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Preface
Spatial statistics has established its importance as a separate scientific field in the
past few decades due to the increasing availability and the growing need to analyze
spatially structured data.1 In the classical statistics, the inference is drawn from a
realization of a random sample (n-tuple of independent and identically distributed
random variables) and makes strong use of the independence of observations.
On the other hand, it is typical in spatial statistics to observe only a single
realization of a random spatial object (random field, point process) exhibiting
spatial dependencies. The lack of independent replications of the random object
makes formal inference more challenging than in the context of classical statistics
and justifies the need for development of new, tailor-made methods. This is
similar to the analysis of time series data where often a single realization of a
time series is observed, exhibiting temporal dependencies. However, the lack
of natural ordering in the spatial setting prevents one from using the methods
developed in the temporal context in a straightforward manner.

Parametric methods in statistics require specifying an appropriate model for
the data and provide means of inference for the model parameters. However, they
are prone to suffer from issues stemming from possible model misspecification or
poor model fit. Also, verifying model assumptions is often difficult or impossible.
The relevant choice of the model often needs to be based on expert knowledge
of the underlying problem. On the other hand, if the model is capable of de-
scribing the data well, parametric tests usually exhibit higher powers than their
nonparametric counterparts.

This thesis focuses on nonparametric tests of several important hypotheses
in statistics for point processes and random fields. The tests are based on the
Monte Carlo principle and use different ways of obtaining the required Monte
Carlo replications. Chapter 1 provides an introduction to the necessary concepts
of spatial statistics and Monte Carlo testing. In Chapter 2 permutation tests are
discussed in different settings, ranging from random samples to spatio-temporal
setting. Similarly, Chapter 3 focuses on random shift tests, now predominantly in
the spatial setting. Finally, Chapter 4 provides a short discussion of tests based
on stochastic reconstruction.

This thesis summarizes the results obtained in the following five papers and
provides the relevant context:

[1] T. Mrkvička, J. Dvořák, J.A. González, J. Mateu (2021): Revisiting the
random shift approach for testing in spatial statistics. Spatial Statistics 42,
100430.

[2] M. Ghorbani, N. Vafaei, J. Dvořák, M. Myllymäki (2021): Testing the first-
order separability hypothesis for spatio-temporal point patterns. Compu-
tational Statistics and Data Analysis 161, 107245.

[3] J. Dvořák, T. Mrkvička (2022): Graphical tests of independence for general
distributions. Computational Statistics 37, 671–699.

1In this thesis, the term spatial statistics is used in a slightly broader sense, also covering
the inference for spatio-temporal data.
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[4] J. Dvořák, T. Mrkvička, J. Mateu, J.A. González (2022): Nonparamet-
ric testing of the dependence structure among points-marks-covariates in
spatial point patterns. International Statistical Reviews 90, 592–621.

[5] J. Dvořák, T. Mrkvička (2022): Nonparametric testing of the covariate sig-
nificance for spatial point patterns under the presence of nuisance covariates.
Submitted.

The motivation for this work came from the problem of testing the independence
of marks and a covariate in the marked point process setting, eventually solved
in paper [4] using the random shift approach. In the early stages of the project,
permutation-based tests were considered instead, and the ideas turned out to be
useful and relevant in the setting of classical statistics (test of independence in a
bivariate random vector, paper [3]) and spatio-temporal point processes (test of
the first-order separability hypothesis, paper [2]).

For the initial problem of testing independence between marks and a covari-
ate, the permutation-based tests were not successful, and hence the random shift
tests were investigated. Finding a relevant test turned out to be challenging due
to possible preferential sampling issues, i.e., possible dependence between points
of the process and the covariate. In the end, it is reasonable to investigate the
complete dependence structure among the points, marks, and covariate simulta-
neously, even if the scientific interest lies specifically in the relationship between
the marks and the covariate. This is covered in the paper [4].

During the course of the project, a new type of correction for the random
shift tests was developed that remedies some important issues connected to the
traditional torus correction (liberality of the tests and the necessity to work with
rectangular observation windows). This new variance correction is presented
in paper [1] for two classical problems: testing independence between a pair of
random fields and testing independence between components in a bivariate point
process.

Extending the ideas even further, the paper [5] develops a new methodology
for testing the independence between a point process and a covariate of interest,
taking into account the possible influence of nuisance covariates. To achieve this
goal, several new concepts are defined: nonparametric residuals for point pro-
cesses, covariate-weighted residual measure, and (partial) correlation coefficient
between a point process and a covariate. These tools provide a fully nonpara-
metric solution to the important problem of covariate selection.

Apart from testing, several other papers of the applicant address different
problems in nonparametric spatial statistics. First of all, Koňasová and Dvořák
(2021a) develop a stochastic reconstruction procedure for inhomogeneous point
processes. It provides the means for obtaining the Monte Carlo replications used
in [2] for inhomogeneous space-time cluster processes. The approach is based on
minimization of the so-called energy functional. The energy functional provides
a tool for quantifying the dissimilarity between a pair of point patterns based on
their summary characteristics rather than precise point locations. Once such a
dissimilarity measure is available, classification for replicated point patterns can
be performed using the kernel regression approach (Pawlasová and Dvořák, 2022).
Further directions where these ideas can be applied are discussed in Koňasová
and Dvořák (2021b).
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To facilitate the applicability of the developed methods, it is important to
provide the potential users with a simple means of using them. For this reason, the
computer codes that implement the methods proposed in all the papers contained
in this thesis are publicly available on the website https://www2.karlin.mff.
cuni.cz/˜dvorak/software.html. Furthermore, parts of the codes are already
available in the R package GET (Myllymäki et al., 2017; Myllymäki and Mrkvička,
2019).
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1. Introduction

1.1 Basic definitions
Point processes play a central role in this thesis. Hence, we start with a short
overview of some basic definitions from the theory of point processes. We focus
on the point processes in Rd, d ≥ 1. The corresponding concepts can be developed
for space-time point processes by considering Rd × R instead. We also consider
simple point processes only, i.e., two points of the process cannot occur at the
same location. This material is covered by the classical textbooks such as Daley
and Vere-Jones (2008), Illian et al. (2008) or Møller and Waagepetersen (2004).

In the following, the symbol Bd denotes the set of Borel sets in Rd and Bd
0

denotes the set of bounded Borel sets in Rd. For a set A ⊂ Rd, the cardinality
of A is denoted #A. The formal definition of a point process is given below.
Informally, a point process is a collection of points randomly scattered in space.

Definition 1. Let (Ω, A,P) be an abstract probability space and N be the system
of locally finite subsets of Rd, i.e. N =

{︂
N ⊂ Rd : # (N ∩ B) < ∞ ∀B ∈ Bd

0

}︂
.

Let N be equipped with the σ-algebra N = σ
{︂
UB,m : m ∈ N0, B ∈ Bd

0

}︂
where

UB,m = {N ∈ N : # (N ∩ B) = m}. The point process X in Rd is a mea-
surable mapping X : (Ω, A,P) → (N ,N). Sample realization of X is called a
point pattern.

Equivalently, X can be viewed as a random locally finite counting measure
satisfying X({y}) ≤ 1 ∀y ∈ Rd by identifying a locally finite set A ⊂ Rd with
the measure ∑︁x∈A δx, where δx is the Dirac measure with the atom at the point
x ∈ Rd. As is often the case in the point process literature, in the following we
will use both the set formalism (to write e.g. x ∈ X to indicate that a point
of the process X occurs at location x) and the measure formalism (to write e.g.
X(A) > 0 to indicate that the process X has at least one point in the set A) to
keep the notation as simple and comprehensible as possible.

Traditionally, point processes are defined on the entire Rd. However, obser-
vations are made almost exclusively in a bounded observation window W ⊂ Rd

with positive finite volume |W |, implying that X(W ) (the number of points of
the process in W ) is finite almost surely. The observed point pattern can then
be represented as {x1, . . . , xn} ⊂ W .

Definition 2. A point process X on Rd is called stationary if its distribution
is invariant with respect to the translations in Rd, i.e. the distribution of the
shifted process X + y = {x + y : x ∈ X} is the same as the distribution of X for
all y ∈ Rd.

Definition 3. Let X be a point process on Rd. Its kth-order factorial mo-
ment measure αk is defined as

αk(A) = E

⎛⎝ ̸=∑︂
x1,...,xk∈X

1 [(x1, . . . , xk) ∈ A]
⎞⎠ , A ∈

(︂
Bd
)︂k

,
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where 1 is the indicator function and ̸= denotes that the summation is over k-
tuples of distinct points of X. The measure α1(·) = EX(·) is called the intensity
measure.

Definition 4. Consider a point process X on Rd. If its kth-order factorial mo-
ment measure αk has a density with respect to the Lebesgue measure on

(︂
Rd
)︂k

,
it is denoted λk and called the kth-order product density of X or the kth-
order intensity function of X. The first-order intensity function λ1 is called
the intensity function and denoted λ.

Definition 5. Let X be a point process on Rd. If both λ and λ2 exist, we define
the pair-correlation function g by the formula

g(x, y) = λ2(x, y)
λ(x)λ(y) , x, y ∈ Rd : λ(x) > 0, λ(y) > 0.

It is often the case that some additional information about points is available,
in addition to their location. The examples include tree species, tree height, area
burned by a wildfire, magnitude of an earthquake, etc. Such information is called
a mark, and such datasets can be modelled by so-called marked point processes.

Definition 6. Let M be a complete separable metric space, called the mark space.
A marked point process Xm is a point process on the product space Rd × M
with the additional property that Xm(· × M) is a point process on Rd, meaning
that only finitely many points of the process (disregarding the marks) occur in
bounded Borel subsets of Rd.

A marked point process consists of random points (x, mx), where x ∈ Rd is
the location and mx ∈ M is the mark. The additional property ensures that the
underlying ground process (the process of point locations only) is a well-defined
point process. Note that this definition of a marked point process requires the
concept of point processes on more general spaces than Rd, see e.g. Daley and
Vere-Jones (2008). For simplicity, we consider only point processes on Euclidean
spaces in Definition 1.

Definition 7. Let D be a fixed subset of Rd. A random field {Z(u), u ∈ D} is a
collection of real-valued random variables defined on the same abstract probability
space (Ω, A,P).

Random fields are used in this work either to define clustered point process
models such as log-Gaussian Cox processes, or to describe the covariate infor-
mation accompanying a point process where available. Examples of covariate
information include the terrain elevation, slope, mineral content in the soil, or
distance to a particular landmark. For further reading on random fields, the books
Cressie (1993) or Adler and Taylor (2007) provide a lot of interesting material.

1.2 Monte Carlo tests
When the distribution of a test statistic is too complicated to be derived ana-
lytically but there is a way of obtaining replications of the data under the null
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hypothesis, it is possible to perform a formal test of the null hypothesis using the
Monte Carlo approach (Davison and Hinkley, 1997). Monte Carlo tests compare
the value of the test statistic T0 computed from the observed data with a set of
values T1, . . . , TN obtained from a set of replications. These are produced so that
they follow the null hypothesis H0, and hence the values T1, . . . , TN approximate
the distribution of T0 under H0. The test outcome is then determined based on
how typical or extreme the value of T0 is among T0, T1, . . . , TN . The test statistic
can be univariate, multivariate, or functional. The Monte Carlo p-value is

p = 1
N + 1

N∑︂
i=0

1(Ti ≺ T0),

where 1 is the indicator function and where Ti ≺ T0 indicates that Ti is more
extreme than (or the same as) T0 in a certain ordering. For univariate test
statistics, this means determining the rank of T0. However, using multivariate
or functional test statistics is also possible if a suitable ranking of the vectors
or functions from the most typical to the most extreme is available, as e.g. in
Myllymäki et al. (2017). Other means of ranking of vectors or functions can be
employed, too, e.g. those based on (functional) data depth.

In order to be exact, Monte Carlo tests rely on the exchangeability (invariance
of the distribution with respect to permutations of the components) of the vector
(T0, T1, . . . , TN). This is easily achieved if the replications are independent of the
observed data and are independent, identically distributed under H0. Whenever
independent replications are not available, as is often the case when nonpara-
metric methods are employed, a replication strategy must be chosen to achieve
exchangeability. If this is not possible, the aim is to make the deviation from
exchangeability as small as possible.

Since the exchangeability of (T0, T1, . . . , TN) implies a uniform distribution
of the p-value, potential deviations from the exchangeability can be detected in
carefully designed simulation experiments studying the size of the test. Different
tests of the same hypothesis can be compared in this way, with more severe devi-
ations from the uniform distribution of p-values implying more severe deviations
from exchangeability and hence inferiority of the test.

In classical statistics a typical way of obtaining the Monte Carlo replications
is by simulation from a fitted parametric model. Alternatively, different permu-
tation schemes can be applied when nonparametric approach is considered.

1.3 Monte Carlo tests in spatial statistics
Just as in the context of classical statistics, in spatial statistics it is possible to
obtain Monte Carlo replications by simulation from a fitted parametric model.
This provides means of goodness-of-fit testing. However, this thesis focuses on
nonparametric methods, and there are several ways of producing the Monte Carlo
replications in a nonparametric manner, depending on the particular context.

1.3.1 Permutation-based tests
One of the ways is to randomly permute the observed values. By generating N in-
dependent random permutations, the required number of replications is obtained,
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in turn producing the test statistic values T1, . . . , TN to be compared with the
value T0 computed from the observed data in the Monte Carlo test.

One of the most prominent examples of this approach is the test of the in-
dependent marking hypothesis for marked point processes (Illian et al., 2008,
Sec. 7.5). In this case, the null hypothesis states that the marks are indepen-
dent, identically distributed random variables, independent of the ground process.
The test statistic can be e.g. the mark-weighted K-function (Illian et al., 2008,
Sec. 5.3.3). If the observed marked point pattern is {(x1, mx1), . . . , (xn, mxn)} and
π is a permutation on the set {1, . . . , n}, the permuted sample is then obtained as
{(x1, mxπ(1)), . . . , (xn, mxπ(n))}. Generating N independent random permutations
then produces the required Monte Carlo replications. Under the null hypothesis,
the distribution of the data does not change by the permutation of marks.

Marked point processes are often accompanied by additional spatial covariates
that may influence the distribution of points and/or marks. When investigating
the problem of testing the independence of marks and a covariate in marked point
process setting, the permutation strategy presented in the previous paragraph
was considered as a starting point. Assuming that a realization of the covariate
C(x) is observed in the observation window W (where the marked point process
is observed), the covariate values at the observed points can be added to the
sample: {(x1, mx1 , C(x1)), . . . , (xn, mxn , C(xn))}.

Focusing on the relationship between the marks and the covariate only, one
could focus on the sample {(mx1 , C(x1)), . . . , (mxn , C(xn))} and perform a permu-
tation-based Monte Carlo test in this bivariate sample. The test statistic might
be e.g. the Pearson’s correlation coefficient or the bivariate empirical cumulative
distribution function. However, this strategy has only limited use since the per-
mutations break the spatial structure of the observed phenomena and change the
distribution of the test statistic, thus violating the requirement of exchangeabil-
ity. It is only relevant to apply such a test for independent, identically distributed
marks, which is very limiting in practice. Also, even in this case the possible de-
pendence between the point process and the covariate might lead to preferential
sampling issues (Diggle et al., 2010), invalidating the outcome of the test.

The problem of testing independence between marks and a covariate was even-
tually solved using the random shift approach in the paper Dvořák et al. (2022a),
where the whole dependence structure between points, marks, and covariate is
studied simultaneously, see Section 3.4. On the other hand, the idea of using the
permutation-based test of independence in a bivariate sample, with the empirical
cumulative distribution function as the test statistic and with the global envelope
test indicating the significant regions (see Section 1.4 for details), turned out to
be interesting on its own also in the context of classical statistics based on in-
dependent observations. These ideas were developed in the paper Dvořák and
Mrkvička (2022a), see Section 2.1.

1.3.2 Random shift tests
Random shifts provide means of nonparametric testing of independence between
a pair of spatial objects, such as a pair of random fields (Fortin and Payette, 2002)
or a pair of point processes (Lotwick and Silverman, 1982). By randomly shifting
one of the objects while keeping the other one fixed, any possible dependence
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between them is broken. At least one of the spatial objects must be assumed to
be stationary. By performing a certain amount of shifts along randomly gener-
ated vectors, one obtains the replications for performing a Monte Carlo test of
independence.

Assume that the spatial objects are denoted by Φ and Ψ and they are observed
in the window W . The value of the test statistic computed directly from the
observed data is denoted by T0 = T (Φ, Ψ; W ). After producing N random shift
vectors v1, . . . , vN , the value of the test statistic Ti is computed from Φ and Ψ
shifted by vi, i.e. Ti = T (Φ, Ψ + vi; W ), i = 1, . . . , N . Clearly, some part of Ψ
will be shifted outside of the observation window W and part of Ψ + vi will no
longer overlap with Φ anymore. Hence, some form of correction is needed.

Torus correction

For a rectangular observation window W , one may identify its opposing edges,
creating a toroidal geometry on W (Lotwick and Silverman, 1982; Upton and
Fingleton, 1985). The version of Ψ shifted with respect to the toroidal geometry
is denoted by [Ψ + vi] in the following, as opposed to Ψ + vi which denotes Ψ
shifted with respect to the Euclidean geometry. The replications Ti are then
obtained as Ti = T (Φ, [Ψ + vi]; W ), i = 1, . . . , N .

As a result, all parts of the data are used for computing Ti. On the other hand,
artificial cracks appear in the correlation structure of the data, as parts of the data
originally far away are now “glued together”. This means that exchangeability
is violated, which in turn introduces liberality of the random shift tests (Fortin
and Payette, 2002; Mrkvička et al., 2021). However, simulation studies show that
when the spatial autocorrelations in the data are not very strong, the tests match
the nominal significance level quite closely (Mrkvička et al., 2021; Dvořák et al.,
2022a). Traditionally, the distribution of the random shift vectors is taken to be
the uniform distribution on W , but other choices are also possible.

Variance correction

To remove the liberality of the torus correction, Mrkvička et al. (2021) propose
the variance correction. It uses shifts respecting the Euclidean geometry and
discards those parts of the data that are shifted outside of W . No artificial cracks
are introduced to the correlation structure of the data, removing the liberality of
the random shift tests. Also, irregular observation windows can be considered. On
the other hand, different amounts of data are dropped for different shift vectors
vi and for typical choices of the test statistic the variance of Ti varies greatly,
making it impossible to perform the Monte Carlo test directly. Therefore, the
variance of Ti needs to be standardized before performing the test.

Formally, let Wi denote the smaller observation window where Φ and Ψ + vi

overlap, i.e. Wi = W ∩ (W + vi). The value Ti is computed from Φ and
Ψ + vi restricted to Wi, denoted Φ|Wi

and (Ψ + vi)|Wi
, respectively. Specifi-

cally, Ti = T (Φ|Wi
, (Ψ + vi)|Wi

; Wi). The values T0, T1, . . . , TN are then stan-
dardized to have zero mean and unit variance. This is achieved by subtracting
the mean T = 1

N+1
∑︁N

i=0 Ti and dividing by the square root of the variance:
Si =

(︂
Ti − T

)︂
/
√︂

var(Ti). The standardized values (S0, S1, . . . , SN) are closer to
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exchangeability than (T0, T1, . . . , TN) because their first two moments are the
same. The standardized values are used to perform the Monte Carlo test. When
a formula describing var(Ti) as a function of the size of Wi is known, at least
asymptotically, it can be directly used in the standardization. If such a formula
is not available, Mrkvička et al. (2021) suggest a kernel regression approach to
estimating var(Ti).

Simulation studies in Mrkvička et al. (2021), Dvořák et al. (2022a), or Dvořák
and Mrkvička (2022b) show that the random shift tests with variance correction
match the nominal significance level even in the case of strong autocorrelation.
In those papers, the shift vectors followed the uniform distribution on a disc
with radius R centered at the origin. The choice of R is a compromise between
two goals: longer shifts are more relevant for breaking the possible dependence
between Φ and Ψ while shorter shifts mean that a larger amount of available data
is used to compute Ti. Choosing R so that |Wi|/|W | ≥ 1/4 for all i turned out
to provide satisfactory results.

1.3.3 Tests based on stochastic reconstruction
Stochastic reconstruction provides a way to obtain replications with the same
properties as the observed point pattern. While Tscheschel and Stoyan (2006)
introduced the stochastic reconstruction procedure for stationary point processes,
Wiegand et al. (2013) and Koňasová and Dvořák (2021a) adapted the procedure
for inhomogeneous point processes. The properties to be preserved during the
reconstruction are determined by the summary characteristics incorporated into
the so-called energy functional and must be chosen by the user.

The energy functional quantifies the dissimilarity between the observed point
pattern and another, arbitrary pattern. A reconstructed pattern (output pat-
tern) is found by minimization of the energy functional, performed by iteratively
proposing and accepting/rejecting small updates to the current candidate pat-
tern. The procedure can be repeated N times to provide the required number of
replications for the Monte Carlo test.

When using the stochastic reconstruction to provide replications for a Monte
Carlo test of a certain hypothesis, the energy functional must be specified carefully
so that the algorithm indeed produces outputs that fulfill the particular null
hypothesis. Examples include the isotropy testing in Wong and Chiu (2016) or
testing the separability hypothesis for the intensity function of space-time point
processes in Ghorbani et al. (2021).

1.4 Global envelope tests
In recent years, the global envelope tests (Myllymäki et al., 2017) have become
an industry standard in spatial statistics for performing Monte Carlo tests based
on vector or functional test statistics. Their main benefits are in their graphical
interpretation which helps guide further inference in case of rejection and the
fact that they remedy a severe flaw of the pointwise envelopes, well-established
in spatial statistics for decades, by properly treating the multiple testing problem.

Consider now a d-dimensional test statistics Ti = (Ti1, . . . , Tid), i = 0, . . . , N ,
where T0 is computed from the observed data and T1, . . . , TN are computed from
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the Monte Carlo replications. The ordering of the vectors T0, . . . , TN is based
on the pointwise ranks Rik, constructed below, of the element Tik among the
corresponding elements T0k, T1k, . . . , TNk of the N +1 vectors such that the lowest
ranks correspond to the most extreme values of the statistics. Let r0k, r1k, . . . , rNk

be the raw ranks of T0k, T1k, . . . , TNk, such that the smallest value has rank 1 and
the largest value is assigned rank N + 1. In the case of ties, the raw ranks are
averaged. The two-sided pointwise ranks are then calculated as

Rik = min(rik, N + 1 − rik).

The extreme rank length (ERL) measure defined in Myllymäki et al. (2017)
induces the desired ordering. Roughly speaking, it ranks the vectors accord-
ing to the number of the most extreme elements. Formally, the ERL mea-
sure of Ti is defined based on the vector of the pointwise ordered ranks Ri =
(Ri[1], Ri[2], . . . , Ri[d]), where the ranks are arranged from smallest to largest, i.e.,
Ri[k] ≤ Ri[k′] whenever k ≤ k′. The ERL measure of Ti is defined as

Ei = 1
N + 1

N∑︂
i′=0

1(Ri′ ≺ Ri) (1.1)

where

Ri′ ≺ Ri ⇐⇒ ∃ n ≤ d : Ri′[k] = Ri[k]∀ k < n, and Ri′[n] < Ri[n].

The division by N + 1 leads to normalized ranks that attain values between 0
and 1. Consequently, the ERL measure corresponds to the extremal depth of
Narisetty and Nair (2016).

The probability of having a tie in the ERL measure is rather small in practical
scenarios, thus the ERL effectively solves the ties problem which often appears
in ordering of multivariate vectors using ranks. The final p-value of the Monte
Carlo test is

perl = 1
N + 1

N∑︂
i=0

1(Ei ≤ E0).

For a given α ∈ (0, 1), let eα ∈ R be the largest of the Ei such that the
number of those i for which Ei < e(α) is less than or equal to αN . Furthermore,
let Iα = {i ∈ 0, . . . , N : Ei ≥ e(α)} be the index set of vectors less or as extreme
as eα. Then, the 100(1 − α)% global ERL envelope induced by Ei is

T
(α)
low k = min

i∈Iα

Tik and T
(α)
upp k = max

i∈Iα

Tik for k = 1, . . . , d,

see Narisetty and Nair (2016) and Mrkvička et al. (2020).
The 100(1 − α)% global ERL envelope [T (α)

low k, T
(α)
upp k], k = 1, . . . , d, has an im-

portant intrinsic graphical interpretation property, i.e. for every i = 0, . . . , N :

1. Tik < T
(α)
low k or Tik > T

(α)
upp k for some k = 1, . . . , d ⇐⇒ Ei < e(α),

2. T
(α)
low k ≤ Tik ≤ T

(α)
upp k for all k = 1, . . . , d ⇐⇒ Ei ≥ e(α).

This means that the outcome of the test may be equivalently determined by the
data curve T0 leaving/not leaving the envelope or by comparing perl with the
nominal significance level α.
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2. Permutation tests
In this chapter, we provide a brief overview of two papers, included in this thesis,
which use permutation-based Monte Carlo tests:

• Dvořák and Mrkvička (2022a) which proposes new independence tests in
the context of classical statistics, see Section 2.1,

• Ghorbani et al. (2021) which proposes tests of the first-order separability
hypothesis for space-time point processes, see Section 2.2.

2.1 Tests for bivariate random samples
The problem of testing the null hypothesis of independence of two random vari-
ables is essential in statistics. There are many methods to discover the possible
dependence. Still, all of them concentrate on summarizing the information over
the whole distribution and as such cannot detect the combinations of quantiles
where a deviation from independence occurs. Our aim is to introduce general
tests of independence (applicable to arbitrary bivariate distributions without any
assumptions, i.e. for continuous and discrete distributions, mixtures of those,
distributions with heavy tails, etc.) which are graphical in nature (providing a
two-dimensional visual output where the combinations of quantiles causing the
possible rejection are indicated). All details are given in the paper Dvořák and
Mrkvička (2022a), and a summary is given below.

Consider a bivariate random vector (X, Y ) and the null hypothesis of in-
dependence of X and Y which needs to be tested. Assume that a sample
{(x1, y1), . . . , (xn, yn)} is observed. We propose two multivariate test statistics
to be used in connection with the global envelope test described in Section 1.4 of
this thesis.

The first test statistic is the sample cumulative distribution function (CDF),
computed on a fine grid of points. This test statistic is of cumulative nature, and
as such it is sensitive to small departures from the null model which accumulate
into a possibly significant departure.

The second test statistic provides a local test with easier interpretation. It
is the kernel estimate of the intensity of point occurrence in the two-dimensional
QQ-plot, constructed as follows. Let Q denote the two-dimensional point pattern
Q = {(q1

1, q2
1), . . . , (q1

n, q2
n)}, where q1

i is the sample quantile corresponding to
the value xi in the sample x1, . . . , xn, and similarly q2

i is the sample quantile
corresponding to the value yi in the sample y1, . . . , yn. Q is a point process in the
observation window [0, 1]2.

The intensity of point occurrence in the process Q, including its local varia-
tions, can be estimated by kernel smoothing, similarly to estimating the intensity
function of a point process or a probability density function of a random vector.
The constant intensity of point occurrence in Q indicates independence. In con-
trast, the accumulation of points in a certain area indicates a steeper increase
of the CDF values at the given combination of quantiles, meaning observations
with such a combination of values are more likely to appear than what is expected
under independence. On the other hand, the absence of points in a certain area
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indicates a less steep increase of the CDF values at the given combination of
quantiles, meaning observations with such a combination of values are less likely
to appear than what is expected under independence.

The second proposed test statistic ĝ(x, y) is motivated by the nonparametric
kernel estimator of the intensity function of a point process (Illian et al., 2008),
and is defined as

ĝ(x, y) = 1
e(x, y)

n∑︂
i=1

kσ((x, y) − (q1
i , q2

i )),

where kσ is a probability density function on R2, usually called the kernel function
with bandwidth σ, and e(x, y) =

∫︁
[0,1]2 kσ((x, y) − (x′, y′)) dx′ dy′ is the correction

for bias due to edge effects. The edge effects, often appearing in statistics for point
processes, are in this context closely related to the problem of bounded support
in kernel estimation of a probability density function in classical statistics.

Note that the proposed test statistic is defined as a two-dimensional kernel
estimate, and hence it is appropriate for continuous distributions for which the
probability of ties appearing in any coordinate of the observed data points is 0,
implying that Q is a simple point process. If an atom appears in the distribution
of one or both of the marginals or the data are purely categorical, appropriate
adjustments need to be made, see Section 3 of Dvořák and Mrkvička (2022a).

The Monte Carlo replications are obtained by permuting the order of y1, . . . yn.
Specifically, the test statistic value Ti, i = 1, . . . , N, is computed from the sample
{(x1, πi(y1)), . . . , (xn, πi(yn))}, where π1, . . . , πN are independent random permu-
tations. This permutation scheme secures exchangeability under the null hypoth-
esis, therefore, any such permutation test will achieve the prescribed significance
level α, as given in the following theorem.

Theorem 1. Let T0 be the test statistic computed from the observed data and
Ti, i = 1, . . . , N, be the test statistics computed from randomly permuted observa-
tions. Furthermore, let ‘≺’ be an ordering for which ties occur with probability 0
and let

p = 1
N + 1

N∑︂
i=0

1(Ti ≺ T0),

where we stress that in the notation established in Section 1.2 of this thesis, it
holds that Ti ≺ Ti. Let α ∈ (0, 1) be the nominal significance level and let the
test reject the null hypothesis of independence if and only if p ≤ α. Assuming
that α(N + 1) is an integer, the test rejects the null hypothesis at the prescribed
significance level α.

We remark that in the ordering discussed in Section 1.4 of this thesis ties can
occur with positive probability. This can be remedied, e.g., by breaking the ties
at random.

The choice of the number of permutations N is important for the practical
application of the test. Under the alternative hypothesis, the power of the test
is expected to increase with an increasing number of permutations N . Based on
the approach of Oden (1991) and Marozzi (2016, Sec. 3), we investigate in the
following theorem how the power of the test depends on N .

13



Theorem 2. Assume that a particular hypothesis H1 holds. Let T0 be the test
statistic computed from the observed data and Ti, i = 1, . . . , N, be the test statistics
computed from randomly permuted observations. Conditionally on the observed
data, let Pd denote the probability that T1 ≺ T0. Let the (unconditional) distri-
bution of Pd be given by the distribution function WH1(t) = P(Pd ≤ t), t ∈ [0, 1].
The true power PN of the test is then given by

PN =
∫︂ 1

0

⌊α(N+1)−1⌋∑︂
k=0

(︄
N

k

)︄
tk(1 − t)N−k dWH1(t),

where ⌊u⌋ denotes the largest integer which is smaller than or equal to u.

The simulation study in Section 4 of Dvořák and Mrkvička (2022a) provides
insight into the performance of the tests and indicates in which settings the CDF
test performs well (departures from independence appearing over the whole range
of data values) and in which the QQ test performs well (localized departures from
independence). Hence, the two tests are complementary in a sense, and the user
can choose which test to use based on prior assumptions about the dataset at
hand.

The simulation study also provides a comparison with several benchmark in-
dependence tests. As generally accepted, no test of independence is uniformly
better than others. The main benefit of our tests lies in the graphical interpre-
tation of the outcome of the tests and their generality, not in outperforming all
others.

2.2 Tests for space-time point processes
Analysis of space-time point patterns presents a challenge due to higher dimen-
sionality and due to the temporal coordinate playing a distinct role. The first-
order separability (product structure of the space-time intensity function) is often
a convenient working assumption which greatly simplifies the inference (Gabriel
and Diggle, 2009; Møller and Ghorbani, 2012; Møller et al., 2019). In such a case,
the inference can be often based on the lower-dimensional component processes,
i.e. the spatial projection process and the temporal projection process (Møller
and Ghorbani, 2012; Prokešová and Dvořák, 2014; Dvořák and Prokešová, 2016).

In practice, the first-order separability hypothesis is often not fulfilled. There-
fore, a formal test of this hypothesis is needed to decide whether the inference
for a particular dataset can be based on the first-order separability assumption
or not. It is rather straightforward to construct a permutation-based test of
this hypothesis where the time coordinates of the observed points are randomly
permuted. All the details are given in the paper Ghorbani et al. (2021), and
a summary is given below. Such a test is exact for inhomogeneous space-time
Poisson processes but does not perform well for processes with interactions. For
such processes, Ghorbani et al. (2021) propose a test based on the stochastic
reconstruction procedure which is discussed in Chapter 4 of this thesis. Also,
various visualisation techniques for informal assessment of the first-order separa-
bility hypothesis are proposed in the online Supplementary material to the paper
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Ghorbani et al. (2021).1
Formally speaking, a space-time point process X is a point process on the

space Rd ×R. To be consistent with the paper Ghorbani et al. (2021) we consider
the case d = 2 only. For each point (u, t) ∈ X the spatial location is given by
u ∈ R2 and the temporal coordinate is given by t ∈ R. The points of a space-time
point process are traditionally called events. In practice, X is observed within
a spatio-temporal window W × T , where W ⊂ R2 is a bounded region of area
|W | > 0, T ⊂ R is a bounded time interval of length |T | > 0. The observed
space-time point pattern is {(ui, ti), i = 1 . . . n}.

Assuming that X has the intensity function ρ(·), the spatial component pro-
cess Xspace consisting of the locations of events with times in T and the temporal
component process Xtime consisting of the times of events with locations in W ,
i.e. Xspace = {u : (u, t) ∈ X, t ∈ T} and Xtime = {t : (u, t) ∈ X, u ∈ W}, are
well-defined point processes on R2 and R, respectively, with well-defined intensity
functions. The intensity functions of these component processes are given by

ρspace(u) =
∫︂

T
ρ(u, t) dt, u ∈ W, ρtime(t) =

∫︂
W

ρ(u, t) du, t ∈ T.

Nonparametric kernel estimates of ρspace and ρtime are, respectively, given by

ρ̂space(u) =
n∑︂

i=1
k2

ϵ (u − ui)/CW,ϵ(ui), u ∈ W,

and

ρ̂time(t) =
n∑︂

i=1
k1

δ (t − ti)/CT,δ(ti), t ∈ T,

where km
b is an m-dimensional kernel with bandwidth b > 0, m ∈ N, and

CW,ϵ(ui) =
∫︁

W k2
ϵ (u − ui) du and CT,δ(ti) =

∫︁
T k1

δ (t − ti) dt are edge correction
factors in space and time, respectively. A nonseparable kernel estimator of the
space-time intensity function is

ρ̂(u, t) =
n∑︂

i=1

k2
ϵ (u − ui)
CW,ϵ(ui)

k1
δ (t − ti)
CT,δ(ti)

, (u, t) ∈ W × T. (2.1)

The first-order separability hypothesis assumes that the space-time intensity
function of the process has a product form:

ρ(u, t) = ρ1(u)ρ2(t), (u, t) ∈ R2 × R,

where ρ1 and ρ2 are non-negative measurable functions. Under this hypothesis,
we have:

ρspace(u) = ρ1(u)
∫︂

T
ρ2(t) dt, u ∈ W, ρtime(t) = ρ2(t)

∫︂
W

ρ1(u) du, t ∈ T,

and the intensity function of X fulfills

ρ(u, t) = ρspace(u)ρtime(t)∫︁
W ×T ρ(v, s) d(v, s) , (u, t) ∈ R2 × R.

1See also the website https://www2.karlin.mff.cuni.cz/˜dvorak/software/testing_
space-time_first_order_separability/ST_separability_suppl.html
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This leads to a separable kernel estimator of the space-time intensity function

ρ̂sep(u, t) = ρ̂space(u)ρ̂time(t)/n, (u, t) ∈ W × T. (2.2)

In Ghorbani et al. (2021), three test statistics are proposed for testing the first-
order separability hypothesis, based on the comparison between the nonseparable
estimator (2.1) and the separable estimator (2.2):

S(u, t) = ρ̂(u, t)
ρ̂sep(u, t) , (u, t) ∈ W × T,

Stime(t) =
∫︂

W
S(u, t) du, t ∈ T,

Sspace(u) =
∫︂

T
S(u, t) dt, u ∈ W,

for ρ̂sep(u, t) > 0. Under the null hypothesis, these functions are expected to be
approximately constant. The function S(u, t) provides detailed information about
possible deviations from separability, including which locations and which times
are responsible for such deviations. On the other hand, the functions Stime(t) and
Sspace(u) aggregate such information, but provide more straightforward ways of
visualisation due to their lower-dimensional domains.

The Monte Carlo replications are obtained by permuting the order of the
observed times t1, . . . tn. Specifically, the test statistic value Ti, i = 1, . . . , N, is
computed from the sample {(u1, πi(t1)), . . . , (un, πi(tn))}, where π1, . . . , πN are
independent random permutations. Under the assumption that X is an inhomo-
geneous Poisson process on W × T with the intensity function ρ(s, t), the permu-
tation of times does not change the distribution of the process, as seen from the
form of the density of X with respect to the unit-rate space-time Poisson process
on the same domain, see Ghorbani et al. (2021, Section 4.2).

According to the simulations in Ghorbani et al. (2021), the permutation-based
tests match the nominal significance level as expected. The test based on the
S(u, t) test statistic achieves the highest power. For processes with weak space-
time clustering, the permutation-based tests matched the nominal significance
level rather well, but for stronger space-time clustering, the tests exhibited a
high degree of liberality. This motivates the use of the test based on the stochas-
tic reconstruction procedure suggested in Ghorbani et al. (2021, Section 7) and
discussed in Chapter 4 of this thesis.
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3. Random shift tests
In this chapter, we provide a brief overview of three papers, included in this
thesis, which use random shift Monte Carlo tests:

• Mrkvička et al. (2021) which introduces the variance correction for random
shift tests described in Section 1.3.2, leading to a new independence test for
a pair of random fields and a pair of point processes, see Sections 3.1 and
3.2,

• Dvořák et al. (2022a) which proposes a new test of independence between
a point process and a covariate and a new test of independence between a
marked point process and a covariate, see Sections 3.3 and 3.4,

• Dvořák and Mrkvička (2022b) which introduces the partial correlation ana-
lysis for a point process and a set of covariates, and proposes a test of
independence between a point process and a covariate of interest, taking
into account possible influence of nuisance covariates, see Section 3.6.

We also briefly describe two related problems which are solved by random shift
tests in the works of González et al. (2022) and Veselý (2021), not included in
this thesis, see Sections 3.5 and 3.7. We structure the content of this chapter
according to the different problems addressed rather than according to the three
papers. This provides the reader with a better overview of the work.

3.1 Testing independence of two random fields
As noted already in Fortin and Payette (2002), the torus correction may lead
to liberality of the test and hence to incorrect conclusions. To remedy this is-
sue, Mrkvička et al. (2021) introduce the variance correction to replace the torus
correction. The variance correction successfully removes the liberality and can
also be applied for irregular observation windows. The details are given in Sec-
tion 1.3.2 of this thesis.

Assume now that Φ and Ψ are random fields observed in W . Assume also
that Ψ is observed in any location, at least on a fine pixel grid. If this is not the
case, kriging can be used to provide an estimate of the unobserved values. Let
X be the set of sampling locations where the values of Φ are observed. X can
be either random or nonrandom, depending on the design of the experiment. We
denote by Φ(X) the vector of values of Φ observed at the sampling points X, and
similarly for Ψ(X).

For testing the independence hypothesis for the two random fields Φ and Ψ,
a natural choice of the test statistic is the sample covariance

T = cov(Φ(X), Ψ(X)).

It is known in classical statistics that the variance of the sample covariance,
computed under the null hypothesis of independence from a random sample of
size n, is of the order 1/n. Below, we argue that the same holds also in the case
with spatial autocorrelation, see Theorem 3. Therefore, var(Ti) ≈ C/ni where ni

17



is the number of sampling locations in Wi, i = 0, 1, . . . , N, W0 = W, and C is a
constant. Thus, setting var(Ti) ≈ 1/ni allows one to use the variance correction
for this test statistic.

Theorem 3. Let Φ and Ψ be two independent stationary random fields on Rd

with finite second moments and non-negative autocovariance functions CΦ, CΨ.
Assume that there is a constant R > 0 such that CΦ(u − v) = CΨ(u − v) = 0
for ∥u − v∥ > R. Let X = {xi, i ∈ N} be a sequence of observation points
such that for each point there are at most K other points within distance R. Let
sn, n = 2, 3, . . . , be the sample covariance defined as

sn = 1
n − 1

n∑︂
i=1

(︂
Φ(xi) − Φ̄n

)︂ (︂
Ψ(xi) − Ψ̄n

)︂

where Φ̄n = 1
n

∑︁n
i=1 Φ(xi) and Ψ̄n = 1

n

∑︁n
i=1 Ψ(xi) are the sample means. Then

Esn = 0 for each n ∈ N and

var sn = 1
(n − 1)2

n∑︂
i=1

n∑︂
j=1

CΦ(xi − xj)CΨ(xi − xj) + o(1/n)

and there are constants 0 < C1 ≤ C2 < ∞ such that

C1 ≤ lim inf
n→∞

(n var sn) ≤ lim sup
n→∞

(n var sn) ≤ C2.

Without more specific assumptions on the positions of the observation points
X = {xi, i ∈ N}, such as X = Zd, it is not possible to establish a limit for
n var sn. On the other hand, the theorem ensures that the asymptotic order of
the variance is 1/n. Furthermore, it is not possible to drop the assumption of the
bounded support of CΦ, CΨ without additional assumptions on the properties of
Φ, Ψ such as α-mixing.

The simulation experiments in Section 3 of Mrkvička et al. (2021) indicate
that the random shift test with torus correction is in fact valid for very rough
random fields with nearly independent observations. However, it becomes increas-
ingly liberal with increasing smoothness of the random fields. For very smooth
random fields, the actual significance level can be even more than twice as high as
the nominal significance level. In the power study, the torus correction approach
achieved the highest empirical rejection rates, but this is only a consequence of
the fact that the test rejects inadequately often even under the null hypothesis
(liberality of the test). Concerning the random shift tests with variance correc-
tion, very little liberality was observed but only for very smooth random fields.
At the same time, the test had a high power, compared to several benchmark
methods.

3.2 Testing independence of two point processes
The paper Mrkvička et al. (2021) also studied the random shift tests of indepen-
dence between a pair of point processes and the possibility to apply the variance
correction in place of the torus correction. Assume now that Φ and Ψ are sta-
tionary point processes observed in W . For testing the independence between
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two point processes, the usual choice of the test statistic is the sample cross K-
function (Illian et al., 2008) computed for a number of different ranges. Roughly
speaking, the cross K-function carries information about the mean number of
points of Ψ up to distance r from an arbitrary point of Φ. By considering several
different values of r, we obtain a vector test statistic, and the global envelope test
can be used to perform the Monte Carlo test.

The globally corrected “Ohser-type” estimator of the cross K-function is of
the form (Illian et al., 2008, p.230)

ˆ︂K12(r) = c(r)ˆ︁λΦ
ˆ︁λΨ

∑︂
x∈Φ∩W

∑︂
y∈Ψ∩W

I(∥x − y∥ ≤ r), r > 0,

where ˆ︁λΦ and ˆ︁λΨ are estimated intensities of Φ and Ψ, i.e. ˆ︁λΦ = ∑︁
x∈Φ∩W

1
|W | and

similarly for ˆ︁λΨ, and c(r) is an edge correction factor given by

c(r) = πr2

ΓW (r) ,

where

ΓW (r) =
∫︂

W

∫︂
W
I(∥x − y∥ ≤ r) dx dy = 2π

∫︂ r

0
tγ̄W (t) dt,

with γ̄W (t) being the isotropized set covariance function of W .
The variance of ˆ︂K12(r) was studied for Poisson processes in Rajala et al. (2019)

under the assumption of a fixed number of observed points of Φ and Ψ in W .
The paper also presents a formula for general non-Poisson processes, but without
a proof. The following theorem provides the first- and second-order moment
properties of the quantities used to estimate the variance of ˆ︂K12(r) in the case
of a random number of points in W . The theorem can be proved by using the
appropriate versions of the Campbell theorem, which are given in the appendix
of Mrkvička et al. (2021). This allows one to use the variance correction for
the test statistic ˆ︂K12(r), with the standardization performed separately for each
considered value of r.

Theorem 4. Let Φ and Ψ be two independent stationary point processes on Rd

with intensities λ1 and λ2 and pair-correlation functions g1 and g2, respectively.
Let W be the observation window where both processes are observed. For a given
r > 0, let fr : Rd → [0, ∞) be a Borel function and denote

R =
∑︂

x∈Φ∩W

∑︂
y∈Ψ∩W

fr(x − y).

Let

ˆ︁λ1 =
∑︂

x∈Φ∩W

1
|W |

, ˆ︁λ2 =
∑︂

y∈Ψ∩W

1
|W |

be the estimated intensities and S = ˆ︁λ1
ˆ︁λ2. Then, if fr(x − y) = I(∥x − y∥ ≤ r),

R

S
= 1ˆ︁λ1

ˆ︁λ2

∑︂
x∈Φ∩W

∑︂
y∈Ψ∩W

fr(x − y)

19



is, up to a deterministic multiplicative constant, equal to ˆ︂K12(r). It holds that

ER = µR =λ1λ2

∫︂
W 2

fr(u − v) du dv,

ES = µS =λ1λ2,

varR = σ2
R =λ2

1λ
2
2

∫︂
W 4

[g1(u − u′)g2(v − v′) − 1]fr(u − v)fr(u′ − v′) du dv du′ dv′

+ λ2
1λ2

∫︂
W 3

g1(u − u′)fr(u − v)fr(u′ − v) du dv du′

+ λ1λ
2
2

∫︂
W 3

g2(v − v′)fr(u − v)fr(u − v′) du dv dv′

+ λ1λ2

∫︂
W 2

fr(u − v) du dv,

varS = σ2
S = 1

|W |4
(︃

λ2
1

∫︂
W 2

g1(u − v) du dv + λ1|W |
)︃

·

·
(︃

λ2
2

∫︂
W 2

g2(u − v) du dv + λ2|W |
)︃

− λ2
1λ

2
2,

cov(R, S) =λ2
1λ

2
2

|W |2
∫︂

W 4
[g1(u − u′)g2(v − v′) − 1]fr(u − v) du dv du′ dv′

+ λ2
1λ2

|W |2
∫︂

W 3
g1(u − u′)fr(u − v) du dv du′

+ λ1λ
2
2

|W |2
∫︂

W 3
g2(v − v′)fr(u − v) du dv dv′

+ λ1λ2

|W |2
∫︂

W 2
fr(u − v) du dv.

Using the notation of Theorem 4, the approach of Stuart and Ord (1994,
p.351), based on the Taylor expansion of the function f(R, S) = R/S, provides
an approximation of the variance of the ratio R/S:

var
(︃

R

S

)︃
≈
(︄

µR

µS

)︄2 [︄
σ2

R

µ2
R

− 2cov(R, S)
µRµS

+ σ2
S

µ2
S

]︄
.

All required quantities are given in Theorem 4 and therefore the variance cor-
rection for ˆ︂K12(r) can be practically used with this approximate variance and
plugged-in estimates of the pair-correlation functions g1, g2 and intensities λ1, λ2.
However, the computational demands of such approach are very high.

We remark that the sample cross K-function is estimated for a given number of
arguments, which results in the same number of simultaneous Monte Carlo tests.
The multiple correction was resolved in our study using the global envelope test
(Myllymäki et al., 2017). Due to this multiple testing correction and the fact
that the cross K-function summarizes the information from some neighborhood
of the observed points (which was not the case for the sample covariance of two
random fields in Section 3.1), the variance correction tests are conservative and
less powerful than the torus correction approach, as shown in the simulation study
in Mrkvička et al. (2021).

Therefore, it is desirable to look for a test statistic which would be scalar
(avoiding the multiple correction problem, which amplifies the deviation of the
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random shift strategy from exchangeability) and which would be less affected by
summarizing the information from a neighborhood of the observed points (which
amplifies the effect of cracks in the autocorrelation structure). Mrkvička et al.
(2021) propose to use the expectation of the cross nearest-neighbor distance D12,
which is the (random) distance from an arbitrary point of Φ to the nearest point
of Ψ. To estimate the expectation ED12, we use the Lebesgue-Stieltjes integral∫︂

r ˆ︁G12(dr)

where ˆ︁G12 is the Kaplan-Meier estimator of the cross nearest-neighbor distance
distribution function G12 (Baddeley and Gill, 1997; Illian et al., 2008), which is
the distribution function of the random variable D12.

The point process case is more complex than the random field case since the
test statistic accumulates information from a certain neighborhood of the ob-
served points and hence the variance correction methods do not perform very
well in the simulation experiments in Mrkvička et al. (2021): the effect of drop-
ping a part of the information after the shifts is more severe here. They are too
conservative and have smaller power than tests with torus correction. The effect
is more pronounced for the cross K-function than for ED12 which is caused by the
multiple testing problem. The torus correction with the cross K-function shows
the same liberality for clustered processes as in the random field case. On the
other hand, it does not show liberality for the Poisson process and repulsive pro-
cesses. The torus correction with ED12 seems to show very little to no liberality
at all.

3.3 Testing independence between a point
process and a covariate

One of the problems investigated in Dvořák et al. (2022a) concerns testing the
null hypothesis of independence between a point process and a covariate. While
the previous tests of this hypothesis assume the covariate values are observed only
at the points of the process, see Sections 3.1 and 3.2 of Dvořák et al. (2022a), the
paper aims at investigating the situation where the covariate values are available
everywhere in the observation window and proposing nonparametric tests that
fully exploit the available covariate information. This type of test is denoted P-C
in Dvořák et al. (2022a) to indicate that the null hypothesis is the independence
between the point process (P) and the covariate (C).

The proposed tests are based on the random shift approach with either the
torus correction or the variance correction described in Section 1.3.2 of this thesis.
Let Φ be the point process in question and Ψ = Z be the covariate. Assuming
that the covariate has numeric values, the test statistic is the sample mean of the
covariate values observed at the point pattern locations:

T = 1
Φ(W )

∑︂
x∈Φ∩W

Z(x). (3.1)

The choice of the test statistic is motivated by the most natural scenario, where
the points of the process are more likely to appear in locations with high (or low)
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covariate values. The test statistic T is able to capture this type of dependence,
attaining a higher (or lower) value for the observed data than for the shifted data,
resulting in a test with high power in this setting.

For application of the variance correction, the variance of the test statistic
must be known, at least asymptotically. The asymptotic order of the variance
of the sample mean is 1/n when computed from a sample of n independent,
identically distributed observations. In our case, the following theorem gives, for
a stationary point process Φ with intensity λ, that var(T ) ≈ 1/(λ|W |). Since the
true intensity λ is unknown, in practice we plug-in its estimator ˆ︁λ = Φ(W )/|W |
and for variance correction we use the (estimated) correction term var(T ) ≈
1/Φ(W ).

Theorem 5. Let Φ be a stationary point process in R2 with intensity λ and pair-
correlation function g, observed in the observation window W . Let Z(u), u ∈ W ,
be a centered stationary random field with finite second moments, independent of
Φ, having a non-negative covariance function C. Assume that there is a constant
R > 0 such that C(u − v) = 0 for ∥u − v∥ > R. Define the random variables S, U
in the following way:

S =
∑︂

x∈Φ∩W

Z(x), U = Φ(W ).

Then there exist constants 0 < C1 ≤ C2 < ∞, depending on the properties of Φ
and Z but not on |W |, such that

C1 ≤ var(S)
λ|W |

≤ C2.

Moreover, the variance of S/U can be approximated by

var
(︃

S

U

)︃
≈ var(S)

λ2|W |2

and hence var(S/U) is of order 1/(λ|W |).

We note that the fraction S/U = T gives the test statistic from (3.1). Appro-
priate mixing conditions can replace the assumption of bounded support of the
covariance function C.

Other test statistics can, of course, be used if there is a particular indication
that other properties of the covariate Z might influence the occurrence of points
in Φ. For example, the histogram (vector of counts of observations with values
in disjoint intervals) can be used so that the whole distribution of the covariate
values at points of the process is captured. In this case, the global envelope tests
of Myllymäki et al. (2017) can be used to perform the Monte Carlo test with the
multivariate test statistic.

Simulation experiments in Section 4.1 of Dvořák et al. (2022a) showed that,
as expected, the random shift test with torus correction is liberal under the null
hypothesis and has very high power for the studied alternatives. The random shift
test with variance correction is slightly conservative under the null hypothesis and
has slightly lower power than the test with torus correction, but always higher
power than the considered benchmark tests. Comparison with a wider range of
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tests available in the literature is given in the paper Dvořák et al. (2022b), which
is not included in this thesis.

Finally, we remark that the methods proposed in the paper Dvořák and
Mrkvička (2022b), described in Section 3.6 of this thesis, can also be used to
test the null hypothesis of independence between a point process and a covariate,
considering the special case with no nuisance covariates.

3.4 Testing independence between a marked
point process and a covariate

The main goal of the paper Dvořák et al. (2022a) was to propose a nonparametric
test of independence between marks and a covariate in a marked point process
setting. Such a test would allow one to decide whether the covariate should be
included in the analysis of the marks or not.

However, when the nonparametric test is based on random shifts, the marks
cannot be shifted without simultaneously shifting the points (in fact, the marks
cannot exist separately from the points). This means that possible dependence
between the (unmarked) point process and the covariate may affect the inference
about the relationship between the marks and the covariate, through the prefer-
ential sampling effects (Diggle et al., 2010). This term is used in the geostatistical
literature to describe the general situation where the set of sampling points is not
independent of the studied random field, e.g., when more samples are taken at the
locations where high-grade ore is thought likely to be found. It has been reported
that preferential sampling introduces bias into the estimation of the covariance
structure of the random field (Diggle et al., 2010).

Hence, Dvořák et al. (2022a) propose a test of independence between a marked
point process and a covariate (instead of a test of independence between marks
and a covariate), and suggest performing several tests to inquire the complete
dependence structure in the triangle points-marks-covariate. This type of test is
denoted PM-C in Dvořák et al. (2022a) to indicate that the null hypothesis is the
independence between the marked point process (PM) and the covariate (C).

In the following, we assume that both the marks and the covariate have nu-
meric (continuous) values. The case of categorical marks and/or categorical co-
variate is briefly discussed in Section 3.3 of Dvořák et al. (2022a).

For a PM-C test, our starting point is choosing the sample covariance as
the test statistic. This is motivated by the use of sample covariance for testing
the independence between two random fields in Mrkvička et al. (2021). Let
{(x1, m1), . . . , (xn, mn)} be the observed realization of the marked point process
and let z(u), u ∈ W, denote the observed realization of the covariate Z. We define

TC = 1
n − 1

n∑︂
i=1

(mi − m)(z(xi) − z),

where

m = 1
n

mi, z = 1
n

z(xi)
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are the observed sample means. The asymptotic order of variance of TC can
be determined under the assumption of the geostatistical marking model (Illian
et al., 2008) using Theorem 5 above.

Although this choice of a test statistic is perfectly appropriate in situations
where the unmarked point process of sampling locations is independent of the
marks and the covariate, it may perform poorly in cases where there is a depen-
dence between them. In the case of dependence between the point process and
the covariate, the problem of preferential sampling occurs. Preferential sampling
may introduce bias when estimating the covariance between marks and a covari-
ate. Random shifts then violate preferential sampling, changing the distribution
of the test statistic computed from the shifted distribution. This, in turn, da-
mages exchangeability, and the resulting test is far from exact. Whether the test
would be conservative or liberal depends on the particular type of preferential
sampling. The same issues can be caused by the dependence between points and
marks. However, we do not use the term “preferential sampling” in this case to
avoid confusion.

This leads us to define different test statistics that will be less affected by
the bias in the estimated covariance structure of the covariate and the marks,
more specifically, less affected by the sample variance. We choose Pearson’s cor-
relation coefficient and, assuming no ties are present in the data, Kendall’s rank
correlation coefficient:

TP =
∑︁n

i=1(mi − m)(z(xi) − z)√︂∑︁n
i=1(mi − m)2

√︂∑︁n
i=1(z(xi) − z)2

,

TK = 1
n(n − 1)

∑︂
i ̸=j

sgn(mi − mj)sgn(z(xi) − z(xj)).

The asymptotic order of the variance of TP , when computed from a sample of
n i.i.d. observations, is 1/n (van der Vaart, 1998, p. 30). The same holds for TK

(van der Vaart, 1998, pp. 164–165). Therefore, we use var(TP ), var(TK) ≈ 1/n
for variance correction. This is justified for TK by the following theorem which
states that, for a stationary point process Φ with intensity λ, the variance of TK is
of the order 1/(λ|W |). Since the true intensity λ is unknown, in practice we plug-
in its estimator ˆ︁λ = Φ(W )/|W | and for the variance correction the (estimated)
correction term is var(T ) ≈ 1/Φ(W ).

Theorem 6. Let Ψ be a stationary marked point process in R2, observed in the
observation window W . Let Ψ follow the geostatistical marking model, i.e. it is
obtained by sampling the (random) mark field Z1 at points of the unmarked point
process Φ. Assume that the product densities of Φ up to the fourth order exist and
are bounded by finite positive constants both from above and from below. They
will be denoted by λ, λ2, λ3 and λ4 in the following.

Let the covariate be given by the random field Z2 and let the random fields
Z1, Z2 be independent, identically distributed, centered stationary Gaussian ran-
dom fields with a non-negative covariance function C. Assume that there is a
constant R such that C(u − v) = 0 for ∥u − v∥ > R. Furthermore, assume that
there are constants δ > 0 and r > 0 such that C(u − v) ≥ δ for ∥u − v∥ ≤ r.
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Define the random variables S, U in the following way:

S =
̸=∑︂

x,y∈Φ∩W

sgn(Z1(x) − Z1(y)) sgn(Z2(x) − Z2(y)), U = Φ(W )(Φ(W ) − 1).

Then there exist constants 0 < c1 ≤ c2 < ∞ and 0 < d1 ≤ d2 < ∞, depending on
the properties of Φ and Z1, Z2 but not on |W |, such that var(S) = A + B with

c1 ≤ A

λ3|W |3
≤ c2, d1 ≤ B

λ2|W |2
≤ d2.

Moreover, the variance of S/U can be approximated by

var
(︃

S

U

)︃
≈ var(S)

(EU)2

with u1 ≤ EU/(λ|W |)2 ≤ u2 for some finite positive constants u1, u2. Therefore,
var(S/U) is of the order 1/(λ|W |).

Note that the fraction S/U = T gives the test statistic TK . The assumption
of bounded support of the covariance function C can be replaced by appropriate
mixing conditions.

In the simulation experiments in Dvořák et al. (2022a) the PM-C tests with
torus correction are all slightly liberal under the null hypothesis, regardless of the
test statistic used. Using the variance correction reduces the liberality but does
not make the tests conservative. The performance of all PM-C tests under differ-
ent alternatives is comparable. The variance correction performs only marginally
better than the torus correction, and the Pearson’s correlation coefficient results
in a slightly higher power than the other two test statistics.

3.5 Testing independence between a covariate
and functional marks

The approach from Section 3.4 can be extended to the setting with functional
marks mi(r) attached to the observed points xi. For testing the independence
between a covariate Z and the functional marks, it is natural to use a functional
test statistic such as

TP (r) =
∑︁n

i=1(mi(r) − m(r))(z(xi) − z)√︂∑︁n
i=1(mi(r) − m(r))2

√︂∑︁n
i=1(z(xi) − z)2

,

TK(r) = 1
n(n − 1)

∑︂
i ̸=j

sgn(mi(r) − mj(r))sgn(z(xi) − z(xj)),

where

m(r) = 1
n

mi(r), z = 1
n

z(xi).

In the random shift test of independence between the covariate and the functional
marks, the points with their corresponding marks are shifted against the covariate.
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The global envelope test of Myllymäki et al. (2017) is then used to perform the
Monte Carlo test.

An interesting application of such test is in testing the assumption of the
second-order intensity-reweighted stationarity of the point process in question
(Baddeley et al., 2000). In this case, the functional marks can be constructed
as the local K-functions or local L-functions corresponding to the individual
points of the process (Anselin, 1995; Cressie and Collins, 2001a,b). This idea is
investigated in the planned paper González et al. (2022).

3.6 Partial correlation analysis for a point
process and a set of covariates

When a point process is accompanied by one or more covariates, determining
which covariates influence the positions of points is crucial for the upcoming in-
ferential steps. The paper Dvořák and Mrkvička (2022b) studies this problem.
Also, the paper proposes a correlation coefficient and a partial correlation coeffi-
cient between a point process and a covariate, which allow quantification of the
spatial dependence between a point process and a covariate, both without and
with the presence of nuisance covariates.

The approach of Dvořák and Mrkvička (2022b) is based on the newly proposed
notion of nonparametric residuals for point processes. They are a counterpart of
the parametric residuals from Baddeley et al. (2005) which can be used to check
whether a fitted model for the intensity function is appropriate. We remark that
the version of the residuals considered here is based on the intensity function,
as suggested by R. Waagepetersen in the discussion to the paper Baddeley et al.
(2005), rather than based on the conditional intensity function as discussed in
the paper itself.

To recall the parametric residuals, let β̂ be the vector of the estimated regres-
sion parameters in a parametric model for the intensity function λ depending on
some covariates. The residual measure is defined as

R(B) = n(X ∩ B) −
∫︂

B
λ(u; β̂) du, (3.2)

where B ⊆ W is a Borel set and W is the observation window. The smoothed
residual field is obtained as

s(u) = 1
e(u)

⎡⎣ ∑︂
xi∈X∩W

k(u − xi) −
∫︂

W
k(u − v)λ(v; β̂) dv

⎤⎦ , (3.3)

where e(u) =
∫︁

W k(u − v) dv is the edge-correction factor and k is a probability
density function in R2. In fact, the first term in (3.3) gives the nonparametric ker-
nel estimate of the intensity function, the covariates not being taken into account,
while the second term gives the smoothed parametric estimate which incorporates
the covariates. If the estimated model λ(v; β̂) describes the point process X well,
the smoothed residual field s(u) is expected to fluctuate around 0. Its deviations
from 0 indicate a disagreement between λ(v; β̂) and the true intensity function in
the corresponding parts of the observation window.
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Nonparametric residuals
As opposed to fitting a parametric model, the dependence of the intensity function
on a set of covariates C1, . . . , Cm can be captured nonparametrically. Baddeley
et al. (2012) assume that there is an unknown function ρ : Rm → [0, ∞) such that
λ(u) = ρ(C1(u), . . . , Cm(u)). Assuming absolute continuity of the distribution of
the vector of covariates (C1(u), . . . , Cm(u)) on Rm, the function ρ can be esti-
mated using kernel smoothing in the space of covariate values, see Baddeley et al.
(2012). This opens up the possibility to define nonparametric residuals. Using
the nonparametric estimate of the intensity function λ̂(u) = ρ̂(C1(u), . . . , Cm(u)),
the nonparametric version of the residual measure (3.2) can be defined as

R̃(B) = n(X ∩ B) −
∫︂

B
ρ̂(C1(u), . . . , Cm(u)) du.

The corresponding nonparametric smoothed residual field is then

s̃(u) = 1
e(u)

⎡⎣ ∑︂
xi∈X∩W

k(u − xi) −
∫︂

W
k(u − v)ρ̂(C1(u), . . . , Cm(u)) dv

⎤⎦ . (3.4)

If ρ̂(C1(u), . . . , Cm(u)) describes the intensity function of X well, meaning e.g.
that no relevant covariate was left out, s̃(u) is expected to fluctuate around 0.
Deviations from 0 indicate disagreement between the estimated model and the
true intensity function of X.

Partial correlation coefficient
When several possibly correlated covariates are available, one might be interested
in assessing the strength of dependence between the point process X and the
covariate of interest Cm+1 after removing the possible influence of the remaining
(nuisance) covariates C1, . . . , Cm, in the spirit of the partial correlation coefficient.

The strength of dependence can be quantified by some measure of dependence
between the covariate of interest Cm+1 and the smoothed residual field s̃ from
(3.4) where the possible influence of the nuisance covariates C1, . . . , Cm on X
has been removed. When a parametric model for the intensity function of X is
available, parametric residuals (3.3) may be used instead.

We suggest using Kendall’s correlation coefficient to quantify the dependence.
We consider a set of sampling points {y1, . . . , yn}, independently and uniformly
distributed in W , independent of X and C1, . . . , Cm+1, and define the sample
version of the partial correlation coefficient as

τ̂ p = 1
n(n − 1)

∑︂
i ̸=j

sgn(Cm+1(yi) − Cm+1(yj)) sgn(s̃(yi) − s̃(yj)).

We stress that independent sampling points need to be used in this case instead
of simply using the observed points of X ∩ W . In the latter case, preferential
sampling issues could arise, resulting in biased estimates of the properties of the
two random fields (Diggle et al., 2010; Dvořák et al., 2022a). Loosely speaking,
if, for example, the sampling points {y1, . . . , yn} are more likely to be chosen
in locations with high values of Cm+1, the sample mean and sample variance
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of Cm+1(y1), . . . , Cm+1(yn) do not reflect well the true properties of Cm+1. This
negatively affects all subsequent steps of the analysis.

We remark here that if no nuisance covariates are observed (m = 0), the
correlation coefficient between the point process and the covariate of interest
can be defined similarly as above, using the constant estimator of the intensity
function given by the number of observed points per unit area. For details, see
Section 3.2 of Dvořák and Mrkvička (2022b).

Covariate-weighted residual measure
While τ̂ p is useful for quantifying the strength of dependence between X and
the covariate of interest Cm+1 after removing the influence of nuisance covariates
C1, . . . , Cm, the random shift test using τ̂ p as the test statistic turned out to
have a rather low power in the simulation studies. The reason lies in the applied
smoothing and the deliberate removal of the preferential sampling effects: the
association between the points of X and the covariate Cm+1 brings important
information.

To overcome these issues, we define the following characteristic that we call
the covariate-weighted residual measure of W :

CWR =
∫︂

W
Cm+1(u)R̃(du)

=
∑︂

x∈X∩W

Cm+1(x) −
∫︂

W
Cm+1(u)ρ̂(C1(u), . . . , Cm(u)) du. (3.5)

This can be viewed as a generalization of the test statistic (3.1) from Section 3.3
of this thesis which also includes the sum of covariate values but does not take
into account possible nuisance covariates. By sampling the values of Cm+1 at the
points of X we take advantage of any possible preferential sampling effects, and
no smoothing is performed when computing the value of CWR, hence we avoid
the problem of bandwidth selection. The expectation of CWR is close to 0 if the
covariates C1, . . . , Cm capture all variation in λ(u), i.e. if ρ̂(C1(u), . . . , Cm(u)) is
close to λ(u), and will differ from 0 otherwise. This enables testing the significance
of Cm+1 after removing the influence of C1, . . . , Cm.

Testing the covariate significance under the presence of
nuisance covariates
Now we consider the null hypothesis that X and Cm+1 are independent, conditio-
nally on C1, . . . , Cm. We employ the random shift test described in Section 1.3.2
of this thesis, either with torus or variance correction. The test statistic can be
τ̂ p in which case the two spatial objects to be shifted against each other are the
two random fields Φ = s̃ and Ψ = Cm+1. Alternatively, we can use the covariate-
weighted residual measure of W as a test statistic. In this case Φ = R̃ is a
measure and Ψ = Cm+1 is a random field. If vi is a shift vector, the shift of the
random field Ψ should be interpreted in both cases as (Ψ + vi)(u) = Ψ(u − vi).

The choice of the correction factors for the variance correction is discussed
in the appendix of Dvořák and Mrkvička (2022b). The simulation experiments
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reported there confirm that the given correction factors, in fact, correctly standar-
dize the variance of the test statistics. Also, in a simplified setting, the variance
of CWR can be determined, as given in the following theorem. The simplification
lies in the assumption that the true intensity function λ(u) is used to compute
CWR and that the point process in question is Poisson.

Theorem 7. Let X be a Poisson process on W with the intensity function
λ(u), u ∈ W, and let C(u), u ∈ W, be a stationary random field with EC(u)2 =
K < ∞. Denote by S the analogue of the covariate-weighted residual measure
of W from (3.5):

S =
∑︂

x∈X∩W

C(x) −
∫︂

W
C(u)λ(u) du.

Then var S = K
∫︁

W λ(u) du.

The variance of S is proportional to
∫︁

W λ(u) du which is the expected number
of points in W . In practical situations, this quantity is not known and can be
estimated by the observed number of points n(X ∩ W ). If the intensity function
is bounded from above and from below by finite positive constants,

∫︁
W λ(u) du is

of order |W | for large observation windows.
In the simulation study in Dvořák and Mrkvička (2022b), the random shift

tests match the nominal significance level correctly for all models. The tests
based on CWR match it slightly more accurately than those based on τ̂ p. Both
the torus correction and the variance correction perform well, with only a slight
tendency toward liberality observed for the torus correction and the tests based
on τ̂ p. Concerning the benchmark parametric tests considered in the simulation
study, their performance illustrates that parametric tests are prone to perform
poorly under model misspecification either in terms of the interaction structure
or the intensity function. However, even when both of these model components
are specified correctly, there is a risk of strong liberality of the parametric tests.
From this point of view, the nonparametric tests are preferable, as they match
the nominal significance level correctly for all models in this study.

Concerning the power of the tests, we make the following observations. The
tests based on τ̂ p have very low power due to the smoothing and removal of
the preferential sampling effects. The tests based on CWR exhibit very high
power comparable to parametric tests with the correct interaction model and the
correct model for the intensity function. For some models, the tests based on
CWR showed even higher power than the parametric tests. The torus correction
and the variance correction perform nearly equivalently for tests based on CWR,
while for tests based on τ̂ p the torus correction shows slightly higher power, which
can be explained by the small liberality of these tests.

3.7 Testing independence of animal trajectories
Another problem which can be solved using the random shift approach is testing
of independence between a pair of trajectories, observed e.g. by GPS tracking of
wild animals. This problem is studied in the master thesis Veselý (2021), which
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analyzes the movement of wolves in the Voyageurs national park (USA). The data
was kindly provided by the researches from the Voyageurs Wolf Project.1

Assume that the spatial position of an animal is recorded in the sequence
of times t1, . . . , tn during the time interval [0, T ] in the spatial observation win-
dow W . Such a dataset can be represented as a temporal marked point pattern
{(t1, u1), . . . , (tn, un)} where ti ∈ [0, T ] is the time of the ith observation and the
mark ui ∈ W is the corresponding spatial location.

If a pair of (possibly interacting) trajectories is observed, we can obtain the
Monte Carlo replications for the independence test by randomly shifting one of
the trajectories along the time axis. In this setting, it is straightforward to apply
the torus correction since the interval [0, T ] is a one-dimensional rectangle. If τ is
the random variable with uniform distribution on the interval [0, T ], the shifted
trajectory is obtained as {((t1 + τ) mod T, u1), . . . , ((tn + τ) mod T, un)}.

An appropriate test statistic must be chosen, depending on whether the ob-
servation times are equidistant and whether they are the same for the two tra-
jectories. Several test statistics are proposed in Chapter 3 of Veselý (2021). The
analysis of the wolf trajectories in Chapter 4 of Veselý (2021), where each tracked
animal represents a different pack, identified no evidence of interactions between
any pair of observed trajectories.

1https://www.voyageurswolfproject.org
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4. Tests based on stochastic
reconstruction
As discussed in Section 1.3.3 of this thesis, the stochastic reconstruction procedure
can be used to obtain the replications required for performing a Monte Carlo test.
While being computationally demanding if the desired number of replications N is
large, the advantage of the procedure lies in its very broad applicability. However,
caution is needed to make sure that the replications have the same distribution
as the observed data (this is needed for achieving exchangeability) and that the
replications fulfill the null hypothesis (this is needed for performing the test of
the given hypothesis).

4.1 Tests for space-time point processes
In this section, we describe the possibility to use the stochastic reconstruction
procedure for testing the first-order separability hypothesis for space-time point
processes, as already discussed in Section 2.2 of this thesis in connection with the
permutation tests. The stochastic reconstruction procedure was proposed in this
context in Ghorbani et al. (2021), with a detailed illustration given in Section 7.2
of the paper. A brief summary is given below.

The user chooses a set of summary characteristics that should be preserved by
the reconstruction procedure. For testing the first-order separability hypothesis,
the paper suggests using the square root of a nonparametric estimator of the
inhomogeneous space-time K-function (Gabriel and Diggle, 2009; Dvořák and
Prokešová, 2016), together with the separable estimator of the intensity function
ρ̂sep from (2.2). Using the separable estimator secures the separable structure of
the intensity function of the output patterns, meaning the replications are indeed
generated under the null hypothesis.

Based on the experience from (Koňasová and Dvořák, 2021a), we also suggest
using as further summaries the values D̂k(r, t) giving the fraction of observed
events that have at least k neighbours within distance r (in the spatial domain)
and within lag t (in the temporal domain). These are considered only to be
empirical characteristics describing the inter-event distances rather than being
estimators of some theoretical quantities. However, they are closely related to the
raw estimates of the kth nearest neighbour distribution functions in a stationary
space-time point process.

The energy functional, quantifying the dissimilarity between the input pattern
ζ (observed pattern) and another pattern ξ, is then constructed:

E(ζ, ξ) = wK

∫︂ TK

0

∫︂ RK

0

[︃√︂ˆ︂K(ζ; r, t) −
√︂ˆ︂K(ξ; r, t)

]︃2
dr dt

+
kmax∑︂
k=1

wDk

∫︂ TD

0

∫︂ RD

0

[︂ˆ︂Dk(ζ; r, t) − Dk(ξ; r, t)
]︂2

dr dt

+ w∆

I∑︂
i=1

a
[︂
ρ̂sep (ζ; vi, si) − ρ̂sep (ξ; vi, si)

]︂2
,
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where wK , wDk
, w∆ are the weights determining the relative importance of the

individual terms, {(v1, s1), . . . , (vI , sI)} are the center locations of the cells of a
regular grid covering W × T , a is the volume of the grid cell and TK , RK , TD, RD

and kmax are user-selected tuning constants.
The stochastic reconstruction procedure starts with a binomial pattern ξ0

generated as a collection of n independent points (the same as the number of
observed points in the input pattern ζ) following a probability density function
proportional to ρ̂sep(ζ; u, t). Then the iteration steps are repeated in which a new
pattern ξnew is proposed by randomly deleting one point from the current pattern,
say ξm, and generating a new point in W × T with density again proportional
to ρ̂sep(ζ; u, t). The proposal is accepted if E (ζ, ξnew) ≤ E (ζ, ξm), otherwise it
is rejected. The algorithm stops when a user specified stopping rule is met, e.g.
after performing a maximum allowed number of iterations or after rejecting a
certain amount of proposals in a row. By minimization of the energy functional,
the output pattern ξout is forced to have approximately the same interaction
structure as the input pattern ζ (as described by the K- and Dk-functions) while
having a separable first-order structure (as described by ρ̂sep).

After a large number of independent output patterns is generated, these can
be used to perform a Monte Carlo test of the separability hypothesis. The outputs
can be considered to be independent replicates of the data obtained under the
null hypothesis. The performance of the Monte Carlo test of course relies on
the interaction structure of the observed data being correctly captured by the
reconstruction procedure.

Using the stochastic reconstruction procedure requires some tuning of the
parameters. It is also strongly suggested to verify on simulated data that the
outputs of the reconstruction algorithm have the same properties as the simu-
lations from the correct model. This can be done following the suggestions in
Koňasová and Dvořák (2021a).
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