State Final Examination (Mathematics Sample Questions)

Fall 2022

1 Continuity and derivative (3 points)

- 1. Define continuity of a function at a point.
- 2. Let f be a function defined as

$$f(x) = \begin{cases} x \sin \frac{1}{x} \text{ for all } x \neq 0, \\ 0 \text{ for } x = 0. \end{cases}$$

- At which points is the function f continuous? Justify your answer.
- Calculate the derivative of the function f at all points in which it exists. (In particular, justify whether the derivative exists at 0 and if yes, determine its value.)
- 3. Let $a \in \mathbb{R}$ and $f, g : \mathbb{R} \to \mathbb{R}$. What implications hold between the following two statements? Justify your answer.
 - **P.** Functions f and g are continuous at a.
 - **Q.** The function f + g is continuous at a.

2 Definite integral (3 points)

- 1. Write definitions of the upper and the lower Riemann sum, the upper and the lower Riemann integral and the Riemann integral.
- 2. Is the following function f Riemann integrable on the interval [1, 2]? Justify your answer.

$$f(x) = \begin{cases} x \text{ for all } x \in \mathbb{Q} \\ -x \text{ for all } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

3. Calculate the definite integral

$$\int_0^\pi x^2 \cos(2x) dx.$$

3 Linear transformation matrix (3 points)

Consider the linear transformation in plane \mathbb{R}^2 , which maps the rectangle $[0,2] \times [0,1]$ onto the rectangle $[-2,0] \times [-1,0]$.

- 1. Find the matrix form of this linear transformation.
- 2. Determine the eigenvalues of this linear map (that is, the eigenvalues of the corresponding matrix).
- 3. Decide whether the vector $v = (2,3)^T$ is an eigenvector of this linear map.

4 Surjective mappings (3 body)

- 1. Give a definition of an injective mapping and of a surjective mapping.
- 2. Consider a linear mapping $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ such that for every three vectors $x, y, z \in \mathbb{R}^3$ we have that their images f(x), f(y), f(z) are linearly dependent. Prove that the mapping f is not surjective.

5 Inner product (3 points)

Consider the inner product in \mathbb{R}^2 given by

 $\langle x, y \rangle = 2x_1y_1 + x_2y_2 + x_1y_2 + x_2y_1.$

- 1. For this inner product state the precise formulation of the Cauchy–Schwarz inequality.
- 2. For this inner product determine the matrix of the projection onto the line spanned by vector $(1,0)^T$.

6 Inclusion–exclusion principle (3 points)

- 1. State the inclusion–exclusion principle.
- 2. Let [n] denote the set $\{1, 2, ..., n\}$.
 - (a) How many functions $f: [n] \to [n]$ have the property that for every even $x \in [n]$, we have $f(x) \neq x$?
 - (b) How many injective functions $f: [n] \to [n]$ have the property that for every even $x \in [n]$, we have $f(x) \neq x$?

7 Spanning trees (3 points)

- 1. Define the term spanning tree of a graph.
- 2. Let G = (V, E) be a connected graph. Suppose every edge $e \in E$ is assigned a weight $w(e) \in \mathbb{R}$, with no two distinct edges having the same weight. Let T be a minimum spanning tree of G, i.e., a spanning tree with the smallest possible sum of edge-weights. Show that for every edge $e \in E$, the following two statements are equivalent:
 - (a) The edge e belongs to T.
 - (b) Every cycle in the graph G that contains the edge e also contains at least one edge whose weight is greater than the weight of e.

8 Probability (3 points)

We repeatedly roll a regular dice (i.e., a six-sided dice labelled $1, \ldots, 6$). We denote by X the order of the roll when we first roll a six. Next, we denote by Y the number of sixes that came up on the first 100 rolls.

- 1. Determine $\mathbf{P}(X = 10)$. Name the distribution of random variable X.
- 2. Determine $\mathbf{P}(Y = 10)$. Name the distribution of random variable Y.
- 3. Determine the expectations E(X), E(Y), and E(X+Y).

9 Logic (3 body)

- 1. Give definitions for predicate logic when a formula φ is valid in a structure \mathcal{A} , when φ is valid in a theory T, and when φ is (logically) valid.
- 2. Consider a theory $T = \{P(x, x), P(x, y) \to P(y, x), P(x, y) \to (P(y, z) \to P(x, z))\}$ of a language $L = \langle P \rangle$ without equality. Find a formula φ of the language L and a three-element model \mathcal{A} of the theory T such that φ is valid in \mathcal{A} , but φ is not valid in T. Give an explanation why φ has the desired properties.
- 3. Find a formula ψ of the language L such that ψ is valid in T, but ψ is not (logically) valid. Give an explanation why ψ has the desired properties, including a formal proof of its validity in T using some proof system.