Problem 1 (25 points)
Evaluate
\[\int_M xy \, dx \, dy , \]
where \(M = \{(x,y) \in \mathbb{R}^2; 0 < x < 2, 0 < y, y < x, y < 2 - x \} \).

Problem 2 (25 points)
Function \(f \) is given by
\[f(x) = \ln \left| \frac{x - 1}{x - 2} \right| . \]

(i) Find the domain of definition \(D(f) \) of the function \(f \).
(ii) Find the intervals of continuity of \(f \).
(iii) Find the limits of \(f \) in the boundary point(s) of \(D(f) \) as well as in the improper point(s).
(iv) Find the intervals of monotonicity of \(f \). Find the local minima and maxima of \(f \) if they exist. Does \(f \) attain its largest and smallest value in \(D(f) \)?
(v) Find the intervals of convexity and concavity of \(f \).
(vi) Find the asymptotes of \(f \).
(vii) Using the solutions (i)-(vi), sketch the plot of \(f \).

Problem 3 (25 points)
Determine, whether function
\[f(x, y, z) = e^{xyz} \]
attains its maximum and minimum on set
\[M = \{(x, y, z) \in \mathbb{R}^3; x^2 + 2y^2 + 3z^2 = 30 \} \].
If maximum or minimum exists then find it.

Problem 4 (25 points)
Find the determinant of the real matrix
\[
A = \begin{pmatrix}
ad + 2 & 1 & 0 & 2 \\
2 & 2 & 2 & 5 \\
d + 3 & b & 0 & 3 \\
1 & 2 & 2 & 4 \\
\end{pmatrix}
\]
depending on parameters \(a, b \). For which \(a, b \) is \(A \) invertible?