State Final Examination (Mathematics Sample Questions)

Spring 2023

1 Linear maps (3 points)

1. In the vector space \mathbb{R}^{3}, consider the linear map $f(x)=A x$, where

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
4 & 2 & 1 \\
0 & 2 & 3
\end{array}\right)
$$

Find a line p satisfying the following two conditions:

- p passes through the point $(1,2,3)^{T}$, and
- the image of p under the linear map $f(x)$ is a single point.

2. Prove or disprove:

A linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isomorphism if and only if it maps any line onto a line.

2 Eigenvalues and eigenvectors (3 points)

1. Define the terms eigenvalue and eigenvector of a real matrix $A \in \mathbb{R}^{n \times n}$.
2. Formulate the spectral decomposition theorem for a real symmetric matrix $A \in \mathbb{R}^{n \times n}$.
3. Find a matrix $A \in \mathbb{R}^{3 \times 3}$ such that the following conditions are satisfied:

- the rank of A is 1 , and
- the eigenvectors of A are $(2,1,1)^{T},(1,-1,-1)^{T}$ and $(0,1,-1)^{T}$. Notice that the vectors are orthogonal.

3 Orthogonal complement (3 points)

1. Define the term orthogonal complement of a set of vectors.
2. Let V be a vector space of dimension n. Prove that a set of vectors $\left\{x_{1}, \ldots, x_{m}\right\} \subset V$ is linearly independent if and only if $\operatorname{dim}\left(\left\{x_{1}, \ldots, x_{m}\right\}^{\perp}\right) \leq n-m$.
3. Find a basis of the orthogonal complement of the solution set of the system of linear equations

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0, \\
2 x_{1}+x_{2}+2 x_{3}+x_{4}=0 .
\end{array}
$$

4 Inclusion-exclusion principle (3 points)

1. Write the statement of the Inclusion-exclusion principle.
2. How many integers from the set $\{1,2, \ldots, 360\}$ is divisible by at least one of $4,6,9$?

5 Hypercube (3 points)

For $d \in \mathbb{N}$, let V_{d} be the set of all ordered d-tuples of zeros and ones, i.e., $V_{d}=\{0,1\}^{d}$. Let us define a graph H_{d} on the vertex set V_{d}, where two k-tuples are joined by an edge if and only if they differ in exactly one entry. In other words, we have $H_{d}=\left(V_{d}, E\right)$, with $E=\left\{\{x, y\} \mid x, y \in V_{d} \wedge \exists!i: x_{i} \neq y_{i}\right\}$. (For example, for $d=4$, the vertex 1010 is adjacent to the vertices $0010,1110,1000$, and 1011.) This graph is called a d-dimensional hypercube.

1. What is the maximum possible number of edges of a planar graph with n vertices?
2. For what values of d is the d-dimensional hypercube a planar graph? Justify your answer.

6 Sequences (3 points)

Let $\left(a_{n}\right)=\left(a_{1}, a_{2}, \ldots\right)$ be a sequence of real numbers.

1. Define what it means that $\left(a_{n}\right)$ has the limit $+\infty$ (plus infinity).
2. Define what it means that $\left(a_{n}\right)$ is unbounded from above.
3. Is it true that if the sequence $\left(a_{n}\right)$ is unbounded from above then it has the limit $+\infty$? Justify your answer.

7 Continuous function (3 points)

Let $f:(0,1) \rightarrow \mathbb{R}$ be a real function.

1. Define what it means that f is continuous at the point $\frac{1}{2}$.
2. Is the function f defined on this interval by $f(x)=\frac{2 x-1}{1-2 x}$ for $x \neq \frac{1}{2}$ and by $f\left(\frac{1}{2}\right)=-1$ continuous at the point $\frac{1}{2}$?
3. In part 2 , could not we define the function more simply by $f(x)=\frac{2 x-1}{1-2 x}$ for every $x \in(0,1)$?

Justify your answers in parts 2 and 3 .

8 Riemann integral (3 points)

Let $f:[0,1] \rightarrow \mathbb{R}$ be a real function that has continuous derivative $f^{\prime}:[0,1] \rightarrow \mathbb{R}$.

1. Compute the Riemann integral $\int_{0}^{1} f^{\prime}(x) \mathrm{d} x$.
2. Compute the Riemann integral $\int_{0}^{1} x \mathrm{e}^{x^{2}} \mathrm{~d} x$.
3. Compute the Riemann integral $\int_{0}^{1} x \cos \left(x^{2}\right) \mathrm{d} x$.

Justify your answers (there is no need to justify common theorems and propositions from the lectures).

$9 \quad$ Skolemization and models (3 points)

Consider the following statements:

- "Every hare is faster than some tortoise."
- "Everyone is either a hare or a tortoise, but not both."
- "There exists at least one hare and at least one tortoise."

1. Express the above statements as sentences $\varphi_{1}, \varphi_{2}, \varphi_{3}$ in a suitable language L of the (first-order) predicate logic.
2. Using Skolemization, find an open theory S (in some extension L^{\prime} of the language L) which is equisatisfiable with the theory $T=\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$. Give a three-element model of the theory S, or explain why it does not exist.
3. Additionally, consider the sentence φ_{4} in the language L that formalizes the statement "There exists a hare that is faster than all tortoises." Is φ_{4} true / contradictory / independent in the theory T ? Justify your answer.
