zk —</td>
<td></td>
</tr>
<tr>
<td>NMNM201</td>
<td>Základy numerické matematiky</td>
<td>8</td>
<td>4/2 Z+Zk —</td>
<td></td>
</tr>
<tr>
<td>NMMA334</td>
<td>Úvod do parciálních diferenciálních rovnic</td>
<td>10</td>
<td>—</td>
<td>4/4 Z+Zk</td>
</tr>
</tbody>
</table>

1 Pro zájemce o zaměření Mnohočásticové systémy, Kvantové systémy a Částicová fyzika. Místo této přednášky lze také zapsat NJSF094 (Kvantová mechanika I) nebo NBCM110 (Kvantová teorie I).

Tyto předměty se obvykle zapisují ve třetím roce bakalářského studia programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jiné ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce nadvazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

1. rok magisterského studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMA931</td>
<td>Úvod do funkcionální analýzy</td>
<td>8</td>
<td>4/2 Z+Zk —</td>
<td></td>
</tr>
<tr>
<td>NMMA405</td>
<td>Parciální diferenciální rovnice 1</td>
<td>6</td>
<td>3/1 Z+Zk —</td>
<td></td>
</tr>
<tr>
<td>NMMA406</td>
<td>Parciální diferenciální rovnice 2</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NMNV405</td>
<td>Maticové iterační metody 1</td>
<td>6</td>
<td>4/0 Zk —</td>
<td></td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>0/4 Z</td>
<td></td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td></td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>
Povinně volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMVO401</td>
<td>Mechanika kontinua</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMVO541</td>
<td>Teorie směší</td>
<td>4</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMMO410</td>
<td>Termodynamika a mechanika nenevtonovských tekutin</td>
<td>5</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td>NMMO411</td>
<td>Termodynamika a mechanika pevných látek</td>
<td>5</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td>NMMO412</td>
<td>Počítačové řešení úloh fyziky kontinua</td>
<td>5</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NMVO510</td>
<td>Nelineární funkcionální analýza</td>
<td>5</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NMVO511</td>
<td>Numerické řešení evolučních rovnic</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NMVO512</td>
<td>Řešení nelineárních algebraických rovnic</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMVO513</td>
<td>Počítačové modelování úloh fyziky kontinua</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMVO514</td>
<td>Počítačové modelování úloh fyziky plazmatu I</td>
<td>3</td>
<td>—</td>
<td>1/1</td>
</tr>
<tr>
<td>NMVO515</td>
<td>Počítačové modelování úloh fyziky plazmatu II</td>
<td>4</td>
<td>—</td>
<td>1/2</td>
</tr>
<tr>
<td>NMVO516</td>
<td>Počítačové modelování biomolekul</td>
<td>7</td>
<td>—</td>
<td>3/2</td>
</tr>
<tr>
<td>NMVO517</td>
<td>Termodynamika a statistická fyzika II</td>
<td>7</td>
<td>—</td>
<td>3/2</td>
</tr>
<tr>
<td>NMVO518</td>
<td>Kvantová teorie molekul</td>
<td>7</td>
<td>—</td>
<td>3/2</td>
</tr>
<tr>
<td>NMVO519</td>
<td>Kvantová teorie rozptylu</td>
<td>6</td>
<td>3/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMVO520</td>
<td>Teorie srážek atomů a molekul</td>
<td>6</td>
<td>—</td>
<td>3/1</td>
</tr>
<tr>
<td>NMVO521</td>
<td>Teorie grup a její aplikace ve fyzice</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMVO522</td>
<td>Kvantová mechanika II</td>
<td>9</td>
<td>—</td>
<td>4/2</td>
</tr>
<tr>
<td>NMVO523</td>
<td>Obecná teorie relativity</td>
<td>4</td>
<td>—</td>
<td>3/0</td>
</tr>
<tr>
<td>NMVO524</td>
<td>Geometrické metody teoretické fyziky I</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMVO525</td>
<td>Relativistická fyzika I</td>
<td>9</td>
<td>4/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMVO526</td>
<td>Základy numerického studia prostoročasů</td>
<td>4</td>
<td>3/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMVO527</td>
<td>Geometrické metody teoretické fyziky II</td>
<td>4</td>
<td>—</td>
<td>3/0</td>
</tr>
<tr>
<td>NMAG335</td>
<td>Úvod do analýzy na varietách</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>
Fyzika Mgr.

Částicová fyzika

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSF105</td>
<td>Fyzika elementárních částic</td>
<td>7</td>
<td>3/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NJSF085</td>
<td>Základy teorie elektroslabých interakcí</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NJSF106</td>
<td>Kvakry, partony a kvantová chromodynamika</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NJSF086</td>
<td>Částice a pole I</td>
<td>5</td>
<td>2/2 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NJSF082</td>
<td>Vybrané partie teorie kvantovaných polí I</td>
<td>4</td>
<td>3/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NJSF081</td>
<td>Software a zpracování dat ve fyzice částic I</td>
<td>3</td>
<td>—</td>
<td>1/1 Zk</td>
</tr>
<tr>
<td>NJSF088</td>
<td>Software a zpracování dat ve fyzice částic II</td>
<td>4</td>
<td>2/1 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NJSF138</td>
<td>Neuronové sítě v částicové fyzice</td>
<td>4</td>
<td>2/1 Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

Další povinně volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMMA401F</td>
<td>Funkcionální analýza I</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA412</td>
<td>Obyčejné diferenciální rovnice 2</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMMA551</td>
<td>Parciální diferenciální rovnice 3</td>
<td>4</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NJSF132</td>
<td>Teorie nanoskopických systémů I</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMV410</td>
<td>Moderní počítačová fyzika I</td>
<td>5</td>
<td>2/1 KZ</td>
<td>—</td>
</tr>
<tr>
<td>NPEV161</td>
<td>Moderní počítačová fyzika II</td>
<td>5</td>
<td>—</td>
<td>2/1 KZ</td>
</tr>
<tr>
<td>NJSF133</td>
<td>Statistické metody ve fyzice vysokých energií</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

1 Místo této přednášky lze zapsat NJSF095 (Kvantová mechanika II) nebo NBCM111 (Kvantová teorie II).

Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMNV532</td>
<td>Paralelní maticové výpočty</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMMA014</td>
<td>Seminář z mechaniky kontinua</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMMA054</td>
<td>Vybrané problémy matematického modelování</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
</tbody>
</table>

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného oboru
- splnění povinně volitelných předmětů zvoleného oboru v rozsahu alespoň 30 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.
Požadavky k ústní části státní závěrečné zkoušky

A. Společné požadavky

1. Parciální diferenciální rovnice

Sobolevovy prostory

Slabá derivace, definice a základní vlastnosti Sobolevových prostorů $W^{k,p}$ — reflexivita, separabilita, hustota hladkých funkcí, operátor prodloužení pro $W^{1,p}$-funcky a lipschitzovskou hranici. Věty o spojitěm a kompaktním vnoření Sobolevových prostorů do Lebesgueových a Hölderových prostorů. Zavedení stop pro funkce ze Sobolevových prostorů, věta o stopách, inverzní věta o stopách.

Slabá řešení pro lineární eliptické rovnice na omezené oblasti

Slabá řešení pro nelineární eliptické rovnice na omezené oblasti

Úvod do variačního počtu, základní věta variačního počtu, souvislost s konvexitou. Existence a jednoznačnost řešení nelineárních úloh pomocí věty o pevném bodu (nelineární Lax-Milgram pro dvojkovou strukturu). Existence řešení pomocí Galerkinovy metody a Mintyho metody — monotónní operátor a semilineární člen.

Lineární parabolické rovnice 2. řádu

Bochnerovy prostory a jejich základní vlastnosti, Gelfandova trojice, Aubin-Lionsova věta. Slabá formulace, nabývání počátečních podmínek, existence řešení pomocí Galerkinovy aproximace, jednoznačnost a regularita řešení (časová a prostorová), zhlazující vlastnost, princip maxima.

Lineární hyperbolické rovnice 2. řádu

Slabá formulace hyperbolického problému, nabývání počátečních podmínek, existence řešení pomocí Galerkinovy aproximace, jednoznačnost, regularita řešení (časová a prostorová), konečná rychlost šíření signálu.

2. Numerická matematika

Metoda konečných prvků pro řešení eliptických rovnic

Metody pro řešení soustav algebraických rovnic a výpočet vlastních čísel

Spektrální rozklad operátorů a matic. Invariantní podprostory a spektrální informace, normalita. Srovnání přímých a iteračních metod pro řešení lineárních algebraických soustav. Projekční proces a problém momentů. Popis konvergence iteračních metod. Souvislost mezi iteračními metodami pro řešení soustav rovnice a metodami pro výpočet vlastních čísel. Srovnání metod pro řešení lineárních a nelineárních soustav algebraických rovnic. Numerická stabilita výpočtů a popis algebraické chyby v souvislosti s řešením problémů matematického modelování.

3. Funkcionální analýza

Hilbertovy a Banachovy prostory

Spojitá lineární zobrazení

Definice, základní vlastnosti, norma, prostor lineárních zobrazení, adjungované zobrazení. Základní vlastnosti spektra a spektrálního poloměru, Gelfandova-Mazurova věta. Kompaktní operátory, symetrický operátor, samoadjungovaný operátor, uzávěr operátoru, uzavřený operátor, definice a vlastnosti adjungovaného operátoru. Vlastní číslo a vlastní funkce symetrických eliptických operátorů.

Věty o pevných bodech

Banachova věta, Brouwerova věta, Schauderova věta.

Integrální transformace a základy teorie distribucí

Definice Fourierovy transformace na L^1 a její základní vlastnosti, věta o inverzi, Fourierova transformace konvoluce a derivace, Plancherelova věta. Prostor testovacích funkcí a konvergence v něm, definice distribuce, základní příklady, charakterizace distribuce, řád distribuce, operace s distribucemi (derivování, násobení funkcí), Schwarzův prostor a temperované distribuce, Fourierova transformace funkcí ze Schwarzova prostoru a temperovaných distribucí, její základní vlastnosti. Fourierova transformace na L^2.

B. Užší zaměření

Student si volí jeden z následujících pěti tematických okruhů odpovídající jeho zaměření.

1. Mechanika kontinua

Kinematika kontinua

Dynamika kontinua

Matematické a počítačové modelování ve fyzice

Jednoduché konstitutivní vztahy

Stlačitelná a nestlačitelná Navier-Stokes tekutina, linearizovaná pružnost, okrajové podmínky. Geometrická linearizace.

Nenewtonské tekutiny

Pevné látky

Princip objektivity. Elastické materiály v konečné pružnosti, linearizovaná teorie, nestlačitelné látky v konečné pružnosti i linearizované teorii, chování modelu vzhledem k determinantu gradientu deformace, Piola-Kirchhoffův tenzor napětí v případě hyperelastického materiálu, materiálové modely v konečné pružnosti. Reologické modely, Kelvin-Voigtův materiál, Maxwellův materiál, viskozní látky s vedením tepla, termoelastický materiál, adiabatický materiál. Clausius-Duhemova nerovnost a její důsledky.

2. Mnohočásticové systémy

Základy statistické fyziky

Základy simulace fyzikálních systémů metodou Monte Carlo

Základy molekulární dynamiky

Určování termodynamických a strukturních vlastností ze simulací.

Výpočet měrného tepla a susceptibilních funkcí. Radiální distribuční funkce.

Pokročilé metody simulace mnoha částic

Základy modelování fyziky plazmatu

Charakteristika a typy plazmatu. Kvazineutralita plazmatu, Debyeova stínící vzdálenost. Teoretický popis plazmatu, kinetický popis, Boltzmannova rovnice, zákony zachování, magnetohydrodynamický popis.
3. **Kvantové systémy**

Základy kvantové mechaniky

Řešitelné systémy

Částice v potenciálové jámě, lineární harmonický oscilátor, coulombické pole.

Moment hybnosti a spin

Definice momentu hybnosti, spektrum a vlastní funkce. Skládání momentů hybnosti, Clebschovy-Gordanovy koeficienty. Vektorové a tenzorové operátory, ireducibilní složky a Wignerova-Eckartova věta.

Základní příbližné metody

Variační metoda a poruchový počet. Systémy mnoha částic: symetrikační postulát, bosony, fermiony, Slaterů determinant, vliv spinu.

Teorie rozptýlu

Základní metody mnohočásticové kvantové fyziky

Metoda středního pole, korelační energie a metody pro její výpočet, druhé kvantuování. Základy teorie atomů a molekul: elektronová struktura, vibrační a rotační stavy molekul, použití teorie grup, optické přechody.

Výpočetní metody teorie rozptýlu

4. **Relativistická fyzika**

Výchozí principy speciální a obecné teorie relativity

Einsteinův gravační zákon a jeho důsledky

Relativistická astrofyzika a kosmologie

Vlastnosti Einsteinových rovnic

5. Částicová fyzika

Základní představy a metody kvantové teorie pole

Klasifikace a vlastnosti elementárních částic

Struktura hadronů
- Kvarkový model, barva, partony, distribuční funkce.

Základy standardního modelu elementárních částic

Interakce částic s prostředím a metody měření částic v experimentech
- Měření energie, hybnosti a doby letu částic. Identifikace částic. Monte Carlo simulace průchodu částic detektorem.

Metody analýzy dat v experimentech fyziky částic

11. Učitelství fyziky

Garantující pracoviště: Katedra didaktiky fyziky
Garant oboru: doc. RNDr. Zdeněk Drozd, PhD.
Garant za pedagogiku a psychologii: doc. PhDr. Isabella Pavelková, CSc.

Obor je popsán v samostatné kapitole věnované učitelským studijním oborům.
Studijní plány studijního programu
INFORMATIKA
Magisterské studium

Garant studijního programu: doc. RNDr. Tomáš Bureš, Ph.D.

Zahájení studia v roce 2015 nebo později

1. Základní informace

Studijní obory a zaměření v rámci magisterského studijního programu Informatika:

1 Diskrétní modely a algoritmy
 - diskrétní matematika a algoritmy
 - geometrie a matematické struktury v informatici
 - optimalizace
2 Teoretická informatika
3 Softwarové a datové inženýrství
 - softwarové inženýrství
 - vývoj software
 - webové inženýrství
 - databázové systémy
 - analýza a zpracování rozsáhlých dat
4 Softwarové systémy
 - systémové programování
 - spolehlivé systémy
 - výkonné systémy
5 Matematická lingvistika
 - počítačová a formální lingvistika
 - statistické metody a strojové učení v počítačové lingvistice
6 Umělá inteligence
 - inteligentní agenty
 - strojové učení
 - robotika
7 Počítačová grafika a vývoj počítačových her
 - počítačová grafika
 - vývoj počítačových her
8 Učitelství informatiky

Poslední výše uvedený obor a další učitelské obory jsou popsány v samostatné kapitole této publikace.

Uchazeči o studium se hlásí do magisterského studijního programu Informatika přímo na zvolený obor studia. Volba konkrétního zaměření je ponechána na pozdější rozhodnutí posluchače. Pro každý obor (příp. zaměření) je stanoveno garantující pracoviště zajišťující převážnou část výuky v tomto oboru a je jmenován garant oboru.

Informatika je dynamicky se rozvíjející disciplínou, a proto důležitým novým trendům průběžně přizpůsobujeme i obsah studia. Posluchači by ve vlastním zájmu měli
sledovat aktuální stav studijních plánů, kde může docházet k rozšíření a úpravě nabídky předmětů, případně k dalšímu drobným změnám. Některé předměty mohou být vyučovány anglicky.

Návaznost na bakalářské studium

Pro úspěšné absolvování magisterského studia informatiky se předpokládají vstupní znalosti alespoň v rozsahu povinných bakalářských předmětů NDMI002 Diskrétní matematika, NTIN060 Algoritmy a datové struktury I, NTIN061 Algoritmy a datové struktury II, NTIN071 Automaty a gramatiky, NAIL062 Výroková a predikátová logika. Znalost učiva uvedených předmětů je nezbytná rovněž ke společným povinným zkušenostem okruhů státní závěrečné zkoušky. Pokud posluchač ve svém dřívějším studiu neabsolvoval tyto nebo obsahově podobné předměty, měl by si ve vlastním zájmu zapsát v prvním roce magisterského studia ty z uvedených bakalářských předmětů, jejichž znalostí mu chybějí.

V magisterském studiu se dále předpokládá dobrá znalost matematiky na úrovni povinných a povinně volitelných bakalářských předmětů NMAI054 Matematická analýza I, NMAI055 Matematická analýza II, NMAI059 Pravděpodobnost a statistika, NMAI062 Algebra I, NOPT048 Optimalizační metody. Chybějící znalostí z uvedených oborů by si měl každý posluchač rovněž doplnit v prvním roce magisterského studia.

Pro úspěšné absolvování studia je nezbytná také dobrá znalost programování ale spoň v rozsahu základních kurzů NPRG030 Programování I a NPRG031 Programování II. Posluchačím, kteří podobný kurz neabsolvovali ve svém předchozím studiu, doporučujeme zapsat si v úvodu magisterského studia uvedené předměty.

Pokud posluchač ve svém předchozím bakalářském studiu na MFF úspěšně absolvoval některý z povinných nebo povinně volitelných předmětů studovaného oboru, může požádat o uznání splnění těchto povinností. Posluchač přicházející na MFF po získání bakalářského vzdělání na jiné vysoké škole může požádat o uznání povinného nebo povinně volitelného předmětu na základě předchozího absolvování obdobného předmětu. Udělování kreditů za předměty absolvované v bakalářském studiu do magisterského studia upravuje čl. 18 Pravidel pro organizaci studia na Matematicko-fyzikální fakultě.

Softwarový projekt

Veškeré záležitosti týkající se Softwarového projektu koordinuje Komise pro softwarové projekty tvořená zástupci jednotlivých informatických pracovišť. Za úspěšně obhájený projekt obdrží každý jeho řešitel 15 kreditů, z nichž 6 kreditů může vedoucí projektu udělit na žádost posluchače zálohově předem po prvním semestru práce na projektu na základě doložených průběžných výsledků. Pro započítání zálohových 6 kreditů si posluchač zapíše předmět NPRG027 Zápočet k projektu, zbývajících 9 kreditů získá po úspěšné obhajobě projektu zároveň se zápočtem z předmětu NPRG023 Softwarový projekt. Pokud posluchač o zálohové body předem nepožádá, zapíše si oba výše
Informatika Mgr.

uvedené předměty zároveň při obhajobě. Na návrh komise pro softwarové projekty může být po úspěšné obhajobě nejlepším řešitelům projektu celková dotace přidělených kreditů ještě zvýšena o 3 kredity. Pro započítání těchto dalších přidělených kreditů si posluchač zapíše předmět NPRG028 Mimořádné odhodnocení projektu.

Předměty NPRG023 Softwarový projekt, NPRG027 Zápočet k projektu a NPRG028 Mimořádné odhodnocení projektu si lze zapsat kdykoliv podle potřeby, nikoli pouze v období zápisu vymezeném v harmonogramu akademického roku, jako je tomu u ostatních předmětů. Lze je ovšem zapsat nejvýše dvakrát za celé studium.

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce nebo její části

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného oboru, příp. zaměření
- splnění povinně volitelných předmětů zvoleného oboru, resp. zaměření, ve stanoveném rozsahu
- odevzdání vypracované diplomové práce ve stanoveném termínu (pro přihlášení k obhajobě diplomové práce).

Diplomová práce

Téma diplomové práce si posluchač typicky vybere na konci zimního semestru předposledního roku studia. Doporučujeme vybírat si téma především z nabídky pracoviště garantujícího zvolený studijní obor; v případě zájmu o téma z nabídky jiného pracoviště nebo o téma vlastní důrazně doporučujeme konzultovat vhodnost tématu s garantem studijního oboru.

Po zadání diplomové práce si každý posluchač postupně zapíše povinné předměty společné pro všechny obory:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Zápočty z povinných předmětů NSZZ023 Diplomová práce I, NSZZ024 Diplomová práce II, NSZZ025 Diplomová práce III uděluje vedoucí diplomové práce jako doklad o úspěšné práci posluchače na stanoveném diplomovém úkolu. Předmět Diplomová práce I si posluchač zapíše zpravidla v letním semestru předposledního roku studia, předměty Diplomová práce II a Diplomová práce III pak návazně v zimním a v letním semestru posledního roku svého studia. V případě potřeby lze zvolit i jiné uspořádání, každý z těchto předmětů je možné zapsat v zimním nebo v letním semestru v období zápisu vymezeném v harmonogramu akademického roku.

Ústní část SZZ

Ústní část státní závěrečné zkoušky má na všech oborech studijního programu Informatika podobnou strukturu. Posluchač je zkoušen ze znalostí dvou povinných zku-
šebních okruhů pokrývajících teoretické zázadky informatiky (složitost a vyčíslitelnost, datové struktury), a dále ze tří zkušebních okruhů specifických pro studijní obor. Ty mohou být v rámci oboru ještě rozděleny podle zaměření. Posluchači si typicky sám vybere tři zkušební okruhy z nabídky studovaného oboru a svou volbu oznámí při přihlášování se ke státní závěrečné zkoušce. Některé obory či zaměření mají na výběr okruhů restrikтивnější podmínky a mohou mít například další povinný okruh, viz podrobnější popis oborů.

Povinné zkušební okruhy pro všechny obory

1. **Základy složitosti a vyčíslitelnosti**

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN090</td>
<td>Základy složitosti a vyčíslitelnosti</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

2. **Datové struktury**

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN066</td>
<td>Datové struktury I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

2. **Studijní plány jednotlivých oborů**

 U každého oboru studia je uvedeno garantující pracoviště, garant oboru a podmínky pro absolvování studia v tomto oboru (povinné a povinně volitelné předměty). Pro každé zaměření jsou pak vypsány zkušební okruhy ke státní závěrečné zkoušce a požadavky znalostí k jednotlivým zkušebním okruhům.

1. **Diskrétní modely a algoritmy**

 Garantující pracoviště: Katedra aplikované matematiky
 Garant oboru: Doc. RNDr. Martin Klazar, Dr.

 Zaměření:
 - diskrétní matematika a algoritmy
 - geometrie a matematické struktury v informatice
 - optimalizace

 Absolvent oboru je do hloubky seznámen s diskrétním pojetím matematiky a diskrétními strukturami nacházejícími využití v informatice a algoritmickém modelování jevů a procesů z praxe. Má podle zvoleného zaměření pokročilé znalosti v jedné či
vítěz z následujících disciplín: kombinatorika a teorie grafů, pravděpodobnostní techniky a metody v diskrétní matematice a algorimatizaci, algebraické a topologické metody v informatice a konečně různé druhy optimalizace. Umí být v kontaktu s aktuálními výsledky v dané disciplíně a v ideálním případě k nim i sám tvůrčím způsobem přispívat. Nalezne uplatnění v oblastech lidské činnosti využívajících algoritmy a diskrétní modelování, i v akademické sféře.

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN090</td>
<td>Základy složitosti a vyčíslitelnosti</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NTIN066</td>
<td>Datové struktury I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMAI064</td>
<td>Matematické struktury</td>
<td>6</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NSZZ028</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>0/4</td>
<td>Z</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6</td>
<td>Z</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>0/10</td>
<td>Z</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty - skupina 1

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 45 kreditů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN036</td>
<td>Logické programování I</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDMI009</td>
<td>Kombinatorická a výpočetní geometrie I</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NDMI016</td>
<td>Grafové algoritmy</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDMI018</td>
<td>Kombinatorická a výpočetní geometrie II</td>
<td>6</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NDMI025</td>
<td>Kombinatorické počítání</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NDMI031</td>
<td>Aproximační a online algoritmy</td>
<td>6</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NDMI029</td>
<td>Pravděpodobnostní algoritmy</td>
<td>6</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NDMI032</td>
<td>Aplikace lineární algebry v kombinatorice</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NDMI028</td>
<td>Kombinatorické struktury</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NDMI067</td>
<td>Geometrické reprezentace grafů I</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDMI066</td>
<td>Analytická a kombinatorická teorie čísel</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NDMI055</td>
<td>Vybrané kapitoly z kombinatoriky I</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDMI065</td>
<td>Vybrané kapitoly z kombinatoriky II</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NDMI079</td>
<td>Grafové minory a stromové rozklady</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDMI070</td>
<td>Barevnost grafů a kombinatorických struktur</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDMI033</td>
<td>Aplikovaná diskrétní matematika</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDMI064</td>
<td>Teorie matroidů</td>
<td>6</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NDMI063</td>
<td>Algebraická teorie čísel</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDMI067</td>
<td>Toky, cesty a řezy</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>Kód</td>
<td>Název</td>
<td>Kredity</td>
<td>ZS</td>
<td>LS</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>NDM1073</td>
<td>Kombinatorika a grafy III</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDM1074</td>
<td>Algoritmy a jejich implementace</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDM1082</td>
<td>Grafové algoritmy II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAI083</td>
<td>Úvod do teorie grup</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAI084</td>
<td>Úvod do teorie čísel</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAI085</td>
<td>Základy teorie kategorií pro informaticky</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAI086</td>
<td>Topologické a algebraické metody</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAI087</td>
<td>Logika v informatice</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAI088</td>
<td>Matematika++</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMAI089</td>
<td>Úvod do komplexní analýzy (O)</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAI090</td>
<td>Teorie míry a integrálu (O)</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAI091</td>
<td>Úvod do funkcionální analýzy (O)</td>
<td>8</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOPT018</td>
<td>Algoritmy nelineární optimalizace</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NOPT019</td>
<td>Celočíselné programování</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NOPT020</td>
<td>Vícekriteriální optimalizace</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NOPT021</td>
<td>Základy nelineární optimalizace</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOPT022</td>
<td>Matematické programování a polyedrální kombinatorika</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOPT023</td>
<td>Programování s omezujícími podmínkami</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTIN017</td>
<td>Intervalové metody</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTIN018</td>
<td>Paralelní algoritmy</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTIN022</td>
<td>Pravděpodobnostní techniky</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTIN023</td>
<td>Složitost</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NTIN024</td>
<td>Vyčíslitelnost</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTIN025</td>
<td>Datové struktury II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTIN026</td>
<td>Introduction to Parameterized Algorithms</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty - skupina 2

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 6 kreditů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDM1073</td>
<td>Kombinatorika a grafy III</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOPT018</td>
<td>Základy nelineární optimalizace</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

1 Pro zaměření Diskrétní matematika a algoritmy, Geometrie a matematické struktury v informatice je doporučen předmět NDM1073, pro zaměření Optimalizace předmět NOPT018. Po absolvování jednoho předmětu ze skupiny 2 jsou kredity počítány pouze do skupiny 2, která je tak splněna. Pokud student absolvuje oba předměty ze skupiny 2, jsou mu kredity za druhý z předmětů započítány v rámci skupiny 1.

Státní závěrečná zkouška

Ke dvěma povinným okruhům společným pro všechny obory si student vybere tři okruhy podle zvoleného zaměření. Minimálně dva okruhy musí být ze zvoleného zaměření, třetí okruh je možné zvolit z jiného zaměření oboru. Celkem tedy každý student dostane pět otázek.
Informatika Mgr.

a) Zaměření *Diskrétní matematika a algoritmy*

Zkušební okruhy

1. Kombinatorika a teorie grafů
2. Pravděpodobnostní techniky a kombinatorická enumerace
3. Kombinatorická optimalizace

Zkušební požadavky

1. **Kombinatorika a teorie grafů**

Barevnost grafů (a další varianty - vybíravost), grafové minory, stromová šířka a její souvislost se složitostí, geometrické reprezentace grafů (charakterizační věty, rozpoznávající algoritmy), algebraické vlastnosti grafů, teorie párování, Ramseyova teorie a Szemeredího lemma o regularitě, množinové systémy (Steinerovy systémy trojic, konečné geometrie).

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDM1037</td>
<td>Geometrické reprezentace grafů I</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDM1059</td>
<td>Grafové minory a stromové rozklady</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDM1060</td>
<td>Barevnost grafů a kombinatorických struktur</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
</tbody>
</table>

2. **Pravděpodobnostní techniky a kombinatorická enumerace**

Kombinatorické počítání, vytvářící funkce, rekurence, základní pravděpodobnostní modely, linearita střední hodnoty, použití rozptylu, Markovova nerovnost, aplikace na konkrétní příklady, Chernovova nerovnost, Lovászovo lokální lemma, asymptotické odhady funkcí, pravděpodobnostní konstrukce a algoritmy.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDM1043</td>
<td>Kombinatorické počítání</td>
<td>3</td>
<td>---</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NDM1025</td>
<td>Pravděpodobnostní algoritmy</td>
<td>3</td>
<td>---</td>
<td>2/0 Z+Zk</td>
</tr>
<tr>
<td>NDM1026</td>
<td>Pravděpodobnostní techniky</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

3. **Kombinatorická optimalizace**

Grafové algoritmy, teorie mnohostěnů, problém obchodního cestujícího, speciální matice, celočíselnost, párování a toky v sítích, teorie matroidů, elipsoidová metoda

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDM1009</td>
<td>Základy složitosti a vyčíslitelnosti</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NDM1010</td>
<td>Grafové algoritmy</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDM1056</td>
<td>Teorie matroidů</td>
<td>6</td>
<td>---</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NCP2056</td>
<td>Matematické programování</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td></td>
<td>a polyedrální kombinatorika</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDM1083</td>
<td>Grafové algoritmy II</td>
<td>3</td>
<td>---</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

b) Zaměření *Geometrie a matematické struktury v informatice*

126
Zkušební okruhy

1. Kombinatorická a výpočetní geometrie
2. Algebraické a topologické struktury v informatice
3. Teorie kategorií v informatice
4. Teorie čísel v informatice

Zkušební požadavky

1. Kombinatorická a výpočetní geometrie
 Geometrické úlohy v prostorách konečné dimenze, kombinatorické vlastnosti geometrických konfigurací, algoritmické aplikace, návrh geometrických algoritmů, geometrické reprezentace grafů

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDMI009</td>
<td>Kombinatorická a výpočetní geometrie I</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NDMI013</td>
<td>Kombinatorická a výpočetní geometrie II</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

2. Algebraické a topologické struktury v informatice

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAI064</td>
<td>Matematické struktury</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMAI066</td>
<td>Topologické a algebraické metody</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

3. Teorie kategorií v informatice

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAI065</td>
<td>Základy teorie kategorií pro informatiky</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
</tbody>
</table>

4. Teorie čísel v informatice
Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAI040</td>
<td>Úvod do teorie čísel</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
</tbody>
</table>

c) Zaměření *Optimalizace*

Zkušební okruhy

1. Nelineární programování
2. Diskrétní optimalizační procesy
3. Vícekriteriální a celočíselné programování
4. Parametrické programování a intervalové metody

Zkušební požadavky

1. *Nelineární programování*

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOPT008</td>
<td>Algoritmy nelineární optimalizace</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NOPT018</td>
<td>Základy nelineární optimalizace</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

2. *Diskrétní optimalizační procesy*
 Algoritmická teorie her, volební mechanismy, elektronické aukce, využití submodulárních funkcí v ekonomii. Optimalizace pomocí enumeráce, generující funkce hranových řezů a perfektních párování, enumerační duality, problém maximálního řezu pro grafy vnořené na plochách.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDMI064</td>
<td>Aplikovaná diskrétní matematika</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NOPT018</td>
<td>Základy nelineární optimalizace</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

3. *Vícekriteriální a celočíselné programování*
 Různé přístupy k řešení úloh s více kritérii. Funkcionál přiřazený k dané úloze vektorového programování. Pareto-optimální řešení. Úlohy lineární a nelineární vektorové optimalizace. Metody pro získání Pareto-optimálních řešení. Úlohy lineárního programování s podmínkami celočíselnosti, resp. s binárními proměnnými. Nelineární optimalizační problémy s podmínkami celočíselností.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOPT016</td>
<td>Celočíselné programování</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NOPT017</td>
<td>Vícekriteriální optimalizace</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NOPT018</td>
<td>Základy nelineární optimalizace</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

128
4. Parametrické programování a intervalové metody

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOPT017</td>
<td>Vícekriteriální optimalizace</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NOPT018</td>
<td>Základy nelineární optimalizace</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOPT051</td>
<td>Intervalové metody</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

2. Teoretická informatika

Garantující pracoviště: Katedra teoretické informatiky a matematické logiky, Informatický ústav Univerzity Karlovy
Garant oboru: Doc. Mgr. Michal Koucký, Ph.D.

Obor se nedělí na zaměření

Absolvent důkladně rozumí teoretickým základům výpočetních systémů a zároveň má přehled o praktických výpočetních metodách a postupech. Rozumí tak různým modelům výpočtů a jejich vzájemným vztahům, zná možnosti a limity efektivních výpočtů, disponuje širokým spektrum algoritmických technik a technik konstrukce datových struktur. Má důkladné znalosti v oblasti pravděpodobnosti a jejího využití při návrhu a analýze algoritmů a výpočetních systémů.

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN090</td>
<td>Základy složitosti a vyčíslitelnost</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTIN066</td>
<td>Datové struktury I</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTIN022</td>
<td>Pravděpodobnostní techniky</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTIN011</td>
<td>Složitost</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NTIN100</td>
<td>Základy přenosu a zpracování informace</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 45 kreditů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL021</td>
<td>Booleovské funkce a jejich aplikace</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL031</td>
<td>Reprezentace booleovských funkcí</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NAIL043</td>
<td>Rozhodovací procedury a verifikace</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

129
<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAG563</td>
<td>Úvod do složitosti CSP</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDM010</td>
<td>Grafové algoritmy</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDM013</td>
<td>Kombinátorická a výpočetní geometrie II</td>
<td>6</td>
<td></td>
<td>2/2</td>
</tr>
<tr>
<td>NDM018</td>
<td>Aproximáční a online algoritmy</td>
<td>6</td>
<td></td>
<td>2/2</td>
</tr>
<tr>
<td>NDM025</td>
<td>Pravděpodobnostní algoritmy</td>
<td>6</td>
<td></td>
<td>2/2</td>
</tr>
<tr>
<td>NDM057</td>
<td>Toky, cesty a řezy</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDM074</td>
<td>Algoritmy a jejich implementace</td>
<td>6</td>
<td></td>
<td>2/2</td>
</tr>
<tr>
<td>NDM077</td>
<td>Algoritmy pro specifické třídy grafů</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NDM083</td>
<td>Grafové algoritmy II</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NMAG446</td>
<td>Logika a složitost</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NDM057</td>
<td>Důkazová složitost a P vs. NP problém</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NDM067</td>
<td>Logika v informatice</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NOPT023</td>
<td>Matematické programování a polyedrální kombinátorika</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMAI072</td>
<td>Algorytm komprese dat</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NTIN017</td>
<td>Paralelní algoritmy</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NTIN038</td>
<td>Pravděpodobnostní analýza a algoritm</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NTIN101</td>
<td>Experimentální analýza algoritmů</td>
<td>6</td>
<td></td>
<td>2/2</td>
</tr>
<tr>
<td>NTIN102</td>
<td>Výčslitelnost</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NTIN057</td>
<td>Datové struktury II</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NTIN058</td>
<td>Rekurze</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NTIN059</td>
<td>Strukturální složitost</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NTIN082</td>
<td>Výpočetní složitost</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NTIN083</td>
<td>Bioinformatické algoritmy</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NTIN084</td>
<td>Vybrané kapitoly z výpočetní složitosti I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NTIN085</td>
<td>Vybrané kapitoly z výpočetní složitosti II</td>
<td>5</td>
<td></td>
<td>2/1</td>
</tr>
<tr>
<td>NTIN086</td>
<td>Textové algoritmy</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NTIN087</td>
<td>Algortimická náhodnost</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NTIN088</td>
<td>Pseudo-Booleovská optimalizace</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NTIN089</td>
<td>Struktury v hyperkrychly</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NTIN090</td>
<td>Pokročilé datové struktury</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NTIN091</td>
<td>Algortimy pro reprezentaci znalostí</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NTIN092</td>
<td>Foundations of theoretical cryptography</td>
<td>5</td>
<td></td>
<td>2/1</td>
</tr>
<tr>
<td>NTIN093</td>
<td>Introduction to Parameterized Algorithms</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOPT016</td>
<td>Celocíselné programování</td>
<td>6</td>
<td></td>
<td>2/2</td>
</tr>
</tbody>
</table>
Ke dvěma povinným okruhům společným pro všechny obory si student vybere dva další okruhy z následující nabídky. Jako poslední okruh si student může zvolit buď také okruh z následující nabídky, nebo libovolný okruh oboru Diskrétní modely a algoritmy, libovolný okruh zaměření Inteligentní agenti nebo strojové učení oboru Umělá inteligence, nebo libovolný okruh zaměření Počítačová grafika oboru Počítačová grafika a vývoj počítačových her. Celkem tedy každý student dostane pět otázek.

Zkušební okruhy

1. Složitost a vyčíslitelnost
2. Booleovské funkce
3. Algoritmy
4. Pokročilé datové struktury

Zkušební požadavky

1. Složitost a vyčíslitelnost

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN063</td>
<td>Složitost</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NTIN061</td>
<td>Strukturální složitost</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTIN062</td>
<td>Výpočetní složitost</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAG536</td>
<td>Důkazová složitost a P vs. NP problém</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTIN064</td>
<td>Vyčíslitelnost</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTIN048</td>
<td>Základy přenosu a zpracování informace</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
</tbody>
</table>

2. Booleovské funkce
 Rezoluce a její úplnost. Třídy booleovských funkcí se speciálními vlastnostmi. Algoritmy pro SAT a MAXSAT. Reprezentace booleovských funkcí pomocí BDD a OBDD. Řešiče pro SAT a jejich využití pro SMT. Parametrizovaná složitost. Hyperkrychlové grafy.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN099</td>
<td>Algoritmy pro reprezentaci znalostí</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NAIL094</td>
<td>Rozhodovací procedury a verifikace</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>
3. Algoritmy

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDM104</td>
<td>Grafové algoritmy</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDM108</td>
<td>Aproximační a online algoritmy</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDM102</td>
<td>Pravděpodobnostní algoritmy</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDM104</td>
<td>Paralelní algoritmy</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NDM105</td>
<td>Textové algoritmy</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

4. Pokročilé datové struktury

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN101</td>
<td>Základy přenosu a zpracování informace</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NTIN057</td>
<td>Datové struktury II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTIN055</td>
<td>Textové algoritmy</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDM1010</td>
<td>Grafové algoritmy</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NWAV072</td>
<td>Algoritmy komprese dat</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

3. Softwarové a datové inženýrství

Garantující pracoviště: Katedra softwarového inženýrství
Garant oboru: Doc. RNDr. Tomáš Skopal, Ph.D.

Zaměření:
- softwarové inženýrství
- vývoj software
- webové inženýrství
- databázové systémy
- analýza a zpracování rozsáhlých dat
Absolvent má hluboké softwarové a datové inženýrské znalosti v rámci zvoleného zaměření. Tyto znalosti nesledují pouze aktuální technologické trendy, ale jejich jádro je tvořeno hlubokým teoretickým základem. Absolvováním zaměření Softwarové inženýrství absolvent umí analyzovat požadavky na kvalitu a funkcionalitu softwarových řešení, navrhovat odpovídající architekturu a řídit proces jejich vývoje. Absolvent zaměření Vývoj software je schopen vykonávat roli vedoucího týmu vývojářů se schopnostmi pokročile programovat a má přehled o současných softwarových technologiích. Znalosti oblasti vývoje internetových aplikací intenzivně zpracovávajících data pokrývá zaměření Webové inženýrství. Se zaměřením Databázové systémy je absolvent připraven navrhovat schémata v různých typech databází a na jejich základě pak implementovat a administrovat databázové aplikace. Absolvent zaměření Analýza a zpracování rozsáhlých dat se uplatní jako vědecky orientovaný odborník na dobývání znalostí z dat a jejich interpretaci uživatelů; např. jako datový analytik (data scientist).

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN090</td>
<td>Základy složitosti a vyčíslitelnosti</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTIN066</td>
<td>Datové struktury I</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPRG027</td>
<td>Zápočet k projektu</td>
<td>6</td>
<td>0/4 Z</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NPRG028</td>
<td>Softwarový projekt</td>
<td>9</td>
<td>0/6 Z</td>
<td>0/6 Z</td>
</tr>
<tr>
<td>NSZZ028</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>0/4 Z</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NSZZ029</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>0/6 Z</td>
</tr>
<tr>
<td>NSZZ030</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>0/10 Z</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 48 kreditů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDBI001</td>
<td>Dotazovací jazyky I</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDBI006</td>
<td>Dotazovací jazyky II</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDBI014</td>
<td>Transakce</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NDBI019</td>
<td>Stochastické metody v databázích</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NDBI021</td>
<td>Zákaznické preference</td>
<td>4</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NDBI028</td>
<td>Dobývání znalostí</td>
<td>9</td>
<td>—</td>
<td>4/2 Z+Zk</td>
</tr>
<tr>
<td>NDBI050</td>
<td>Vyhledávání multimedialního obsahu na webu</td>
<td>4</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDBI081</td>
<td>Modernní databázové koncepty</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDBI082</td>
<td>Techniky vizualizace dat</td>
<td>3</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NAPL050</td>
<td>Pravděpodobnostní metody</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAPL052</td>
<td>Úvod do strojového učení</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAPL056</td>
<td>Koncepce moderních programovacích jazyků</td>
<td>3</td>
<td>0/3 Z</td>
<td>—</td>
</tr>
<tr>
<td>NPRG02A</td>
<td>Návrhové vzory</td>
<td>3</td>
<td>—</td>
<td>0/2 KZ</td>
</tr>
<tr>
<td>NPRG038</td>
<td>Pokročilé aspekty a nové trendy v XML</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>Kód</td>
<td>Název oboru/technologie</td>
<td>ECTS</td>
<td>H</td>
<td>Z</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>NPRG042</td>
<td>Programování v paralelním prostředí</td>
<td>6</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NPRG043</td>
<td>Doporučené postupy v programování</td>
<td>6</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NPRG045</td>
<td>Vývoj vysoce výkonného software</td>
<td>6</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NPRG051</td>
<td>Praktikum z pokročilého objektového programování</td>
<td>2</td>
<td>0/1</td>
<td>Z</td>
</tr>
<tr>
<td>NSWI021</td>
<td>Počítačové sítě II</td>
<td>3</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NSWI026</td>
<td>Principy distribuovaných systémů</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NSWI026</td>
<td>Pokročilé aspekty softwarového inženýrství</td>
<td>5</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NSWI053</td>
<td>Rodina protokolů TCP/IP</td>
<td>3</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NSWI072</td>
<td>Algoritmky kompese dat</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NSWI100</td>
<td>Moderní sítová řešení</td>
<td>3</td>
<td>0/2</td>
<td>Z</td>
</tr>
<tr>
<td>NSWI100</td>
<td>Middleware</td>
<td>5</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NSWI101</td>
<td>Modely a verifikace chování systémů</td>
<td>6</td>
<td>2/2</td>
<td>Z+zK</td>
</tr>
<tr>
<td>NSWI102</td>
<td>Sémantizace webu</td>
<td>5</td>
<td>2/2</td>
<td>Z+zK</td>
</tr>
<tr>
<td>NSWI102</td>
<td>Pokročilé nástroje pro vývoj a monitorování software</td>
<td>3</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NSWI120</td>
<td>Architektury softwarových systémů</td>
<td>5</td>
<td>2/2</td>
<td>Z+zK</td>
</tr>
<tr>
<td>NSWI130</td>
<td>Vyhodnocování výkonnosti počítačových systémů</td>
<td>5</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NSWI144</td>
<td>Integrace a kvalita dat</td>
<td>4</td>
<td>2/1</td>
<td>Z+zK</td>
</tr>
<tr>
<td>NSWI145</td>
<td>Webové služby</td>
<td>5</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NSWI146</td>
<td>Softwarové inženýrství v praxi</td>
<td>3</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NSWI150</td>
<td>Virtualizace a cloud computing</td>
<td>3</td>
<td>2/0</td>
<td>Z</td>
</tr>
<tr>
<td>NSWI155</td>
<td>Vývoj cloudových aplikací</td>
<td>3</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NSWI155</td>
<td>Pokročilé technologie webových aplikací</td>
<td>5</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NTIN024</td>
<td>Formální základy softwarového inženýrství</td>
<td>5</td>
<td>2/2</td>
<td>Z+zK</td>
</tr>
<tr>
<td>NTIN057</td>
<td>Datové struktury II</td>
<td>3</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NPFL114</td>
<td>Hluboké učení</td>
<td>7</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Státní závěrečná zkouška

Ke dvěma povinným okruhům společným pro všechny obory si student vybere tři okruhy podle zvoleného zaměření. Dva z těchto okruhů jsou povinné pro zvolené zaměření, třetí je volitelný. Celkem tedy každý student dostane pět otázek.

Zkušební okruhy

1. Analýza a architektury software (povinný pro zaměření: Softwarové inženýrství)
2. Rozšířené programování (povinný pro zaměření: Softwarové inženýrství, Vývoj software)
3. Softwarové technologie (povinný pro zaměření: Vývoj software)
4. Webové technologie (povinný pro zaměření: Webové inženýrství)
5. Databáze - formální základy a dotazovací jazyky (povinný pro zaměření: Webové inženýrství, Databázové systémy)
6. Databáze - implementace a administrace (povinný pro zaměření: Databázové systémy)
7. Zpracování rozsáhlých a nestrukturovaných dat (povinný pro zaměření: Analýza a zpracování rozsáhlých dat)
8. Data mining (povinný pro zaměření: Analýza a zpracování rozsáhlých dat)

Zkušební požadavky

1. Analýza a architektury software

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSW130</td>
<td>Architektury softwarových systémů</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NSW1020</td>
<td>Pokročilé aspekty softwarového inženýrství</td>
<td>5</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NTIN043</td>
<td>Formální základy softwarového inženýrství</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

2. Rozšířené programování

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPRG054</td>
<td>Praktikum z pokročilého objektového programování</td>
<td>2</td>
<td>0/1</td>
<td>Z</td>
</tr>
<tr>
<td>NPRG011</td>
<td>Koncepty moderních programovacích jazyků</td>
<td>3</td>
<td>0/3</td>
<td>Z</td>
</tr>
<tr>
<td>NPRG023</td>
<td>Návrhové vzory</td>
<td>3</td>
<td>—</td>
<td>0/2</td>
</tr>
<tr>
<td>NPRG013</td>
<td>Doporučené postupy v programování</td>
<td>6</td>
<td>—</td>
<td>2/2</td>
</tr>
</tbody>
</table>
3. Softwarové technologie

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSWI126</td>
<td>Pokročilé nástroje pro vývoj a monitorování software</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NSWI153</td>
<td>Pokročilé technologie webových aplikací</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDBI036</td>
<td>Databázové systémy pro praxi</td>
<td>4</td>
<td>2/1 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NSWI150</td>
<td>Virtualizace a cloud computing</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
</tbody>
</table>

4. Webové technologie

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSWI130</td>
<td>Architektury softwarových systémů</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NSWI155</td>
<td>Pokročilé technologie webových aplikací</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NSWI156</td>
<td>Webové služby</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDBI034</td>
<td>Vyhledávání multimediálního obsahu na webu</td>
<td>4</td>
<td>2/1 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NPRG043</td>
<td>Doporučené postupy v programování</td>
<td>6</td>
<td>—</td>
<td>2/2 KZ</td>
</tr>
</tbody>
</table>

5. Databáze - formální základy a dotazovací jazyky

136
6. Databáze - implementace a administrace

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDBI016</td>
<td>Transakce</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NPRG039</td>
<td>Pokročilé aspekty a nové trendy v XML</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI072</td>
<td>Algoritmy komprese dat v XML</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI164</td>
<td>Integrace a kvalita dat</td>
<td>4</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDBI042</td>
<td>Techniky vizualizace dat</td>
<td>3</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NDBI040</td>
<td>Moderní databázové koncepty</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

7. Zpracování rozsáhlých a nestrukturovaných dat

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDBI016</td>
<td>Moderní databázové koncepty</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDBI039</td>
<td>Vyhledávání multimediálního obsahu na webu</td>
<td>4</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPRG030</td>
<td>Techniky vizualizace dat</td>
<td>3</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NSWI108</td>
<td>Sémantizace webu</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
</tbody>
</table>
8. Data mining

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDBI023</td>
<td>Dobývání znalostí</td>
<td>9</td>
<td>—</td>
<td>4/2 Z+Zk</td>
</tr>
<tr>
<td>NDBI019</td>
<td>Stochastické metody v databázích</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NAIL029</td>
<td>Strojové učení</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NDBI042</td>
<td>Techniky vizualizace dat</td>
<td>3</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
</tbody>
</table>

4. Softwarové systémy

Garantující pracoviště: Katedra distribuovaných a spolehlivých systémů
Garant oboru: Prof. Ing. Petr Tůma, Dr.

Zaměření:

– systémové programování
– spolehlivé systémy
– výkonné systémy

Absolvent má hluboké znalosti z oblasti programovacích jazyků a počítačových systémů podle zvoleného zaměření. Těmito zaměřeními jsou Systémové programování, které vybaví absolventa znalostmi o moderních operačních systémech a souvisejících technologiích (middleware, virtual machines), Spolehlivé systémy, které se soustředí na metody systematické konstrukce systémů s vysokou spolehlivostí, a konečně Výkonné systémy, které kladou důraz na znalosti potřebné pro vývoj software na moderních paralelních a distribuovaných systémech. Znalosti jsou vnímány ve vzájemných souvislostech a podporují navazující odborné dovednosti.

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN090</td>
<td>Základy složitosti a vyčíslitelnosti</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTIN066</td>
<td>Datové struktury I</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAI060</td>
<td>Pravděpodobnostní metody</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPRG043</td>
<td>Doporučené postupy v programování</td>
<td>6</td>
<td>—</td>
<td>2/2 KZ</td>
</tr>
<tr>
<td>NPRG059</td>
<td>Praktikum z pokročilého objektového programování</td>
<td>2</td>
<td>0/1 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSWI126</td>
<td>Pokročilé nástroje pro vývoj a monitorování software</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
</tbody>
</table>
Softwarové systémy

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPRG027</td>
<td>Virtualizace a cloud computing</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPRG027</td>
<td>Zápočet k projektu</td>
<td>6</td>
<td>0/4 Z</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NPRG027</td>
<td>Softwarový projekt</td>
<td>9</td>
<td>0/6 Z</td>
<td>0/6 Z</td>
</tr>
<tr>
<td>NSZZ028</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>0/4 Z</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NSZZ028</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>0/6 Z</td>
</tr>
<tr>
<td>NSZZ028</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>0/10 Z</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 30 kreditů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPRG014</td>
<td>Koncepty moderních programovacích jazyků</td>
<td>3</td>
<td>0/3 Z</td>
<td>—</td>
</tr>
<tr>
<td>NPRG042</td>
<td>Programování v paralelním prostředí</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPRG053</td>
<td>Vývoj vysoce výkonného software</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPRG055</td>
<td>Vývoj aplikací pro mobilní zařízení</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSWE001</td>
<td>Vestavěné systémy a systémy reálného času</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NSWI029</td>
<td>Moderní trendy v informatice</td>
<td>2</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NSWI035</td>
<td>Principy distribuovaných systémů</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI042</td>
<td>Pokročilé aspekty softwarového inženýrství</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NSWI054</td>
<td>Softwarové inženýrství pro spolehlivé systémy</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NSWI080</td>
<td>Middleware</td>
<td>5</td>
<td>—</td>
<td>2/1 KZ</td>
</tr>
<tr>
<td>NSWI104</td>
<td>Modely a verifikace chování systémů</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI105</td>
<td>Konstrukce překladačů</td>
<td>4</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NSWI131</td>
<td>Vyhodnocování výkonnosti počítačůvých systémů</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NSWI132</td>
<td>Analýza programů a verifikace kódu</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NSWI161</td>
<td>Pokročilé operační systémy</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NSWI163</td>
<td>Modelem řízený vývoj</td>
<td>1</td>
<td>0/1 Z</td>
<td>—</td>
</tr>
</tbody>
</table>

Státní závěrečná zkouška

Ke dvěma povinným okruhům společným pro všechny obory student dostane po jedné otázce ze tří zkušebních okruhů podle zvoleného zaměření. Celkem tedy každý student dostane pět otázek.

a) Zaměření Systémové programování

Zkušební okruhy

1. Systémové aspekty počítačů (SP)
2. Paralelní a distribuované systémy (SP)
3. Moderní koncepty programování (SP)
Zkušební požadavky

1. *Systémové aspekty počítačů (SP)*

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPRG042</td>
<td>Programování v paralelním prostředí</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPRG054</td>
<td>Vývoj vysoce výkonného software</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NSWI161</td>
<td>Pokročilé operační systémy</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

2. *Paralelní a distribuované systémy (SP)*
 Komunikace a koordinace v distribuovaném prostředí, algoritmy a technologie (konkrétní technologie pro RPC, DSM, messaging podle aktuálního vývoje).

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSWI035</td>
<td>Principy distribuovaných systémů</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI080</td>
<td>Middleware</td>
<td>5</td>
<td>2/1 KZ</td>
<td>—</td>
</tr>
</tbody>
</table>

3. *Moderní koncepty programování (SP)*

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPRG015</td>
<td>Doporučené postupy v programování</td>
<td>6</td>
<td>—</td>
<td>2/2 KZ</td>
</tr>
<tr>
<td>NPRG016</td>
<td>Koncepty moderních programovacích jazyků</td>
<td>3</td>
<td>0/3 Z</td>
<td>—</td>
</tr>
</tbody>
</table>

b) Zaměření *Spolehlivé systémy*

Zkušební okruhy

1. Systémové aspekty počítačů (SS)
2. Paralelní a distribuované systémy (SS)
3. Formální metody (SS)

Zkušební požadavky

1. *Systémové aspekty počítačů (SS)*
 Embedded a real time systémy (RTES), real time plánování, návrh a modelování RTES, operační systémy pro RTES. Mobilní zařízení, návrh a distribuce software pro mobilní zařízení, správa prostředků.
Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSWE001</td>
<td>Vestavěné systémy a systémy reálného času</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPRG056</td>
<td>Vývoj aplikací pro mobilní zařízení</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
</tbody>
</table>

2. **Paralelní a distribuované systémy (SS)**

Synchronizace v paralelních systémech. Kauzalita a konsensus v distribuovaném prostředí. Komunikace, koordinace, replikace a mobilita v distribuovaném prostředí, algoritmy a technologie (konkrétní technologie pro RPC, DSM, messaging podle aktuálního vývoje).

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSWI035</td>
<td>Principy distribuovaných systémů</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI080</td>
<td>Middleware</td>
<td>5</td>
<td>—</td>
<td>2/1 KZ</td>
</tr>
</tbody>
</table>

3. **Formální metody (SS)**

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSWI101</td>
<td>Modely a verifikace chování systémů</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI132</td>
<td>Analýza programů a verifikace kódu</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

c) Zaměření **Výkonné systémy**

Zkušební okruhy

1. Distribuované systémy (VS)
2. Programování paralelních aplikací (VS)
3. Systémové aspekty počítačů (VS)

Zkušební požadavky

1. **Distribuované systémy (VS)**

Kauzalita a konsensus v distribuovaném prostředí. Komunikace, koordinace, replikace a mobilita v distribuovaném prostředí, algoritmy a technologie (konkrétní technologie pro RPC, DSM, messaging, deployment podle aktuálního vývoje).

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSWI035</td>
<td>Principy distribuovaných systémů</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI080</td>
<td>Middleware</td>
<td>5</td>
<td>—</td>
<td>2/1 KZ</td>
</tr>
</tbody>
</table>
2. **Programování paralelních aplikací (VS)**

Moderní hierarchie paměti (multiprocesory, GPU, NUMA), vztah efektivity přístupu a umístění dat. Transformace úloh na datově paralelní, paralelní řešení nehomogenních úloh. Efektivní paralelní implementace základních algoritmů. Synchronizace, vyvažování zátěže.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPRG042</td>
<td>Programování v paralelním prostředí</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPRG054</td>
<td>Vývoj vysoce výkonného software</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

3. **Systémové aspekty počítačů (VS)**

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSWI131</td>
<td>Vyhodnocování výkonnosti počítačových systémů</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NSWI150</td>
<td>Virtualizace a cloud computing</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
</tbody>
</table>

5. **Matematická lingvistika**

Garantující pracoviště: Ústav formální a aplikované lingvistiky
Garant oboru: Doc. RNDr. Markéta Lopatková, Ph.D.

Zaměření:

- počítačová a formální lingvistika
- statistické metody a strojové učení v počítačové lingvistice

Absolvent získá znalost teoretických základů formálního popisu přirozených jazyků, matematicko-informatických základů pro jejich počítačové zpracování a základy obecných metod strojového učení. Bude mít schopnost uplatnit tento vzhled v návrhu a realizaci systémů automatického zpracování přirozeného jazyka a systémů pro práci s velkými korpusy nestrukturovaných (jazykových) i strukturovaných dat.

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN090</td>
<td>Základy složitosti a vyčíslitelnosti</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NTIN091</td>
<td>Datové struktury I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPFL063</td>
<td>Úvod do obecné lingvistiky</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPFL067</td>
<td>Statistické metody zpracování přirozených jazyků I</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPFL092</td>
<td>Technologie pro NLP</td>
<td>5</td>
<td>1/2</td>
<td>KZ</td>
</tr>
</tbody>
</table>
| NSZZ028 | Diplomová práce I | 6 | 0/4 | Z | 0/4 Z
Matematická lingvistika

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>0/6 Z</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>0/10 Z</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 42 kreditů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPFL006</td>
<td>Úvod do formální lingvistiky</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPFL038</td>
<td>Základy rozpoznávání a generování mluvené řeči</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPFL068</td>
<td>Statistické metody zpracování přirozených jazyků II</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL070</td>
<td>Zdroje jazykových dat</td>
<td>5</td>
<td>1/2 KZ</td>
<td>—</td>
</tr>
<tr>
<td>NPFL075</td>
<td>Závislostní gramatiky a korpusy</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL079</td>
<td>Algoritmy rozpoznávání mluvené řeči</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL082</td>
<td>Informační struktura věty a výstavba diskurzu</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NPFL083</td>
<td>Lingvistická teorie a gramatické formalismy</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL087</td>
<td>Statistický strojový překlad</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL090</td>
<td>Aplikace NLP</td>
<td>5</td>
<td>—</td>
<td>2/1 KZ</td>
</tr>
<tr>
<td>NPFL093</td>
<td>Morfologická a syntaktická analýza</td>
<td>3</td>
<td>2/0 KZ</td>
<td>—</td>
</tr>
<tr>
<td>NPFL094</td>
<td>Moderní metody v počítačové lingvistice</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NPFL097</td>
<td>Komunatační morfologie</td>
<td>4</td>
<td>—</td>
<td>2/1 Zk</td>
</tr>
<tr>
<td>NPFL102</td>
<td>Statistické dialogové systémy</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPFL104</td>
<td>Vyhledávání informací</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPFL105</td>
<td>Metody strojového učení</td>
<td>5</td>
<td>—</td>
<td>1/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL106</td>
<td>Odborné vyjadřování a styl</td>
<td>3</td>
<td>—</td>
<td>1/1 KZ</td>
</tr>
<tr>
<td>NPRG027</td>
<td>Zápočet k projektu</td>
<td>6</td>
<td>0/4 Z</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NPRG028</td>
<td>Softwarový projekt</td>
<td>9</td>
<td>0/6 Z</td>
<td>0/6 Z</td>
</tr>
<tr>
<td>NPFL114</td>
<td>Hluboké učení</td>
<td>7</td>
<td>—</td>
<td>3/2 Z+Zk</td>
</tr>
</tbody>
</table>

Státní závěrečná zkouška

Ke dvěma povinným okruhům společným pro všechny obory má obor Matematická lingvistika jeden společný povinný okruh pro obě zaměření, jeden povinný okruh dle zvoleného zaměření a jeden okruh si student vybírá z volitelných okruhů. Jako tento poslední okruh si student může zvolit také povinný okruh druhého zaměření oboru Matematická lingvistika, jeden z okruhů zaměření Inteligentní agenti či Strojové učení oboru Umělá inteligence či jeden z okruhů zaměření Počítačová grafika oboru Počítačová grafika a vývoj počítačových her. Celkem tedy každý student dostane pět otázek.

Zkušební okruhy

1. Základy počítačového zpracování přirozeného jazyka (povinný okruh pro obě zaměření)
Informatika Mgr.

2. Lingvistické teorie a formalismy (povinný okruh pro zaměření Počítačová a formální lingvistika)
3. Statistické metody a strojové učení v počítačové lingvistice (povinný okruh pro zaměření Statistické metody a strojové učení v počítačové lingvistice)
4. Multimodální technologie a data (volitelný okruh)
5. Aplikace metod zpracování přírozeného jazyka (volitelný okruh)

Zkušební požadavky

1. Základy počítačového zpracování přírozeného jazyka

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPFL067</td>
<td>Statistické metody zpracování přírozených jazyků I</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPFL068</td>
<td>Úvod do obecné lingvistiky</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

2. Lingvistické teorie a formalismy

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPFL063</td>
<td>Úvod do obecné lingvistiky</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPFL083</td>
<td>Lingvistická teorie a gramatické formalismy</td>
<td>6</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NPFL075</td>
<td>Závislostní gramatiky a korpusy</td>
<td>6</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NPFL094</td>
<td>Morfologická a syntaktická analýza</td>
<td>3</td>
<td>2/0</td>
<td>KZ</td>
</tr>
<tr>
<td>NPFL006</td>
<td>Úvod do formální lingvistiky</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
</tbody>
</table>

3. Statistické metody a strojové učení v počítačové lingvistice

144
<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPFL067</td>
<td>Statistické metody zpracování přirozených jazyků I</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPFL068</td>
<td>Statistické metody zpracování přirozených jazyků II</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL104</td>
<td>Metody strojového učení</td>
<td>5</td>
<td>—</td>
<td>1/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL087</td>
<td>Statistický strojový překlad</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

4. Multimodální technologie a data

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPFL038</td>
<td>Základy rozpoznávání a generování mluvené řeči</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPFL079</td>
<td>Algoritmy rozpoznávání mluvené řeči</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL099</td>
<td>Statistické dialogové systémy</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

5. Aplikace metod zpracování přirozeného jazyka

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPFL087</td>
<td>Statistický strojový překlad</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL103</td>
<td>Vyhledávání informací</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPFL093</td>
<td>Aplikace NLP</td>
<td>5</td>
<td>—</td>
<td>2/1 KZ</td>
</tr>
</tbody>
</table>

6. Umělá inteligence

Garantující pracoviště: Katedra teoretické informatiky a matematické logiky
Garant oboru: Prof. RNDr. Roman Barták, Ph.D.
Informatika Mgr.

Zaměření:

– inteligentní agenty
– strojové učení
– robotika

Absolvent oboru Umělá inteligence dokáže aplikovat a dále rozvíjet různé techniky návrhu inteligentních systémů, jako je automatické řešení úloh, řízení autonomních agencí (jak virtuálních, tak fyzických), plánování, strojové učení a dolování dat. Je schopen analyzovat a formálně popsat komplexní rozhodovací problém, navrhnout vhodnou řešící techniku a tuto techniku také implementovat.

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN090</td>
<td>Základy složitosti a vyčíslitelnosti</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTIN066</td>
<td>Datové struktury I</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL060</td>
<td>Pravděpodobnostní metody</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL070</td>
<td>Umělá inteligence II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>0/4 Z</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>0/6 Z</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>0/10 Z</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 60 kreditů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL002</td>
<td>Neuronové sítě</td>
<td>9</td>
<td>4/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL013</td>
<td>Aplikace teorie neuronových sítí</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NAIL010</td>
<td>Implementace neuronových sítí I</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL021</td>
<td>Booleovské funkce a jejich aplikace</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL022</td>
<td>Metody logického programování</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL025</td>
<td>Evoluční algoritmy I</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL080</td>
<td>Evoluční algoritmy II</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NAIL028</td>
<td>Úvod do robotiky</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL029</td>
<td>Strojové učení</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NAIL026</td>
<td>Seminář z umělé inteligence I</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NAIL052</td>
<td>Seminář z umělé inteligence II</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NAIL061</td>
<td>Seminář z mobilní robotiky</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NAIL065</td>
<td>Evoluční robotika</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NAIL068</td>
<td>Umělé bytosti</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NAIL081</td>
<td>Umělá inteligence I</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL071</td>
<td>Plánování a rozvrhování</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NAIL072</td>
<td>Robot I</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NAIL073</td>
<td>Robot II</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NAIL074</td>
<td>Logické programování I</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL075</td>
<td>Logické programování II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>Kód</td>
<td>Název</td>
<td>Kredity</td>
<td>ZS</td>
<td>LS</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>NAIL078</td>
<td>Lambda-kalkulus a funkcionální programování I</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL087</td>
<td>Informatika a kognitivní vědy I</td>
<td>6</td>
<td>3/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL088</td>
<td>Informatika a kognitivní vědy II</td>
<td>6</td>
<td>—</td>
<td>3/1 Z+Zk</td>
</tr>
<tr>
<td>NAIL101</td>
<td>Rozhodovací procedury a verifikace</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NAIL103</td>
<td>Pravděpodobnostní robotika</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NAIL104</td>
<td>Pravděpodobnostní grafické modely</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL105</td>
<td>Internet a klasiﬁkační metody</td>
<td>3</td>
<td>—</td>
<td>1/1 Z+Zk</td>
</tr>
<tr>
<td>NAIL106</td>
<td>Multiagentní systémy</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NAIL107</td>
<td>Strojové učení v bioinformatice</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NAIL108</td>
<td>Mobilní robotika</td>
<td>3</td>
<td>—</td>
<td>1/1 KZ</td>
</tr>
<tr>
<td>NAIL109</td>
<td>Sociální sítě a jejích analýza</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDBI023</td>
<td>Dobývání znalostí</td>
<td>9</td>
<td>—</td>
<td>4/2 Z+Zk</td>
</tr>
<tr>
<td>NDBI031</td>
<td>Statistické metody v systémech pro dobývání znalostí z dat</td>
<td>3</td>
<td>1/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAI061</td>
<td>Metody matematické statistiky</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NMAI067</td>
<td>Logika v informaticke</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOPT021</td>
<td>Teorie her</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOPT042</td>
<td>Programování s omezujiemi podmínkami</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPFL057</td>
<td>Statistické metody zpracovani</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPFL058</td>
<td>Statistické metody zpracovani prirozenych jazyků I</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL083</td>
<td>Neřízené strojové učení v NLP</td>
<td>3</td>
<td>—</td>
<td>1/1 Z</td>
</tr>
<tr>
<td>NPFL089</td>
<td>Metody strojového učení</td>
<td>5</td>
<td>—</td>
<td>1/2 Z+Zk</td>
</tr>
<tr>
<td>NPGR010</td>
<td>3D počítačové vidění</td>
<td>5</td>
<td>2/2 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPGR023</td>
<td>Softwarový projekt</td>
<td>9</td>
<td>0/6 Z</td>
<td>0/6 Z</td>
</tr>
<tr>
<td>NPGR027</td>
<td>Zápočet k projektu</td>
<td>6</td>
<td>0/4 Z</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NPGR037</td>
<td>Programování mikrokontrolerů</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWE001</td>
<td>Vestavene systémy a systémy reálného času</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NSWI054</td>
<td>Softwarove inženýrství pro spolehlive systémy</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NPFL114</td>
<td>Hluboké učení</td>
<td>7</td>
<td>—</td>
<td>3/2 Z+Zk</td>
</tr>
</tbody>
</table>

Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL031</td>
<td>Implementace neuronových sítí II</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL034</td>
<td>Reprezentace booleovských funkcí</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL036</td>
<td>Lambda-kalkulus a funkcionální programování II</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL110</td>
<td>Praktikum z robotiky</td>
<td>6</td>
<td>—</td>
<td>1/3 KZ</td>
</tr>
<tr>
<td>NPFL037</td>
<td>Základy rozpoznávání a generování mluvené řeči</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPFL113</td>
<td>Úvod do strojového učení</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
</tbody>
</table>
Státní závěrečná zkouška

Ke dvěma povinným okruhům společným pro všechny obory si student vybere tři okruhy podle zvoleného zaměření. Minimálně dva okruhy musí být ze zvoleného zaměření (zaměření Inteligentní agenti má jeden z těchto okruhů povinný), třetí okruh je možné zvolit z jiného zaměření oboru. Celkem tedy každý student dostane pět otázek.

a) Zaměření Inteligentní agenti

Zkušební okruhy

1. Reprezentace znalostí (povinný okruh pro zaměření Inteligentní agenti)
2. Řešení úloh a plánování
3. Neprocedurální programování
4. Multi-agentní systémy
5. Přírodou inspirované počítání

Zkušební požadavky

1. Reprezentace znalostí

Podmíněná nezávislost, Bayesovské sítě, výpočet v Bayesovské síti, naivní Bayesovský klasifikátor, rozhodovací grafy, markovské rozhodovací procesy, zpětnovazebné učení, částečně pozorovatelné markovské rozhodovací procesy, podmíněná markovská pole.

Doporučené předměty

Kód Název Kredity ZS LS

NAIL1062 Výroková a predikátová logika 6 2/2 Z+Zk —
NAIL1063 Pravděpodobnostní metody 3 2/0 Zk —
NAIL1064 Umělá inteligence I 5 2/1 Z+Zk —
NAIL1070 Umělá inteligence II 3 — 2/0 Zk
NAIL1073 Pravděpodobnostní grafické modely 3 2/0 Zk —

2. Řešení úloh a plánování

Reprezentace znalostí: stavový prostor, produkční systémy, reprezentace pomocí logiky. Prohledávací algoritmy; stromové, grafové a lokální prohledávání, heuristiky. Řešení SAT problémů a splňování omezujících podmínek. Modelování problémů. Automa-
tické plánování; plánovací doména a problém, plánovací operátory. Základní plánovací techniky a algoritmy; heuristiky; rozšíření plánovacích algoritmů. Plánování a rozvrhování.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL069</td>
<td>Umělá inteligence I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NAIL071</td>
<td>Plánování a rozvrhování</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOPT142</td>
<td>Programování s omezujícími podmínkami</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NAIL093</td>
<td>Rozhodovací procedury a verifikace</td>
<td>6</td>
<td></td>
<td>2/2</td>
</tr>
</tbody>
</table>

3. Neprocedurální programování

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL076</td>
<td>Logické programování I</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NAIL077</td>
<td>Logické programování II</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAIL078</td>
<td>Lambda-kalkulus a funkcionální programování I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NAIL022</td>
<td>Metody logického programování</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NOPT142</td>
<td>Programování s omezujícími podmínkami</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

4. Multi-agentní systémy

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL168</td>
<td>Multiagentní systémy</td>
<td>6</td>
<td></td>
<td>2/2</td>
</tr>
<tr>
<td>NAIL188</td>
<td>Umělé bytosti</td>
<td>6</td>
<td></td>
<td>2/2</td>
</tr>
</tbody>
</table>

5. Přírodou inspirované počítání

Genetické algoritmy, genetické a evoluční programování. Teorie schémat, pravděpodobnostní modely jednoduchého genetického algoritmu. Evoluční strategie, diferenciální
Informatika Mgr.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL025</td>
<td>Evoluční algoritmy I</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NAIL086</td>
<td>Evoluční algoritmy II</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NAIL065</td>
<td>Evoluční robotika</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
</tbody>
</table>

b) Zaměření **Strojové učení**

Zkušební okruhy

1. Strojové učení a jeho aplikace
2. Neuronové sítě
3. Dobývání znalostí

Zkušební požadavky

1. **Strojové učení a jeho aplikace**
 Strojové učení; prohledávání prostoru verzí, učení s učitelem a bez učitele, pravděpodobnostní přístupy, zpětnovazebnì učení, teoretické aspekty strojového učení. Evoluční algoritmy; základní pojmy a teoretické poznatky, hypotéza o stavebních blokách, koevoluce, aplikace evolučních algoritmů. Strojové učení v počítačové lingvistice. Pravděpodobnostní algoritmy pro analýzu biologických sekvencí; hledání motivů v DNA, strategie pro detekci genů a predikci struktury proteinů.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL029</td>
<td>Strojové učení</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NAIL0167</td>
<td>Statistické metody zpracování přirozených jazyků I</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NAIL106</td>
<td>Evoluční algoritmy I</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NAIL1007</td>
<td>Strojové učení v bioinformatice</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

2. **Neuronové sítě**

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL002</td>
<td>Neuronové sítě</td>
<td>9</td>
<td>4/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NAIL061</td>
<td>Implementace neuronových sítí I</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NAIL013</td>
<td>Aplikace teorie neuronových sítí</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NAIL066</td>
<td>Evoluční robotika</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
</tbody>
</table>
3. Dobývání znalostí

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDBI023</td>
<td>Dobývání znalostí</td>
<td>9</td>
<td>—</td>
<td>4/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL103</td>
<td>Vyhledávání informací</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL105</td>
<td>Internet a klasifikační metody</td>
<td>3</td>
<td>—</td>
<td>1/1 Z+Zk</td>
</tr>
<tr>
<td>NAIL108</td>
<td>Seminář strojového učení a modelování I</td>
<td>2</td>
<td>0/1 Z</td>
<td>—</td>
</tr>
</tbody>
</table>

c) Zaměření Robotika

Zkušební okruhy

1. Lokalizace a mapování
2. Řídící systémy
3. Robotické systémy
4. Plánování a navigace

Zkušební požadavky

1. Lokalizace a mapování

Základní typy lokalizace. Pravděpodobnostní lokalizace, částicové filtry, metody Monte-Carlo. Reprezentace prostředí, reprezentace map, problém korespondence, mapování v dynamickém prostředí. Vztah lokalizace a mapování, SLAM.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL028</td>
<td>Úvod do robotiky</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL1101</td>
<td>Pravděpodobnostní robotika</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NAIL1108</td>
<td>Mobilní robotika</td>
<td>3</td>
<td>—</td>
<td>1/1 KZ</td>
</tr>
</tbody>
</table>

2. Řídící systémy

Řídící systém robota. Zpracování signálu, rozpoznávání, feature matching and tracking. Systémy pro modelování, virtuální robotika, simulátory. Distribuované algoritmy, systémy řízení pro multirobotické systémy, komunikace, synchronizace, koordinace. Softwarová realizace, programování pro specifické běhové prostředí, ladící prostředky a postupy.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL028</td>
<td>Úvod do robotiky</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPGR001</td>
<td>3D počítačové vidění</td>
<td>5</td>
<td>2/2 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPGR002</td>
<td>Digitální zpracování obrazu</td>
<td>4</td>
<td>3/0 Zk</td>
<td>—</td>
</tr>
</tbody>
</table>
3. Robotické systémy

Základní kinematický a dynamický model, reverzní kinematika a dynamika. Nízkoúrovňový hardware a software, vestavěné systémy. Typy senzorů a aktuátorů, principy a typické oblasti použití. Vysokoúrovňové robotické systémy a jejich řízení: manipulátory, mobilní robotika, autonomní robotika.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL028</td>
<td>Úvod do robotiky</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NAIL108</td>
<td>Mobilní robotika</td>
<td>3</td>
<td>—</td>
<td>1/1 KZ</td>
</tr>
<tr>
<td>NSWE001</td>
<td>Vestavěné systémy a systémy reálného času</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

4. Plánování a navigace

Základní navigační postupy: dead-reckoning, odometrie, triangulace a trilaterace, inerciální navigace. Navigační a prohledávací algoritmy. Plánování akcí, formulace plánovacího problému, základní plánovací algoritmy, plánování s časem a zdroji.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL028</td>
<td>Úvod do robotiky</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NAIL108</td>
<td>Mobilní robotika</td>
<td>3</td>
<td>—</td>
<td>1/1 KZ</td>
</tr>
<tr>
<td>NAIL071</td>
<td>Plánování a rozvrhování</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

7. Počítačová grafika a vývoj počítačových her

Garantující pracoviště: Katedra softwaru a výuky informatiky

Garant oboru: Doc. Alexander Wilkie, Dr.

Zaměření:

- počítačová grafika
- vývoj počítačových her

Absolvent oboru je zdatným programátorem se znalostí příslušných postupů a technologií. Podle zvoleného zaměření je vybaven buď hlubokými znalostmi z počítačové grafiky a analýzy obrazu, anebo - v zaměření Vývoj počítačových her - jeho znalosti pokrývají programování rozsáhlých herních projektů, aplikací pracujících v reálném čase, programování malých zařízení, jakožto i základy umělé inteligence a základy počítačové grafiky v kontextu počítačových her. Absolvent umí tyto znalosti aplikovat při řešení konkrétních praktických úkolů.

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN091</td>
<td>Základy složitosti a vyčíslitelnosti</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NTIN060</td>
<td>Datové struktury I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NAMA106</td>
<td>Pravděpodobnostní metody</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
</tbody>
</table>

152
<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPRG027</td>
<td>Zápočet k projektu</td>
<td>6</td>
<td>0/4</td>
<td>0/4</td>
</tr>
<tr>
<td>NPRG028</td>
<td>Softwarový projekt</td>
<td>9</td>
<td>0/6</td>
<td>0/6</td>
</tr>
<tr>
<td>NZZZ024</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>0/4</td>
<td>0/4</td>
</tr>
<tr>
<td>NZZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6</td>
<td>0/6</td>
</tr>
<tr>
<td>NZZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>0/10</td>
<td>0/10</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 47 kreditů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPGR007</td>
<td>Pokročilá 2D počítačová grafika</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPGR010</td>
<td>Počítačová grafika III</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPGR011</td>
<td>3D počítačové vidění</td>
<td>5</td>
<td>2/2</td>
<td>Zk</td>
</tr>
<tr>
<td>NPGR021</td>
<td>Geometrické modelování</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPGR027</td>
<td>Predictive Image Synthesis Technologies</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPGR028</td>
<td>High Performance Ray Tracing</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPGR028</td>
<td>Počítačová grafika pro vývoj her</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPGR028</td>
<td>Seminář z vědecké práce</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPGR028</td>
<td>Variační metody ve zpracování obrazu</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSWI115</td>
<td>Vývoj počítačových her</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NSWI047</td>
<td>Vyvoj aplikací pro mobilní zařízení</td>
<td>3</td>
<td>0/2</td>
<td>Z</td>
</tr>
<tr>
<td>NSWI046</td>
<td>Principy distribuovaných systémů</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NSWI032</td>
<td>Vývoj vysoce výkonného software</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSWI043</td>
<td>Programování v paralelním prostředí</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAIL033</td>
<td>Umělá inteligence I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NAIL034</td>
<td>Umělá inteligence II</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NPRG054</td>
<td>Praktikum z pokročilého objektového programování</td>
<td>2</td>
<td>0/1</td>
<td>Z</td>
</tr>
<tr>
<td>NSWI026</td>
<td>Pokročilé aspekty softwarového inženýrství</td>
<td>5</td>
<td></td>
<td>2/2</td>
</tr>
<tr>
<td>NAIL035</td>
<td>Umělé bytosti</td>
<td>6</td>
<td></td>
<td>2/2</td>
</tr>
<tr>
<td>NAIL037</td>
<td>Plánování a rozvrhování</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NPRG043</td>
<td>Doporučené postupy v programování</td>
<td>6</td>
<td></td>
<td>2/2</td>
</tr>
<tr>
<td>NMAI036</td>
<td>Metody matematické statistiky</td>
<td>5</td>
<td></td>
<td>2/1</td>
</tr>
<tr>
<td>NAIL039</td>
<td>Multiagentní systémy</td>
<td>6</td>
<td></td>
<td>2/2</td>
</tr>
<tr>
<td>NPRG036</td>
<td>Aplikovaná výpočetní geometrie</td>
<td>5</td>
<td></td>
<td>2/1</td>
</tr>
<tr>
<td>NPRG038</td>
<td>Koncepty moderních programovacích jazyků</td>
<td>3</td>
<td>0/3</td>
<td>Z</td>
</tr>
<tr>
<td>NPFL043</td>
<td>Hluboké učení</td>
<td>7</td>
<td></td>
<td>3/2</td>
</tr>
</tbody>
</table>
Doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPGR005</td>
<td>Speciální seminář z počítačové grafiky</td>
<td>2</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NPGR013</td>
<td>Speciální funkce a transformace ve zpracování obrazu</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NPGR022</td>
<td>Speciální seminář ze zpracování obrazu</td>
<td>2</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NAIL028</td>
<td>Úvod do robotiky</td>
<td>6</td>
<td>2/2 Z +Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL108</td>
<td>Mobilní robotika</td>
<td>3</td>
<td>—</td>
<td>1/1 KZ</td>
</tr>
<tr>
<td>NAIL072</td>
<td>Algoritmy komprese dat</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL017</td>
<td>Interaktivní 3D grafika na webu</td>
<td>6</td>
<td>2/2 Z +Zk</td>
<td>2/2 Z +Zk</td>
</tr>
<tr>
<td>NPGR040</td>
<td>Optika pro počítačovou grafiku</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPGR026</td>
<td>Visualizace</td>
<td>5</td>
<td>2/1 Z +Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL029</td>
<td>Evoluční algoritmy I</td>
<td>6</td>
<td>2/2 Z +Zk</td>
<td>—</td>
</tr>
<tr>
<td>NAIL085</td>
<td>Seminář z umělých bytostí</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NAIL087</td>
<td>Informatika a kognitivní vědy I</td>
<td>6</td>
<td>3/1 Z +Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI109</td>
<td>Softwarevé inženýrství v praxi</td>
<td>3</td>
<td>—</td>
<td>2/0 Z</td>
</tr>
<tr>
<td>NPGR058</td>
<td>Pokročilé programování v paralelním prostředí</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSWI158</td>
<td>Praktikum z vývoje počítačových her</td>
<td>2</td>
<td>0/1 Z</td>
<td>0/1 Z</td>
</tr>
<tr>
<td>NSWI150</td>
<td>Herní middleware</td>
<td>6</td>
<td>0/4 Z</td>
<td>—</td>
</tr>
</tbody>
</table>

Státní závěrečná zkouška

a) Zaměření Počítačová grafika

Ke dvěma povinným okruhům společným pro všechny obory si student vybere alespoň dva z následujících okruhů:

- Geometrické modelování a výpočetní geometrie
- Analýza a zpracování obrazu, komprese obrazu, počítačové vidění
- Realistická syntéza obrazu

Třetí okruh student zvolí libovolně ze všech okruhů nabízených v zaměřeních Počítačová grafika a Vývoj počítačových her, kromě okruhu “Počítačová grafika pro hry”. Z každého vybraného okruhu dostane po jedné otázce. Celkem tedy každý student dostane pět otázek.

Zkušební okruhy

1. Geometrické modelování a výpočetní geometrie
2. Analýza a zpracování obrazu, komprese obrazu, počítačové vidění
3. Realistická syntéza obrazu

Zkušební požadavky

1. **Geometrické modelování a výpočetní geometrie**

 Homogenní souřadnice, afinní a projektivní transformace v rovině a v prostoru, kvaterniony v reprezentaci 3D orientace, diferenciální geometrie křivek a ploch, základní spline funkce, kubické splny C2, interpolace kubickými splny, Bézierovy křivky,
Catmull-Rom spliny, B-spliny, de Casteljau a de Boor algoritmus, aproximační plochy, plochy zadané okrajem, Bézierovy plochy, plášťování, B-spline plochy, NURBS plochy. Návrh geometrických algoritmů a jejich složitost, triangulace polygonů a množin bodů, Voronoí diagram a Delaunayova triangulace, konvexní obal, průsečíky a průniky geometrických útvarů, dualizace, lokalizace, geometrické vyhledávání, datové struktury pro efektivní prostorové vyhledávání.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPGR003</td>
<td>Základy počítačové grafiky</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPGR016</td>
<td>Aplikovaná výpočetní geometrie</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPGR021</td>
<td>Geometrické modelování</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPGR007</td>
<td>Pokročilá 2D počítačová grafika</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

2. Analýza a zpracování obrazu, komprese obrazu, počítačové vidění

Matematický model obrazu, 2D Fourierova transformace a konvoluce, vzorkování a kvantování obrazu, změna kontrastu a jasu, odstranění šumu, detekce hran, inverzní a Wienerův filtr, určení vzájemné polohy snímků, korespondence bodu a objektu, odstranění geometrických zkreslení, detekce hranic obrazu, detekce oblasti, příznaky pro popis a rozpoznávání 2D objektů, momentové invariance, wavelety a jejich použití, statistická teorie rozpoznávání, klasifikace s učením a bez učení, počítačové vidění.

Reprodukovat barevné grafiky, rozptylování a půlíčkování, kompozice polohložených obrázků, warping, morphing, komprese rastrové 2D grafiky, skalární a vektorové kvantování, prediktivní komprese, transformační kompresní metody, hierarchické a progresivní metody, komprese videoměřitele, časová predikce (kompenzace pohybu), standardy JPEG a MPEG, snímání obrazu v digitální fotografii.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPGR003</td>
<td>Základy počítačové grafiky</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPGR002</td>
<td>Digitální zpracování obrazu</td>
<td>4</td>
<td>3/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NPGR028</td>
<td>Variční metody ve zpracování obrazu</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NPGR013</td>
<td>Speciální funkce a transformace ve zpracování obrazu</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NPGR007</td>
<td>Pokročilá 2D počítačová grafika</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPGR001</td>
<td>3D počítačové vidění</td>
<td>5</td>
<td>2/2</td>
<td>Zk</td>
</tr>
</tbody>
</table>

3. Realistická syntéza obrazu

Metody reprezentace 3D scén, výpočet viditelnosti, výpočet vržených stínů, modely osvětlení a stínovací algoritmy, rekurzivní sledování paprsku, textury, anti-aliasing, urychlovací metody pro ray-tracing, princip radiačních metod výpočtu osvětlení, fyzikální model šíření světla (radiometrie, zobrazovací rovnice), Monte Carlo integrování, Monte Carlo přístup ke výpočtu osvětlení, přímé metody pro vizualizaci objemových dat, generování izoploch. Architektura grafického akcelerátoru, předávání dat do GPU, textury a GPU bufferu, programování GPU - shadery. Základy OpenGL, GLSL, CUDA a OpenCL. Pokročilé techniky práce s GPU.
b) Zaměření **Vývoj počítačových her**

Ke dvěma povinným okruhům společným pro všechny obory student dostane po jedné otázce ze zvolených zkušebních okruhů:

1. povinný okruh “Multi-agentní systémy” ze zaměření Inteligentní agenti oboru Umělá inteligence
2. buď okruh “Počítačová grafika pro hry”, nebo libovolný z okruhů ze zaměření Počítačová grafika

Celkem tedy každý student dostane pět otázek.

Zkušební okruhy

1. Multi-agentní systémy (povinný okruh pro zaměření Vývoj počítačových her)
2. Počítačová grafika pro hry
3. Programování paralelních aplikací
4. Systémové aspekty počítačů
5. Moderní koncepty programování
6. Analýza a architektury software
7. Rozšířené programování
8. Webové technologie

Zkušební požadavky

1. **Multi-agentní systémy**

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPGR003</td>
<td>Základy počítačové grafiky</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPGR004</td>
<td>Fotorealistická grafika</td>
<td>5</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NPGR015</td>
<td>Realtime grafika na GPU</td>
<td>5</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NPGR010</td>
<td>Počítačová grafika III</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPGR026</td>
<td>Predictive Image Synthesis Technologies</td>
<td>6</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NPGR027</td>
<td>Shading Languages</td>
<td>5</td>
<td>—</td>
<td>2/1</td>
</tr>
</tbody>
</table>
2. Počítačová grafika pro hry

Homogenní souřadnice, afinní a projektivní transformace v rovině a v prostoru, kvaterniony, spline funkce, interpolace kubickými spliny, Bézierovy krivky, Catmull-Rom spliny, B-spliny, de Casteljau a de Boor algoritmus. Animace postav, skinning, rigging. Detekce kolizí.

2D Fourierova transformace a konvoluce, vzorkování a kvantování obrazu, antialiasing, textury, změna kontrastu a jasu, kompozice poloprůhledných obrázků, principy komprese rastrové 2D grafiky, komprese videoznaču, časová predikce (kompenzace pohybu), standardy JPEG a MPEG.

Reprezentace 3D scén, výpočet viditelnosti, výpočet vržených stínů, měkké stíny, rozptyl světla pod povrchem, modely osvětlení a stínovací algoritmy, rekurzivní sledování paprsku, fyzikální model šíření světla (radiometrie, zobrazovací rovnice), algoritmus sledování cest, předpočítané globální osvětlení, výpočet globálního osvětlení v reálném čase, stínování založené na sférických harmonických funkcích, předpočítaný přenos radiance.

Architektura grafického akcelerátoru, předávání dat do GPU, textury a GPU buflery, programování GPU - shadery. Základy OpenGL, GLSL, CUDA a OpenCL. Početní techniky práce s GPU. Architektura herního motoru.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPGR003</td>
<td>Základy počítačové grafiky</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPGR004</td>
<td>Fotorealistická grafika</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPGR019</td>
<td>Realtime grafika na GPU</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPGR033</td>
<td>Počítačová grafika pro vývoj her</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

3. Programování paralelních aplikací

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPRG042</td>
<td>Programování v paralelním prostředí</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPRG054</td>
<td>Vývoj vysoce výkonného software</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

4. Systémové aspekty počítačů

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWSI004</td>
<td>Operační systémy</td>
<td>5</td>
<td>2/1 KZ</td>
<td>—</td>
</tr>
<tr>
<td>NWSI131</td>
<td>Vyhodnocování výkonnosti počítačových systémů</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
</tbody>
</table>

5. Moderní koncepty programování

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPRG043</td>
<td>Doporučené postupy v programování</td>
<td>6</td>
<td>—</td>
<td>2/2 KZ</td>
</tr>
<tr>
<td>NPRG014</td>
<td>Koncepty moderních programovacích jazyků</td>
<td>3</td>
<td>0/3 Z</td>
<td>—</td>
</tr>
</tbody>
</table>

6. Analýza a architektury software

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWSI130</td>
<td>Architektury softwarových systémů</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NWSI1020</td>
<td>Pokročilé aspekty softwarového inženýrství</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NWUN186</td>
<td>Formální základy softwarového inženýrství</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

7. Rozšířené programování

Počítačová grafika a vývoj počítačových her

8. Webové technologie

<table>
<thead>
<tr>
<th>Doporučené předměty</th>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPRG059</td>
<td>Praktikum z pokročilého objektového programování</td>
<td>2</td>
<td>0/1 Z</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NPRG014</td>
<td>Koncepy moderních programovacích jazyků</td>
<td>3</td>
<td>0/3 Z</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NPRG024</td>
<td>Návrhové vzory</td>
<td>3</td>
<td>—</td>
<td>0/2 KZ</td>
<td></td>
</tr>
<tr>
<td>NPRG043</td>
<td>Doporučené postupy v programování</td>
<td>6</td>
<td>—</td>
<td>2/2 KZ</td>
<td></td>
</tr>
<tr>
<td>NSWI130</td>
<td>Architektury softwarových systémů</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NSWI153</td>
<td>Pokročilé technologie webových aplikací</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NSWI145</td>
<td>Webové služby</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NDBI034</td>
<td>Vyhledávání multimediálního obsahu na webu</td>
<td>4</td>
<td>2/1 Z+Zk</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NPRG059</td>
<td>Doporučené postupy v programování</td>
<td>6</td>
<td>—</td>
<td>2/2 KZ</td>
<td></td>
</tr>
</tbody>
</table>

159
Zahájení studia v roce 2014 nebo dříve

1. Základní informace

Studijní obory a zaměření v rámci magisterského studijního programu Informatika:

1. Teoretická informatika I1 (garantuje KTML)
 – algoritmy a složitost
 – neprocedurální programování a umělá inteligence
2. Softwarové systémy I2 (garantuje KSI)
 – databázové systémy
 – softwarové inženýrství
 – systémové architektury (zaměření garantuje KDSS)
 – spolehlivé systémy (zaměření garantuje KDSS)
 – počítačová grafika (zaměření garantuje KSFI)
3. Matematická lingvistika I3 (garantuje ÚFAL)
 – obor se nedělí na zaměření
4. Diskrétní modely a algoritmy I4 (garantuje KAM)
 – diskrétní matematika a kombinatorická optimalizace
 – matematické struktury informatiky
 – optimalizace
5. Učitelství informatiky pro střední školy v kombinaci s odbornou informatikou I5
 (didaktickou část výuky garantuje KSFI)

Poslední výše uvedený obor, stejně jako obor Učitelství matematiky - informatiky pro střední školy a jako další učitelské obory jsou popsány v samostatné kapitole této publikace.

Uchazeči o studium se hlásí do magisterského studijního programu Informatika přímo na zvolený obor studia. Volba konkrétního zaměření je ponechána na pozdější rozhodnutí posluchače. Pro každý obor (příp. zaměření) je stanoveno garantující pracoviště zajišťující převážnou část výuky v tomto oboru a je jmenován garant oboru.

Informatika je dynamicky se rozvíjející disciplínou a novým trendům proto průběžně přizpůsobujeme i obsah studia. Posluchači by ve vlastním zájmu měli sledovat aktuální stav studijních plánů, kde může docházet k rozšíření a úpravě nabídky předmětů, případně k dalším drobným změnám.

Návaznost na bakalářské studium

Pro úspěšné absolvování magisterského studia informatiky se předpokládají vstupní znalosti alespoň v rozsahu výuky povinných bakalářských předmětů NDMI002 Diskrétní matematika, NTIN060 Algoritmy a datové struktury I, NTIN061 Algoritmy a datové struktury II, NTIN071 Automaty a gramatiky, NAIL062 Výroková a predicátová logika. Znalost učiva uvedených předmětů je nezbytná rovněž ke společným povinným zkoušením okrulům státní závěrečné zkoušky. Pokud posluchač ve svém dřívějším studiu neabsolvoval tyto nebo obsahově podobné předměty, měl by si ve vlastním zájmu zapsat v prvním roce magisterského studia ty z uvedených bakalářských předmětů, jejichž znalostí mu chybějí.

V magisterském studiu se dále předpokládá dobrá znalost matematiky na úrovni povinných a povinně volitelných bakalářských předmětů NMAI054 Matematická analýza I, NMAI055 Matematická analýza II, NMAI059 Pravděpodobnost a statistika,
NMAI062 Algebra I, NOPT048 Optimalizační metody. Chybějící znalosti z uvedených oborů by si měl každý posluchač rovněž doplnit v prvním roce magisterského studia.

Pro úspěšné absolvování studia je nezbytná také dobrá znalost programování ale spoň v rozsahu základního kurzu NPRG030 Programování I, NPRG031 Programování II. Posluchačům, kteří podobný kurz neabsolvovali ve svém předchozím studíu, doporučujeme zapsat si v úvodu magisterského studia uvedené předměty.

Pokud posluchač ve svém předchozím bakalářském studiu na MFF úspěšně absolvoval některý z povinných nebo povinně volitelného předmětů studovaného oboru, může požádat o uznání splnění těchto povinností. Posluchač přihlášející na MFF po získání bakalářského vzdělání na jiné vysoké škole může požádat o uznání povinného nebo povinně volitelného předmětu na základě předchozího absolvování obdobného předmětu. Převádění kreditů za předměty absolvované v bakalářském studiu do magisterského studia upravuje čl. 18 Pravidel pro organizaci studia na Matematicko-fyzikální fakultě.

Softwarový projekt

Předměty NPRG023 Softwarový projekt, NPRG027 Zápočet k projektu a NPRG028 Mimořádné ohodnocení projektu si lze zapsat jakdykoliv podle potřeby, nikoli pouze v období zápisu vynešeném v harmonogramu akademického roku, jako je tomu u ostatních předmětů. Lze je ovšem zapsat nejvýše dvakrát za celé studium.

Státní závěrečná zkouška

Podmínky pro přihlášení ke státní závěrečné zkoušce nebo její části

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného oboru, příp. zaměření
– splnění povinně volitelných předmětů zvoleného oboru, resp. zaměření, ve stanoveném rozsahu
– odevzdání vypracované diplomové práce ve stanoveném termínu (pro přihlášení k obhajobě diplomové práce).

Diplomová práce

Téma diplomové práce si posluchač typicky vybere na konci zimního semestru předposledního roku studia. Doporučujeme vybírat si téma především z nabídky pracoviště garantujícího zvolený studijní obor; v případě zájmu o téma z nabídky jiného pracoviště nebo o téma vlastní důrazně doporučujeme konzultovat vhodnost tématu s garantem studijního oboru.

Po zadání diplomové práce si každý posluchač postupně zapíše povinné předměty společné pro všechny obory:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Zápočty z povinných předmětů NSZZ023 Diplomová práce I, NSZZ024 Diplomová práce II, NSZZ025 Diplomová práce III uděluje vedoucí diplomové práce jako doklad o úspěšné práci posluchače na stanoveném diplomovém úkolu. Předmět Diplomová práce I si posluchač zapiše zpravidla v letním semestru předposledního roku studia, předměty Diplomová práce II a Diplomová práce III pak návazně v zimním a v letním semestru posledního roku svého studia. V případě potřeby lze zvolit i jiné uspořádání, každý z těchto předmětů je možné zapsat v zimním nebo v letním semestru v období zápisu vymezeném v harmonogramu akademického roku.

Ústní část státní závěrečné zkoušky má na všech oborech I1 – I4 studijního programu Informatika podobnou strukturu. Posluchač je zkoušen ze znalostí dvou nebo tří povinných zkušebních okruhů pokrývajících teoretický základ informatiky (složitost, vyčíslitelnost, datové strukturní), a dále ze tří volitelných zkušebních okruhů specifických pro studijní obor. Ty mohou být v rámci oboru ještě rozděleny podle zaměření. Na oborech I1, I2 a I4 si posluchač sám vybere tři volitelné zkušební okruhy z nabídky studovaného oboru a svou volbu oznámí při přihlášení se ke státní závěrečné zkoušce. Vybírá si přitom nejméně dva zkušební okruhy z toho zaměření, v němž zkončuje studium, třetí zkušební okruh si může zvolit buď ze stejného, nebo z jiného zaměření téhož oboru. Obor I3 se nedělí na zaměření a výběr zkušebních okruhů je zde upraven odlišně (podrobnější informace najdete přímo u popisu tohoto oboru). Pro usnadnění orientace v nabídce předmětů je u každého zkušebního okruhu uveden seznam hlavních doporučených předmětů a případně také seznam předmětů rozšiřujících.

Povinné zkušební okruhy pro obory I1 a I4

1. **Složitost**

Doporučené předměty: NTIN062 Složitost I, NTIN063 Složitost II
Rozšířující předměty: NTIN081 Strukturální složitost I, NTIN085 Vybrané kapitoly z výpočetní složitosti I, NTIN017 Paralelní algoritmy, NDMI025 Pravděpodobnostní algoritmy

2. Vyčíslitelnost

Doporučené předměty: NTIN064 Vyčíslitelnost I, NTIN065 Vyčíslitelnost II
Rozšířující předměty: NTIN073 Rekurze I, NTIN074 Rekurze II

3. Datové struktury

Doporučené předměty: NTIN066 Datové struktury I, NTIN067 Datové struktury II
Rozšířující předměty: NTIN083 Seminář z datových struktur

Povinné zkušební okruhy pro obory I2 a I3

1. Složitost a vyčíslitelnost

Doporučené předměty: NTIN090 Základy složitosti a vyčíslitelnosti
Rozšířující předměty: viz výše zkušební okruhy 1 a 2 pro obory I1 a I4

2. Datové struktury

Doporučené předměty: NTIN066 Datové struktury I
Rozšířující předměty: NTIN067 Datové struktury II, NTIN083 Seminář z datových
struktur

2. Studijní plány jednotlivých oborů

U každého oboru studia je uvedeno garantující pracoviště, garant oboru a podmínky pro absolvování studia v tomto oboru (povinné a povinně volitelné předměty). Pro každé zaměření jsou pak vypsány zkušební okruhy ke státní závěrečné zkoušce, požadavky znalostí k jednotlivým zkušebním okruhům a doporučená výuka.

1. Teoretická informatika I

Garantující pracoviště: Katedra teoretické informatiky a matematické logiky

Garant oboru: prof. RNDr. Roman Barták, Ph.D.

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN062</td>
<td>Složitost I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NTIN063</td>
<td>Vyčíslitelnost</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NTIN065</td>
<td>Datové struktury I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMAI064</td>
<td>Matematické struktury</td>
<td>6</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NSZZ028</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4</td>
</tr>
<tr>
<td>NSZZ029</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6</td>
<td>Z</td>
</tr>
<tr>
<td>NSZZ035</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10</td>
</tr>
</tbody>
</table>

Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 60 kreditů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN063</td>
<td>Složitost II</td>
<td>5</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td>NTIN065</td>
<td>Vyčíslitelnost II</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NMAI060</td>
<td>Logické programování I</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMAI061</td>
<td>Logické programování II</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NMAI062</td>
<td>Umělá inteligence I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMAI063</td>
<td>Umělá inteligence II</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NMAI066</td>
<td>Pravděpodobnostní metody</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMAI067</td>
<td>Metody matematické statistiky</td>
<td>5</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td>NTIN072</td>
<td>Rekurze II</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NTIN073</td>
<td>Rekurze</td>
<td>5</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td>NDMI010</td>
<td>Grafové algoritmy</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDMI011</td>
<td>Paralelní algoritmy</td>
<td>3</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NDMI012</td>
<td>Kombinatorické algoritmy</td>
<td>6</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NTIN086</td>
<td>Textové algoritmy</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NAIL078</td>
<td>Lambda-kalkulus a funkcionální programování I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NAIL079</td>
<td>Lambda-kalkulus a funkcionální programování II</td>
<td>5</td>
<td>—</td>
<td>2/1</td>
</tr>
</tbody>
</table>
a) Zaměření **Algoritmy a složitost**

Zkušební okruhy

1. Rekurze a strukturální složitost
2. Obecná teorie algoritmů
3. Konkrétní algoritmy

Zkušební požadavky

1. **Rekurze a strukturální složitost**

 Aritmetická hierarchie tříd množin, třídy nekonečných větví rekurzivních stromů. Věta o nízké bázi. Diagonálně nerekurzivní funkce, význam a aplikace. Základy aritmetického forcingu, 1-generické množiny. Algorittická náhodnost, 1-náhodné množiny – základní vlastnosti. Existence těžkých problémů (Shannonova věta), pravděpodobnostní třídy složitosti a jejich vlastnosti, neuniformní třídy složitosti a jejich vlastnosti,
polynomiální hierarchie, vztahy tříd složitosti definovaných pomocí různých prostředků, separace různých tříd složitosti, vlastnosti řídkých množin, základy kryptografie.

Doporučené předměty: NTIN073 Rekurze I, NTIN074 Rekurze II, NTIN081 Strukturařní složitost I, NTIN082 Výpočetní složitost

Rozšiřující předměty: NTIN085 Vybrané kapitoly z výpočetní složitost I, NTIN086 Vybrané kapitoly z výpočetní složitost II

2. Obecná teorie algoritmů

Pravděpodobnostní a randomizované algoritmy: jejich popis a parametry kvantifikující jejich vlastnosti, třídy složitosti pravděpodobnostních algoritmů (BPP, RP, ZPP a příkazy problémů v těchto třídách), pravděpodobnostní binární vyhledávací stromy.

Paralelní algoritmy: modely paralelních počítačů, počítače první a druhé třídy a paralelní teze, techniky paralelních algoritmů. Dolní odhady, P-úplnost, NC- a AC-třídy.

Deterministické algoritmy: různé typy složitosti (složitost v nejhorším případě, složitost v průměrném případě, amortizovaná složitost). Distribuce vstupních dat, statistické metody odhadu doby výpočtu na základě experimentů, interpretace výsledků statistických metod.

Doporučené předměty: NTIN063 Složitost II, NTIN017 Paralelní algoritmy, NTIN018 Pravděpodobnostní analýza algoritmů, NTIN081 Strukturální složitost I, NMAI060 Pravděpodobnostní metody, NMAI061 Metody matematické statistiky

Rozšiřující předměty: NDMI025 Pravděpodobnostní algoritmy

3. Konkrétní algoritmy

Třídící algoritmy: algoritmy založené na porovnávání prvků (Shellsort, Mergesort, Heapsort, Quicksort) a jejich složitost, algoritmy založené na adresovacích metodách (Bucket sort, Hybrid sort). Hledání mediánu a k-tého prvku. Třídící sítě, paralelní Mergesort, externí třídící algoritmy.

Algebraické algoritmy: algoritmy založené na algoritmech pro násobení matic, rychlá diskriminátor Fourierova transformace. LUP-dekompozice matic. Testy prvočislnosti.

Grafové algoritmy: testy planarity, maximální tok v síti a jeho aplikace (párování, k-souvislost), transitivní uzávěr, metoda Eulerových cyklů, paralelní algoritmy pro souvislost a dvousouvislost grafu, hledání minimální kostry a hledání nejkratší cesty v grafech.

Algoritmy testování splnitelnosti Booleovských formulí.

Doporučené předměty: NTIN067 Datové struktury II, NDMI010 Grafové algoritmy, NTIN017 Paralelní algoritmy, NAIL021 Booleovské funkce a jejich aplikace, NDMI025 Pravděpodobnostní algoritmy

Rozšiřující předměty: NDMI007 Kombinatorické algoritmy, NTIN081 Strukturální složitost I, NTIN084 Bioinformatické algoritmy, NTIN085 Vybrané kapitoly z výpočetní složitosti I, NTIN086 Vybrané kapitoly z výpočetní složitosti II, NAIL025 Evoluční algoritmy I, NAIL086 Evoluční algoritmy II, NTIN087 Textové algoritmy, NAIL094
Rozhodovací procedury a verifikace

b) Zaměření Neprocedurální programování a umělá inteligence

Zkušební okruhy

1. Logika a výpočtová složitost
2. Umělá inteligence
3. Neprocedurální programování
4. Neuronové sítě
5. Adaptivní agenti a evoluční algoritmy
6. Robotika

Zkušební požadavky

1. Logika a výpočtová složitost

Formální systémy, logika 1. řádu, jazyk, axiomy, odvozovací pravidla. Výroková logika, sémantika výrokové logiky, tautologie a splnitelnost, dokazatelnost, věta o dedukci, věta o kompaktnosti a věty o úplnosti. Konjunktivně-disjunktivní a disjunktivně-konjunktivní tvary formulí.

Míry výpočtové složitosti, třídy složitosti (P, NP, PSPACE, NPSPACE, LOGSPACE), NP-těžké a NP-úplné úlohy. Složitost algoritmů v umělé inteligenci, prohledávání, rezoluční odvozování.

Doporučené předměty: NAIL062 Výroková a predikátová logika, NTIN062 Složitost I

2. Umělá inteligence

Doporučené předměty: NAIL069 Umělá inteligence I, NAIL070 Umělá inteligence II

Rozšířující předměty: NAIL004 Seminář z umělé inteligence I, NAIL052 Seminář z umělé inteligence II, NAIL021 Booleovské funkce a jejich aplikace, NAIL031 Reprezentace booleovských funkcí, NAIL029 Strojové učení, NOPT042 Programování s omezujícími podmínkami, NAIL071 Plánování a rozvrhování, NAIL068 Umělé bytosti, NAIL094 Rozhodovací procedury a verifikace
3. Neprocedurální programování

Doporučené předměty: NAIL078 Lambda-kalkulus a funkcionální programování I, NAIL076 Logické programování I, NOPT042 Programování s omezujícími podmínkami

Rozšiřující předměty: NAIL079 Lambda-kalkulus a funkcionální programování II, NAIL077 Logické programování II, NAIL022 Metody logického programování, NAIL006 Seminář z logického programování I, NAIL009 Seminář z logického programování II

4. Neuronové sítě

Doporučené předměty: NAIL002 Neuronové sítě, NAIL013 Aplikace teorie neuronových sítí

Rozšiřující předměty: NTIN084 Bioinformatické algoritmy, NAIL060 Implementace neuronových sítí I, NAIL015 Implementace neuronových sítí II, NAIL065 Evoluční robotika, NDBI023 Dobývání znalostí

5. Adaptivní agenti a evoluční algoritmy

Architektura autonomního agenta; percepce, mechanismus výběru akcí, paměť; psychologické inspirace. Metody pro řízení agentů; řidicí architektury podle Wooldridge, symbolické a konekcionistické reaktivní plánování, hybridní přístupy (Belief Desire Intention, Soar), srovnání s plánovacími technikami. Problém hledání cesty; navařná pravidla, reprezentace terénu. Komunikace a znalosti v multiagentních systémech, onologie, problém omezené racionality, Kripkeho sémantika možných světů. Eologické
motivace, modely populace dynamiky. Metody pro učení agentů; zpětnovazební učení, základní formy učení zvířat.

Doporučené předměty: NAIL068 Umělé bytosti, NAIL025 Evoluční algoritmy I, NAIL086 Evoluční algoritmy II, NAIL087 Informatika a kognitivní vědy I
Rozšířující předměty: NAIL071 Plánování a rozvrhování, NAIL054 Adaptivní agenti, NAIL086 Evoluční algoritmy II, NAIL082 Seminář z umělých bytostí, ALGV00003 Úvod do teoretické sémantiky (předmět je vyučován na Filosofické fakultě UK), NAIL065 Evoluční robotika, NAIL002 Neuronové sítě, NAIL088 Informatika a kognitivní vědy II, NAIL106 Multiagentní systémy

6. Robotika

Doporučené předměty: NAIL028 Úvod do mobilní robotiky, NPGR001 Počítačové vidění a inteligentní robotika, NAIL071 Plánování a rozvrhování, NSWE001 Vestavěné systémy a systémy reálného času
Rozšířující předměty: NAIL029 Strojové učení, NAIL065 Evoluční robotika, NAIL068 Umělé bytosti, NAIL025 Evoluční algoritmy I, NAIL101 Pravděpodobnostní robotika, NAIL070 Umělá inteligence II

2. Softwarové systémy I2

Garantující pracoviště: Katedra softwarového inženýrství
Garant oboru: doc. RNDr. Tomáš Skopal, Ph.D.

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTN0901</td>
<td>Základy složitosti a vyčíslitelnosti 1</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTN0696</td>
<td>Datové struktury I</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAI0601</td>
<td>Pravděpodobnostní metody</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSW1012</td>
<td>Operační systémy 2</td>
<td>5</td>
<td>2/1 KZ</td>
<td>—</td>
</tr>
<tr>
<td>Kód</td>
<td>Název</td>
<td>Kredity</td>
<td>ZS</td>
<td>LS</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>NDBI001</td>
<td>Dotazovací jazyky I</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI180</td>
<td>Architektury softwarových systémů</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPRG127</td>
<td>Zápočet k projektu</td>
<td>6</td>
<td>0/4 Z</td>
<td>—</td>
</tr>
<tr>
<td>NPRG123</td>
<td>Softwarový projekt</td>
<td>9</td>
<td>—</td>
<td>0/6 Z</td>
</tr>
<tr>
<td>NZZZ024</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NZZZ025</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NZZZ026</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

1 Místo předmětu NTIN090 Základy složitosti a vyčíslitelnosti je možné absolvovat dvojici předmětů NTIN062 Složitost I, NTIN064 Výčíslitelnost I.
2 Předmět je povinný pouze pro zaměření Systémové architektury a Spolehlivé systémy; pro ostatní zaměření je povinně volitelný.
3 Předmět je povinný pouze pro zaměření Databázové systémy; pro ostatní zaměření je povinně volitelný.
4 Předmět je povinný pouze pro zaměření Softwarové inženýrství; pro ostatní zaměření je povinně volitelný.

Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 25 kreditů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL029</td>
<td>Strojové učení</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAI061</td>
<td>Metody matematické statistiky</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NSWI182</td>
<td>Operační systémy 1</td>
<td>5</td>
<td>2/1 KZ</td>
<td>—</td>
</tr>
<tr>
<td>NSWI185</td>
<td>Principy distribuovaných systémů</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI190</td>
<td>Middleware</td>
<td>5</td>
<td>—</td>
<td>2/1 KZ</td>
</tr>
<tr>
<td>NSWI191</td>
<td>Modely a verifikace chování systémů</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI193</td>
<td>Vyhodnocování výkonnosti</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NSWI500</td>
<td>Vestavěné systémy a systémy reálného času</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NSWI180</td>
<td>Architektury softwarových systémů 2</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI070</td>
<td>Pokročilé aspekty softwarového inženýrství</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NSWI192</td>
<td>Konstrukce překladačů</td>
<td>4</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NTIN071</td>
<td>Testování software</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI196</td>
<td>Pokročilé nástroje pro vývoj a monitorování software</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NPRG142</td>
<td>Programování v paralelním prostředí</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPRG143</td>
<td>Doporučené postupy v programování</td>
<td>6</td>
<td>—</td>
<td>2/2 KZ</td>
</tr>
<tr>
<td>NSWI105</td>
<td>Sémantizace webu</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI112</td>
<td>Analýza programů a verifikace kódu</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPRG144</td>
<td>Koncepty moderních programovacích jazyků</td>
<td>3</td>
<td>0/3 Z</td>
<td>—</td>
</tr>
<tr>
<td>NDBI001</td>
<td>Dotazovací jazyky I 3</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
</tbody>
</table>
Softwarové systémy

<table>
<thead>
<tr>
<th>Kód</th>
<th>Předmět</th>
<th>Z + Zk</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDBI006</td>
<td>Dotazovací jazyky II</td>
<td>2/2</td>
</tr>
<tr>
<td>NDBI008</td>
<td>Organizace a zpracování dat II</td>
<td>2/1</td>
</tr>
<tr>
<td>NDBI021</td>
<td>Zákaznické preference</td>
<td>2/1</td>
</tr>
<tr>
<td>NDBI010</td>
<td>Dokumentografické informační systémy</td>
<td>2/0</td>
</tr>
<tr>
<td>NDBI003</td>
<td>Vyhledávání multimedialního obsahu na webu</td>
<td>2/1</td>
</tr>
<tr>
<td>NPGR007</td>
<td>Transakce</td>
<td>2/0</td>
</tr>
<tr>
<td>NPGR007</td>
<td>Pokročilá 2D počítačová grafika</td>
<td>2/0</td>
</tr>
<tr>
<td>NPGR010</td>
<td>Počítačová grafika III</td>
<td>2/2</td>
</tr>
<tr>
<td>NPGR012</td>
<td>Digitální zpracování obrazu</td>
<td>3/0</td>
</tr>
<tr>
<td>NPGR020</td>
<td>Geometrie pro počítačovou grafiku</td>
<td>2/0</td>
</tr>
<tr>
<td>NPGR026</td>
<td>Visualizace</td>
<td>2/2</td>
</tr>
<tr>
<td>NPGR026</td>
<td>Predictive Image Synthesis Technologies</td>
<td>2/2</td>
</tr>
</tbody>
</table>

1. Formální základy databázové technologie

Doporučené předměty: NDBI006 Dotazovací jazyky II, NDBI021 Dotazování s preferencemi
Rozšířující předměty: NDBI003 Organizace a zpracování dat II, NDBI016 Transakce, NAIL029 Strojové učení

2. Databázové modely a jazyky

Doporučené předměty: NDBI001 Dotazovací jazyky I, NPRG039 Teoretické a pokročilé aspekty XML technologií, NDBI010 Dokumentografické informační systémy, NDBI034 Vyhledávání multimedialního obsahu na webu
Rozšiřující předměty: NDBI016 Transakce

3. Implementace databázových systémů

Doporučené předměty: NDBI003 Organizace a zpracování dat II, NDBI034 Vyhledávání multimedialního obsahu na webu, NDBI010 Dokumentografické informační systémy, NTIN066 Datové struktury I, NDBI016 Transakce
Rozšiřující předměty: NPRG039 Teoretické a pokročilé aspekty XML technologií, NDBI026 Databázové aplikace, NDBI013 Administrace Oracle

b) Zaměření **Softwarevá inženýrství**

Zkušební okruhy

1. Formální základy softwarového inženýrství
2. Analýza, návrh a management softwarových systémů
3. Vývoj softwarových systémů
4. Překladače a výkonnost software

Zkušební požadavky

1. **Formální základy softwarového inženýrství**

Doporučené předměty: NSWI026 Pokročilé aspekty softwarového inženýrství, NSWI130 Architektury softwarových systémů, NSWI108 Sémantizace webu

172
Rozšiřující předměty: NTIN043 Formální základy softwarového inženýrství, NSWI109 Konstrukce překladačů, NSWI1101 Modely a verifikace chování systémů, NAIL029 Strojové učení

2. Analýza, návrh a management softwarových systémů

Doporučené předměty: NSWI130 Architektury softwarových systémů, NSWI026 Pokročilé aspekty softwarového inženýrství
Rozšiřující předměty: NPRG042 Programování v paralelním prostředí, NSWI145 Webové služby, NSWI089 Ochrana informací I, NSWI071 Ochrana informací II

3. Vývoj softwarových systémů

Architektury SW systémů, vývoj multiplatformních aplikací. Webové služby a servisně-orientovaná řešení, webové orientovaná řešení. 2-, 3- a 4-vrstvé architektury IS a související problémy. CASE nástroje, správa verzí, nástroje pro kompilaci a se-stavení. Vývojová prostředí, nástroje pro ladění a testování funkčnosti a výkonnosti. Objetově orientované jazyky a technologie, návrhové vzory. Architectury, testovací scénáře, metody testování černé, šedé a bílé skřínky, testování uživatelského rozhraní. Provoz a údržba, detekce a odstraňování chyb, konfigurační řízení. Vývojové prostředí, dodávky systému, akceptační a produkční prostředí, distribuce a instalace software. Správa a řízení konfigurace.

Doporučené předměty: NSWI130 Architektury softwarových systémů, NSWI126 Pokročilé nástroje pro vývoj a monitorování software, NSWI026 Pokročilé aspekty softwarového inženýrství, NTIN070 Testování software
Rozšiřující předměty: NPRG051 Pokročilé programování v C++, NSWI145 Webové služby, NPRG024 Návrhové vzory

4. Překladače a výkonnost software

Doporučené předměty: NSWI109 Konstrukce překladačů, NPRG042 Programování

C) Zaměření Systémové architektury

Zkušební okruhy

1. Operační systémy
2. Distribuované systémy
3. Architektura počítačů a sítí
4. Objektově orientované a komponentové systémy

Zkušební požadavky

1. Operační systémy

2. Distribuované systémy

3. Architektura počítačů a sítí
 Architektura procesoru a zpracování programu počítačem (operace a operandy, podpora pro vyšší programovací jazyky, instrukční kód), výkonnost procesorů (zá-
Softwarové systémy

kladní metriky a vztahy mezi nimi). Mikroarchitektura, datová cesta (jednocyklové
a více cyklové zpracování instrukcí), radič (klasické a mikroprogramové řadiče, mikroprogramování). Zřetězené zpracování instrukcí (zrychlení a hranice výkonnosti, datové a řídící hazardy), superskalární procesory (statické/dynamické plánování instrukcí, spekulativní provádění instrukcí). Architektura paměťového subsystému, vyrovnávací
paměťi (vnitřní architektura, strukturální parametry a jejich vliv na výkonnost). Periferní zařízení a rozhraní pro komunikaci mezi SW a HW, propojovací systémy (základní
Přenosové služby počítačových sítí: spolehlivé a nespoledlivé, spojované a nespojované. Přenos a sdílení dat, elektronická pošta, služby pro zpřístupnění informací (WWW, proxy, peer-to-peer sítě). Bezpečnost síťového přístupu, zabezpečené protokoly, překlad adres, firewally, certifikáty, VPN.

Doporučené předměty: NSWI120 Principy počítačů a operačních systémů, NSWI021 Počítačové sítě II, NSWI080 Middleware, NSWI089 Ochrana informací I, NSWI071 Ochrana informací II, NSWI073 Moderní síťová řešení, NSWI045 Rodina protokolů TCP/IP
Rozšířující předměty: NSWI004 Operační systémy

4. Objektově orientované a komponentové systémy

Doporučené předměty: NSWI080 Middleware, NSWI101 Modely a verifikace chování systémů, NSWI057 Výběrový seminář z distribuovaných a komponentových systémů I, NSWI058 Výběrový seminář z distribuovaných a komponentových systémů II, NPRG014 Koncepty moderních programovacích jazyků
Rozšířující předměty: NSWI132 Analýza programů a verifikace kódu

d) Zaměření Spolehlivé systémy

Zkušební okruhy

1. Modely a verifikace programů
2. Vestavěné systémy a systémy reálného času
3. Moderní softwarové systémy
Zkušební požadavky

1. Modely a verifikace programů

Doporučené předměty: NSWI101 Modely a verifikace chování systémů, NSWI132 Analýza programů a verifikace kódu

Rozšiřující předměty: NSWE001 Vestavěné systémy a systémy reálného času

2. Vestavěné systémy a systémy reálného času

Doporučené předměty: NSWE001 Vestavěné systémy a systémy reálného času, NSWI131 Vyhodnocování výkonnosti počítačových systémů, NSWI126 Nástroje pro vývoj a monitorování software

Rozšiřující předměty: NSWI101 Modely a verifikace chování systémů, NSWI132 Analýza programů a verifikace kódu

3. Moderní softwarové systémy

Doporučené předměty: NPRG043 Doporučené postupy v programování, NSWI004 Operační systémy, NPRG038 Pokročilé programování pro .NET I, NPRG021 Pokročilé programování na platformě Java, NPRG051 Pokročilé programování v C++, NPRG042 Programování v paralelním prostředí, NPRGG014 Koncepty moderních programovacích jazyků

Rozšiřující předměty: NSWI101 Modely a verifikace chování systémů, NSWI080 Middleware, NSWI035 Principy distribuovaných systémů, NSWI126 Nástroje pro vývoj
a) Monitorování softwarových systémů

e) Zaměření **Počítačová grafika**

Zkušební okruhy

1. Geometrické modelování a výpočetní geometrie
2. Analýza a zpracování obrazu, počítačové vidění a robotika
3. 2D počítačová grafika, komprese obrazu a videa
4. Realistická syntéza obrazu, virtuální realita

Zkušební požadavky

1. Geometrické modelování a výpočetní geometrie
 - Projektivní rozšíření afinitního prostoru, homogenní souřadnice, afinitní a projektivní transformace v rovině a v prostoru, kvaterniony v reprezentaci 3D orientace, diferenciální geometrie křivek a ploch, základní spline funkce, kubické splény C2 a jejich vlastnosti, interpolace kubickými splény, Bézierovy křivky, Catmull-Rom splény, B-spline, de Casteljaův a de Boorův algoritmus, aproximační plochy, plochy zadané okrajem, Bezierovy plochy, plátopování, B-spline plochy, NURBS plochy, základní věty o konvexitě, kombinatorická složitost konvexních mnohostěnů, návrh geometrických algoritmů a jejich složitost, Voronoi diagram a Delaunayova triangulace, konvexní obal, lokalizace, datové struktury a algoritmy pro efektivní prostorové vyhledávání.

 Doporučené předměty: NPGR016 Aplikovaná výpočetní geometrie, NPGR020 Geometrie pro počítačovou grafiku, NPGR021 Geometrické modelování

 Rozšiřující předměty: NDMI009 Kombinatorická a výpočetní geometrie I, NDMI013 Kombinatorická a výpočetní geometrie II

2. Analýza a zpracování obrazu, počítačové vidění a robotika
 - Matematický model obrazu, 2D Fourierova transformace a konvoluce, vzorkování a kvantování obrazu, změna kontrastu a jasu, odstranění šumu, detekce hran, inverzní a Wienerův filtr, určení vzájemné polohy snímků, problém korespondence bodu a objektu, odstranění geometrických zkreslění snímků, detekce hranici objektů, detekce oblastí, příznaky pro popis a rozpoznávání 2D objektů, momentové invariancie, wavelety a jejich použití, statistická teorie rozpoznávání, klasifikace s učením (Bayesův, lineární, SVM a k-NN klasifikátor), klasifikace bez učení (hierarchické a iterativní shlukování), počítačové vidění, úvod do počítačové robotiky, plánování cesty mobilního robota.

 Doporučené předměty: NPGR002 Digitální zpracování obrazu, NPGR001 Počítačové vidění a inteligentní robotika, NPGR013 Speciální funkce a transformace ve zpracování obrazu

 Rozšiřující předměty: NPGR029 Variační metody ve zpracování obrazu, NPGR022 Speciální seminář ze zpracování obrazu, NPGR032 Digitální zpracování obrazu v praxi, NAIL028 Úvod do mobilní robotiky

3. 2D počítačová grafika, komprese obrazu a videa
 - Výstupní grafická zařízení, plošné útvary - jejich reprezentace a množinové operace s nimi, kreslicí a ořezávací algoritmy v rovině, anti-aliasing, barevné vidění a barevné
systémy, reprodukce barevné grafiky, rozptylování a půltónování, kompozice poloprůhledných obrázků, geometrické deformace rastrových obrázků, morphing, základní principy komprese rastrové 2D grafiky, skalární a vektorové kvantování, prediktivní komprese, transformační kompresní metody, hierarchické a progresivní metody, waveletové transformace a jejich celočíselné implementace, kódování koeficientů, komprese videosignálu, časová predice - kompenzace pohybu, standardy JPEG a MPEG, snímání obrazu v digitální fotografii.

Doporučené předměty: NPRGR003 Počítačová grafika I, NPRGR007 Pokročilá 2D počítačová grafika, NPRGR025 Introduction to Colour Science
Rozšiřující předměty: NPRGR005 Speciální seminář z počítačové grafiky, NPRGR024 Seminář z vědecké práce, NSWI072 Algoritmy komprese dat, NSWI100 Seminář z komprese dat, NPRGR030 Optika pro počítačovou grafiku

4. **Realistická syntéza obrazu, virtuální realita**

 Metody reprezentace 3D scén, klasické zobrazovací algoritmy, výpočet viditelnosti, výpočet vrzených stínů, modely osvětlení a stínovací algoritmy, rekurzivní sledování paprsku, textury, anti-aliasing, urychlovací metody pro ray-tracing, princip radiačních metod, výpočet konfiguračních faktorů, řešení radiační soustavy rovnic, fyzikální model šíření světla - zobrazovací rovnice, Monte-Carlo přístupy ve výpočtu osvětlení, hybridní zobrazovací metody, přímé metody ve vizualizaci objemových dat, generování izoploch, schéma grafického akcelerátoru, předávání dat do GPU, textury v GPU, programování GPU, základy OpenGL, jazyka Cg a GLSL, CUDA, pokročilé techniky práce s GPU, SW a HW prostředky pro virtuální realitu, jazyk VRML, struktura scény, statické, dynamické a interaktivní scény VRML, práce se skripty, rozhraní EAI, víceuživatelská virtuální realita.

Doporučené předměty: NPRGR004 Počítačová grafika II, NPRGR010 Počítačová grafika III, NPRGR019 Hardware pro počítačovou grafiku, NPRGR012 Virtuální realita, NPRGR023 Visualizace, NPRGR026 Predictive Image Synthesis Technologies, NPRGR028 Real-Time Raytracing, NPRGR031 Vybrané partie z výpočtu globálního osvětlení
Rozšířující předměty: NPRGR027 Shading Languages, NPRGR005 Speciální seminář z počítačové grafiky, NPRGR024 Seminář z vědecké práce, NPRGR030 Optika pro počítačovou grafiku

3. **Matematická lingvistika I3**

 Garantující pracoviště: Ústav formální a aplikované lingvistiky
 Garant oboru: doc. RNDr. Markéta Lopatková, Ph.D.

 Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPRGL167</td>
<td>Statistické metody zpracování přirozených jazyků I</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NPRGL292</td>
<td>Technologie pro NLP</td>
<td>5</td>
<td>1/2 KZ</td>
<td></td>
</tr>
<tr>
<td>NPRGC027</td>
<td>Zápočet k projektu</td>
<td>6</td>
<td>0/4 Z</td>
<td></td>
</tr>
<tr>
<td>NPRGC028</td>
<td>Softwarový projekt</td>
<td>9</td>
<td>0/6 Z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN090</td>
<td>Základy složitosti a vyčíslitelnosti 1</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NTIN066</td>
<td>Datové struktury I</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

1) Místo předmětu NTIN090 Základy složitosti a vyčíslitelnosti je možné absolvovat dvojici předmětů NTIN062 Složitost I, NTIN064 Vyčíslitelnost I.

Předměty NPFL067 Statistické metody zpracování přirozených jazyků I a NPFL092 Technologie pro NLP mohou studenti absolvovat již během svého bakalářského studia.

Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 35 kreditů.

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPFL068</td>
<td>Statistické metody zpracování přirozených jazyků II</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL068</td>
<td>Lingvistická teorie a gramatické formalismy</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL071</td>
<td>Zdroje jazykových dat</td>
<td>5</td>
<td>1/2 KZ</td>
<td>—</td>
</tr>
<tr>
<td>NPFL072</td>
<td>Závislostní gramatiky a korpusy</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL075</td>
<td>Úvod do strojového učení</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPFL076</td>
<td>Aplikace NLP</td>
<td>5</td>
<td>—</td>
<td>2/1 KZ</td>
</tr>
<tr>
<td>NPOZ009</td>
<td>Odborné vyjadřování a styl</td>
<td>3</td>
<td>—</td>
<td>1/1 KZ</td>
</tr>
<tr>
<td>NPFL077</td>
<td>Statistický strojový překlad</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL080</td>
<td>Morfologická a syntaktická analýza</td>
<td>3</td>
<td>2/0 KZ</td>
<td>—</td>
</tr>
<tr>
<td>NPFL081</td>
<td>Úvod do formální lingvistiky</td>
<td>3</td>
<td>2/0 Z</td>
<td>—</td>
</tr>
<tr>
<td>NPFL082</td>
<td>Moderní metody v počítačové lingvistice</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NPFL084</td>
<td>Základy rozpoznávání a generování mluvené řečí</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPFL085</td>
<td>Informační struktura věty a výstavba diskurzu</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NPFL086</td>
<td>Komputační morfologie</td>
<td>4</td>
<td>—</td>
<td>2/1 Zk</td>
</tr>
<tr>
<td>NPFL087</td>
<td>Algoritmy rozpoznávání mluvené řečí</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPFL088</td>
<td>Statistické dialogové systémy</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPFL080</td>
<td>Obecná lingvistika</td>
<td>3</td>
<td>—</td>
<td>1/1 KZ</td>
</tr>
<tr>
<td>NPFL084</td>
<td>Vyhledávání informací</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

Jako volitelné předměty jsou doporučeny další předměty s kódem NPFL.
Zkušební okruhy
Obor I3 se nedělí na zaměření. Zkušební okruh 1 je povinný pro všechny studenty oboru, z okruhů 2-5 si student volí dva. V případě zájmu si lze podle pravidel studijního programu Informatika, odst. B.4., tj. se schváléním garanta oboru, vybrat jeden z okruhů 2-5 a jeden ze zkušebních okruhů Umělá inteligence, Neuronové sítě, Adaptivní agentů a evoluční algoritmy (vše obor I1, zaměření Neprocedurální programování a umělá inteligence), případně okruh Analýza a zpracování obrazu, počítačové vidění a robotika (obor I2, zaměření Počítačová grafika).

1. Základy počítačového zpracování přirozeného jazyka
2. Statistické metody a strojové učení v počítačové lingvistice
3. Aplikační úlohy ve zpracování přirozeného jazyka
4. Lingvistické teorie a formalismy
5. Analýza a syntéza mluvené řeči, dialogové systémy

Zkušební požadavky
1. Základy počítačového zpracování přirozeného jazyka

Doporučené předměty: NPFL067 Statistické metody zpracování přirozených jazyků I a výběr jednoho z předmětů NPFL063 Úvod do obecné lingvistiky, NPFL075 Pražský závislostní korpus či NPFL106 Obecná lingvistika

2. Statistické metody a strojové učení v počítačové lingvistice

Doporučené předměty: NPFL067 Statistické metody zpracování přirozených jazyků I, NPFL068 Statistické metody zpracování přirozených jazyků II, NPFL054 Úvod do strojového učení (v počítačové lingvistice), NPFL070 Zdroje lingvistických dat

3. Aplikační úlohy ve zpracování přirozeného jazyka
 Zpracování morfologie (morfologické kategorie, sady značek; analýza, značkování, lemmatizace, segmentace, generování, algoritmy). Syntaktická analýza jazyka (povr-
Diskrétní modely a algoritmy

Doporučené předměty: NPFL093 Aplikace NLP, NPFL094 Morfologická a syntaktická analýza, NPFL087 Statistický strojový překlad, NPFL103 Vyhledávání informací

4. Lingvistické teorie a formalismy

Doporučené předměty: NPFL103 Obecná lingvistika, NPFL083 Lingvistická teorie a gramatické formalismy, NPFL075 Pražský závislostní korpus, NPFL082 Informační struktura věty a výstavba diskurzu, NPFL006 Úvod do formální lingvistiky

5. Analýza a syntéza mluvené řeči, dialogové systémy

Doporučené předměty: NPFL038 Základy rozpoznávání mluvené řeči, NPFL079 Algoritmy rozpoznávání mluvené řeči, NPFL099 Statistické dialogové systémy

4. Diskrétní modely a algoritmy I4

Garantující pracoviště: Katedra aplikované matematiky
Garant oboru: doc. RNDr. Martin Klazar, Dr.

Povinné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN062</td>
<td>Složitost I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NTIN063</td>
<td>Vyčíslitelnost</td>
<td>3</td>
<td></td>
<td>2/0</td>
</tr>
<tr>
<td>NTIN066</td>
<td>Datové struktury I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMAI066</td>
<td>Matematické struktury</td>
<td>6</td>
<td></td>
<td>2/2</td>
</tr>
</tbody>
</table>
Informatika Mgr. – zahájení do 2014

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDMI073</td>
<td>Kombinatorika a grafy III</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOPT018</td>
<td>Základy nelineární optimalizace</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

1 Předmět je povinný pouze pro zaměření Diskrétní matematika a kombinatorická optimalizace, Matematické struktury informatiky; pro zaměření optimalizace je povinně volitelný. Posluchači, kteří zahájili studium v roce 2009 nebo dříve, mohou požádat o uznání tohoto předmětu na základě dřívějšího absolvování předmětu NDMI012 Kombinatorika a grafy II.

2 Předmět je povinný pouze pro zaměření optimalizace; pro ostatní zaměření je povinně volitelný. Posluchači, kteří zahájili studium v roce 2009 nebo dříve, mohou požádat o uznání tohoto předmětu na základě dřívějšího absolvování předmětu NOPT046 Základy spojité optimalizace.

Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 45 kreditů:

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN053</td>
<td>Složitost</td>
<td>5</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NTIN055</td>
<td>Vyčíslitelnost II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTIN056</td>
<td>Datové struktury II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NDMI072</td>
<td>Kombinatorika a grafy III</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOPT018</td>
<td>Základy nelineární optimalizace</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDMI013</td>
<td>Kombinatorická a výpočetní geometrie II</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDMI014</td>
<td>Grafové algoritmy</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDMI025</td>
<td>Pravděpodobnostní algoritmy</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDMI015</td>
<td>Kombinatorické počítání</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAI022</td>
<td>Topologické a algebraické metody</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NTIN022</td>
<td>Pravděpodobnostní techniky</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAI026</td>
<td>Základy teorie kategorií pro informatiky</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAI030</td>
<td>Úvod do teorie čísel</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAI047</td>
<td>Logika v informatice</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOPT018</td>
<td>Algoritmy nelineární optimalizace</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NOPT001</td>
<td>Optimalizační procesy I</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOPT002</td>
<td>Optimalizační procesy II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NOPT003</td>
<td>Dynamické programování</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NOPT013</td>
<td>Parametrická optimalizace</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NOPT017</td>
<td>Vícekriteriální optimalizace</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NOPT018</td>
<td>Celočíselné programování</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NMAI020</td>
<td>Logické programování I</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAI064</td>
<td>Paralelní algoritmy</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMAI034</td>
<td>Matematické modely činnosti buněk</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMAG039</td>
<td>Úvod do teorie grup</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDMI018</td>
<td>Aproximační a online algoritmy</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

182
a) Zaměření **Diskrétní matematika a kombinatorická optimalizace**

Zkušební okruhy

1. Kombinatorika a teorie grafů
2. Pravděpodobnostní metody a algoritmy
3. Kombinatorická optimalizace

Zkušební požadavky

1. **Kombinatorika a teorie grafů**

 Barevnost grafů, regulární grafy, souvislost grafů, speciální vlastnosti orientovaných grafů, algebraické vlastnosti grafů, teorie párování, Ramseyova teorie, nekonečná kombinatorika, strukturální vlastnosti množinových systémů.

2. **Pravděpodobnostní metody a algoritmy**

 Kombinatorické počítání, vytvářející funkce, rekurence, základní pravděpodobnostní modely, lineární střední hodnoty, použití variace, aplikace na konkrétní příklady, asymptotické odhady funkcí, pravděpodobnostní konstrukce a algoritmy.
3. Kombinatorická optimalizace

Grafové algoritmy, algebraické a aritmetické algoritmy, teorie mnohostěnů, problém obchodního cestujícího, speciální matice, celočíselnost, párování a toky v sítích, teorie matroidů, elipsoidová metoda.

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDM1022</td>
<td>Pravděpodobnostní techniky</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NDM1023</td>
<td>Kombinatorická a výpočetní geometrie I</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NDM1025</td>
<td>Pravděpodobnostní algoritmy</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDM1015</td>
<td>Kombinatorické počítání</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NDM1018</td>
<td>Aproximační a online algoritmy</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDM1028</td>
<td>Aplikace lineární algebry v kombinatorice</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NDM1052</td>
<td>Vybrané kapitoly z kombinatoriky I</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDM1060</td>
<td>Barevnost grafů a kombinatorických struktur</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDM1063</td>
<td>Teorie matroidů</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDM1067</td>
<td>Toky, cesty a řezy</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NCP1588</td>
<td>Matematické programování a polyedrální kombinatorika</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
</tbody>
</table>

b) Zaměření *Matematické struktury informatiky*

Zkušební okruhy

1. Kombinatorická a výpočetní geometrie
2. Algebraické a topologické metody v informatice
3. Teorie čísel a kategorie v informatice

Zkušební požadavky

1. **Kombinatorická a výpočetní geometrie**

Geometrické úlohy v prostorech konečné dimenze, kombinatorické vlastnosti geometrických konfigurací, algoritmické aplikace, návrh geometrických algoritmů, geometrické reprezentace grafů.

2. **Algebraické a topologické metody v informatice**

3. **Teorie čísel a kategorie v informatice**

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIN022</td>
<td>Pravděpodobnostní techniky</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMIA056</td>
<td>Topologické a algebraické metody</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NMIA085</td>
<td>Základy teorie kategorií pro informatiky</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMIA081</td>
<td>Úvod do teorie čísel</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMIA087</td>
<td>Logika v informatice</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDMI009</td>
<td>Kombinatorická a výpočetní geometrie I</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDMI013</td>
<td>Kombinatorická a výpočetní geometrie II</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDMI036</td>
<td>Kombinatorické struktury</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NDMI037</td>
<td>Geometrické reprezentace grafů I</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDMI045</td>
<td>Analytická a kombinatorická teorie čísel</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NDMI050</td>
<td>Vybrané kapitoly z kombinatoriky II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NDMI059</td>
<td>Grafové minory a stromové rozklady</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
</tbody>
</table>

Zkušební okruhy

1. Nelineární programování
2. Optimalizační procesy
3. Parametrické, vícekriteriální a celočíselné programování
4. Nehladká optimalizace a pravděpodobnostní dynamické modely

Zkušební požadavky

1. Nelineární programování

2. Optimalizační procesy
 Diskrétní: Klasifikace úloh a jejich vztah k úloze nelineárního programování. Lineární a kvadratické úlohy. Základy řízení markovských systémů. Diskrétní dynamické programování - optimalizace vzhledem k počátečnímu stavu, koncovému stavu a počátečnímu a koncovému stavu.

3. Parametrické, vícekriteriální a celočíselné programování
 Obory stability řešení. Obory řešitelnosti. Funkce řešitelnosti pro jednoparametrické a víceparametrické programování. Různé přístupy k řešení úloh s více kritérií.
Funkcionál přiřazený k dané úloze vektorového programování. Eficientní body. Úlohy lineární a nelineární vektorové optimalizace. Metody pro získání eficientních bodů. Úlohy lineárního programování s podmínkami celočíselnosti, resp. s bivalentními proměnnými. Nelineární optimalizační problémy s podmínkami celočíselnosti.

4. Nehladká optimalizace a pravděpodobnostní dynamické modely

Doporučené předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOPT1018</td>
<td>Základy nelineární optimalizace</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NOPT1038</td>
<td>Algoritmy nelineární optimalizace</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NOPT1017</td>
<td>Vícekriteriální optimalizace</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NOPT1016</td>
<td>Celočíselné programování</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NOPT1034</td>
<td>Matematické programování a poliedrálá kombinatorika</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDM1067</td>
<td>Toky, cesty a řezy</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
</tbody>
</table>

5. Učitelství informatiky pro střední školy v kombinaci s odbornou informatikou I5

Garantující pracoviště: Katedra softwaru a výuky informatiky
Garant oboru: doc. RNDr. Pavel Töpfer, CSc.
Garant za pedagogiku a psychologii: doc. PhDr. Isabella Pavelková, CSc.

Podrobnosti o oboru jsou uvedeny v kapitole věnované učitelskému studiu.
Studijní plány učitelského studia

Vedle odborných oborů nabízí MFF také studium několika oborů učitelského zaměření. Celé studium vedoucí k získání kvalifikace pro učitelské povolání je rozděleno na bakalářské a na něj navazující magisterské studium.

Magisterské studium

Zahájení v roce 2015 nebo později

1. Základní informace

V rámci navazujícího magisterského studia jsou na MFF akreditovány následující čtyři učitelské studijní obory. Jejich studijní plány jsou popsány v následujících kapitolách.

– Učitelství fyziky\(^1\) (dvouoborové studium)
– Učitelství matematiky\(^2\) (dvouoborové studium)
– Učitelství deskriptivní geometrie\(^2\) (dvouoborové studium)
– Učitelství informatiky\(^3\) (dvouoborové studium)

\(^1\) Je zařazeno pod studijní program Fyzika.
\(^2\) Je zařazeno pod studijní program Matematika.
\(^3\) Je zařazeno pod studijní program Informatika.

Jednotlivé obory dvouoborových studií lze studovat v těchto kombinacích:

– Učitelství matematiky - Učitelství fyziky
– Učitelství matematiky - Učitelství deskriptivní geometrie
– Učitelství matematiky - Učitelství informatiky

Absolvování jedné z těchto kombinací vede k učitelské aprobaci v příslušných aprobacích předmětech. S výjimkou Učitelství deskriptivní geometrie získává absolvent aprobaci pro střední i základní školy.

V rámci Univerzity Karlovy je možno dále studovat obor Učitelství matematiky v kombinaci s následujícími obory nabízenými na jiné fakultě.

– Učitelství chemie pro SŠ (dvouoborové)
– Učitelství biologie pro SŠ (dvouoborové)
– Učitelství geografie pro SŠ (dvouoborové)

(studium je otevíráno na Přírodovědecké fakultě UK)

– Učitelství pro střední školy - tělesná výchova (dvouoborové)

(studium je otevíráno na Fakultě tělesné výchovy a sportu UK)

Do budoucna je plánováno otevření kombinací s Filosofickou fakultou, které budou navazovat na příslušná již běžící bakalářská studia.

Po dohodě s didaktickými pracovišti MFF UK a Přírodovědecké fakulty UK je v rámci Univerzity Karlovy možno studovat také obor Učitelství fyziky v kombinaci s oborem:

– Učitelství chemie pro SŠ (dvouoborové)
(studium je otevíráno na Přírodovědecké fakultě UK)

Předměty společného základu (kombinace realizované na MFF UK)

Povinná výuka je v následujících přehledech vyznačena tučným písmem.

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPED034</td>
<td>Pedagogika I</td>
<td>3</td>
<td>2/0 Z</td>
<td></td>
</tr>
<tr>
<td>NPED035</td>
<td>Pedagogika II</td>
<td>3</td>
<td></td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NPED033</td>
<td>Psychologie</td>
<td>6</td>
<td></td>
<td>2/2 Z</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td></td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NPED015</td>
<td>Pedagogický seminář I</td>
<td>3</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>NPED016</td>
<td>Pedagogický seminář II</td>
<td>3</td>
<td></td>
<td>0/2 Z</td>
</tr>
</tbody>
</table>

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPED043</td>
<td>Diagnostika a autodiagnostika pro učitele</td>
<td>2</td>
<td>0/1 Z</td>
<td></td>
</tr>
<tr>
<td>NSZZ024</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td></td>
</tr>
<tr>
<td>NSZZ025</td>
<td>Diplomová práce III</td>
<td>15</td>
<td></td>
<td>0/10 Z</td>
</tr>
</tbody>
</table>

Státní závěrečná zkouška

Studium je zakončeno státní závěrečnou zkouškou, která se skládá z těchto částí:

- obhajoba diplomové práce
- ústní zkouška z diplomního oboru
- ústní zkouška z nediplomního oboru
- ústní zkouška z pedagogiky a psychologie

Podmínky pro přihlášení ke státní závěrečné zkoušce z diplomního oboru

- získání alespoň 120 kreditů
- splnění všech povinných předmětů diplomního oboru
- obsahuje-li diplomní obor skupiny povinně volitelných předmětů, je třeba získat předepsaný počet kreditů z každé skupiny
- odevzdání vypracované diplomové práce ve stanoveném termínu

Podmínky pro přihlášení ke státní závěrečné zkoušce z nediplomního oboru

- získání alespoň 90 kreditů

Státní závěrečnou zkoušku z nediplomního oboru může student skládat již v zimním semestru 2. ročníku.

Podmínky pro přihlášení ke státní závěrečné zkoušce z pedagogiky a psychologie

- získání alespoň 40 kreditů
- splnění předmětů Pedagogika I, Pedagogika II a Psychologie
Státní závěrečnou zkoušku z pedagogiky a psychologie může student skládat nejdříve v letním semestru 1. ročníku.

Požadavky znalostí ke státní závěrečné zkoušce z pedagogiky a psychologie

Při zkoušce student prokáže znalost základních pedagogických a psychologických pojmů a dovednost používat je v odpovídajících souvislostech. Dokáže analyzovat konkrétní pedagogické situace, identifikovat v nich obsažené problémy, zaujmout k nim vlastní stanovisko a zdůvodnit je v kontextu jiných možných řešení. Prokáže schopnost integrovat poznatky z psychologie osobnosti, vývojové psychologie, pedagogické psychologie, sociální psychologie a školní psychologie. Je schopen aplikovat poznatky z pedagogiky a psychologie na daný problém. Při rozpravě nad konkrétními pedagogickými situacemi bude schopen hlouběji analyzovat a vyhodnotit jevy edukační reality a prokáže tak připravenost k převzetí role učitele. Prokáže rovněž, na základě předložené studijní literatury, připravenost k samostatnému dalšímu vzdělávání v oblasti pedagogiky a psychologie. Specifikace otázek, problémů a situací bude odpovídat stupni školy, pro který je student připravován. Zkouška se koná ústní formou.

Témata z oblasti pedagogiky

1. Učení

2. Učitel jako sociální partner

3. Cíle vzdělávání

4. Obsah vzdělávání

5. Vyučovací metody a organizační formy

6. Vzdělávací soustava

Témata z oblasti psychologie

1. Psychologie osobnosti učitele a učitelské profese

Analýza učitelské profese - učitelská profese a její nároky (klinická náročnost učitelství, nejistoty, ambivalence a dilemata učitelství, prestiž a obtížnost učitelské profese). Posuny v žákovské populaci a jejich dopady na učitelskou profesi. Subjektivní zodpovědnost za úspěchy a neúspěchy žáků. Autodiagnostika učitele - individuální pojetí učitelství, zjišťování vlastních specifik pedagogického působení.

2. Sociální aspekty vzdělávání. Socializace

3. Psychický vývoj

4. Motivace ve škole

5. Účení a poznávání

Dětská interpretace světa - žákovo pojetí učiva. Pojem metakognice. Specifické poruchy učení - výskyt, nejčastější projekty, diagnostika, přístup učitele, náprava. Žáci se specifickými edukačními potřebami - žáci s potížemi při učení, žáci pracující pod a nad své schopnosti, nadaní žáci, žáci s poruchami chování.

6. Systém poradenských služeb ve školství

2. Studijní plány jednotlivých oborů

1. Učitelství fyziky

Garantující pracoviště: Katedra didaktiky fyziky
Garant oboru: doc. RNDr. Zdeněk Drozd, Ph.D. (KDF)
Garant za pedagogiku a psychologii: doc. PhDr. Isabella Pavelková, CSc. (KDF)

Charakteristika studijního oboru:

Studium připravuje učitele fyziky pro střední a základní školy. Navazuje na bakalářské studium, z něhož si student přinesl základní odborné znalosti potřebné pro výuku fyziky na základní a na střední škole. Studium vedle některých náročnějších partií fyziky zahrnuje zejména profesní přípravu (pedagogicko-psykologické předměty, základy školského managementu, didaktiku fyziky, praktika školních pokusů, pedagogická praxe). Široká nabídka volitelných předmětů a volba tématu diplomové práce umožňuje studentům rozšířit si vzdělání v oblastech, které je zajímají a ve kterých se chtějí profilovat. Studium je také zaměřeno na problematiku oborové didaktiky (i z praktického hlediska provádění fyzikálních experimentů), pedagogiky a psychologie. Fyzikální předměty jsou zaměřeny na moderní partie fyziky (jaderná fyzika, fyzikální obraz světa) na témata, která sehrála klíčovou roli v aplikačních oblastech (předmět Fyzika kondenzovaného stavu) a na oblast "mezních oborů" (astronomie a astrofyzika). Důležitou součástí výuky v Mgr. studiu jsou také pedagogické praxe.

Cíle studia a profil absolventa:

Cílem je vychovat kvalitní učitele fyziky velmi dobře připravené po odborné i profesní stránce, rozhodnout jejich osobnost, aby uměli jak zaujmout žáky pro své předměty, tak je věst, vychovávat po lidské stránce. Z absolventů by měli vyrůst učitelé, kteří dokáží podněcť své žáky k aktivní práci, budou s nimi schopní komunikovat i mimo svou odbornost, dokáží se tomuto umění v příběhu své kariéry učitele dále učit, a kteří se budou chlíst sami dále rozvíjet a zvládnout méně se roli učitele v dnešním i budoucím světě. Absolvent je plně kvalifikovaným učitelem fyziky pro střední a základní školu. Má dostatečně široké a hluboké odborné znalosti základů fyziky, abych dokázal pracovat i s talentovanými žáky. Umí tyto znalosti aplikovat na řešení problémů, využívat při provádění a vyhodnocování experimentů a v diskusích zahrnujících souvislosti s moderními technologiemi a běžným životem. Umí rozvíjet znalosti a dovednosti žáků týkající se fyziky na úrovni střední a základní školy. Dokáže aplikovat dostatečně široké spektrum metod a forem výuky, umí samostatně řídit práci žáků a reagovat na nejrůznější situace.
Učitelství fyziky

vzniklé ve výuce. Umí využívat informační a komunikační technologie. Prokazuje po-
třebné znalosti z pedagogicko-psychologických předmětů tvořících základ jeho profesní
orientace a umí těchto znalostí aktivně využívat. Má praktické zkušenosti s výukou
ve škole a základní znalosti o organizaci práce školy. V rámci diplomové práce získal
hlubší vědomosti z některých částí fyziky nebo z problematiky vzdělávání v tomto oboru
(ev. z druhého aprobačního oboru). Díky tomu je schopen komunikovat se specialisty.
Znalosti a dovednosti získané v rozmezí během studia tvoří kvalitní východisko pro
jeho další vzdělávání a celoživotní profesní růst; může je též případně uplatnit i v ji-ných
povoláních, zejména v těch, kde uplatní exaktní myšlení v kombinaci s obecnějšími
osobnostními kompetencemi.

Doporučený průběh studia

Student si k povinné výuce zapisuje ještě výběrovou výuku a doporučené volitelné
předměty minimálně v takovém rozsahu, aby za celé studium získal alespoň počet kred-
itů nutných k připuštění ke státní závěrečné zkoušce. Povinná výuka je v následujících
přehledech vyznačena tučným písmem.

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUPY014</td>
<td>Fyzika kondenzovaného stavu</td>
<td>4</td>
<td>3</td>
<td>Zk</td>
</tr>
<tr>
<td>NUPY015</td>
<td>Praktikum školních pokusů I</td>
<td>4</td>
<td>0/3</td>
<td>Z</td>
</tr>
<tr>
<td>NUPY016</td>
<td>Didaktika fyziky I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NUPY017</td>
<td>Pedagogická praxe z fyziky I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NUPY018</td>
<td>Jaderná fyzika</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUPY019</td>
<td>Praktikum školních pokusů II</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUPY020</td>
<td>Pedagogická praxe z fyziky II</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Kurz je organizován jednorázově zpravidla v letním semestru. Informace jsou vždy před začátkem

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUPY021</td>
<td>Astronomie a astrofyzika</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NUPY022</td>
<td>Fyzikální obraz světa</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NUPY023</td>
<td>Didaktika fyziky II</td>
<td>3</td>
<td>0/2</td>
<td>Z</td>
</tr>
<tr>
<td>NUPY024</td>
<td>Pedagogická praxe z fyziky III</td>
<td>1</td>
<td>2/0</td>
<td>Zn</td>
</tr>
</tbody>
</table>

Další doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUPY050</td>
<td>Fyzika kondenzovaného stavu</td>
<td>3</td>
<td>0/2</td>
<td>Z</td>
</tr>
<tr>
<td>NUPY051</td>
<td>Vybraná téma z atmosférické fyziky vhodná pro aplikací ve výkladu středoškolské fyziky</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Kód | Název předmětu | Zhlédnuto | Zkázáno | Zkázáno
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NDFY042</td>
<td>Vývoj fyzikálních experimentů</td>
<td>3</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>NDFY043</td>
<td>Vývoj fyzikálních experimentů II</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NDFY056</td>
<td>Heuristické metody ve výuce fyziky III</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NDFY073</td>
<td>Praxe v mimoškolním fyzikálním vzdělávání I</td>
<td>2</td>
<td>0/1 Z</td>
<td>0/1 Z</td>
</tr>
<tr>
<td>NDFY081</td>
<td>Praxe v mimoškolním fyzikálním vzdělávání II</td>
<td>2</td>
<td>0/1 Z</td>
<td>0/1 Z</td>
</tr>
<tr>
<td>N.JSE111</td>
<td>Seminář fyzikální olympiády I</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>N.PED129</td>
<td>Praktikum školních pokusů III</td>
<td>4</td>
<td>0/3 Z</td>
<td>—</td>
</tr>
<tr>
<td>N.PED128</td>
<td>Školský management</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>N.PED133</td>
<td>Problémy fyzikálního vzdělávání</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>N.PED137</td>
<td>Praktický úvod do elektroniky II</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>N.PED140</td>
<td>Praktikum školních pokusů IV</td>
<td>4</td>
<td>—</td>
<td>0/3 Z</td>
</tr>
<tr>
<td>N.PED145</td>
<td>Praktikum školních pokusů V</td>
<td>4</td>
<td>—</td>
<td>0/3 Z</td>
</tr>
<tr>
<td>N.PED149</td>
<td>Jaderná fyzika</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>N.PED142</td>
<td>Psychologická a pedagogická reflexe pedagogické praxe</td>
<td>1</td>
<td>0/1 Z</td>
<td>—</td>
</tr>
<tr>
<td>N.PED023</td>
<td>Školský management</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>N.PED022</td>
<td>Rétorika a komunikace s lidmi I</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>N.PED024</td>
<td>Kvantitativní fyzikální úlohy</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>N.PED058</td>
<td>Fyzika v kulturních dějinách lidstva I</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>N.PED063</td>
<td>Fyzika v kulturních dějinách lidstva II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
</tbody>
</table>

Některé volitelné předměty nemusí být v tomto akademickém roce vyučovány.

Požadavky znalostí ke státní závěrečné zkoušce z fyziky a didaktiky fyziky

Odborná témata

Student musí prokázat dostatečný fyzikální nadhled nad partiem fyziky, které bude ve své praxi vyučovat. Musí proto prokázat znalost klíčových experimentů a základních fyzikálních teorií a jejich vzájemných souvislostí. Musí umět vysvětlit a ilustrovat podstatu a význam základních fyzikálních veličin, zákonů a jejich důsledků, experimentálních metod a praktických aplikací. K tomu patří pochopení pojmů a zákonů prolínajících celou fyziku (energie, hybnost, zákony zachování, rovnice kontinuity, potenciály, pohybové rovnice, oscilace, vlny, postuláty základních teorií), vztahů jednotlivých partii a mezi jejich platnosti a znalost jednotek veličin a hodnot základních fyzikálních konstant.
1. **Klasická mechanika a teorie relativity**

2. **Elektrodynamika**

3. **Termodynamika a statistická fyzika**

Přehled základních termodynamických zákonů a jejich důsledků. Teoretická východiska statistické fyziky a statistický popis různých typů systému. Základní veličiny popisující stav systému v termodynamice a ve statistické fyzice, propojení obou popisů.

4. **Fyzika mikrosvěta**

5. **Fyzika kondenzovaného stavu**

6. **Fyzika hvězd a vesmíru**

Základy moderních astronomických a astrofyzikálních představ o hvězdách a vesmíru.

195
Didaktická témata

Student musí mikrovýstupem prokázat schopnost samostatně vyložit zadané téma z níže uvedených okruhů učiva zahrnující demonstrační pokus. Musí umět vysvětlit souvislost pokročilejších partií s příslušnými částmi látky probíranými na střední i základní škole a bez nepřípustného zkreslení objasnit danou problematiku na úrovni přístupné žákům střední školy a bez nepřípustného zkreslení objasnit danou problematiku na úrovni přístupného studenta. Musí prokázat znalost cílů a obsahu fyzikálního vzdělávání na střední a základní škole a schopnost navrhat alternativní způsoby projekce fyzikálních poznatků do učiva příslušných typů škol. Předmětem diskuse může být i struktura učiva fyziky na SŠ a ZŠ, zavádění fyzikálních veličin, zákonů a teorií do učiva, metody a prostředky ve výuce fyziky, metodika řešení fyzikálních úloh a didaktické funkce pokusů, diagnostické metody.

Student také musí při mikrovýstupu prokázat znalost obsluhy a fyzikálního principu činnosti přístrojů užívaných ve výuce fyziky na školách.

Témata výstupů

1. Zákon zachování hybnosti dvou těles
2. Rovnoměrně zrychlěný přímočarý pohyb
3. Archimédův zákon pro kapaliny a plyny
4. Hydrostatická tlaková síla a hydrostatický tlak
5. Mechanické vlnění
6. Mechanické kmitání
7. Odráz a lom světla
8. Jednoduché optické přístroje (lupa, mikroskop, dalekohled)
9. Teplotní roztažnost (délková i objemová)
10. Přenos tepla (vedením, prouděním, zářením)
11. Kapacita deskového kondenzátoru
12. Elektrostatická indukce
13. Ohmův zákon pro část obvodu a pro uzavřený obvod
14. Magnetické pole vodiče a cívky s proudem
15. Elektromagnetická indukce
16. Transformátor
17. Polovodičová dioda a její použití
18. Bipolární tranzistor a jeho užití jako spínače, nebo zesilovače
19. Obvod střídavého proudu s R, L, C
20. Elektromagnetické vlnění

2. Učitelství matematiky

Garantující pracoviště: Katedra didaktiky matematiky
Garant oboru: doc. RNDr. Jarmila Robová, CSc. (KDM)
Garant za pedagogiku a psychologii: doc. PhDr. Isabella Pavelková, CSc. (KDF)
Doporučený průběh studia

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Předměty společného základu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMUM401</td>
<td>Matematická analýza V</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMUM402</td>
<td>Pravděpodobnost a matematická statistika I</td>
<td>3</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMUM403</td>
<td>Didaktika matematiky</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMUM404</td>
<td>Matematická analýza VI</td>
<td>5</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NMUM405</td>
<td>Pravděpodobnost a matematická statistika II</td>
<td>3</td>
<td>—</td>
<td>2/1</td>
</tr>
<tr>
<td>NMUM468</td>
<td>Praktické aspekty vyučování matematice</td>
<td>2</td>
<td>—</td>
<td>0/2</td>
</tr>
<tr>
<td>NMUM410</td>
<td>Pedagogická praxe z matematiky II</td>
<td>1</td>
<td>2 týdny</td>
<td>Z</td>
</tr>
</tbody>
</table>

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Předměty společného základu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMUM501</td>
<td>Algebra</td>
<td>4</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMUM503</td>
<td>Geometrie III</td>
<td>2</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMUM505</td>
<td>Logika a teorie množin</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMUM511</td>
<td>Pedagogická praxe z matematiky III</td>
<td>1</td>
<td>2 týdny</td>
<td>Z</td>
</tr>
</tbody>
</table>

Další doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMUM608</td>
<td>Praktické aspekty vyučování matematice</td>
<td>2</td>
<td>—</td>
<td>0/2</td>
</tr>
<tr>
<td>NUMV051</td>
<td>Teorie her</td>
<td>2</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NUMV052</td>
<td>Geometrie a učitel I</td>
<td>2</td>
<td>0/2</td>
<td>Z</td>
</tr>
<tr>
<td>NMUG050</td>
<td>Vybrané kapitoly z diferenciální geometrie</td>
<td>5</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NMUM365</td>
<td>Seminář z kombinatoriky a teorie grafů</td>
<td>2</td>
<td>—</td>
<td>0/2</td>
</tr>
<tr>
<td>NMUN243</td>
<td>Mathematica pro začátečníky 1</td>
<td>2</td>
<td>0/2</td>
<td>Z</td>
</tr>
<tr>
<td>NMUN244</td>
<td>Mathematica pro pokročilé 2</td>
<td>2</td>
<td>—</td>
<td>0/2</td>
</tr>
<tr>
<td>NMUG361</td>
<td>Aplikace deskriptivní geometrie</td>
<td>2</td>
<td>2/0</td>
<td>Z</td>
</tr>
<tr>
<td>NUMV017</td>
<td>Pravděpodobnost a finanční matematika pro střední školu</td>
<td>3</td>
<td>0/2</td>
<td>Z</td>
</tr>
<tr>
<td>NUMV025</td>
<td>Statistika a pojistná matematika pro střední školu</td>
<td>3</td>
<td>—</td>
<td>0/2</td>
</tr>
</tbody>
</table>

Některé volitelné předměty nemusí být v tomto akademickém roce vyučovány.

1 Volitelný předmět je jedosemestrální, je možno jej absolvovat v zimním nebo v letním semestru.
Učitelství Mgr.

2 Volitelný předmět bývá vyučován zpravidla jednou za dva roky.

Požadavky znalostí ke státní závěrečné zkoušce z matematiky a didaktiky matematiky

1. **Matematická analýza.**
 - Fourierovy řady: ortonormální systém funkcí, Fourierovy koeficienty, Parsevalova rovnost, Besselova nerovnost; bodová a stejnoměrná konvergencia.
 - Metrické prostory, normované lineární prostory (otevřené a uzavřené množiny, limita a spojitost, úplnost), Banachova věta o pevném bodě a její aplikace.

2. **Algebra a lineární algebra.**
 - Lineární formy, duální prostor, duální báze. Bilineární a kvadratické formy a jejich matice, polární báze, normální báze, Sylvestrův zákon o setrvačnosti, signatura.
 - Prostor se skálárním součinem, Cauchyova-Schwarzova nerovnost, trojúhelníková nerovnost, Gramův-Schmidtův ortogonalizační proces, ortogonalní projekce, Fourierovy koeficienty, ortogonalní zobrazení, ortogonalní matice.
 - Polynomy, dělitelnost, kořenové vlastnosti, derivace polynomu.

3. **Geometrie.**
 - Projektivní prostor, definice a základní vlastnosti, homogenní souřadnice, projektivní rozšíření afíní roviny. Grupa Möbiusových transformací. Základní typy kvadrik a jejich vlastnosti, afíní a eukleidovská klasifikace regulárních a singulárních kuželoseček, afíní klasifikace regulárních kvadrik.
 - Neueukleidovská geometrie, modely hyperbolické geometrie, základy axiomatického vybudování geometrie, Kleinův Erlangenský program.

4. **Diferenciální geometrie.**
 - Parametrické vyjádření křivky, příklady. Délka křivky, parametrizace obloukem. Frenetův repér a Frenetovy vzorce v rovině a v prostoru, křivost a torze.

5. **Logika a teorie množin.**

6. **Kombinatorika, pravděpodobnost a matematická statistika.**
 - Princip inkluze a exkluze, permutace bez pevných bodů. Řešení rekurentních rovnic, generující funkce. Fibonacciho čísla. Pravděpodobnostní prostor, různé definice.

7. Didaktika matematiky.
Argumentace a ověřování ve školské matematice (indukтивní a deduktivní metody, výroky, důkazy a jejich typy). Vytváření představ, pojámů a jejich vlastností, klasifikace pojínů (číslo, číselné obory, funkce a posloupnosti, geometrická zobrazení). Rozvíjení geometrické představivosti v rovině a v prostoru (vzájemné polohy a vlastnosti geometrických útvarů, konstrukční úlohy). Metody řešení úloh v algebře (rovnice, nerovnice a jejich soustavy) a analytické geometrii (rovnice přímek a rovin, vzdálenosti a odchylky). Aplikace matematiky v praxi (finanční matematika, kombinatorika, pravděpodobnost a statistika).

3. Učitelství deskriptivní geometrie

Garantující pracoviště: Katedra didaktiky deskriptivní geometrie
Garant oboru: doc. RNDr. Zbyněk Šir, Ph.D. (MÚ UK)
Garant za pedagogiku a psychologii: doc. PhDr. Isabella Pavelková, CSc. (KDF)

Doporučený průběh studia

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMUG401</td>
<td>Neukleidovská geometrie I</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMUG403</td>
<td>Algebraická geometrie</td>
<td>2</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMUG405</td>
<td>Didaktika deskriptivní geometrie</td>
<td>4</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMUG407</td>
<td>Aplikace deskriptivní geometrie</td>
<td>2</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMUG409</td>
<td>Neukleidovská geometrie II</td>
<td>5</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NMUG411</td>
<td>Vybrané kapitoly z diferenciální geometrie</td>
<td>5</td>
<td>—</td>
<td>2/2</td>
</tr>
<tr>
<td>NMUG413</td>
<td>Kartografie</td>
<td>2</td>
<td>—</td>
<td>2/0</td>
</tr>
<tr>
<td>NMUG415</td>
<td>Pedagogická praxe z deskriptivní geometrie II</td>
<td>1</td>
<td>2 týdny Z</td>
<td></td>
</tr>
</tbody>
</table>

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMUG501</td>
<td>Kinematická geometrie</td>
<td>5</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NMUG503</td>
<td>Vybrané kapitoly z geometrie</td>
<td>2</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NMUG505</td>
<td>Pedagogická praxe z deskriptivní geometrie III</td>
<td>1</td>
<td>2 týdny Z</td>
<td></td>
</tr>
</tbody>
</table>

Některé předměty tohoto studijního plánu jsou vyučovány jednou za dva roky. Blok předmětů Neukleidovská geometrie I a II se střídá s blokem Algebraická geometrie, Kartografie, Kinematická geometrie.
Předmět Vybrané kapitoly z diferenciální geometrie se střídá s předmětem Vybrané kapitoly z geometrie.

Požadavky znalostí ke státní závěrečné zkoušce z deskriptivní geometrie a didaktiky deskriptivní geometrie

Jedná se o přehled širších tematických okruhů. Otázky jsou zpravidla formulovány konkrétněji.

1. Algebraická geometrie.

2. Projektivní a neeukleidovská geometrie, základy geometrie.

3. Diferenciální geometrie a její aplikace.
 Obsahy rovinných útvarů (mnohoúhelníky, oblasti ohraničené uzavřenými křivkami), izoperimetrické úlohy pro mnohoúhelníky a uzavřené křivky. Theorema egregium. Geodetické křivky na plochách (příklady, souvislost s hledáním nejkratší spojnice dvou bodů na ploše). Zobrazení mezi plochami a jejich aplikace v kartografii.

4. Kartografie
 Kartografie (přehled kartografických zobrazení a jejich vlastností, synteticky i užívaním diferenciální geometrie). Souřadnicové soustavy (zeměpisné a kartografické souřadnice), důležité křivky (loxodroma, ortodroma), kartografická zkreslení. Zobrazení elipsoidu na kulovou plochu, konstrukce sití poledníků a rovnoběžek v jednoduchých zobrazeních (zobrazení referenční plochy na rozvinutelné plochy a rozvinutí do roviny).

5. Kinematická geometrie

6. Aplikace deskriptivní geometrie

7. Didaktika deskriptivní geometrie, dějiny deskriptivní geometrie.
Lineární perspektiva, rovnoběžné osvětlení. Znalost těchto okruhů a porozumění jim z následujících hledisek:
- transformace deskriptivní geometrie jako vědy do školské deskriptivní geometrie,
- vzájemné vazby mezi okruhy, mezipředmětové vztahy,
- různé postupy při řešení úloh a jejich efektivita,
- motivace, aplikace v praxi,
- klasifikace a porovnání promítacích metod.

4. Učitelství informatiky

Garantující pracoviště: Katedra softwaru a výuky informatiky
Garant oboru: doc. RNDr. Pavel Töpfer, CSc. (KSVI)
Garant za pedagogiku a psychologii: doc. PhDr. Isabella Pavelková, CSc. (KDF)

Doporučený průběh studia

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPGR003</td>
<td>Základy počítačové grafiky</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NSWI142</td>
<td>Webové aplikace</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NUIN014</td>
<td>Informační technologie ¹</td>
<td>4</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NDIN015</td>
<td>Didaktika informatiky ¹</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NDIN011</td>
<td>Didaktika uživatelského software I ¹</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NDIN012</td>
<td>Didaktika uživatelského software II ¹</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUIN017</td>
<td>Pedagogická praxe z informatiky II</td>
<td>1</td>
<td>2 týdny Z</td>
<td>—</td>
</tr>
</tbody>
</table>

¹ Předmět není vyučován v každém akademickém roce, je vyučován zpravidla jednou za dva roky. Zapište si jej podle toho v 1. nebo ve 2. roce svého studia.

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUIN013</td>
<td>Základy složitosti a vyčíslitelnosti</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NUIN012</td>
<td>Informační technologie ¹</td>
<td>4</td>
<td>—</td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NDIN015</td>
<td>Didaktika informatiky ¹</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NDIN011</td>
<td>Didaktika uživatelského software I ¹</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NDIN012</td>
<td>Didaktika uživatelského software II ¹</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUIN017</td>
<td>Speciální oborový seminář</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
</tbody>
</table>
Další doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIL069</td>
<td>Umělá inteligence I</td>
<td>5</td>
<td>2/1</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NPFLO12</td>
<td>Úvod do počítačové lingvistiky</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NSM0102</td>
<td>Algoritmy komprese dat</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NPGCRE01</td>
<td>Fotorealistická grafika</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NVAL012</td>
<td>Numerická matematika</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPRG003</td>
<td>Metodika programování a filozofie programovacích jazyků</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NUOS018</td>
<td>Seminář z počítačových aplikací</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
</tbody>
</table>

Státní závěrečná zkouška

Požadavky znalostí ke státní závěrečné zkoušce z informatiky a didaktiky informatiky

Odborná téma

1. Zobrazení dat v počítači
 Zobrazení celých a reálných čísel v počítači, algoritmy základních početních operací. Reprezentace znaků a řetězců. Implementace datových struktur (pole, záznamy, množiny).

2. Principy počítačů, operačních systémů a počítačových sítí

3. Datové a řídicí struktury programovacích jazyků (programátorský a implementační pohled)
 Jednoduché a strukturované datové typy. Podprogramy, komunikace podprogramu s okolím (globální proměnné, parametry, typy předávání parametrů, moduly a separátní kompilace). Porovnání vybraných programovacích jazyků z hlediska jejich datových a řídicích struktur. Principy překladu programovacích jazyků, překlad a interpretace, podprogramy a makra. Formální popisy syntaxe programovacích jazyků.

4. Metodika programování

5. Správnost a složitost algoritmů
 Částečná správnost algoritmu, konečnost algoritmu, invarianty. Časová, paměťová, asymptotická složitost algoritmu - nejhorší, nejlepší, průměrný případ (definice jednotlivých pojmů). Odhad asymptotické složitosti jednoduchých algoritmů. Časová a pro-
storová složitost - vztah determinismu a nedeterminismu. Polynomiální převoditelnost, P- a NP-problémy, NP-úplnost.

6. Základní programovací techniky a návrh datových struktur

Různé reprezentace abstraktních datových typů (množina, zásobník, fronta, prioritní fronta). Složitost vyhledávání, vkládání a vypouštění prvků, hledání minimálního a k-tého nejmenšího, průchod všemi prvky. Reprezentace faktorové množiny. Hashování. Reprezentace aritmetických výrazů a algoritmy pro výpočet jejich hodnoty. Obecnější metody návrhu efektivních algoritmů (metoda rozděl a panuj, dynamické programování atd.).

7. Algoritmy vnitřního a vnějšího třídění

8. Základní numerické algoritmy

Řešení soustav lineárních rovnic - metody přímé a iterační, metody řešení nelineárních rovnic. Interpolace funkcí polynomy, jiné metody aproximace funkcí. Numerická integrace.

9. Teorie automatů a jazyků

10. Kombinatorika a teorie grafů

11. Vyčíslitelnost

12. Informační systémy

13. Počítačová geometrie a grafika

Algoritmy 2D grafiky: kreslení čar, vyplňování, půltónování a rozptylování barev. Barevné systémy, zobrazování barev na počítači. Transformace a projekce. 3D grafika: metody reprezentace 3D scén, zobrazovací algoritmy, výpočet viditelnosti.

14. Umělá inteligence

15. Vybrané oblasti použití počítačů

Didaktická témata
Metodicky zajímavý krátký výklad jednoho z předem známých témat. V každém akademickém roce bude vypsáno 25 konkrétních témat. Hodnotí se především metodický přístup k výkladu a vystižení podstaty problematiky.
1. Jednoduchý třídící algoritmus
2. Quicksort
3. Heapsort
4. Vnější třídění
5. Rekursivní podprogramy
6. Typy předávání parametrů v Pascalu
7. Reflexivní, symetrický a tranzitivní uzávěr
8. Dynamicky a staticky alokované proměnné v Pascalu
9. Práce s lineárním spojovým seznamem, srovnání s polem
10. Vyhledávání v poli (např. binární, užití zarážky)
11. Průchod stromem do hloubky a do šířky (zásobník, fronta)
12. Vyhledávání, vkládání a vypouštění v binárním vyhledávacím stromu
13. Problém stabilních manželství
14. Prohledávání s návratem (backtracking)
15. Srovnání programovacích jazyků Pascal a C
16. Nalezení minimální kostry grafu
17. Seznamy v Prologu a jednoduché predikáty pro práci s nimi
18. Algoritmus minimaxu
19. Algoritmy vyčíslení hodnoty aritmetického výrazu
20. Výpočet hodnoty polynomu Hornerovým schématem
21. Algoritmus „binárního“ umocňování a násobení
22. Díjkstrův algoritmus
23. Určení délky nejdelší rostoucí vybrané podposloucnosti
24. Generování všech permutací v lexikografickém uspořádání
25. Statické a virtuální metody a jejich srovnání

Zahájení v roce 2014 nebo dříve

1. Učitelství fyziky-matematiky pro střední školy

Garantující pracoviště: Katedra didaktiky fyziky
Garant oboru: doc. RNDr. Zdeněk Drozd, Ph.D. (KDF)
Garant za pedagogiku a psychologii: doc. PhDr. Isabella Pavelková, CSc. (KDF)

Doporučený průběh studia
Student si k povinné výuce zapisuje ještě výběrovou výuku a doporučené volitelné předměty minimálně v takovém rozsahu, aby za celé studium získal alespoň počet kreditů nutných k připuštění ke státní závěrečné zkoušce. Povinná výuka je v následujícím přehledu vyznačena tučným písmem.
1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPED034</td>
<td>Pedagogika I</td>
<td>3</td>
<td>2/0 Z</td>
<td>—</td>
</tr>
<tr>
<td>NPED035</td>
<td>Pedagogika II</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NPED033</td>
<td>Psychologie</td>
<td>6</td>
<td>—</td>
<td>2/2 Z</td>
</tr>
<tr>
<td>NUMY010</td>
<td>Fyzika kondenzovaného stavu</td>
<td>4</td>
<td>3/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NUMY018</td>
<td>Jaderná fyzika ¹</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NUMY042</td>
<td>Praktikum školních pokusů I</td>
<td>4</td>
<td>0/3 Z</td>
<td>—</td>
</tr>
<tr>
<td>NUMY046</td>
<td>Praktikum školních pokusů II</td>
<td>4</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NUMY043</td>
<td>Didaktika fyziky I</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NUMY031</td>
<td>Pedagogická praxe z fyziky I</td>
<td>1</td>
<td>1 týden Z</td>
<td>—</td>
</tr>
<tr>
<td>NUMY032</td>
<td>Pedagogická praxe z fyziky II</td>
<td>1</td>
<td>—</td>
<td>2 týdny Z</td>
</tr>
<tr>
<td>NDIM001</td>
<td>Didaktika matematiky</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NUMP021</td>
<td>Moderní matematická analýza</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDIM002</td>
<td>Algebra II</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDIM003</td>
<td>Pedagogická praxe z matematiky I</td>
<td>1</td>
<td>1 týden Z</td>
<td>2 týdny Z</td>
</tr>
<tr>
<td>NDIM006</td>
<td>Pedagogická praxe z matematiky II</td>
<td>1</td>
<td>—</td>
<td>2 týdny Z</td>
</tr>
<tr>
<td>NSZZ028</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NPED042</td>
<td>Psychologická a pedagogická reflexe pedagogické praxe</td>
<td>1</td>
<td>0/1 Z</td>
<td>—</td>
</tr>
<tr>
<td>NUMM050</td>
<td>Praktické aspekty vyučování matematice</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUMV104</td>
<td>Teorie her</td>
<td>2</td>
<td>—</td>
<td>2/0 Z</td>
</tr>
<tr>
<td>NUMV105</td>
<td>Psychologické drobnosti pro učitele</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NUMM035</td>
<td>Seminář z kombinatoriky a teorie grafů</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUMG302</td>
<td>Vybrané kapitoly z diferenciální geometrie</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NUMY010</td>
<td>Elektronika</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NUMY083</td>
<td>Praktický úvod do elektroniky II</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUMY085</td>
<td>Jaderná fyzika</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NMF111</td>
<td>Obecná teorie relativity</td>
<td>4</td>
<td>—</td>
<td>3/0 Zk</td>
</tr>
<tr>
<td>NUMY057</td>
<td>Problémy fyzikálního vzdělávání fyziky III</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUMY058</td>
<td>Heuristické metody ve výuce fyziky IV</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUMY047</td>
<td>Vývoj fyzikálních experimentů</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NJSF110</td>
<td>Seminář fyzikální olympiády I</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NJSF119</td>
<td>Seminář fyzikální olympiády II</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NPED013</td>
<td>Pedagogický seminář I</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NPED016</td>
<td>Pedagogický seminář II</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NPED022</td>
<td>Rétorika a komunikace s lidmi I</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>Kód</td>
<td>Název</td>
<td>Kredity</td>
<td>ZS</td>
<td>LS</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>NPED042</td>
<td>Rétorika a komunikace s lidmi II</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NDFY059</td>
<td>Fyzikální vzdělávání ve školních vzdělávacích programech I</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NDFY060</td>
<td>Fyzikální vzdělávání ve školních vzdělávacích programech II</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NDFY123</td>
<td>Kvantitativní fyzikální úlohy</td>
<td>1</td>
<td>—</td>
<td>0/1 Z</td>
</tr>
<tr>
<td>NDFY124</td>
<td>Kurz bezpečnosti práce I</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Místo absolvování přednášky Jaderná fyzika v rozsahu 2/0 může posluchač absolvovat přednášku Fyzika V v bakalářském studijním programu Fyzika nebo přednášku Fyzika VI pro zaměření Fyzika-matematika pro základní vzdělávání.

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDFY040</td>
<td>Astronomie a astrofyzika</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDFY043</td>
<td>Fyzikální obraz světa</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDFY050</td>
<td>Didaktika fyziky II</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NDFY063</td>
<td>Pedagogická praxe z fyziky III</td>
<td>1</td>
<td>2 týdny</td>
<td>Z</td>
</tr>
<tr>
<td>NDFY090</td>
<td>Logika a teorie množin</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDFY099</td>
<td>Dějiny matematiky I</td>
<td>3</td>
<td>—</td>
<td>2/0 KZ</td>
</tr>
<tr>
<td>NDFY100</td>
<td>Geometrie III</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDFY103</td>
<td>Metody řešení matematických úloh</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NDFY057</td>
<td>Pedagogická praxe z matematiky III</td>
<td>1</td>
<td>2 týdny</td>
<td>Z</td>
</tr>
<tr>
<td>NDFY097</td>
<td>Diplomová práce II</td>
<td>9</td>
<td>0/6 Z</td>
<td>—</td>
</tr>
<tr>
<td>NDFY098</td>
<td>Diplomová práce III</td>
<td>15</td>
<td>—</td>
<td>0/10 Z</td>
</tr>
<tr>
<td>NPED015</td>
<td>Diagnostika a autodiagnostika pro učitele</td>
<td>2</td>
<td>0/1 Z</td>
<td>—</td>
</tr>
<tr>
<td>NDFY022</td>
<td>Školský management</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NDFY066</td>
<td>Statistika a pojistná matematika pro střední školu</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NDFY067</td>
<td>Geometrie a učitel I</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NDFY083</td>
<td>Fyzika v kulturních dějinách lidstva I</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NDFY084</td>
<td>Fyzika v kulturních dějinách lidstva II</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NDFY085</td>
<td>Problemy fyzikálního vzdělávání</td>
<td>3</td>
<td>0/2 Z</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NDFY086</td>
<td>Praktikum školních pokusů III</td>
<td>4</td>
<td>0/3 Z</td>
<td>—</td>
</tr>
<tr>
<td>NDFY087</td>
<td>Praktikum školních pokusů IV</td>
<td>4</td>
<td>—</td>
<td>0/3 Z</td>
</tr>
</tbody>
</table>

Státní závěrečná zkouška

Studium je zakončeno státní závěrečnou zkouškou, která se skládá ze čtyř částí:

- z obhajoby diplomové práce
Učitelství fyziky-matematiky pro SŠ

– z ústní zkoušky z fyziky a didaktiky fyziky s praktickou částí týkající se didaktiky fyziky
– z ústní zkoušky z matematiky a didaktiky matematiky
– z ústní zkoušky z pedagogiky a psychologie

Podmínky pro přihlášení ke státní závěrečné zkoušce z diplomního aprobačního předmětu

– získání alespoň 120 kreditů
– splnění všech povinných předmětů zvoleného oboru
– odevzdání vypracované diplomové práce ve stanoveném termínu

Podmínky pro přihlášení ke státní závěrečné zkoušce z nediplomního aprobačního předmětu

– získání alespoň 90 kreditů

Podmínky pro přihlášení ke státní závěrečné zkoušce z pedagogiky a psychologie

– získání alespoň 40 kreditů
– splnění předmětů Pedagogika I, Pedagogika II a Psychologie

Diplomová práce

Diplomová práce se zpravidla zadává v zimním semestru prvního roku studia. Téma diplomové práce z fyziky nebo matematiky nebo didaktik těchto oborů si student volí po dohodě s pracovištěm garantujícím výuku fyziky pro učitelské obory.

Požadavky znalostí ke státní závěrečné zkoušce z fyziky a didaktiky fyziky

Odborná témata

Student musí prokázat dostatečný fyzikální nadhled nad partiemi fyziky, které bude ve své praxi vyučovat. Musí proto prokázat znalost klíčových experimentů a základních fyzikálních teorií a jejich vzájemných souvislostí. Musí umět vysvětlit a ilustrovat podstatu a význam základních fyzikálních veličin, zákonů a jejich důsledků, experimentálních metod a praktických aplikací. K tomu patří pochopení pojmu a zákonů proplývajících celou fyzikou (energie, hybnost, zákony zachování, rovnice kontinuity, potenciály, pohybové rovnice, oscilace, vlny, postuláty základních teorií), vztahů jednotlivých partii a mezí jejich platnosti a znalost jednotek veličin a hodnot základních fyzikálních konstant.

1. Klasická mechanika a teorie relativity

2. Elektrodynamika

Základní elektrické a magnetické jevy a jejich kvantitativní formulace. Náboje a látky v elektrických a magnetických polích. Elektromagnetické pole jako samostatný

3. **Termodynamika a statistická fyzika**
 Principy termodynamického a statistického popisu fyzikálních systémů a déjů, příklady jejich aplikací.

4. **Fyzika mikrosvěta**

5. **Fyzika kondenzovaného stavu**

6. **Fyzika hvězd a vesmíru**
 Základy moderních astronomických a astrofyzikálních představ o hvězdách a vesmíru.

Didaktická témata
Student musí mikrovýstupem prokázat schopnost samostatně vyložit zadané téma z níže uvedených okruhů učiva zahrnující demonstrační pokus ze středoškolské fyziky. Musí umět vysvětlit souvislost pokročilejších partií s příslušnými částmi látky probíranými na střední škole a bez nepřípustného zkreslení objasnit danou problematiku na úrovni příštěnějších fyzikálních poznatků do učiva střední školy. Předmětem diskuse může být i struktura učiva fyziky na SŠ, zavádění fyzikálních veličin, zákonů a teorií do učiva SŠ, metody a prostředky ve výuce středoškolské fyziky, metodika řešení fyzikálních úloh a didaktické funkce pokusů, diagnostické metody.

Student také musí při mikrovýstupu prokázat znalost obsluhy a fyzikálního principu činnosti přístrojů užívaných ve výuce fyziky na školách. Zajímá je jde o následující přístroje: Ruhmkorfov transformátor, indukční elektrika, van de Graaffův generátor, vysokonapěťový zdroj, elektroskop, měřítko náboje, elektrostatický voltmeter, univerzální zdroj, školní trsatelemrňovač, rotační odporný měnič, reostat, rozkladný transformátor s příslušenstvím, ampérmetr, voltmeter, wattmetr, ohmmeter, teslameter, RC generátor, osciloskop, soup rava pro pokusy s mikrovlnnami, WSP 220, vývěra, manometr, přístroje pro demonstraci základních plynových zákonů, vzduchová dráha, soup Pra AMABETA. Student musí zvládát i základy práce se systémy typu Vernier, ISES nebo podobných systémů pro počítačem podporované školní experimenty.

Okruhy učiva:

208

Požadavky znalostí ke státní závěrečné zkoušce z matematiky a didaktiky matematiky

1. **Kardinální čísla, spočetné a nespočetné množiny**
 Vlastnosti injektivních zobrazení, bijektivní zobrazení, věta Cantorova-Bernsteinova. Mohutnost množiny, spočetná množina, spočetnost množiny racionalních čísel, nespočetné množiny, nespočetnost množiny reálných čísel.

2. **Čísla a číselní obory**
 Zlomky a racionalní čísla; čísla reálná (aproximace reálných čísel, reálné číslo jako limita posloupnosti racionalních čísel); čísla komplexní, jejich zobrazení v Gaussové rovině, Moivreova věta, řešení binomických rovnic a kvadratických rovnic; obory čísel přirozených, celých, racionálních, reálných a komplexních jako algebraické struktury.

3. **Podílové těleso oboru integrity, konstrukce tělesa racionalních čísel**
 Obor integrity, konstrukce podílového tělesa, konstrukce tělesa racionalních čísel.

4. **Základní věta algebry, kořenové a rozkladové těleso polynomu**
 Formulace základní věty algebry (bez důkazu), její důsledky. Konstrukce tělesa komplexních čísel jako kořenového nadtělesa polynomu x^2+1 nad \mathbb{R}.

5. **Kořenové vlastnosti polynomů, rozklad na kořenové činitele, souvislosti násobnosti a derivace**
 Věta o dělení polynomů se zbytkem. Rozklady polynomů s reálnými a komplexními koeficienty. Derivace polynomů a její souvislost s násobností kořenů. Definice n-té odmocniny z jedné. Ilustrace těchto pojmů v případě tělesa komplexních čísel.

6. **Rovnice, nerovnice a jejich soustavy**
 Metody řešení lineárních rovnic, nerovnic a jejich soustav, kvadratických rovnic a nerovnic, exponenciálních, logaritnických a goniometrických rovnic. Rovnice, nerovnice a jejich soustavy s parametry.

7. **Konstrukce tělesa reálných čísel**
 Konstrukce množiny reálných čísel pomocí desetinných rozvojů. Axiomatický popis tělesa reálných čísel.

8. **Funkce a posloupnosti**
 Relace, zobrazení a funkce; vlastnosti funkcí; funkce lineární, kvadratická, mocninná, nepřímá úměrnost, funkce exponenciální a logaritrická, goniometrické funkce (zavedení, vlastnosti, průběh); funkce inverzní a funkce složená. Zavedení pojmů spojitost funkce, limita funkce, derivace funkce, užití diferenciálního počtu při studiu průběhu funkcí a v úlohách na extrémy. Zavedení primitivní funkce a určitého integrálu, užití integrálního počtu k výpočtu obsahů a objemů. Posloupnosti a jejich vlastnosti, aritmetická a geometrická posloupnost, limita posloupnosti, nekonečná geometrická řada.

9. **Spojitost funkcí více proměnných**
 Okolí bodů v \mathbb{R}^n, otevřené a uzavřené množiny, hranice, vnitřek a uzávěr množiny. Spojitá zobrazení z \mathbb{R}^n do \mathbb{R}^k. Omezené množiny, kompaktní množiny, vlastnosti spojitých zobrazení na kompaktních množinách.
10. **Diferenciální počet funkcí více proměnných**
 Derivace ve směru, parcíální derivace, totální diferenciál složeného zobrazení. Lokální extrémy. Věta o implicitních funkcích a její důsledky.

11. **Lineární diferenciální rovnice**
 Lineární diferenciální rovnice n-tého řádu, homogenní a nehomogenní rovnice, fundamentální systém řešení, partikulární řešení. Metoda variace konstant, Wronského determinant. Rovnice s konstantními koeficienty, charakteristický polynom, vicenásobné a komplexní kořeny charakteristického polynomu, speciální prave strany.

12. **Dvojný a trojný integrál**
 Riemannův vícerozměrný integrál. Fubiniova věta, věta o substituci. Horní a dolní objem, měřitelné množiny. Užití dvojných a trojných integrálů v geometrii a ve fyzice, výpočet objemů a povrchů těles.

13. **Křivkový integrál prvního a druhého druhu, Greenova věta**
 Křivkový integrál prvního a druhého druhu, délka křivky, potenciál vektorového pole. Greenova věta.

14. **Metrické prostory**
 Metrika, metrický prostor; norma a normovaný lineární prostor. Spojitost funkce na metrickém prostoru. Úplné metrické prostory, Cantorova věta o úplném prostoru. Banachova věta o pevném bodě a její aplikace. Kompaktní množiny a jejich charakterizace.

15. **Posloupnosti a řady funkcí**

16. **Geometrie**
 Hlavní myšlenky axiomatického zavedení eukleidovské geometrie (přehledně). Ne-eukleidovská geometrie a její model. Kuželosečky v projektivním rozšíření eukleidovské rovin.

17. **Planimetrie a stereometrie**
 Shodnost, podobnost, stejnohmotnost, jejich vlastnosti a užití, řešení úloh z konstrukční geometrie (speciálně užitím množin uholních věcí), množiny bodů daných vlastností; prostorové řešení stereometrických úloh. Rovinné obrazce, jejich obvody a obsahy; tělesa, jejich povrchy a objemy, sítě.

18. **Analytická geometrie**
 Vektor, operace s vektory, skalární a vektorový součin; rovnice přímky a rovin, vzájemné polohy přímek a rovin, odchylky, vzdálenosti; rovnice kružnice, elipsy, paraboly a hyperbol, tečny ke kuželosečkám, rovnice kvadrik v základním tvaru.

19. **Křivky v E3**

20. **Plochy v E3**
21. Vlastní čísla a vlastní vektory, matice lineárního zobrazení, Jordanův kanonický tvar

22. Fourierovy řady
 Trigonometrické polynomy. Besselova nerovnost. Fourierova řada po částech hladké funkce, bodová a stejnoměrná konvergence.

23. Kombinatorika, pravděpodobnost, statistika
 Kombinace, variace, permutace (bez opakování, s opakováním) a jejich užití při řešení úloh, princip inkluze a exkluze; binomická věta. Náhodný jev a jeho pravděpodobnost, pravděpodobnost sjednocení náhodných jevů, nezávislé jevy a jejich pravděpodobnost. Základní pojmy deskriptivní statistiky (statistický soubor, absolutní a relativní četnost, aritmetický průměr, modus, medián, směrodatná odchylka, rozptyl).

24. Metody středoškolské matematiky
 Vytváření predstav a pojmů, klasifikace pojmů, definice; tvorba hypotéz (s užitím neúplné indukce a analogie), věty a jejich důkazy (důkaz přímý, nepřímý, sporem, matematickou indukcí); axiomatická metoda ve středoškolské matematice. Příklady aplikací matematiky.

Požadavky znalostí ke státní závěrečné zkoušce z pedagogiky a psychologie

Při zkoušce student prokáže znalost základních pedagogických a psychologických pojmů a dovednost používat je v odpovídajících souvislostech. Dokáže analyzovat konkrétní pedagogické situace, identifikovat v nich obsažené problémy, zaujmout k nim vlastní stanovisko a zdůvodnit je v kontextu jiných možných řešení. Prokáže schopnost integrovat poznatky z psychologie osobnosti, vývojové psychologie, pedagogické psychologie, sociální psychologie a školní psychologie. Je schopen aplikovat poznatky z pedagogiky a psychologie na daný problém. Při rozpravě nad konkrétními pedagogickými situacemi bude schopen hlubší analyzovat a vyhodnotit jevy educační reality a prokáže tak připravenost k převzetí role učitele. Prokáže rovněž, na základě předložené studijní literatury, připravenost k samostatnému dalšímu vzdělávání v oblasti pedagogiky a psychologie. Specifikace otázek, problémů a situací bude odpovídat stupni školy, pro který je student připravován. Zkouška se koná ústní formou.

Témata z oblasti pedagogiky

1. Učení

2. Učitel jako sociální partner

3. Cíle vzdělávání
4. Obsah vzdělávání

5. Vyučovací metody a organizační formy

6. Vzdělávací soustava

Témata z oblasti psychologie

1. Psychologie osobnosti učitele a učitelské profese

Analýza učitelské profese - učitelská profese a její nároky (klinická náročnost učitelství, nejistoty, ambivalence a dilemata učitelství, prestiž a obtížnost učitelské profesí).

2. Sociální aspekty vzdělávání. Socializace

2. Sociální aspekty vzdělávání. Socializace

3. Psychický vývoj

4. Motivace ve škole

5. Učení a poznávání

6. Systém poradenských služeb ve školství

2. Učitelství matematiky-informatiky pro střední školy

Garantující pracoviště: Katedra didaktiky matematiky
Garant oboru: doc. RNDr. Jarmila Robová, CSc. (KDM)
Garant za pedagogiku a psychologii: doc. PhDr. Isabella Pavelková, CSc. (KDF)

Doporučený průběh studia

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPED034</td>
<td>Pedagogika I</td>
<td>3</td>
<td>2/0 Z</td>
<td>—</td>
</tr>
<tr>
<td>NPED035</td>
<td>Pedagogika II</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NPED036</td>
<td>Psychologie</td>
<td>6</td>
<td>—</td>
<td>2/2 Z</td>
</tr>
<tr>
<td>NDJ0001</td>
<td>Didaktika matematiky</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NUMATEC</td>
<td>Praktické aspekty vyučování matematiky</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUMP021</td>
<td>Moderní matematikální analýza</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NUMP022</td>
<td>Algebra II</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDIM005</td>
<td>Pedagogická praxe z matematiky I</td>
<td>1</td>
<td>1 týden Z</td>
<td>—</td>
</tr>
</tbody>
</table>
1 Předmět není vyučován v každém akademickém roce, je vyučován zpravidla jednou za dva roky. Zapište si jej podle toho v 1. nebo ve 2. roce svého studia.

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMP015</td>
<td>Dějiny matematiky I</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMP016</td>
<td>Logika a teorie množin</td>
<td>3</td>
<td>2/0 KZ</td>
<td></td>
</tr>
<tr>
<td>NUMP017</td>
<td>Metody řešení matematických úloh</td>
<td>3</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>NUMP018</td>
<td>Geometrie III</td>
<td>3</td>
<td>2/0 Zk</td>
<td></td>
</tr>
<tr>
<td>NUMP019</td>
<td>Pedagogická praxe z matematiky III</td>
<td>1</td>
<td>2 týdny Z</td>
<td></td>
</tr>
<tr>
<td>NDIN010</td>
<td>Základy počítačové grafiky</td>
<td>5</td>
<td>2/2 Z+Zk</td>
<td></td>
</tr>
<tr>
<td>NDIN011</td>
<td>Informační technologie</td>
<td>4</td>
<td></td>
<td>2/1 Z+Zk</td>
</tr>
<tr>
<td>NDIN012</td>
<td>Didaktika informatiky I</td>
<td>3</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>NDIN013</td>
<td>Didaktika informatiky II</td>
<td>3</td>
<td></td>
<td>0/2 KZ</td>
</tr>
<tr>
<td>NDIN014</td>
<td>Didaktika uživatelského software I</td>
<td>2</td>
<td>0/2 Z</td>
<td></td>
</tr>
<tr>
<td>NDIN015</td>
<td>Didaktika uživatelského software II</td>
<td>2</td>
<td></td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NDIN016</td>
<td>Pedagogická praxe z informatiky I</td>
<td>1</td>
<td>1 týden Z</td>
<td></td>
</tr>
<tr>
<td>NDIN017</td>
<td>Pedagogická praxe z informatiky II</td>
<td>1</td>
<td>2 týdny Z</td>
<td></td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td></td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NUOS008</td>
<td>Seminář z počítačových aplikací¹</td>
<td>3</td>
<td></td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NPRG003</td>
<td>Metodika programování a filozofie</td>
<td>3</td>
<td></td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NUCR004</td>
<td>Teorie her</td>
<td>2</td>
<td></td>
<td>2/0 Z</td>
</tr>
<tr>
<td>NUMR005</td>
<td>Seminář z kombinatoriky a teorie grafů</td>
<td>2</td>
<td></td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUCR006</td>
<td>Vybrané kapitoly z diferenciální geometrie</td>
<td>5</td>
<td></td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

¹ Předmět není vyučován v každém akademickém roce, je vyučován zpravidla jednou za dva roky.
Státní závěrečná zkouška

Studium je zakončeno státní závěrečnou zkouškou, která se skládá ze čtyř částí:

- z obhajoby diplomové práce
- z ústní zkoušky z matematiky a didaktiky matematiky
- z ústní zkoušky z informatiky a didaktiky informatiky
- z ústní zkoušky z pedagogiky a psychologie

Podmínky pro přihlášení ke státní závěrečné zkoušce

- získání alespoň 120 kreditů
- splnění všech povinných předmětů oboru Učitelství matematiky-informatiky
- odevzdání vypracované diplomové práce ve stanoveném termínu

Podmínky pro přihlášení ke státní závěrečné zkoušce z nediplomního aprobačního předmětu

- získání alespoň 90 kreditů

Státní závěrečnou zkoušku z nediplomního aprobačního předmětu a jeho didaktiky může student skládat již v zimním semestru 2. ročníku.

Podmínky pro přihlášení ke státní závěrečné zkoušce z pedagogiky a psychologie

- získání alespoň 40 kreditů
- splnění předmětů Pedagogika I, Pedagogika II a Psychologie

Státní závěrečnou zkoušku z pedagogiky a psychologie může student skládat nejdříve v letním semestru 1. ročníku.

Požadavky znalostí ke státní závěrečné zkoušce z matematiky a didaktiky matematiky

Témata jsou stejné jako pro obor Učitelství fyziky-matematiky pro střední školy.

Požadavky znalostí ke státní závěrečné zkoušce z informatiky a didaktiky informatiky

Odborná témata

1. Zobrazení dat v počítači

Zobrazení celých a reálných čísel v počítači, algoritmy základních početních operací. Reprezentace znaků a řetězců. Implementace datových struktur (pole, záznamy, záznamy s variantními částmi, množiny).
2. **Principy počítačů, operačních systémů a počítačových sítí**

3. **Datové a řídicí struktury programovacích jazyků (programátorstvský a implementační pohled)**

Jednoduché a strukturované datové typy. Podprogramy, komunikace podprogramu s okolím (globální proměnné, parametry, typy předávání parametrů, moduly a separátní kompilace). Porovnání vybraných programovacích jazyků z hlediska jejich datových a řídicích struktur. Principy překladu programovacích jazyků, překlad a interpretace, podprogramy a makra. Formální popisy syntaxe programovacích jazyků.

4. **Metodika programování**

5. **Správnost a složitost algoritmů**

6. **Základní programovací techniky a návrh datových struktur**

Různé reprezentace abstraktních datových typů (množina, zásobník, fronta, prioritní fronta, ...). Složitost vyhledávání, vkládání a vypouštění prvků, hledání minimálního a k-tého nejmenšího, průchod všemi prvky. Reprezentace faktorové množiny. Hashování. Reprezentace aritmetických výrazů a algoritmy pro výpočet jejich hodnoty. Obecnější metody návrhu efektivních algoritmů (metoda rozděl a panuj, dynamické programování atd.).

7. **Algoritmy vnitřního a vnějšího třídění**

8. **Základní numerické algoritmy**

Řešení soustav lineárních rovnic - metody přímé a iterační, metody řešení nelineárních rovnic. Interpolace funkcí polynomy, jiné metody aproximace funkcí. Numerická integrace.

9. **Teorie automatů a jazyků**

10. **Kombinatorika a teorie grafů**

11. **Vyčíslitelnost**

12. **Informační systémy**

13. **Počítačová geometrie a grafika**
Algoritmy 2D grafiky: kreslení čar, vyplňování, půltonování a rozptylování barev. Barevné systémy, zobrazování barev na počítači. Transformace a projekce. 3D grafika: metody reprezentace 3D scén, zobrazovací algoritmy, výpočet viditelnosti.

14. **Umělá inteligence**

15. **Vybrané oblasti použití počítačů**

Didaktická tématy
Methodicky zajímavý krátký výklad jednoho z předem známých témat. V každém akademickém roce bude vypsáno 25 konkrétních témat. Hodnotí se především metodický přístup k výkladu a vystižení podstaty problematiky.

1. Jednoduchý třídící algoritmus
2. Quicksort
3. Heapsort
4. Vnější třídění
5. Rekursivní podprogramy
6. Typy předávání parametrů v Pascalu
7. Reflexivní, symetrický a tranzitivní uzávěr
8. Dynamicky a staticky alokované proměnné v Pascalu
9. Práce s lineárním spojovým seznamem, srovnání s polem
10. Vyhledávání v poli (např. binární, užití zarážky)
11. Průchod stromem do hloubky a do šířky (zádubník, fronta)
12. Vyhledávání, vkládání a vypouštění v binárním vyhledávacím stromu
13. Problém stabilních manželství
14. Vyhledávání s návratem (backtracking)
15. Srovnání programovacích jazyků Pascal a C
16. Nalezení minimální kostry grafu
17. Seznamy v Prologu a jednoduché predikáty pro práci s nimi
18. Algoritmus minimaxu
19. Algoritmy vyčíslení hodnoty aritmetického výrazu
20. Výpočet hodnoty polynomu Hornerovým schématem
21. Algoritmus „binárního“ umocňování a násobení
22. Díjkstrův algoritmus
23. Určení délky nejdelší rostoucí vybrané podposloužnosti
24. Generování všech permutací v lexikografickém usporádání
25. Statické a virtuální metody a jejich srovnání

Požadavky znalostí ke státní závěrečné zkoušce z pedagogiky a psychologie

Témata jsou stejná jako pro obor Učitelství fyziky-matematiky pro střední školy.

Doporučené volitelné předměty

Matematika

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMU468</td>
<td>Praktické aspekty vyučování matematice</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUMV101</td>
<td>Pravděpodobnost a finanční matematika pro střední školu</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NUMV102</td>
<td>Teorie her</td>
<td>2</td>
<td>—</td>
<td>2/0 Z</td>
</tr>
<tr>
<td>NUMV290</td>
<td>Statistika a pojistná matematika pro střední školu</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUMU465</td>
<td>Seminář z kombinatoriky a teorie grafů</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUMUG10</td>
<td>Vybrané kapitoly z diferenciální geometrie</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
</tbody>
</table>

Informatika

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUKO01</td>
<td>Speciální oborový seminář</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUKO02</td>
<td>Seminář z počítačových aplikací</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NPPG001</td>
<td>Metodika programování a filozofie programovacích jazyků</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NPPG002</td>
<td>Organizace a zpracování dat I</td>
<td>4</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NPPG003</td>
<td>Fotorealistická grafika</td>
<td>5</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NPPG004</td>
<td>Interaktivní 3D grafika na webu</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NATA002</td>
<td>Numerická matematika</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NATA003</td>
<td>Úvod do robotiky</td>
<td>6</td>
<td>2/2 Z+Zk</td>
<td>—</td>
</tr>
<tr>
<td>NATA004</td>
<td>Úvod do počítačové lingvistiky</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NATA005</td>
<td>Algoritmy komprese dat</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NATA006</td>
<td>Umělá inteligence I</td>
<td>5</td>
<td>2/1 Z+Zk</td>
<td>—</td>
</tr>
</tbody>
</table>
3. Učitelství matematiky-deskriptivní geometrie pro střední školy

Garantující pracoviště: Katedra didaktiky matematiky
Garant oboru: doc. RNDr. Jarmila Robová, CSc. (KDM)
Garant za pedagogiku a psychologii: doc. PhDr. Isabella Pavelková, CSc. (KDF)

Doporučený průběh studia

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPED034</td>
<td>Pedagogika I</td>
<td>3</td>
<td>2/0</td>
<td>Z</td>
</tr>
<tr>
<td>NPED036</td>
<td>Pedagogika II</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NPED038</td>
<td>Psychologie</td>
<td>6</td>
<td>—</td>
<td>2/2 Z</td>
</tr>
<tr>
<td>NDIM001</td>
<td>Didaktika matematiky</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NUMAPE5</td>
<td>Praktické aspekty vyučování matematice</td>
<td>2</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUMP021</td>
<td>Modernní matematická analýza</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NUMP022</td>
<td>Algebra II</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NSZZ023</td>
<td>Diplomová práce I</td>
<td>6</td>
<td>—</td>
<td>0/4 Z</td>
</tr>
<tr>
<td>NDIM002</td>
<td>Pedagogická praxe z matematiky I</td>
<td>1</td>
<td>1 týden</td>
<td>Z</td>
</tr>
<tr>
<td>NDIM003</td>
<td>Pedagogická praxe z matematiky II</td>
<td>1</td>
<td>2 týdny</td>
<td>Z</td>
</tr>
<tr>
<td>NDGE010</td>
<td>Algebraická geometrie</td>
<td>3</td>
<td>2/0</td>
<td>Zk</td>
</tr>
<tr>
<td>NDGE011</td>
<td>Diferenciální geometrie II</td>
<td>6</td>
<td>—</td>
<td>2/2 Z+Zk</td>
</tr>
<tr>
<td>NDGE012</td>
<td>Didaktika deskriptivní geometrie</td>
<td>6</td>
<td>2/2</td>
<td>Z+Zk</td>
</tr>
<tr>
<td>NDGE013</td>
<td>Pedagogická praxe z deskriptivní geometrie I</td>
<td>1</td>
<td>1 týden</td>
<td>Z</td>
</tr>
<tr>
<td>NDGE014</td>
<td>Pedagogická praxe z deskriptivní geometrie II</td>
<td>1</td>
<td>2 týdny</td>
<td>Z</td>
</tr>
<tr>
<td>NUMV090</td>
<td>Teorie her</td>
<td>2</td>
<td>—</td>
<td>2/0 Z</td>
</tr>
<tr>
<td>NUMV091</td>
<td>Geometrie a architektura</td>
<td>2</td>
<td>0/2</td>
<td>Z</td>
</tr>
<tr>
<td>NUMV092</td>
<td>Vývoj matematického vzdělávání</td>
<td>2</td>
<td>0/2</td>
<td>Z</td>
</tr>
<tr>
<td>NUMV093</td>
<td>Pravděpodobnost a finanční matematika pro střední školu</td>
<td>3</td>
<td>—</td>
<td>0/2 Z</td>
</tr>
<tr>
<td>NUMUG305</td>
<td>Dějiny deskriptivní geometrie</td>
<td>3</td>
<td>2/0</td>
<td>Z</td>
</tr>
<tr>
<td>NUMUG361</td>
<td>Aplikace deskriptivní geometrie</td>
<td>2</td>
<td>2/0</td>
<td>Z</td>
</tr>
</tbody>
</table>

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMP015</td>
<td>Dějiny matematiky I</td>
<td>3</td>
<td>—</td>
<td>2/0 KZ</td>
</tr>
<tr>
<td>NUMP016</td>
<td>Logika a teorie množin</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NUMP017</td>
<td>Geometrie III</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NUMV013</td>
<td>Metody řešení matematických úloh</td>
<td>3</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
</tbody>
</table>
Státní závěrečná zkouška

Studium je zakončeno státní závěrečnou zkouškou, která se skládá ze čtyř částí:

– z obhajoby diplomové práce
– z ústní zkoušky z matematiky a didaktiky matematiky
– z ústní zkoušky z deskriptivní geometrie a didaktiky deskriptivní geometrie
– z ústní zkoušky z pedagogiky a psychologie

Podmínky pro přihlášení ke státní závěrečné zkoušce

– získání alespoň 120 kreditů
– splnění všech povinných předmětů oboru Učitelství matematiky-deskriptivní geometrie
– získání alespoň 6 kreditů z povinně volitelných předmětů
– odevzdání vypracované diplomové práce ve stanoveném termínu

Podmínky pro přihlášení ke státní závěrečné zkoušce z nediplomního aprobačního předmětu

– získání alespoň 90 kreditů

Státní závěrečnou zkouškou z nediplomního aprobačního předmětu a jeho didaktiky může student skládat již v zimním semestru 2. ročníku.

Podmínky pro přihlášení ke státní závěrečné zkoušce z pedagogiky a psychologie

– získání alespoň 40 kreditů
– splnění předmětů Pedagogika I, Pedagogika II a Psychologie

Státní závěrečnou zkoušku z pedagogiky a psychologie může student skládat nejdříve v letním semestru 1. ročníku.

Požadavky znalostí ke státní závěrečné zkoušce z matematiky a didaktiky matematiky

Témata jsou stejné jako pro obor Učitelství fyziky-matematiky pro střední školy.
Učitelství matematiky-deskriptivní geometrie pro SŠ

Požadavky znalostí ke státní závěrečné zkoušce z deskriptivní geometrie a didaktiky deskriptivní geometrie

1. Porovnání jednotlivých promítacích metod
 Zavedení, konstrukční postupy, názornost, užití v praxi

2. Rozvíjení prostorové představivosti
 Modely, prostorová řešení úloh, rysy, obrazy, náčrtky.

3. Metody výuky rýsování a technického kreslení
 Přehled o učivu na ZŠ, gymnáziích a průmyslových školách. Metodické zpracování tematických celků.

4. Užití středové kolineace v deskriptivní geometrii
 Typy a specifikace středových kolineací v rovině a v prostoru. Užití kolineace při konstrukci průmětů těles, roviných řezů, perspektivních obrazů a perspektivního reliéfu. Užití kolineace k odvození některých ploch a jejich vlastností (obrazy kulové plochy, jednodílného hyperboloidu).

5. Přímkové plochy

6. Obecné vlastnosti rotačních ploch
 Zavedení, významné čáry na ploše. Konstrukce průmětů ploch. Tečné roviny a řezy vybraných ploch (amuloid, plochy 2. stupně atp.) rovinami.

7. Základy kinematické geometrie v rovině
 Základní pojmy, určení pohybu v rovině. Významné typy pohybů (eliptický, kardioidický, cykloidální, evolventní).

8. Šroubovice, šroubový pohyb, šroubové plochy
 Vlastnosti šroubovice. Třídění šroubových ploch a jejich užití v praxi.

9. Užití deskriptivní geometrie v praxi
 Geometrický podklad diagnostických přístrojů (rentgen, tomograf) a kartografických metod. Užití ploch ve strojnicitvě a stavebnictví. Technické kreslení.

10. Parametrické vyjádření křivky

11. Parametrické vyjádření plochy
 První a druhá základní forma plochy.

12. Křivky na ploše
 Hlavní směry a hlavní křivosti. Gaussova křivost plochy.

13. Geodetické křivky na ploše

14. Geometrické základy kartografie

15. Deskriptivní geometrie podporovaná počítačem

16. Mezipředmětové vztahy a jejich využití

Požadavky znalostí ke státní závěrečné zkoušce z pedagogiky a psychologie

Témata jsou stejná jako pro obor Učitelství fyziky-matematiky pro střední školy.
Povinně volitelné a doporučené volitelné předměty

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Kredity</th>
<th>ZS</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMV090</td>
<td>Teorie her</td>
<td>2</td>
<td>—</td>
<td>2/0 Z</td>
</tr>
<tr>
<td>NMUM461</td>
<td>Aplikace matematiky pro učitele</td>
<td>2</td>
<td>—</td>
<td>0/2 Kv</td>
</tr>
<tr>
<td>NUMV021</td>
<td>Geometrie a architektura</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NMUM465</td>
<td>Vývoj matematického vzdělávání</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NUMV101</td>
<td>Vybrané kapitoly z teorie</td>
<td>3</td>
<td>—</td>
<td>2/0 Zk</td>
</tr>
<tr>
<td>NUMV021</td>
<td>Pravděpodobnost a finanční matematika pro střední školu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMUG305</td>
<td>Dějiny deskriptivní geometrie</td>
<td>3</td>
<td>2/0 Zk</td>
<td>—</td>
</tr>
<tr>
<td>NMUG361</td>
<td>Aplikace deskriptivní geometrie</td>
<td>2</td>
<td>2/0 Z</td>
<td>—</td>
</tr>
<tr>
<td>NUMV101</td>
<td>Psychologické drobnosti pro učitele</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
<tr>
<td>NUMV048</td>
<td>Statistika a pojistná matematika pro střední školu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMV009</td>
<td>Geometrie a učitel I</td>
<td>2</td>
<td>0/2 Z</td>
<td>—</td>
</tr>
</tbody>
</table>
Vyučování všeobecně vzdělávacích předmětů

Nabízené kurzy:

– Vyučování všeobecně vzdělávacího předmětu fyzika
 (garant kurzu doc. RNDr. Zdeněk Drozd, Ph.D.)
– Vyučování všeobecně vzdělávacího předmětu matematika
 (garanti kurzu doc. RNDr. Jindřich Bečvář, CSc. a Mgr. Zdeněk Halas, DiS., Ph.D.)
– Vyučování všeobecně vzdělávacího předmětu informatika
 (garant kurzu doc. RNDr. Pavel Töpfer, CSc.)

Cílovou skupinou, pro kterou je nabízený program koncipován, jsou učitelé všeobecně vzdělávacích předmětů, kteří si svou aprobaci chtějí rozšířit o výše nabízené předměty. Jedná se např. o učitele chemie, technických prací apod.

Přihlášku do kurzu je možné podat do konce září. Formulář přihlášky je zveřejněn mezi studijními formuláři, v části Celoživotní vzdělávání. Pro zapsání do kurzu je třeba spolu s vyplněnou přihláškou dodat doklad o zaplacení úhrady za kurz na příslušný akademický rok a vyplněný formulář Záznam o požární ochraně a bezpečnosti práce pro účastníky CZV. Úchazeč o celoživotní vzdělávání se před návštěvou studijního oddělení rovněž seznámí s všemi řády a předpisy o celoživotním vzdělávání a potvrdí to svým podpisem.

Poplatky za studium se řídí směrnicí děkana.

Studium v těchto kurzech se řídí Rádem celoživotního vzdělávání UK.

Průběh studia a způsob hodnocení

Studium je koncipováno jako tříleté. Předměty, které musí uchazeč během studia absolvovat, a doporučený průběh studia jsou uvedeny ve vzdělávacím plánu jednotlivých kurzů (viz dále). Studium probíhá v kombinované formě studia. Ve vzdělávacím plánu je specifikován rozsah prezenční výuky, která bude probíhat blokově v prostorách MFF UK, a přibližná doba samostudia. Pokud to studujícím čas dovolí, mohou navštěvovat přednášky a cvičení společně se studenty prezenčního studia učitelských bakalářských a magisterských oborů.

Pro úspěšné absolvování programu je nutné úspěšně vykonat závěrečnou komisijní zkoušku zaměřenou na studovaný předmět a didaktiku tohoto předmětu. Dále je nutné úspěšně obhájit závěrečnou práci, která se bude tematicky dotýkat oboru didaktika fyziky, resp. matematiky, resp. informatiky. Podmínkou přihlášení se k těmto zkouškám je řádné absolvování všech předmětů předepsaných ve vzdělávacích plánech. Pokud jste některý předepsaný předmět (nebo jemu obsahově podobný) absolvovati již ve svém předchozím studiu, můžete požádat o jeho uznání.
Požadavky ke komisionální závěrečné zkoušce z fyziky a didaktiky fyziky

Student musí prokázat dostatečný fyzikální nadhled nad partiemi fyziky, které bude ve své praxi vyučovat. Musí proto prokázat znalost klíčových experimentů a základních fyzikálních teorií, jakož i jejich vzájemných souvislostí. Musí umět vysvětlit podstatu a význam základních fyzikálních veličin, zákonů a jejich důsledků, experimentálních metod a jejich praktických aplikací. K tomu patří pochopení pojmu a zákonů prolínajících celou fyzikou (energie, hybnost, zákony zacházení, rovnice kontinuity, potenciály, pohybové rovnice, oscilace, vlny, postuláty základních teorií), vztahů jednotlivých partií a mezi jejich platnosti. Patří sem také znalost jednotek veličin a hodnot základních fyzikálních konstant.

Odborná téma

1. Klasická mechanika a teorie relativity

2. Elektrodynamika a optika

3. Molekulová fyzika, termodynamika a statistická fyzika

4. Fyzika mikrosvěta

Experimentální východiska kvantové fyziky, základní myšlenky kvantové mechaniky, jejich důsledky a uplatnění v technické praxi. Svět atomů a molekul. Atomové
Vyučování všeobecně vzdělávacích předmětů

5. **Fyzika hvězd a vesmíru**

Základy moderních astronomických a astrofyzikálních představ o hvězdách a vesmíru.

Didaktická témata

Student musí mikrovýstupem prokázat schopnost samostatně vyložit zadané téma z níže uvedených okruhů učiva zahrnující demonstrační pokus ze středoškolské fyziky. Musí umět vysvětlit souvislost pokročilejších partií s příslušnými částmi látky probíranými na střední škole a bez nepřípustného zkreslení objasnit danou problematiku na úrovni přístupné středoškolákům. Musí prokázat znalost cílů a obsahu fyzikálního vzdělávání na střední škole a schopnost navrhuvat alternativní způsoby projekce fyzikálních poznatků do učiva střední školy. Předmětem diskuse může být i struktura učiva fyziky na SS, zavádění fyzikálních veličin, zákonů a teorií do učiva SS, metody a pro-středky ve výuce středoškolské fyziky, metodika řešení fyzikálních úloh a didaktické funkce pokusů, diagnostické metody.

Student také musí při mikrovýstupu prokázat znalost obsluhy a fyzikálního principu přístrojů užívaných ve výuce fyziky na školách. Zejména jde o následující přístroje: Ruhmkorfův transformátor, indukční elektrika, van de Graaffův generátor, vysokonapěťový zdroj, elektroskop, měřič náboje, elektrostatický voltmetr, univerzální zdroj, školní trafousměrnovač, rotační odporový měnič, reostat, rozkladný transformátor s příslušenstvím, ampermětr, voltmetr, wattmetr, ommeter, teslametr, RC generátor, osciloskop, souprava pro pokusy s mikrovlnami, WSP 220, vývěra, manometr, přístroje pro demonstraci základních plynových zákonů, vzduchová dráha, souprava GAMABETA. Student musí zvládat i základy práce se systémy typu Vernier, ISES nebo podobných systémů pro počítačem podporované školní experimenty.

Okruhy učiva:

- **Rovnoměrně zrychlený přímočarý pohyb.**
- **Rovnoměrný pohyb po kružnici.**
- **Newtonovy zákony.**
- **Skládání sil.**
- **Mechanická práce a mechanická energie.**
- **Archimedův zákon.**
- **Proudění tekutin.**
- **Mechanické kmity a vlny.**
- **Tepelné děje s ideálním plynem.**
- **Elektrostatické pole.**
- **Vedení elektrického proudu v látkách.**
- **Magnetické pole.**
- **Elektromagnetická indukce.**
- **Střídavé proudy.**
- **Elektrické stroje.**
- **Střídavé proudy.**

Požadavky ke komisionální závěrečné zkoušce z matematiky a didaktiky matematiky

Lineární algebra a algebra

1. **Relace, zobrazení a jejich základní vlastnosti.**
 - Relace a jejich vlastnosti. Ekvivalence, uspořádání, úplné uspořádání, příklady. Rozklad množiny podle ekvivalence. Zobrazení (injektivní, surjektivní a bijektivní), skládání zobrazení. Jádro a obraz zobrazení (Ker f, Im f), rozklad zobrazení na surjekci, bijekci a injekci.

2. **Vektorový prostor, báze, dimenze, lineární zobrazení. Vektorový prostor se skalárním součinem.**
 - Příklady vektorových prostorů, lineární závislost a nezávislost, báze a dimenze konečně generovaného vektorového prostoru, věta o dimenzích spojení a průniku. Vlast-
nosi homomorfismu, věta o hodnosti a defektu.
Skalární součin na reálném vektorovém prostoru, ortogonální báze, ortogonální doplněk podprostoru. Cauchyova-Schwarzova nerovnost, trojúhelníková nerovnost, Gramův-Schmidtův ortogonalizační proces, ortogonální projekce, ortogonální zobrazení, ortogonální matice.

Hodnost matice, regulární a singulární matice, inverzní matice, matice homomorfismu. Frobeniova věta o řešitelnosti soustav lineárních rovnic. Věta o dimenzi vektorového prostoru všech řešení homogenní soustavy. Užití matic k řešení soustav lineárních rovnic, Gaussova eliminační metoda.
Vlastní čísla a vlastní vektory, podobnost matice. Charakteristický a minimální polynom.
Lineární formy, duální báze. Bilineární a kvadratické formy, jejich matice, polární a normální báze, Sylvestrův zákon o setrvačnosti, signatura.

4. Determinanty a jejich vlastnosti, Cramerovo pravidlo.
Definice determinantu, Sarrusovo pravidlo, věta o rozvoji determinantu, charakterizace regulárních matic pomocí determinantů. Výpočet inverzní matice pomocí determinantů. Věta o násobení determinantů. Řešení soustav lineárních rovnic pomocí Cramerova pravidla.

5. Přirozená a celá čísla, dělitelnost.

6. Čísla racionální, reálná a komplexní.
Konstrukce pole racionálních čísel, podílové pole. Reálná čísla (Dedekindovy řezy, desetinné rozvoje, cauchyovské posloupnosti, axiomatický popis \mathbb{R}), iracionalita. Řetězové zlomky, konvergenty, aproximace reálných čísel racionálními. Algebraická a transcendentní čísla.
Pole komplexních čísel, zavedení, vlastnosti. Algebraický a goniometrický tvar, operace a jejich geometrické znázornění, důkazy některých goniometrických vzorců. Mohutnosti číselných oborů.

8. Základní pojmy dělitelnosti v komutativním oboru integrity.
Relace dělitelnosti a asociovanosti v oboru integrity. Příklady eukleidovských oborů integrity a příklady na užití Eukleidova algoritmu. Ireducibilní prvek, prvočinitel.
9. **Rovnice.**

10. **Posloupnosti, průměry.**

Aritmetická a geometrická posloupnost. Aritmetické posloupnosti vyšších řádů. Geometrická řada a harmonická řada. Aritmetický, geometrický a harmonický průměr, jejich vztah a geometrické znázornění.

Matematická analýza

1. **Posloupnosti reálných čísel, limity, elementární funkce.**

Posloupnost, limita posloupnosti, věty o limitách, vybrané posloupnosti. Elementární funkce, jejich zavedení a základní vlastnosti.

2. **Funkce jedné reálné proměnné: limita, spojitost, derivace, průběh funkce.**

3. **Primitivní funkce, Newtonův integrál.**

Primitivní funkce, integrace per partes, první a druhá věta o substituci. Integrace racionálních funkcí, základní typy substitucí.

4. **Riemanův integrál.**

5. **Nekonečné číselné řady, mocinné řady.**

6. **Diferenciální rovnice.**

Existence a jednoznačnost řešení počáteční úlohy. Metody řešení diferenciálních rovnic, lineární rovnice.

Geometrie

Syntetická geometrie

1. **Planimetrie (věty i s důkazy).**

2. **Stereometrie (věty i s důkazy).**

Základní stereometrické věty a jejich důkazy (rovnoběžnost přímek a roviny, rovno- běžnost dvou rovin, vzájemná poloha tří rovin, kolmost přímky a roviny, kolmost dvou rovin). Řezy mnohostěnů. Vzdálenosti a odchylky bodů, přímek, rovin. Mnohostény,

3. Zobrazovací metody.

Analytická a diferenciální geometrie

1. Afinní prostor.

2. Eukleidovský prostor.

4. Grupy geometrických zobrazení.

5. Diferenciální geometrie.

Další matematické a didaktické okruhy

1. Logika a teorie množin.

2. Kombinatorika, pravděpodobnost a matematická statistika.
Princip Inkluze a exkluze, permutace bez pevných bodů. Řešení rekurentních rovnic, generující funkce. Fibonacciho číslo. Pravděpodobnostní prostor, různé definice
Vyučování všeobecně vzdělávacích předmětů

3. Didaktika matematiky.
 Argumentace a ověřování ve školské matematice (induktivní a deduktivní metody, výroky, důkazy a jejich typy). Vytváření představ, pojmu a jejich vlastností, klasifikace pojmů (číslo, číselné obory, funkce a posloupnosti, geometrická zobrazení). Rozvíjení geometrické představivosti v rovině a v prostoru (vzájemné polohy a vlastností geometrických útvarů, konstrukční úlohy). Metody řešení úloh v algebře (rovnice, nerovnice a jejich soustavy) a analytické geometrii (rovnice přímek a rovin, vzdálenosti a odchylky). Aplikace matematiky v praxi (finanční matematika, kombinatorika, pravděpodobnost a statistika).

Požadavky ke komisionální závěrečné zkoušce z informatiky a didaktiky informatiky

Odborná témata

1. Zobrazení dat v počítači
 Zobrazení celých a reálných čísel v počítači, algoritmy základních početních operací. Reprezentace znaků a řetězců. Implementace datových struktur (pole, záznamy, záznamy s variantními částmi, množiny).

2. Principy počítačů, operačních systémů a počítačových sítí

3. Datové a řídicí struktury programovacích jazyků (programátorský a implementační pohled)
 Jednoduché a strukturované datové typy. Podprogramy, komunikace podprogramu s okolím (globální proměnné, parametry, typy předávání parametrů, moduly a separační kódu). Porovnání vybraných programovacích jazyků z hlediska jejich datových a řídicích struktur. Principy překladu programovacích jazyků, překlad a interpretace, podprogramy a makra. Formální popisy syntaxe programovacích jazyků.

4. Metodika programování

5. Správnost a složitost algoritmů
6. Základní programovací techniky a návrh datových struktur
Různé reprezentace abstraktních datových typů (množina, zásobník, fronta, prioritní fronta, ...). Složitost vyhledávání, vkládání a vypouštění prvků, hledání minimálního a k-tého nejmenšího, průchod všemi prvky. Reprezentace faktorové množiny. Hashování. Reprezentace aritmetických výrazů a algoritmy pro výpočet jejich hodnoty. Obecnější metody návrhu efektivních algoritmů (metoda rozděl a panuj, dynamické programování atd.).

7. Algoritmy vnitřního a vnějšího třídění

8. Základní numerické algoritmy
Řešení soustav lineárních rovnic - metody přímé a iterační, metody řešení nelineárních rovnic. Interpolace funkcí polynomy, jiné metody aproximace funkcí. Numerická integrace.

9. Teorie automatů a jazyků

10. Kombinatorika a teorie grafů

11. Vyčíslitelnost

12. Informační systémy

Pocítacová geometrie a grafika
Algoritmy 2D grafiky: kreslení čar, vyplňování, půltónování a rozptylování barev. Barevné systémy, zobrazování barev na počítači. Transformace a projekce. 3D grafika: metody reprezentace 3D scén, zobrazovací algoritmy, výpočet viditelnosti.

14. Umělá inteligence

15. Vybrané oblasti použití počítačů
Databázové systémy, programy pro přípravu textů, programy pro přípravu prezentací, tabulkové kalkulátory, počítačová grafika a animace, formáty multimediálních
Didaktická téma

Metodicky zajímavý krátký výklad jednoho z předem známých témat. V každém akademickém roce bude vypsáno 25 konkrétních témat. Hodnotí se především metodický přístup k výkladu a vystižení podstaty problematiky.

- Jednoduchý třídící algoritmus
- Quicksort
- Heapsort
- Vnější třídění
- Rekursivní podprogramy
- Typy předávání parametrů v Pascalu
- Reflexivní, symetrický a tranzitivní uzávěr
- Dynamicky a staticky alokované proměnné v Pascalu
- Práce s lineárním spojovým seznamem, srovnání s polem
- Vyhladávání v poli (např. binární, užití zarážky)
- Průchod stromem do hloubky a do šířky (záříbník, fronta)
- Vyhladávání, vkládání a vypouštění v binárním vyhledávacím stromu
- Problém stabilních manželství
- Prohledávání s návratem (backtracking)
- Srovnání programovacích jazyků Pascal a C
- Nalezení minimální kostry grafu
- Seznamy v Prologu a jednoduché predikáty pro práci s nimi
- Algoritmus minimaxu
- Algoritmy vyčíslení hodnoty aritmetického výrazu
- Výpočet hodnoty polynomu Hornerovým schématem
- Algoritmus „binárního“ umocňování a násobení
- Díjstraův algoritmus
- Určení délky nejdelší rostoucí vybrané podposloupnosti
- Generování všech permutací v lexikografickém uspořádání
- Statické a virtuální metody a jejich srovnání

Závěrečná práce

Závěrečnou práci zadává studentovi na jeho žádost garant kurzu kdykoliv v průběhu studia, nejpozději v semestru, který bude předcházet semestru s předpokládaným odevzdáním a obhajobou práce. Garant kurzu zároveň stanovuje konzultanta, na kterého se může student v průběhu řešení závěrečné práce obrat s odbornými dotazy apod. Závěrečná práce se obecně zabývá vzděláváním v odpovídajícím všeobecně vzdělávacím předmětu. Může se jednat například o tvorbu metodických materiálů pro školní praxi, vytváření popularizačního textu o konkrétním oboru nebo jevu, realizaci šetření/průzkumu na školách apod. Rozsah práce bude upřesněn konzultantem a garantem kurzu dle charakteru práce; standardně se předpokládá rozsah 20 normostran vlastního textu. Student obhajuje práci před minimálně tříčlennou komisí, kterou určí garant kurzu. Student odevzdá práci jak v elektronické tak v tištěné podobě v souladu

231
Vyučování všeobecně vzdělávacích předmětů

s termínem pro odevzdávání diplomových prací uvedeným v harmonogramu akademic-
kého roku. Garant určí oponenta závěrečné práce. Jak oponent, tak konzultant napiši
na práci posudek.

Akreditace: Kurzy jsou akreditovány u MŠMT na základě § 25 a § 27 zákona
č. 563/2004 Sb., o pedagogických pracovnících a o změně některých zákonů, a v souladu
se zákonem č. 500/2004 Sb. pod č. j. 16497/2015–1–582. Akreditace je prodloužena do

Studijní plány

V následujících tabulkách jsou uvedeny studijní plány kurzů vyučování všeobecně
vzdělávacích předmětů *fyzika*, *matematika* a *informatika*. Je zde specifikován hodinový
rozsah výuky a forma výuky daného předmětu. Časový rozsah je rozdělen do dvou částí:
její je zde počet hodin přímé výuky (P-přednáška, C-cvičení, resp. seminář) a dále
je uveden očekávaný minimální počet hodin samostudia.
Ve sloupci *Kód* je uveden kód předmětu podobného charakteru, který je určen pro stu-
denty bakalářského (magisterského) studijního programu.

Vyučování všeobecně vzdělávacího předmětu fyzika

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Zimní semestr</th>
<th>Letní semestr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>výuka</td>
<td>samost.</td>
</tr>
<tr>
<td>NFUF101</td>
<td>Mechanika</td>
<td>48/P+C</td>
<td>48</td>
</tr>
<tr>
<td>NFUF103</td>
<td>Elektřina a magnetismus</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NUFI160</td>
<td>Praktický úvod do elektroniky</td>
<td>16/C</td>
<td>12</td>
</tr>
<tr>
<td>NUFI162</td>
<td>Matematické metody ve fyzice</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NPED135</td>
<td>Pedagogika II</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>CELKEM</td>
<td>64</td>
<td>60</td>
</tr>
</tbody>
</table>

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Zimní semestr</th>
<th>Letní semestr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>výuka</td>
<td>samost.</td>
</tr>
<tr>
<td>NUFI102</td>
<td>Fyzika III (optika)</td>
<td>60/P+C</td>
<td>24</td>
</tr>
<tr>
<td>NUFI103</td>
<td>Molekulová fyzika</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NUFI128</td>
<td>Teoretická mechanika</td>
<td>16/P</td>
<td>8</td>
</tr>
<tr>
<td>NUFI160</td>
<td>Kvantová mechanika</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NDIFY142</td>
<td>Didaktika fyziky I</td>
<td>12/P+C</td>
<td>30</td>
</tr>
<tr>
<td>NDIFY142</td>
<td>Praktikum školních pokusů I</td>
<td>30/C</td>
<td>12</td>
</tr>
</tbody>
</table>

232
Vyučování všeobecně vzdělávacích předmětů

<table>
<thead>
<tr>
<th>NDFY046</th>
<th>Praktikum školních pokusů II</th>
<th>—</th>
<th>—</th>
<th>40/C</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELKEM</td>
<td>118</td>
<td>74</td>
<td>80</td>
<td>84</td>
<td></td>
</tr>
</tbody>
</table>

3. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Zimní semestr</th>
<th>Letní semestr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUFY103</td>
<td>Fyzika IV (atomová fyzika)</td>
<td>12/P+C</td>
<td>30</td>
</tr>
<tr>
<td>NUFY097</td>
<td>Teorie relativity</td>
<td>— —</td>
<td>10/P</td>
</tr>
<tr>
<td>NUFY094</td>
<td>Termodynamika a statistická fyzika</td>
<td>20/P+C</td>
<td>40</td>
</tr>
<tr>
<td>NUFY126</td>
<td>Fyzikální praktikum pro celoživotní vzdělávání</td>
<td>27</td>
<td>— —</td>
</tr>
<tr>
<td>NUFY024</td>
<td>Astronomie a astrofyzika</td>
<td>10/P</td>
<td>18</td>
</tr>
<tr>
<td>NUFY023</td>
<td>Fyzikální obraz světa</td>
<td>10/P</td>
<td>18</td>
</tr>
<tr>
<td>NUFY083</td>
<td>Pedagogická praxe z fyziky (CŽV), Kurz bezpečnosti práce, Závěrečná práce</td>
<td>— —</td>
<td>— —</td>
</tr>
<tr>
<td>CELKEM</td>
<td>79</td>
<td>106</td>
<td>44</td>
</tr>
</tbody>
</table>

Vyučování všeobecně vzdělávacího předmětu matematika

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Zimní semestr</th>
<th>Letní semestr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMTM101</td>
<td>Matematická analýza I</td>
<td>40/P+C</td>
<td>40</td>
</tr>
<tr>
<td>NMTM103</td>
<td>Lineární algebra I</td>
<td>30/P+C</td>
<td>32</td>
</tr>
<tr>
<td>NMTM102</td>
<td>Matematická analýza II</td>
<td>— —</td>
<td>35/P+C</td>
</tr>
<tr>
<td>NMTM104</td>
<td>Lineární algebra II</td>
<td>— —</td>
<td>25/P+C</td>
</tr>
<tr>
<td>NMTM106</td>
<td>Základy planimetrie</td>
<td>— —</td>
<td>10/P+C</td>
</tr>
<tr>
<td>NPED035</td>
<td>Pedagogika II</td>
<td>— —</td>
<td>10/P+C</td>
</tr>
<tr>
<td>CELKEM</td>
<td>70</td>
<td>72</td>
<td>80</td>
</tr>
</tbody>
</table>

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Zimní semestr</th>
<th>Letní semestr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMTM201</td>
<td>Matematická analýza III</td>
<td>35/P+C</td>
<td>20</td>
</tr>
<tr>
<td>NMTM203</td>
<td>Geometrie I</td>
<td>30/P+C</td>
<td>20</td>
</tr>
<tr>
<td>NMTM105</td>
<td>Aritmetika a algebra I</td>
<td>15/P+C</td>
<td>15</td>
</tr>
</tbody>
</table>
Vyučování všeobecně vzdělávacích předmětů

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Zimní semestr</th>
<th>Letní semestr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMUM403</td>
<td>Pravděpodobnost a matematická statistika I</td>
<td>20/P+C 12</td>
<td>—</td>
</tr>
<tr>
<td>NMUM405</td>
<td>Základy prostorové geometrie</td>
<td>10/P+C 15</td>
<td>—</td>
</tr>
<tr>
<td>NMUM406</td>
<td>Geometrie II</td>
<td>—</td>
<td>30/P+C 25</td>
</tr>
<tr>
<td>NMUM407</td>
<td>Pravděpodobnost a matematická statistika II</td>
<td>—</td>
<td>20/P+C 25</td>
</tr>
<tr>
<td>NMUM205</td>
<td>Kombinatorika</td>
<td>—</td>
<td>15/P 20</td>
</tr>
<tr>
<td>NMUM206</td>
<td>Základy aritmetiky a algebry II</td>
<td>—</td>
<td>15/P+C 15</td>
</tr>
<tr>
<td>CELKEM</td>
<td></td>
<td>110 82</td>
<td>80 85</td>
</tr>
</tbody>
</table>

V letním semestru 2. roku studia se doporučuje absolvovat nepovinný předmět NMUM312 Pedagogicko-didaktická propedeutika matematiky, který je vhodnou přípravou k předmětu NMUM405 Didaktika matematiky.

3. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Zimní semestr</th>
<th>Letní semestr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMUM307</td>
<td>Metody řešení matematických úloh</td>
<td>10/C 18</td>
<td>—</td>
</tr>
<tr>
<td>NMUM308</td>
<td>Diferenciální geometrie</td>
<td>25/P+C 30</td>
<td>—</td>
</tr>
<tr>
<td>NMUM309</td>
<td>Základy zobrazovacích metod</td>
<td>15/C 25</td>
<td>—</td>
</tr>
<tr>
<td>NMUM310</td>
<td>Logika a teorie množin</td>
<td>20/P 25</td>
<td>—</td>
</tr>
<tr>
<td>NMUM311</td>
<td>Didaktika matematiky</td>
<td>10/P+C 20</td>
<td>—</td>
</tr>
<tr>
<td>NMUM417</td>
<td>Pedagogická praxe z matematiky III</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>NMUM418</td>
<td>Pedagogická praxe z matematiky II</td>
<td>—</td>
<td>17</td>
</tr>
<tr>
<td>CELKEM</td>
<td></td>
<td>97 118</td>
<td>17 0</td>
</tr>
</tbody>
</table>

Vyučování všeobecně vzdělávacího předmětu informatika

1. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Zimní semestr</th>
<th>Letní semestr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDM1062</td>
<td>Diskrétní matematika</td>
<td>25/P+C 20</td>
<td>—</td>
</tr>
<tr>
<td>NPRG105</td>
<td>Algoritmizace</td>
<td>20/P+C 20</td>
<td>—</td>
</tr>
<tr>
<td>NPRG106</td>
<td>Programování 1</td>
<td>25/P+C 50</td>
<td>—</td>
</tr>
</tbody>
</table>
Vyučování všeobecně vzdělávacích předmětů

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Zimní semestr</th>
<th>Letní semestr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>výuka</td>
<td>samost.</td>
</tr>
<tr>
<td>NTIN060</td>
<td>Algoritmy a datové struktury 1</td>
<td>25/P+C</td>
<td>20</td>
</tr>
<tr>
<td>NPRG031</td>
<td>Programování 2</td>
<td>25/P+C</td>
<td>40</td>
</tr>
<tr>
<td>NSWI177</td>
<td>Úvod do Linuxu</td>
<td>20/P+C</td>
<td>20</td>
</tr>
<tr>
<td>NPED085</td>
<td>Pedagogika II</td>
<td>10/P+C</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>CELKEM</td>
<td>70</td>
<td>90</td>
</tr>
</tbody>
</table>

2. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Zimní semestr</th>
<th>Letní semestr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>výuka</td>
<td>samost.</td>
</tr>
<tr>
<td>NTIN061</td>
<td>Algoritmy a datové struktury II</td>
<td>30/P+C</td>
<td>30</td>
</tr>
<tr>
<td>NSWI159</td>
<td>Principy počítačů</td>
<td>20/P</td>
<td>20</td>
</tr>
<tr>
<td>NSWI141</td>
<td>Úvod do počítačových sítí</td>
<td>15/P</td>
<td>20</td>
</tr>
<tr>
<td>NDIN017</td>
<td>Didaktika uživatelského software I (CŽV)</td>
<td>10/C</td>
<td>20</td>
</tr>
<tr>
<td>NTIN071</td>
<td>Automaty a gramatiky</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NSWI170</td>
<td>Počítačové systémy</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NDIN010</td>
<td>Dětské programovací jazyky</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NDIN018</td>
<td>Didaktika uživatelského software II (CŽV)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>CELKEM</td>
<td>75</td>
<td>90</td>
</tr>
</tbody>
</table>

3. rok studia

<table>
<thead>
<tr>
<th>Kód</th>
<th>Název</th>
<th>Zimní semestr</th>
<th>Letní semestr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>výuka</td>
<td>samost.</td>
</tr>
<tr>
<td>NDBI025</td>
<td>Databázové systémy</td>
<td>20/P+C</td>
<td>20</td>
</tr>
<tr>
<td>NPGR003</td>
<td>Základy počítačové grafiky</td>
<td>20/P+C</td>
<td>30</td>
</tr>
<tr>
<td>NSWI142</td>
<td>Webové aplikace</td>
<td>20/P+C</td>
<td>30</td>
</tr>
<tr>
<td>NUNI017</td>
<td>Informační technologie</td>
<td>20/P+C</td>
<td>20</td>
</tr>
<tr>
<td>NSWI160</td>
<td>Počítačové sítě</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NDIN016</td>
<td>Didaktika informatiky (CŽV)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NDIN016</td>
<td>Pedagogická praxe z informatiky (CŽV)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Závěrečná práce</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>CELKEM</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>