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ORBIT-COUNTING

e We often want to count objects up to some symmetry, which
can be formalized as orbit-counting.

@ This is classical combinatorics for a group acting on a finite
set.

@ In the 1970s, Peter Cameron began considering group acting
on a countable set.

e Given G n X, we naturally get an action of G on the
n-subsets of X (. {x1,...,xx} = {g.x1,...,8Xn}).

@ Let f;(n) count the orbits of this action on n-subsets.

@ We place the restriction that f;(n) is always finite.

e We will be particularly interested in the case when f;(n) is
slow, and in jumps in the allowable behavior of f;(n).
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EXAMPLES

e We will produce examples by taking G = Aut(M) for a
suitable countable structure M.

e If M = (Q,=) then fg(n) = 1. Similarly if M = (Q, <).

e If M is an equivalence relation with k infinite classes, then
fG(l’l) ~ kL,

e If M is an equivalence relation with infinitely many infinite
classes, then f¢ () is the partition function (= eV").

@ If M is a has two refining equivalence relations with
infinitely many infinite classes, then fg (1) ~ ¢"/ 18",

e If M is an equivalence relation with classes of size 2 and a
linear order on the classes, then f;(n) is the Fibonacci
sequence (~ 1.618").
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EXAMPLES (CONTD.)

@ If M is the generic local order, then f;(n) ~ 2".

@ If M is a suitable tree-like structure, then f;(n) is the Catalan
sequence (~ 4").

e If M is a suitable permutation, then fg(n) = n! is the number
of finite permutations of size n.

@ If M is a suitable graph, then f;(n) is the number of graphs
of size n (= 2™).
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COUNTING SUBSTRUCTURES

@ This orbit-counting is equivalent to counting (up to
isomorphism) n-substructures of nice countable structures.

@ Given G n~ X, we may produce a relational structure M so
that Aut(M) ~ M has the same growth rate.

@ The M produced has two nice properties indicating high
symmetry.

@ The finiteness condition on f4,u) (1) is equivalent to M
being w-categorical: it is uniquely determined by its
first-order theory and by being countable.

© The M produced is homogeneous: orbits on n-subsets
correspond to isomorphism types of n-substructures.

@ We let fy1(n) count the n-substructures of M.

@ Our original problem is equivalent to: For w-categorical and
homogeneous M, understand fy(n).
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THE MODEL-THEORETIC APPROACH

@ Model theory provides a series of “dividing lines”
separating tame from wild behavior.

e Wild behavior is witnessed by the structure encoding a
particular complicated configuration.

@ Tame behavior ideally corresponds to a well-behaved
independence notion, allowing a recursive decomposition
of tame structures into simple independent parts.

@ These dividing lines are often considered successively,
accumulating more and more information.
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SOME EARLY RESULTS ON GROWTH RATE

@ fy(n) is weakly increasing [Cam76], [Pou76]

@ Classification of M such that fyy = 1 [Cam76]

@ If far(n) is not bounded above by a polynomial, then it is
bounded below by the partition function (= e¥") [Mac85a]

e If M is primitive and fys(n) # 1, then
fun) = (J2)" /poly(n) [Mac85b]

@ Under a further assumption, either fy;(n) is slower than
21" or is at least 200%%) [Mac871].
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CONJECTURES AND RECENT RESULTS

Q Iffu(n) is bounded above by a polynomial, then fyy(n) ~ cn¥ for
some ¢ > 0,k € N.

@ Suppose far(n) is not bounded above by a polynomial, but is
bounded above by e for some € > 0. Then there are
k € N, e > 0 such that

nl—1/k—e nl—1/k+e

<fM(7’l) <e

@ Suppose M is primitive and fpr(n) # 1. Then
fm(n) > 2" /poly(n).

@ Stronger form of (1) proved in [FT20] by algebraic
combinatorics.

e For (3), Macpherson’s base of v/2 was improved to
~ 1.324 [Mer01] and then ~ 1.576 [Sim18]
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NIP

@ A structure is NIP (“not the independence property”) if it
cannot encode arbitrary finite (bipartite) graphs.

e If M is not NIP, then fy(n) > 2001,

@ Let V be a countable-dimensional vector space over F.
There is a coloring of the points of V so the resulting
structure is not NIP.

@ {ap,bo,a1,b1, ...} is linearly independent, and c;; = a; + b;.
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STABILITY
@ A structure is stable if it cannot encode an infinite linear
order. This is stronger than NIP.
@ Slow growth does not imply stability, e.g. (Q, <).
@ But note the growth rate of (Q, <) is the same as (Q, =).

Let M be an w-categorical homogeneous structure such that

fu(n) < ¢" /poly(n).
Then there is a stable reduct M* so that fyr(n) = far-(n).

Let M be an w-categorical homogeneous structure such that
¢" [poly(n) < fpm(n) < 2" /poly(n). Then M is not primitive.

4

@ So to prove the conjectures, it suffices to understand stable
M.



Introduction Slow growth Further directions References
00000 00008000 000 0000
:

MONADIC STABILITY

@ Stability does not imply slow growth, e.g. vector spaces.

@ M is monadically stable if every structure obtained by
coloring of the points of M is stable.

@ Vector spaces are stable, but we have seen they are not
monadically stable (not even monadically NIP).

Let M be w-categorical, homogeneous, and stable.

© If M is monadically stable, then fy(n) is slower than any exponential.
@ If M is not monadically stable, then fyi(n) is faster than any exponential.

@ So it remains to understand monadically stable M.



Introduction Slow growth Further directions References
00000 00000800 000 0000
:

THE BALDWIN-SHELAH THEOREM

The following are equivalent for a structure M.
Q M is monadically stable.

@ M is stable and forking dependence is well-behaved (reduces to
singletons and is transitive).

© M is stable and does not code a grid on singletons.

Q@ M admits a tree-decomposition using countable substructures.

V.

@ Lachlan [Lac92] classified w-categorical monadically stable
structures.
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THE MAIN THEOREMS

Let M be w-categorical and homogeneous. If for(n) is slower than
¢" [poly(n), then it is sub-exponential, and falls into one of the
following cases.

@ Therearec > 0,k € N so fu(n) ~ cnk.
@ Therearec > 0,k € Nso fy(n) = exp((c+ 0(1))(,11—1/1()).
© Therearec > 0,k,r € Nso fyr(n) = exp((c + 0(1))(—1ogr&)1/k))-

Furthermore, every such growth rate is realized by a monadically stable

M v
Let M be w-categorical, homogeneous, and primitive. If f1(n) is not
constant 1, then fpr(n) is at least 2" /poly(n).

vv
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WHY MODEL THEORY?

@ Model theory provides several dividing lines that can be
used to explain jumps in complexity.

@ Together with these dividing lines, there are various notions
of independence to decompose tame structures.

@ Model theory passes between different models of a theory,
and allows asymptotic analysis on cardinals.
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QUESTIONS

@ What about when fj;(n) is at most exponential?
@ What about monadic NIP?

e We conjecture fps(n) is at most exponential <= M is
monadically NIP.
e We prove an analogue of the Baldwin-Shelah theorem for
monadic NIP [BL21].
@ Why does monadic stability appear?
e We show that in hereditary classes, stability /NIP collapses
to monadic stability /NIP [BL22].
e How important is the group action?

e Monadic stability /NIP specialize to important notions in
structural graph theory in hereditary classes.
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CHARACTERIZATIONS OF MONADIC NIP

The following are equivalent for a complete theory T.
Q T is monadically stable NIP.

Q@ T-isstable-andforking Finite satisfinbility dependence reduces to

singletons and is transitive.
@ T isstableand does not code a grid on singletons tuples.

© Models of T admit a tree-decomposition into an ordered sequence
of independent pieces.

© Models of T have “linear rankwidth” bounded by some cardinal.

4

@ Like Baldwin-Shelah, this does not yield a good structure
theory in the countable.
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CONCLUSION

@ (Monadic) stability /NIP provide broad generalizations of
notions from finite combinatorics, capturing tree-like
structure.

@ The infinitary combinatorics and geometry of
model-theoretic dividing lines is reflected in the finite.

@ This can be used both to solve concrete problems and to
provide a “geography” of classes of interest.
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