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ORBIT-COUNTING

We often want to count objects up to some symmetry, which
can be formalized as orbit-counting.
This is classical combinatorics for a group acting on a finite
set.
In the 1970s, Peter Cameron began considering group acting
on a countable set.
Given G ↷ X, we naturally get an action of G on the
n-subsets of X (g. {x1, . . . , xn} = {g.x1, . . . , g.xn}).
Let fG(n) count the orbits of this action on n-subsets.
We place the restriction that fG(n) is always finite.
We will be particularly interested in the case when fG(n) is
slow, and in jumps in the allowable behavior of fG(n).
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EXAMPLES

We will produce examples by taking G = Aut(M) for a
suitable countable structure M.
If M = (Q,=) then fG(n) ≡ 1. Similarly if M = (Q, <).
If M is an equivalence relation with k infinite classes, then
fG(n) ≈ nk−1.
If M is an equivalence relation with infinitely many infinite
classes, then fG(n) is the partition function (≈ e

√
n).

If M is a has two refining equivalence relations with
infinitely many infinite classes, then fG(n) ≈ en/ log n.
If M is an equivalence relation with classes of size 2 and a
linear order on the classes, then fG(n) is the Fibonacci
sequence (≈ 1.618n).
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EXAMPLES (CONTD.)

If M is the generic local order, then fG(n) ≈ 2n.
If M is a suitable tree-like structure, then fG(n) is the Catalan
sequence (≈ 4n).
If M is a suitable permutation, then fG(n) = n! is the number
of finite permutations of size n.
If M is a suitable graph, then fG(n) is the number of graphs
of size n (≈ 2n2

).
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COUNTING SUBSTRUCTURES

This orbit-counting is equivalent to counting (up to
isomorphism) n-substructures of nice countable structures.
Given G ↷ X, we may produce a relational structure M so
that Aut(M) ↷ M has the same growth rate.
The M produced has two nice properties indicating high
symmetry.

1 The finiteness condition on fAut(M)(n) is equivalent to M
being ω-categorical: it is uniquely determined by its
first-order theory and by being countable.

2 The M produced is homogeneous: orbits on n-subsets
correspond to isomorphism types of n-substructures.

We let fM(n) count the n-substructures of M.
Our original problem is equivalent to: For ω-categorical and
homogeneous M, understand fM(n).
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THE MODEL-THEORETIC APPROACH

Model theory provides a series of “dividing lines”
separating tame from wild behavior.
Wild behavior is witnessed by the structure encoding a
particular complicated configuration.
Tame behavior ideally corresponds to a well-behaved
independence notion, allowing a recursive decomposition
of tame structures into simple independent parts.
These dividing lines are often considered successively,
accumulating more and more information.



Introduction Slow growth Further directions References

SOME EARLY RESULTS ON GROWTH RATE

fM(n) is weakly increasing [Cam76], [Pou76]
Classification of M such that fM ≡ 1 [Cam76]
If fM(n) is not bounded above by a polynomial, then it is
bounded below by the partition function (≈ e

√
n) [Mac85a]

If M is primitive and fM(n) ̸≡ 1, then
fM(n) ≥ ( 5

√
2)n/poly(n) [Mac85b]

Under a further assumption, either fM(n) is slower than
2n1+ϵ

or is at least 2O(n2) [Mac87].
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CONJECTURES AND RECENT RESULTS

Conjecture (Cameron, Macpherson)
1 If fM(n) is bounded above by a polynomial, then fM(n) ∼ cnk for

some c > 0, k ∈ N.
2 Suppose fM(n) is not bounded above by a polynomial, but is

bounded above by en1−ϵ for some ϵ > 0. Then there are
k ∈ N, ϵ > 0 such that

en1−1/k−ϵ
< fM(n) < en1−1/k+ϵ

3 Suppose M is primitive and fM(n) ̸≡ 1. Then
fM(n) ≥ 2n/poly(n).

Stronger form of (1) proved in [FT20] by algebraic
combinatorics.
For (3), Macpherson’s base of 5

√
2 was improved to

≈ 1.324 [Mer01] and then ≈ 1.576 [Sim18]
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NIP
A structure is NIP (“not the independence property”) if it
cannot encode arbitrary finite (bipartite) graphs.
If M is not NIP, then fM(n) ≥ 2O(n2).
Let V be a countable-dimensional vector space over Fp.
There is a coloring of the points of V so the resulting
structure is not NIP.
{a0, b0, a1, b1, . . .} is linearly independent, and ci,j = ai + bj.
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STABILITY
A structure is stable if it cannot encode an infinite linear
order. This is stronger than NIP.
Slow growth does not imply stability, e.g. (Q, <).
But note the growth rate of (Q, <) is the same as (Q,=).

Theorem (Simon [Sim18])
Let M be an ω-categorical homogeneous structure such that
fM(n) < ϕn/poly(n).
Then there is a stable reduct M∗ so that fM(n) = fM∗(n).

Theorem (Simon [Sim18])
Let M be an ω-categorical homogeneous structure such that
ϕn/poly(n) ≤ fM(n) < 2n/poly(n). Then M is not primitive.

So to prove the conjectures, it suffices to understand stable
M.
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MONADIC STABILITY

Stability does not imply slow growth, e.g. vector spaces.
M is monadically stable if every structure obtained by
coloring of the points of M is stable.
Vector spaces are stable, but we have seen they are not
monadically stable (not even monadically NIP).

Proposition (B. [Bra22])
Let M be ω-categorical, homogeneous, and stable.

1 If M is monadically stable, then fM(n) is slower than any exponential.

2 If M is not monadically stable, then fM(n) is faster than any exponential.

So it remains to understand monadically stable M.
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THE BALDWIN-SHELAH THEOREM

Theorem (Baldwin-Shelah [BS85])
The following are equivalent for a structure M.

1 M is monadically stable.
2 M is stable and forking dependence is well-behaved (reduces to

singletons and is transitive).
3 M is stable and does not code a grid on singletons.
4 M admits a tree-decomposition using countable substructures.

Lachlan [Lac92] classified ω-categorical monadically stable
structures.
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THE MAIN THEOREMS

Theorem (B. [Bra22])
Let M be ω-categorical and homogeneous. If fM(n) is slower than
ϕn/poly(n), then it is sub-exponential, and falls into one of the
following cases.

1 There are c > 0, k ∈ N so fM(n) ∼ cnk.
2 There are c > 0, k ∈ N so fM(n) = exp((c + o(1))(n1−1/k)).
3 There are c > 0, k, r ∈ N so fM(n) = exp((c + o(1))( n

logr(n)1/k )).

Furthermore, every such growth rate is realized by a monadically stable
M.

Theorem (B. [Bra22])
Let M be ω-categorical, homogeneous, and primitive. If fM(n) is not
constant 1, then fM(n) is at least 2n/poly(n).
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WHY MODEL THEORY?

Model theory provides several dividing lines that can be
used to explain jumps in complexity.
Together with these dividing lines, there are various notions
of independence to decompose tame structures.
Model theory passes between different models of a theory,
and allows asymptotic analysis on cardinals.
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QUESTIONS

What about when fM(n) is at most exponential?
What about monadic NIP?

We conjecture fM(n) is at most exponential ⇐⇒ M is
monadically NIP.
We prove an analogue of the Baldwin-Shelah theorem for
monadic NIP [BL21].

Why does monadic stability appear?
We show that in hereditary classes, stability/NIP collapses
to monadic stability/NIP [BL22].

How important is the group action?
Monadic stability/NIP specialize to important notions in
structural graph theory in hereditary classes.
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CHARACTERIZATIONS OF MONADIC NIP

Theorem (B.-Laskowski [BL21])
The following are equivalent for a complete theory T.

1 T is monadically stable NIP.
2 T is stable and forking Finite satisfiability dependence reduces to

singletons and is transitive.
3 T is stable and does not code a grid on singletons tuples.
4 Models of T admit a tree-decomposition into an ordered sequence

of independent pieces.
5 Models of T have “linear rankwidth” bounded by some cardinal.

Like Baldwin-Shelah, this does not yield a good structure
theory in the countable.
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CONCLUSION

(Monadic) stability/NIP provide broad generalizations of
notions from finite combinatorics, capturing tree-like
structure.
The infinitary combinatorics and geometry of
model-theoretic dividing lines is reflected in the finite.
This can be used both to solve concrete problems and to
provide a “geography” of classes of interest.
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