Introduction	Slow growth	Further directions	References
00000	00000000	000	0000

Orbit-counting for groups acting on countable sets

Samuel Braunfeld (IUUK)

April 2, 2024 Charles University Algebra Colloquium

Introduction	
00000	

OVERVIEW

Introduction

Introduction	Slow growth	Further directions	References
•0000	00000000		0000

Orbit-counting

- We often want to count objects up to some symmetry, which can be formalized as orbit-counting.
- This is classical combinatorics for a group acting on a finite set.
- In the 1970s, Peter Cameron began considering group acting on a countable set.
- Given $G \curvearrowright X$, we naturally get an action of G on the *n*-subsets of X (g. { x_1, \ldots, x_n } = { $g.x_1, \ldots, g.x_n$ }).
- Let $f_G(n)$ count the orbits of this action on *n*-subsets.
- We place the restriction that $f_G(n)$ is always finite.
- We will be particularly interested in the case when $f_G(n)$ is slow, and in jumps in the allowable behavior of $f_G(n)$.

Introduction	Slow growth	Further directions	References
00000	00000000		0000
F			

EXAMPLES

- We will produce examples by taking *G* = *Aut*(*M*) for a suitable countable structure *M*.
- If $M = (\mathbb{Q}, =)$ then $f_G(n) \equiv 1$. Similarly if $M = (\mathbb{Q}, <)$.
- If *M* is an equivalence relation with *k* infinite classes, then $f_G(n) \approx n^{k-1}$.
- If *M* is an equivalence relation with infinitely many infinite classes, then $f_G(n)$ is the partition function ($\approx e^{\sqrt{n}}$).
- If *M* is a has two refining equivalence relations with infinitely many infinite classes, then $f_G(n) \approx e^{n/\log n}$.
- If *M* is an equivalence relation with classes of size 2 and a linear order on the classes, then $f_G(n)$ is the Fibonacci sequence ($\approx 1.618^n$).

EXAMPLES (CONTD.)

- If *M* is the generic local order, then $f_G(n) \approx 2^n$.
- If *M* is a suitable tree-like structure, then $f_G(n)$ is the Catalan sequence ($\approx 4^n$).
- If *M* is a suitable permutation, then $f_G(n) = n!$ is the number of finite permutations of size *n*.
- If *M* is a suitable graph, then $f_G(n)$ is the number of graphs of size $n \approx 2^{n^2}$.

Introduction SI	low growth	Further directions	References
00000 0		000	0000

COUNTING SUBSTRUCTURES

- This orbit-counting is equivalent to counting (up to isomorphism) *n*-substructures of nice countable structures.
- Given G ∼ X, we may produce a relational structure M so that Aut(M) ∼ M has the same growth rate.
- The *M* produced has two nice properties indicating high symmetry.
 - The finiteness condition on *f_{Aut(M)}(n)* is equivalent to *M* being ω-categorical: it is uniquely determined by its first-order theory and by being countable.
 - The M produced is *homogeneous*: orbits on *n*-subsets correspond to isomorphism types of *n*-substructures.
- We let $f_M(n)$ count the *n*-substructures of *M*.
- Our original problem is equivalent to: For ω -categorical and homogeneous M, understand $f_M(n)$.

THE MODEL-THEORETIC APPROACH

- Model theory provides a series of "dividing lines" separating tame from wild behavior.
- Wild behavior is witnessed by the structure encoding a particular complicated configuration.
- Tame behavior ideally corresponds to a well-behaved independence notion, allowing a recursive decomposition of tame structures into simple independent parts.
- These dividing lines are often considered successively, accumulating more and more information.

Some early results on growth rate

- $f_M(n)$ is weakly increasing [Cam76], [Pou76]
- Classification of *M* such that $f_M \equiv 1$ [Cam76]
- If $f_M(n)$ is not bounded above by a polynomial, then it is bounded below by the partition function ($\approx e^{\sqrt{n}}$) [Mac85a]
- If *M* is primitive and $f_M(n) \neq 1$, then $f_M(n) \geq (\sqrt[5]{2})^n / poly(n)$ [Mac85b]
- Under a further assumption, either $f_M(n)$ is slower than $2^{n^{1+\epsilon}}$ or is at least $2^{O(n^2)}$ [Mac87].

CONJECTURES AND RECENT RESULTS

Conjecture (Cameron, Macpherson)

- If $f_M(n)$ is bounded above by a polynomial, then $f_M(n) \sim cn^k$ for some $c > 0, k \in \mathbb{N}$.
- Suppose f_M(n) is not bounded above by a polynomial, but is bounded above by e^{n^{1-ϵ}} for some ϵ > 0. Then there are k ∈ N, ϵ > 0 such that

$$e^{n^{1-1/k-\epsilon}} < f_M(n) < e^{n^{1-1/k+\epsilon}}$$

Suppose *M* is primitive and $f_M(n) \neq 1$. Then $f_M(n) \geq 2^n/poly(n)$.

- Stronger form of (1) proved in [FT20] by algebraic combinatorics.
- For (3), Macpherson's base of ⁵√2 was improved to ≈ 1.324 [Mer01] and then ≈ 1.576 [Sim18]

Introduction 00000	Slow growth	Further directions	References 0000

NIP

- A structure is *NIP* ("not the independence property") if it cannot encode arbitrary finite (bipartite) graphs.
- If *M* is not NIP, then $f_M(n) \ge 2^{O(n^2)}$.
- Let *V* be a countable-dimensional vector space over \mathbb{F}_p . There is a coloring of the points of *V* so the resulting structure is not NIP.
- $\{a_0, b_0, a_1, b_1, \ldots\}$ is linearly independent, and $c_{i,j} = a_i + b_j$.

Introduction 00000	Slow growth 000●0000	Further directions	References 0000

STABILITY

- A structure is *stable* if it cannot encode an infinite linear order. This is stronger than NIP.
- Slow growth does not imply stability, e.g. $(\mathbb{Q}, <)$.
- But note the growth rate of (ℚ, <) is the same as (ℚ, =).

Theorem (Simon [Sim18])

Let M be an ω -categorical homogeneous structure such that $f_M(n) < \phi^n/\text{poly}(n)$. Then there is a stable reduct M* so that $f_M(n) = f_{M^*}(n)$.

Theorem (Simon [Sim18])

Let M be an ω -categorical homogeneous structure such that $\phi^n/poly(n) \leq f_M(n) < 2^n/poly(n)$. Then M is not primitive.

• So to prove the conjectures, it suffices to understand stable *M*.

Introduction	Slow growth	Further directions	References
00000	00000000	000	0000

MONADIC STABILITY

- Stability does not imply slow growth, e.g. vector spaces.
- *M* is *monadically stable* if every structure obtained by coloring of the points of *M* is stable.
- Vector spaces are stable, but we have seen they are not monadically stable (not even monadically NIP).

Proposition (B. [Bra22])

Let *M* be ω -categorical, homogeneous, and stable.

- If M is monadically stable, then $f_M(n)$ is slower than any exponential.
- **2** If M is not monadically stable, then $f_M(n)$ is faster than any exponential.
 - So it remains to understand monadically stable *M*.

THE BALDWIN-SHELAH THEOREM

Theorem (Baldwin-Shelah [BS85])

The following are equivalent for a structure M.

- *M* is monadically stable.
- M is stable and forking dependence is well-behaved (reduces to singletons and is transitive).
- *M* is stable and does not code a grid on singletons.
- M admits a tree-decomposition using countable substructures.
 - Lachlan [Lac92] classified ω -categorical monadically stable structures.

Slow growth 00000000	Further directions	References 0000
	Slow growth 000000€0	Slow growth Further directions

THE MAIN THEOREMS

Theorem (B. [Bra22])

Let M be ω -categorical and homogeneous. If $f_M(n)$ is slower than $\phi^n/\text{poly}(n)$, then it is sub-exponential, and falls into one of the following cases.

• There are
$$c > 0, k \in \mathbb{N}$$
 so $f_M(n) \sim cn^k$.

② *There are*
$$c > 0, k \in \mathbb{N}$$
 so $f_M(n) = \exp((c + o(1))(n^{1-1/k}))$.

● *There are*
$$c > 0, k, r \in \mathbb{N}$$
 so $f_M(n) = \exp((c + o(1))(\frac{n}{\log^r(n)^{1/k}})).$

Furthermore, every such growth rate is realized by a monadically stable M.

Theorem (B. [Bra22])

Let M be ω -categorical, homogeneous, and primitive. If $f_M(n)$ is not constant 1, then $f_M(n)$ is at least $2^n/poly(n)$.

WHY MODEL THEORY?

- Model theory provides several dividing lines that can be used to explain jumps in complexity.
- Together with these dividing lines, there are various notions of independence to decompose tame structures.
- Model theory passes between different models of a theory, and allows asymptotic analysis on cardinals.

Introduction	Slow growth	Further directions	References
00000	00000000	•00	0000

QUESTIONS

- What about when $f_M(n)$ is at most exponential?
- What about monadic NIP?
 - We conjecture $f_M(n)$ is at most exponential $\iff M$ is monadically NIP.
 - We prove an analogue of the Baldwin-Shelah theorem for monadic NIP [BL21].
- Why does *monadic* stability appear?
 - We show that in hereditary classes, stability/NIP collapses to monadic stability/NIP [BL22].
- How important is the group action?
 - Monadic stability/NIP specialize to important notions in structural graph theory in hereditary classes.

CHARACTERIZATIONS OF MONADIC NIP

Theorem (B.-Laskowski [BL21])

The following are equivalent for a complete theory T.

- *T* is monadically stable NIP.
- T is stable and forking Finite satisfiability dependence reduces to singletons and is transitive.
- **•** *T is stable and does not code a grid on singletons tuples.*
- Models of T admit a tree-decomposition into an ordered sequence of independent pieces.
- S Models of T have "linear rankwidth" bounded by some cardinal.
 - Like Baldwin-Shelah, this does not yield a good structure theory in the countable.

CONCLUSION

- (Monadic) stability/NIP provide broad generalizations of notions from finite combinatorics, capturing tree-like structure.
- The infinitary combinatorics and geometry of model-theoretic dividing lines is reflected in the finite.
- This can be used both to solve concrete problems and to provide a "geography" of classes of interest.

introduction	Slow growth	Further directions	References
20000	00000000	000	••••

References I

- Samuel Braunfeld and Michael C Laskowski. Characterizations of monadic NIP. *Transactions of the AMS, Series B*, 8:948–970, 2021.
- Samuel Braunfeld and Michael C Laskowski. Existential characterizations of monadic NIP. *arXiv preprint arXiv:2209.05120, 2022.*
- Samuel Braunfeld. Monadic stability and growth rates of ω-categorical structures.
 Proceedings of the London Mathematical Society, 124(2):2

Proceedings of the London Mathematical Society, 124(3):373–386, 2022.

John T Baldwin and Saharon Shelah. Second-order quantifiers and the complexity of theories. Notre Dame Journal of Formal Logic, 26(3):229–303, 1985.

Introduction 00000	Slow growth	Further directions	References ••••

REFERENCES II

Peter J Cameron. Transitivity of permutation groups on unordered sets. Mathematische Zeitschrift, 148:127–139, 1976.

Justine Falque and Nicolas M Thiéry. Classification of P-oligomorphic groups, conjectures of Cameron and Macpherson. *arXiv preprint arXiv:2005.05296*, 2020.

Alistair H. Lachlan.

ℵ₀-categorical tree-decomposable structures. *The Journal of Symbolic Logic*, 57(2):501–514, 1992.

HD Macpherson.

Growth rates in infinite graphs and permutation groups. *Proceedings of the London Mathematical Society*, 3(2):285–294, 1985.

ntroduction	Slow growth	Further directions	References
20000	00000000	000	●●●●

References III

HD Macpherson. Orbits of infinite permutation groups. Proceedings of the London Mathematical Society, 3(2):246–284, 1985.

HD Macpherson.

Infinite permutation groups of rapid growth. Journal of the London Mathematical Society, 2(2):276–286, 1987.

Francesca Merola.

Orbits on *n*-tuples for infinite permutation groups. *European Journal of Combinatorics*, 22(2):225–241, 2001.

Maurice Pouzet.

Application d'une propriété combinatoire des parties d'un ensemble aux groupes et aux relations. *Mathematische Zeitschrift*, 150:117–134, 1976.

REFERENCES IV

Pierre Simon.

On omega-categorical structures with few finite substructures.

arXiv preprint arXiv:1810.06531, 2018.