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Preface

The aim of this thesis is to provide background for and commentary to some recent results

[A, B, C, D, E, F, G, H, J, K] on cryptography, combinatorics and algebra,

covering

• constructions and enumeration of finite semifields,

• resolution of several problems regarding highly nonlinear functions,

• classification results for cryptographic permutations in polynomial and ra-

tional function form, and

• development of very efficient algorithms for solving the cryptographically impor-

tant discrete logarithm problem on finite fields providing record computation

instances,

all by developing novel techniques for projective polynomials over finite fields. These

results have appeared in the publications listed below.

Main publications

• F. Göloğlu and L. Kölsch, An exponential bound on the number of non-isotopic

commutative semifields, Trans. Amer. Math. Soc. 376(3) (2023), 1683–1716.

DOI:10.1090/tran/8785

• F. Göloğlu, Biprojective almost perfect nonlinear functions, IEEE Trans. Inform.

Theory 68 (2022), no. 7, 4750–4760.

DOI:10.1109/TIT.2022.3157798 MR 4449070

• F. Göloğlu and L. Kölsch, Equivalences of biprojective almost perfect nonlinear

functions, J. Comb. Th. A (submitted) (2021), 26 pages. arXiv:2111.04197.

DOI:10.48550/arXiv.2111.04197

• F. Göloğlu, Classification of fractional projective permutations over finite fields,

Finite Fields Appl. 81 (2022), Paper No. 102027, 50 pages.

DOI:10.1016/j.ffa.2022.102027 MR 4397755

• F. Göloğlu, Classification of (q, q)-biprojective APN functions, IEEE Trans. In-

form. Theory 69 (2022), no. 3, 1988–1999.

DOI:10.1109/TIT.2022.3220724

• F. Göloğlu, R. Granger, G. McGuire, and J. Zumbrägel, On the function field

sieve and the impact of higher splitting probabilities: application to discrete log-

arithms in F21971 and F23164 , Advances in cryptology—CRYPTO 2013. Part II,

9

http://www.doi.org/10.1090/tran/8785
http://www.doi.org/10.1109/TIT.2022.3157798
http://www.doi.org/10.48550/arXiv.2111.04197
http://www.doi.org/10.1016/j.ffa.2022.102027
http://www.doi.org/10.1109/TIT.2022.3220724


10 PREFACE

Lecture Notes in Comput. Sci., vol. 8043, Springer, Heidelberg, 2013, pp. 109–

128.

DOI:10.1007/978-3-642-40084-1 7 MR 3126472

• F. Göloğlu and A. Joux, A simplified approach to rigorous degree 2 elimination

in discrete logarithm algorithms, Math. Comp. 88 (2019), no. 319, 2485–2496.

DOI:10.1090/mcom/3404 MR 3957902

• F. Göloğlu and Ph. Langevin, Almost perfect nonlinear families which are not

equivalent to permutations, Finite Fields Appl. 67 (2020), Paper No. 101707,

21 pages.

DOI:10.1016/j.ffa.2020.101707 MR 4122629

Supplementary publications

• F. Göloğlu, R. Granger, G. McGuire, and J. Zumbrägel, Solving a 6120-bit DLP

on a desktop computer, Selected Areas in Cryptography - SAC 2013 - 20th In-

ternational Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Se-

lected Papers (Tanja Lange, Kristin E. Lauter, and Petr Lisonek, eds.), Lecture

Notes in Computer Science, vol. 8282, Springer, 2013, pp. 136–152.

DOI:10.1007/978-3-662-43414-7 7

• F. Göloğlu and L. Kölsch, Counting the number of non-isotopic Taniguchi semi-

fields, Des. Codes Crypt. (submitted) (2022), 13 pages. arXiv:2207.13497.

DOI:10.48550/arXiv.2207.13497

A note on publications

The list of publications is divided into two categories. The thesis is mostly based on the

main publications but we also use some results and explanations from the supplementary

publications. Although large portions of the following is written exclusively for this thesis

we also incorporate text from our publications.

Contributions

In this thesis, we provide commentary to publications which have the following contribu-

tions to four areas in the conjunction of algebra, combinatorics and cryptography.

(i) Finite semifields: [A, K] We give a prolific family of semifields which leads

to the solution of the major enumeration problem on commutative semifields.

Deciding whether the number of non-isotopic commutative semifields of odd

order pn is not bounded by a polynomial in n has been described (by Pott

in [128], the most recent survey on the topic) as “the main problem in

connection with commutative semifields.” The family introduced in [A]

solves precisely this problem by giving an exponential number of pairwise non-

isotopic semifields.

http://www.doi.org/10.1007/978-3-642-40084-1_7
http://www.doi.org/10.1090/mcom/3404
http://www.doi.org/10.1016/j.ffa.2020.101707
http://www.doi.org/10.1007/978-3-662-43414-7_7
http://www.doi.org/10.48550/arXiv.2207.13497
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The even characteristic case (commutative and general) was proved by Kantor

and Williams [85, 89] two decades ago (where the numbers are super-polynomial

in the order) who posed the problem of providing similar results for the odd

characteristic. We were able to improve the odd characteristic bound for the

general (i.e., not necessarily commutative) case, however the improvement here

is not as dramatic as the commutative case. The following table reflects the

situation before and after our contributions.

commutative general

before ≈ n2 ≈ (pn)1/2

after ≈ (pn)1/4 ≈ (pn)2/3

Table 1. Known number of pairwise non-isotopic semifields of odd order pn

We have actually developed a method to decide the isotopy problem for a large

class of (biprojective) semifields which addresses another remark by Kantor and

Williams [89].

(ii) Discrete logarithm problem: [F, G, J] We provide very efficient algorithms

that solve the discrete logarithm problem on the multiplicative group of a finite

field. These algorithms were then employed to break two records [58, 59]

for computing discrete logarithms in largest order finite fields. We also

give the rigorous analysis of one of these algorithms [G] whose running time

is quasi-polynomial in the bitsize of the order. The publication [F] has been

awarded the prestigious best paper award at CRYPTO—2013, one of the

leading conferences in cryptography.

(iii) Highly nonlinear functions: [B, C, E, H] We deliver a rather comprehensive

study of biprojective almost perfect nonlinear (APN) functions. This includes

introducing biprojectivity [B], discovery of three new infinite families of APN

functions that are nontrivial hybrids of Gold functions, one of which contains

an exponential number of inequivalent members [B, C], as well as classifying

(q, q)-biprojective APN functions [E], giving a method to check equivalences

of (biprojective) APN functions theoretically [C], and showing that Gold and

Kasami functions are not equivalent to permutations on certain extensions [H].

All of these are natural problems on nonlinear functions some of which have

been explicitly stated as interesting problems in the literature. We completely

solve in [E], for instance, the open problem listed by Carlet [29, Section 3.7] in

a recent survey on “open problems on nonlinearity.”

(iv) Cryptographic permutations: [D] We fully classify fractional q-projective

and (q, q)-biprojective permutations. This result single-handedly covers/generalizes/proves

the open problems of many recent publications [139, 138, 111, 110, 114, 137,

97, 143, 113].
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Contributions in context

Many combinatorially and/or cryptographically interesting objects over a finite field Fpn
arise from quadratic (in the sense of algebraic degree) monomials from Fpn [X]. Most such

objects have been identified in the literature. Usually they produce the first example of an

interesting definition. Naturally, generalizations of such objects are sought after. When n

is composite, subfield structures can be employed to achieve this goal. In this thesis we

define biprojectivity to identify a natural generalization of quadratic monomials when

n is even. A biprojective function is a pair of bivariate functions each of which is a homo-

geneous function with polynomial degrees pi + 1, pj + 1 and algebraic degrees 2. Although

some such generalizations have been identified in the literature, a thorough analysis has

not been done. In the literature, exclusively, the cases when one bivariate function is

chosen as a simple one such as (x, y) 7→ xyp
i

were considered which allows for techniques

dating back to Dickson. In this thesis, general (and complicated) choices for bivariate func-

tions are analyzed and novel techniques are introduced. Our definitions and techniques

make rather full use of the underlying structure (e.g., groups ΓL(2, pn/2),GL(2, pn/2) and

PGL(2, pn/2)) and are natural but non-trivial.

Organization of the thesis

Part 1 of this thesis is organized as follows.

(i) We start in Chapter 1 by introducing projective and biprojective polynomials.

Most important for us throughout the thesis is the zeroes of projective polyno-

mials which is the subject of this chapter as well as actions of the general linear

and projective general linear groups. The reader is advised to skip most of this

chapter (after definitions of projective and biprojective polynomials) in the first

reading until it is referred to.

(ii) Chapter 2 through Chapter 7 are devoted to the background on finite semifields.

First, the semifields and their properties are introduced in Chapter 2. Chapter

3 is devoted to the connection between cryptographic highly nonlinear functions

and finite semifields where biprojective functions are put in the context of vecto-

rial functions using the two notions of degree (polynomial and algebraic) we use

throughout the thesis. Chapter 4 is a survey on known constructions of semi-

fields. Chapter 5 lists the known bounds on the number of pairwise non-isotopic

semifields. Chapter 6 puts our construction from [A] in context and shows how

it can be viewed as a natural generalization of Albert’s twisted fields. Chapter

7 gives a survey on biprojective representations of known semifields. Finally,

Chapter 8 contains detailed commentary to our contribution [A].

(iii) Chapters 9 and 10 are devoted to the background for almost perfect nonlinear

(APN) functions and permutations. The lengthy introduction for semifields is

also helpful for APN functions as they are (in a sense) binary analogues of

commutative semifields in odd characteristic. In Problem 10.8 of Chapter 10

we introduce five problems, all of which are solved in five subsequent chapters

which provides commentary to [H, D, E, B, C].
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(iv) Chapter 16 contains its own introduction as it explains the discrete logarithm

problem (DLP) which is not directly related to finite semifields or highly non-

linear functions. This chapter relies heavily on projective polynomials as well.

A commentary to [F, G] is provided.

In Part 2 of the thesis, we simply reprint the papers to which we provide commentary.
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Part 1

Commentary





CHAPTER 1

Projective and biprojective polynomials

The overarching topic of this thesis is projective polynomials over finite fields.

Let L = Fpl be a finite field and q = pk with 0 ≤ k < l. A polynomial of the form

(1) φf (x) = axq+1 + bxq + cx+ d ∈ L[x]

is called a q-projective polynomial over L. We will extensively use the following bivari-

ate version. A polynomial of the form

f(x, y) = axq+1 + bxqy + cxyq + dyq+1 ∈ L[x, y]

is called a q-biprojective polynomial over L. Note that

φf (x) = f(x, 1).

We will use the shorthand notation

f = (a, b, c, d)q

to refer to both types of polynomials for simplicity and when the context is clear. Our

main interest is in cryptographic functions of the following forms:

• (q, r)-biprojective functions of the form:

F : L× L→ L× L

(x, y) 7→ (f(x, y), g(x, y)),

where f and g are q- and r-biprojective polynomials, and

• fractional q-projective functions of the form

Π : P1(L)→ P1(L)

x 7→
φf (x)

φg(x)
,

where φf and φg are q-projective polynomials. Note that we assume φf (x) =

0 = φg(x) does not happen for x ∈ L.

Remark 1.1. We will allow k = 0, that is to say, q = 1 in our definition. In this case, one

of b, c in the notation is superfluous. However, we will set b = 0 and continue using it.

1. Origins

To the best of our knowledge, the first reference to the name “projective polynomials”

is by Abhyankar [2] in 1997. Let q = pk with k > 0 and K be a field containing Fq.
Abhyankar showed that the Galois group Gal(F,K(x)) of

F (y) = y(q
t−1)/(q−1) + y + x

17



18 1. PROJECTIVE AND BIPROJECTIVE POLYNOMIALS

for t > 1 is PGL(t, q), and named such polynomials projective. Abhyankar [1, p. 131]

ascribes the proof for t = 2 to Serre, for which we have (q2 − 1)/(q − 1) = q + 1. Hughes

and Kleinfeld [71] and Knuth [101] had already used these polynomials in 1960s (see

Chapter 4 and Remark 7.2) for constructing semifields without using the name “projective

polynomial.”

Bluher [18] studied polynomials of the form

xq+1 + exq + ax+ b ∈ L[x]

where ea 6= b and a 6= eq, and determined the numbers and locations of zeroes of such

polynomials over finite fields. We refer to Bluher’s results extensively overall the thesis.

In this thesis, our applications require to address all such polynomials without exceptions.

Thus, we slightly extend the definition as given in this section.

In the following, we will first derive the possible numbers of L-zeroes of projective poly-

nomials over finite fields (which was essentially done by Bluher in [18]). In our extended

definition, when a = 0 in Eq. (1), the projective polynomials reduce to affine or even

constant polynomials. We will first address this case. For the rest of this chapter we will

assume 0 < k < l.

2. Zeroes of some affine polynomials, the trace map and Hilbert’s Theorem

90

Let L be the finite field with pl elements, q = pk for 0 < k < l and let D ⊂ L be a finite

field of order pδ with δ = gcd(k, l). The trace map is defined as

trL/D(x) =

l/δ−1∑
j=0

x(p
δ)j .

When D = Fp then we simply write

tr(x) = trL/Fp(x).

The following is the finite fields version of Hilbert’s Theorem 90.

Lemma 1.2 (Hilbert’s Theorem 90). Let gcd(j, l) = 1 and a ∈ L. Then trL/D(a) = 0 if

and only if a = x(p
δ)j − x for some x ∈ L.

The D-linear vector-space endomorphisms of L can be written as

L(x) =

l/δ−1∑
j=0

ajx
(pδ)j , aj ∈ L,

and are called D-linearized polynomials. Determining kernels of such endomorphisms

in L, especially of the form L(x) = axq − bx and the zeroes of its translates L(x) + c, is

important for this thesis. This can simply be done by observing

L(r) = arq − br = 0

for some nonzero r ∈ L× if and only if rq−1 = b/a. In that case L(rx)/rb = xq − x.
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Then one can deduce that the L-zeroes of L are 0 and εr for ε ∈ D× if such r exists. Then

the case L(x) + c can be handled using Hilbert’s Theorem 90. The following lemma is

relevant and will be needed overall the thesis.

Lemma 1.3. For a prime p,

(i) gcd(pk − 1, pl − 1) = pgcd(k,l) − 1.

(ii)

gcd(pk + 1, pl − 1) =


1 if l

gcd(k,l) is odd, and p = 2,

2 if l
gcd(k,l) is odd, and p is odd,

pgcd(k,l) + 1 if l
gcd(k,l) is even.

Before considering the zeroes of projective polynomials, we should first explain the natural

actions on projective, biprojective and fractional projective polynomials and functions.

3. Actions of GL(2,L) and PGL(2,L)

In this section we outline the basics of several actions of GL(2,L) and PGL(2,L) on

biprojective and projective functions/polynomials. Let

Vq,L = {(a, b, c, d)q : a, b, c, d ∈ L},

be the set of all q-biprojective polynomials. Let f, g ∈ Vq,L be two q-biprojective polyno-

mials and

F : L× L→ L× L

(x, y) 7→ (f(x, y), g(x, y))

be the associated (q, q)-biprojective function. Define Fq,L to be the set of all (q, q)-

biprojective functions, i.e.,

Fq,L = Vq,L × Vq,L.
Let L(L) be the group of all non-singular L-linear transformations of L× L, i.e.,

GL(2,L) ∼= L(L) = {(x, y) 7→ (tx+ uy, vx+ wy) : t, u, v, w ∈ L | tw − uv 6= 0} .

We are mainly interested in the standard action of GL(2,L)×GL(2,L) on (q, q)-biprojective

functions F ∈ Fq,L. That is

F1(x, y) = (L1 ◦ F ◦ L2)(x, y).

This action defines an equivalence relation which we denote by F1≈L F. Define also the

action of the group L× × GL(2,L) on q-biprojective polynomials f ∈ Vq,L where L× <

GL(2,L) acts on f by scaling, and the action of GL(2,L) is the usual right action, i.e.,

f1(x, y) = α(f ◦ L(x, y)),

= α
(
a(tx+ uy)q+1 + b(tx+ uy)q(vx+ wy) + c(tx+ uy)(vx+ wy)q + d(vx+ wy)q+1

)
,

where (α,L) ∈ L× ×GL(2,L). In this case we say that f ∼L f1.

Set φf (x) = f(x, 1) so that φf is the corresponding q-projective polynomial. The projec-

tive version of the above action on the bivariate q-projective polynomial f , on the uni-

variate q-projective polynomial φf can be given using the fractional linear (Möbius)
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transformations over the finite field L, i.e.,

PGL(2,L) ∼= M(L) =

{
x 7→ tx+ u

vx+ w
: t, u, v, w ∈ L | tw − uv 6= 0

}
.

Now, define the action

φf1(x) = α(vx+ w)q+1(φf ◦ µ(x)),

for (α, µ) ∈ L××PGL(2,L) and µ : x 7→ tx+u
vx+w . One addresses the zero of the denominator

(vx+w) by introducing∞ = β/0 for all β ∈ L×. We define P1(L) = L∪{∞}. By defining

µ(∞) = t/v, we see that all µ ∈M(L) permutes P1(L). Note that we view the action as

φf1(x) = α
(
a(tx+ u)q+1 + b(tx+ u)q(vx+ w) + c(tx+ u)(vx+ w)q + d(vx+ w)q+1

)
,

so that φf1 is a (q-projective) polynomial over L and we do not have to deal with ∞ (but

we will do that later, since it is helpful). We write φf ∼M φf1 . The following lemma is

straightforward.

Lemma 1.4. We have f ∼L f1 if and only if φf ∼M φf1 .

We will not use φf to refer to univariate q-projective version of f and instead use f for

both univariate and bivariate functions and polynomials. We will also use Vq,L as the

ambient space of both types of functions/polynomials.

4. Zeroes of projective polynomials

Let

f(x) = axq+1 + bxq + cx+ d ∈ L[x]

be a nonzero q-projective polynomial. If a = 0, then f is an affine polynomial and the set

of L-zeroes of f , i.e.,

Z ′f = {x ∈ L : f(x) = 0}
satisfies |Z ′f | ∈ {0, 1, pδ}. To see that, first observe that scaling, i.e., f 7→ αf for α ∈ L×,

the translations f(x) 7→ f(x+ β) for β ∈ L and the dilations f(x) 7→ f(γx) for γ ∈ L×

keep the number of L-zeroes of f invariant. Then we have only a few options to consider:

• f = 1

has no L-zeroes —degenerate case (together with the omitted case f = 0).

• f ∈ {x, xq}

has one L-zero.

• f = xq − cx− d where c 6= 0.

We have

– if c = Aq−1 ∈ (L×)q−1, then f has

∗ pδ L-zeroes if trL/D(d/Aq) = 0, and

∗ no L-zeroes if trL/D(d/Aq) 6= 0; or

– one L-zero if c 6∈ (L×)q−1,

by Hilbert’s Theorem 90.
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Now assume a 6= 0. We will show that |Z ′f | ∈ {0, 1, 2, pδ + 1}. Assume f has at least one

L-zero r ∈ Z ′f . Now consider

f1(x) = f(x+ r) = axq+1 + b′xq + c′x.

The reciprocal f2(x) = xq+1f1(1/x) is

f2(x) = a+ b′x+ c′xq,

where deg f2 < q+ 1. Now f2 has one fewer L-zeroes than f1 (since we punctured the zero

of f1 at 0) and thus we have

|Z ′f2 |+ 1 = |Z ′f1 | = |Z
′
f | ∈ {1, 2, pδ + 1}.

When f has no L-zeroes, it can be seen that translations, dilations, reciprocation and

scaling cannot make the first and last coefficient zero. Therefore, in general case (including

f has no L-zeroes),

|Z ′f | ∈ {0, 1, 2, pδ + 1}.
These observations, together with the fact that PGL(2,L) is generated by translations,

dilations and inversion (for which the corresponding action is reciprocation) [140], moti-

vates us to ascribe f(∞) = 0 if and only if deg f < q+1 so that ∼M preserves the number

of roots in P1(L). Now we can define

Definition 1.5. The P1(L)-zeroes of a q-projective polynomial f is defined as

Zf = {x ∈ P1(L) : f(x) = 0},

where we define f(∞) = 0 if and only if deg f < q + 1.

Thus we have

Lemma 1.6. Let f 6= 0 be a q-projective polynomial. Then,

(i) |Zf | is invariant under ∼M , and

(ii) |Zf | ∈ {0, 1, 2, pδ + 1}.

Remark 1.7. A more rigorous proof of the lemma can be found in [E, Lemma 3.3].

When q = 1 (i.e., k = δ = 0); Eq. (1) becomes quadratic, and the above lemma follows

almost trivially. The case is therefore omitted in our treatment.

5. Group actions

For (q, r)-biprojective functions (f, g) where q 6= r, the left application of GL(2,L) does not

work as a group action, i.e., af+bg is not in general q-biprojective. However, scaling both

components is a group action of (L× × L×) ≤ GL(2,L) on (q, r)-biprojective functions.

Let us summarize the notions of equivalence on projective and biprojective functions where

[F : L] = 2.

Remark 1.8 (The semilinear group). The semi-linear group ΓL(2,L) = Gal(L/Fp) n
GL(2,L) comprising semi-linear mappings of type (x, y) 7→ (axq + byq, cxq + dyq) where

q ∈ Gal(L/Fp) and a, b, c, d ∈ L satisfying ad − bc 6= 0, is important in our treatment

(ΓL(k,Fpn/k) is defined similarly). We usually separate the actions of GL(2,L) and the
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φf q-projective ∼M L× × PGL(2,L)
scaling ×

right application of µ ∈ PGL(2,L)

f q-biprojective ∼L L× ×GL(2,L)
scaling ×

right application of M ∈ GL(2,L)

(f, g) (q, r)-biprojective (L× × L×)×GL(2,L)
scaling on f and g ×

right application of M ∈ GL(2,L)

(f, g) (q, q)-biprojective ≈L GL(2,L)×GL(2,L)
left application of L ∈ GL(2,L) ×
right application of M ∈ GL(2,L)

F vectorial ≈GL(F) GL(F)×GL(F)
left application of L ∈ GL(F) ×
right application of M ∈ GL(F)

Table 1. Notions of equivalence regarding projective and biprojective functions

Galois group to simplify the presentation. In principle they can be combined by simple

modifications.

6. Bluher’s enumeration results

The specific projective polynomial (originally considered by Abhyankar)

Pb(x) = xq+1 + x+ b ∈ L[x]

is rather important. Bluher counted the number of those b ∈ L for which Pb has j L-zeroes,

where j ∈ {0, 1, 2, pδ + 1}. Recall that q = pk, δ = gcd(k, l) and L = Fpl .

Theorem 1.9 ([18, Theorem 5.6.]). Let Nj(p, l) denote the number of polynomials Pb(x) =

xq+1 + x+ b with b ∈ L such that Pb has j L-zeroes. Then

N0(p, l) =


pl+δ−pδ
2(pδ+1)

if l/δ is even,

pl+δ−1
2(pδ+1)

if p is odd and l/δ is odd,

pl+δ+pδ

2(pδ+1)
if p is even and l/δ is odd.

N1(p, l) = pl−δ.

N2(p, l) =


pl+δ−2pl−2pδ+3

2(pδ−1) if p is odd and l/δ is odd,
(pδ−2)(pl−1)

2(pδ−1) otherwise.

Npδ+1(p, l) =


pl−δ−pδ
p2δ−1 if l/δ is even,
pl−δ−1
p2δ−1 if l/δ is odd.

7. Some references on projective polynomials

For background on finite fields we refer to [115] and the handbook [121]. Some papers

that are related to the Galois theory of projective polynomials are [1, 2, 3, 32]. Bluher’s

paper [18] is a major source on the zeroes of projective polynomials. Many papers of Dillon

and Dobbertin (also with other co-authors) are on important combinatorial applications of

projective polynomials [45, 46, 52, 51]. Irreducible polynomials arising from projective

polynomials and/or using the (above) natural action of PGL are addressed in [35, 56,
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134, 62]. Many recent publications address zeroes of projective polynomials [19, 119,

141, 94, 95, 96, 68, 69].

We note that there are many more references on projective polynomials cited throughout

the thesis that are in connection with the subject matter such as semifields, APN functions

and the discrete logarithm problem.

8. Notation

The following remark is on the Big-O notation.

Remark 1.10. We write (cf. [63, Chapter 9]),

f(n) = O(g(n)) if ∃ c > 0 and n0 ≥ 1 such that f(n) ≤ cg(n) for all n ≥ n0,
f(n) = Ω(g(n)) if ∃ c > 0 and n0 ≥ 1 such that f(n) ≥ cg(n) for all n ≥ n0,
f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)),

f(n) = o(g(n)) if lim
n→∞

f(n)/g(n) = 0,

f(n) = ω(g(n)) if lim
n→∞

f(n)/g(n) =∞,

f(n) ∼ g(n) if lim
n→∞

f(n)/g(n) = 1.





CHAPTER 2

Finite semifields

A finite semifield S = (S,+, ◦) is a finite set S equipped with two operations (+, ◦)
satisfying the following axioms.

(S1) (S,+) is a group.

(S2) For all x, y, z ∈ S,

• x ◦ (y + z) = x ◦ y + x ◦ z,

• (x+ y) ◦ z = x ◦ z + y ◦ z.

(S3) For all x, y ∈ S, x ◦ y = 0 implies x = 0 or y = 0.

(S4) There exists ε ∈ S such that x ◦ ε = x = ε ◦ x.

In this thesis, we are only interested in finite semifields. Henceforth, when we say a

semifield we will mean a finite semifield.

1. Preliminaries on semifields

• An algebraic object satisfying the first three of the above axioms is called a

pre-semifield.

• If P = (P,+, ◦) is a pre-semifield, then (P,+) is an elementary abelian p-group

[101, p. 185], and (P,+) can be viewed as an n-dimensional Fp-vector space Fnp .

The prime p is called the characteristic of the pre-semifield.

• If ◦ is associative then S is the finite field Fpn by Wedderburn’s theorem.

• By a result of Menichetti (known as Kaplansky’s conjecture [120]) when n > 2,

there exist proper semifields of odd order pn where ◦ is non-associative. There

are no proper semifields of order 23. For n > 3, there exists proper semifields of

order 2n [101].

• A pre-semifield P = (Fnp ,+, ◦) can be converted to a semifield S = (Fnp ,+, ∗)
using Kaplansky’s trick by defining the new multiplication as

(x ◦ e) ∗ (e ◦ y) = (x ◦ y),

for any nonzero element e ∈ Fnp , making (e ◦ e) the multiplicative identity of S.

• A pre-semifield is an Fp-algebra, thus the multiplication is bilinear. Therefore

we have Fp-bilinear B : Fnp × Fnp → Fnp , satisfying

B(x, y) = x ◦ y,

and Fp-linear left and right multiplications Lx, Ry : Fnp → Fnp , with

Lx(y) := B(x, y) =: Ry(x).

25
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The mapping Lx (resp. Ry) is a bijection whenever x 6= 0 (resp. y 6= 0) by (S3).

Thus,

Re(x) ∗ Le(y) = x ◦ y.

2. Isotopy

Two pre-semifields P1 = (Fnp ,+, ◦1) and P2 = (Fnp ,+, ◦2) are said to be isotopic if there

exist Fp-linear bijections L,M and N of Fnp satisfying

N(x ◦1 y) = L(x) ◦2 M(y).

Such a triple γ = (N,L,M) is called an isotopism between P1 and P2. If additionally

L = M holds, we call γ a strong isotopism and P1 and P2 strongly isotopic. Isotopisms

between a pre-semifield P and itself are called autotopisms. Thus the pre-semifield P
and the corresponding semifield S constructed by Kaplansky’s trick are isotopic and even

strongly isotopic if P is commutative. Isotopy of pre-semifields is an equivalence relation

and the isotopism class of a pre-semifield P is denoted by [P].

3. Nuclei

Associative substructures of a semifield S = (Fnp ,+, ∗), namely the left, middle and

right nuclei, are defined as follows:

Nl(S) := {x ∈ S : (x ∗ y) ∗ z = x ∗ (y ∗ z), ∀y, z ∈ S},
Nm(S) := {y ∈ S : (x ∗ y) ∗ z = x ∗ (y ∗ z), ∀x, z ∈ S},
Nr(S) := {z ∈ S : (x ∗ y) ∗ z = x ∗ (y ∗ z), ∀x, y ∈ S}.

Intersection of the nuclei is denoted by N(S). Also relevant is the associative-commutative

center of a semifield:

C(S) = {x ∈ N(S) : xy = yx, ∀y ∈ S}.

• It is easy to check that Nl(S),Nm(S),Nr(S),N(S), C(S) ⊆ Fpn are finite fields

and if S is commutative then Nl(S) = Nr(S).

• Nuclei are isotopy invariants for semifields.

• The above definitions of nuclei do not apply directly to pre-semifields that are

not semifields. However, since every pre-semifield P ∈ [S] for some semifield S,

the nuclei can be thought to extend to pre-semifields. Thus, when we speak of

the nuclei of a pre-semifield P we mean the nuclei of an isotopic semifield S.

• A semifield S is a C(S)-algebra as well as a left vector space over Nl(S), a right

vector space over Nr(S), a left and right vector space over Nm(S).

4. Connections to geometry and coding theory

Semifields coordinatize projective planes that are called semifield planes and different

semifields coordinatize isomorphic planes if and only if they are isotopic ([6], see [101,

Section 3] for a detailed treatment).
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Semifields are equivalent to maximum rank distance codes with certain parameters (see

e.g. [133]) and can be used to construct relative difference sets (see [129]).

5. Pre-semifields, bilinear maps and Dembowski-Ostrom polynomials

Let End(Fnp ) denote the Fp-linear endomorphisms of the vector space Fnp . Every Fp-linear

mapping L ∈ End(Fnp ) can be written uniquely as an Fp-linearized polynomial

L(x) =

n−1∑
i=0

bix
pi ,

in the polynomial ring Fpn [x]/(xp
n − x). We will not make distinction between mappings

and the polynomials. Consider the polynomials of the form

F (x) =
∑

0≤i≤j<n
aijx

pi+pj .

These polynomials are called Dembowski-Ostrom (DO) polynomials. Note that in

characteristic two, some authors prefer i < j on the indices to avoid linear terms. The

polarization of a DO polynomial F is defined as

∆F (x, y) = F (x+ y)− F (x)− F (y) + F (0).

The mapping ∆F : Fpn × Fpn → Fpn is symmetric and Fp-bilinear. Moreover, every

symmetric Fp-bilinear mapping is the polarization of a DO polynomial if and only if p is

odd.

Dembowski and Ostrom showed that if ∆F (x, y) = 0 implies x = 0 or y = 0 for all x, y ∈
Fpn , then ∆F (x, y) describes a commutative pre-semifield multiplication [41]. Conversely,

by a counting argument, every commutative pre-semifield multiplication can be written as

∆F (x, y) for some DO polynomial F when p is odd [39]. In that case, we call F a planar

DO polynomial/mapping.

Remark 2.1. When p = 2, the fact that x 7→ x2
i+2i are Galois automorphishms of F2n

introduces a fundamental problem: The terms (xy)2
i

cannot appear in the polarization

of a DO polynomial. Moreover, ∆F (x, x) = 0 for all x ∈ F2n and one cannot describe a

pre-semifield multiplication via polarization of a DO polynomial.

Strong isotopy between pre-semifields can be recognized also in the corresponding planar

DO polynomials:

Theorem 2.2. [38, Theorem 3.5.] Let F,G ∈ Fpn [x] be planar DO polynomials and P1, P2

be the corresponding pre-semifields. Then P1 and P2 are strongly isotopic via an isotopism

γ = (N,L,L) if and only if F = NGL−1.

Consequently, we say that two planar DO polynomials F,G are linearly equivalent if

bijective linear mappings L1, L2 exist such that F = L1GL2 and write F ≈GL(Fpn ) G.

Note that this type of equivalence is the most general equivalence known to preserve the

planarity of a DO polynomial, see [105].

Coulter and Henderson [38, Theorem 2.6] showed that the isotopy class of a commutative

pre-semifield contains at most two strong isotopy classes.
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Remark 2.3. For a DO polynomial F , the value F (0) vanishes, therefore the definition

of the polarization seem to have a superfluous term. However, the definition is for more

general quadratic polynomials where the term F (0) is necessary. The polarization of a DO

polynomial F is identical to the polarization of the quadratic polynomial F +L+ c where

L ∈ Fpn [x] is an Fp-linearized polynomial and c ∈ Fpn a constant.

We refer the reader to surveys [108, 86, 37] for more on finite semifields.



CHAPTER 3

Commutative semifields and cryptography: Perfect

nonlinear functions

In cryptography, vectorial functions F : Fnp → Fnp are employed (as S-Boxes) to intro-

duce nonlinearity to the cipher as explained by Shannon using the notion confusion [132].

In symmetric cryptography, a well-known method to attack such a cipher is the so-called

differential cryptanalysis, introduced by Biham and Shamir [16].

Let for a, b ∈ Fnp , where a 6= 0,

δF (a, b) = #{x ∈ Fnp : F (x+ a)− F (x) = b}.

If for carefully chosen ai, bi the value δF (ai, bi) are all high, one can devise a cryptanalysis

of a cipher where the S-Box F is used in several consecutive rounds, which is a common

practice in symmetric cryptography under the names SPN (substitution/permutation net-

works) and Feistel structures [99]. Therefore, to get a mathematical criterion for suitability

of vectorial functions for cryptography (arising from the differential cryptanalysis), one

defines differential uniformity of F as

δF = max{δF (a, b) : a, b ∈ Fnp , a 6= 0}.

Now,

• if p is odd, then δF ≥ 1; and if the equality holds, then the function F is called

perfect nonlinear (PN); and

• if p = 2, then δF ≥ 2; and if the equality holds, then the function F is called

almost perfect nonlinear (APN).

Remark 3.1. This is yet another crucial difference between even and odd characteristics

introduced by the fact that x+ x = 0 for all x ∈ F2n .

1. Representations of vectorial functions

Let n = mk. Then one can consider the vector space Fnp as a k-dimensional Fpm-vector

space. Thus, for all possible factorizations of n = mk, we can represent the function F in

equivalent but different representations in the polynomial rings

Fpm [x1, . . . , xk]/(x
pm

1 − x1, . . . , x
pm

k − xk),

written as

F (x1, . . . , xk) =
∑

0≤i1,...,ik≤pm−1
ai1,...,ikx

i1
1 · · ·x

ik
k , ai1,...,ik ∈ Fkpm .

29
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It is easy to see by Lagrange interpolation that every vectorial function F can uniquely

be represented in every such representation. We view F : Fnp → Fnp to be composed of k

parts F = (f1, f2, . . . , fk), where each fi : Fnp → Fmp are also vectorial functions.

2. Algebraic degree

These representations induce a natural definition of algebraic degree (equal for every

representation of F for every suitable m and k) as

degF = max


k∑
j=1

wtp(ij) : ai1,...,ik 6= (0, 0, . . . , 0)

 ,

where wtp(ij) =
∑m

l=1 ij l. Note that 0 ≤ degF ≤ n(p − 1). We speak of univariate

(k = 1), bivariate (k = 2), and multivariate (k > 1) representations of F .

Remark 3.2. • The DO polynomials of the previous chapter are quadratic vecto-

rial functions with no linear or constant term in their univariate representations.

• Also, (the geometric naming) planarity of the previous chapter corresponds to

(the cryptographic naming) perfect nonlinearity defined in this chapter by simply

observing the correspondence between differential uniformity and polarizations

of vectorial functions.

3. Polynomial degree

Another natural notion of degree, the so-called polynomial degree is defined by

pdegk F = max


k∑
j=1

ij : ai1,...,ik 6= (0, 0, . . . , 0)

 .

For distinct factorizations n = m1k1 and n = m2k2, the polynomial degrees pdegk1 F and

pdegk2 F are not necessarily the same. Thus, for the applications explored in this thesis,

the algebraic degree is regarded more important.

4. Biprojective functions

The (q, r)-biprojective functions F = (f1, f2) of Chapter 1 that are central to this thesis are

quadratic (in the sense of algebraic degree) vectorial functions in bivariate representation

F (x, y) = (f1(x, y), f2(x, y)) where both f1 and f2 are homogeneous (in the sense of

polynomial degree) of homogeneity degrees q + 1 and r + 1 respectively.

5. Uni- and multiprojective functions

It is straightforward to generalize the concept to k-multiprojectivity for every possible

factorization n = km. A k-multiprojective vectorial function F is a quadratic (in the

sense of algebraic degree) function in k-variate representation F = (f1, . . . , fk), where all

fi are homogeneous (in the sense of polynomial degree) of homogeneity degrees qi + 1,

where qi = pji for some 0 ≤ ji < m for 1 ≤ i ≤ k.
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Thus, the quadratic monomial maps x 7→ xp
i+1 are uniprojective, covering all quadratic

monomials under composition of Galois automorphisms. Also, trivially, every quadratic

vectorial function that is homogeneous in the n-variate representation can be thought of

as an n-multiprojective vectorial function with homogeneity degrees (2, 2, . . . , 2).





CHAPTER 4

Classical methods for finding new commutative semifields

As we have seen, finding pre-semifields of order pn is equivalent to finding bilinear mappings

B : Fpn × Fpn → Fpn satisfying

B(X,U) = 0 ⇐⇒ XU = 0.

Since any bilinear mapping can be written as

B(X,U) =
∑

0≤i,j<n
AijX

piUp
j
, Aij ∈ Fpn ,

it is natural to consider first the simplest bilinear mappings that have few terms in this

representation.

For commutative pre-semifields of order pn when p is odd (as explained in previous chap-

ters), one can consider DO polynomials

F (X) =
∑

0≤i,j<n
BijX

pi+pj , Bij ∈ Fpn ,

and try to identify planar mappings among them in increasing complexity, i.e., monomials,

binomials, and so on.

1. Bilinear maps that correspond to pre-semifield multiplication

Let us try to give a picture on (commutative) pre-semifields with increasing complex-

ity. In the commutative case, these correspond to planar DO polynomials in increasing

complexity.

1.1. Monomials (Finite fields). Obviously, the monomial bilinear mappings

B(X,U) = AXqU r,

describe pre-semifields (via X∗U = B(X,U)) that are isotopic to finite fields where q, r are

Fpn-automorphisms and A ∈ F×pn . The simplest commutative semifield is, of course, the

finite field whose multiplication is given by the simplest bilinear mapping B(X,U) = XU

and it corresponds to the polarization of the planar DO polynomial

F (X) =
1

2
X2.

1.2. Binomials (Albert’s generalized twisted fields). Any binomial can be writ-

ten up to isotopy

B(X,U) = AXU −XqU r,

and describes a pre-semifield if and only if

A 6∈ (F×pn)q−1(F×pn)r−1.

33
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These were found by Albert [7] and are called generalized twisted fields. The original

family of Albert, which is named twisted fields, requires q = r. Albert showed that the

generalized twisted fields that are isotopic to a commutative semifield are isotopic to the

twisted field

B(X,U) = XqU +XU q,

when n/ gcd(k, n) is odd where q = pk (cf. [85, Proposition 5.3 (i)]). In this case the

corresponding planar DO polynomial whose polarization gives a commutative twisted field

is

F (X) = Xq+1.

We denote the family of commutative twisted fields of Albert by Family A.

1.3. Tri- and multinomials. The natural approach that is used to classify the above

cases does not seem to work for larger number of terms. Indeed, the only known (to the

best of our knowledge) instance of trinomial pre-semifields not isotopic to finite fields or

generalized twisted fields are isotopic to the pre-semifield described by the bilinear map

B(X,U) = X81U9 +X9U81 −XU

over F35 × F35 .

1.4. More complex planar mappings. Polarizations of monomial DO mappings

are either monomial or binomial bilinear mappings. One can next consider binomial DO

mappings which always give polarizations that have up to four terms. Zha, Kyureghyan

and Wang (Family ZKW) [146] and Bierbrauer (Families B3 and B4) [13] gave new

commmutative semifields from binomial DO mappings. Budaghyan and Helleseth (Family

BH) [21] gave a new family of commutative semifields from multinomial planar functions,

which was discovered independently by Zha and Wang [147] whose corresponding planar

function is a trinomial.

2. The bivariate method of Dickson and others

To construct a semifield of order pn where p is odd and n = 2m is even, one can consider

a quadratic polynomial F in bivariate representation

F (x, y) = (f(x, y), g(x, y)).

To show that F is planar, one has to show that the polarization of F has only nontrivial

zeroes. In the bivariate method, this corresponds to solving

∆f ((x, y), (u, v)) = f(x+ u, y + v)− f(x, y)− f(u, v) + f(0, 0) = 0,

∆g((x, y), (u, v)) = g(x+ u, y + v)− g(x, y)− g(u, v) + f(0, 0) = 0,

simultaneously. If one chooses f to be the simplest nontrivial function (i.e., that involves

both variables) f(x, y) = xy, that is to say the finite field multiplication, the first polar-

ization becomes

∆f ((x, y), (u, v)) = xv + uy = 0,

which in turn gives x = −uy/v for nonzero v. Thus, one can plug this into the second

polarization to eliminate x and possibly solve the problem for judicious choices of g. In fact,

starting with Dickson in 1935, many new semifields have been found using this method and
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by considering different g, again in increasing complexity. The family of Dickson (Family

D) [43] and the family of Zhou and Pott (Family ZP) [148] as well as Bierbrauer’s (not

necessarily commutative) family [14] that includes BH/ZW can be seen as examples to

this method.

Remark 4.1. Extending the method to the non-commutative case is rather straightfor-

ward: Choose again the same left-part multiplication (or a similarly simple one), and

then choose some right-part (not necessarily symmetric) bilinear multiplication (that is,

not necessarily induced by the polarization of a quadratic polynomial in the bivariate

representation). That is to say, define a multiplication by

(x, y) ∗ (u, v) = (xv + uy, µ((x, y), (u, v))),

where µ is bilinear on (x, y) and (u, v). There are many such constructions in the literature

which includes Hughes and Kleinfeld [71], Knuth [101], Bierbrauer [14] and Taniguchi

[136].

3. Bivariate method and weak nucleus semifields

Knuth [101] explored a generalization of Family D by introducing the notion of a weak

nucleus. In fact, Knuth’s families mentioned above fall into this setting. A weak nucleus

W of a semifield S = (Wn,+, ∗) is a finite field for which (x ∗ y) ∗ z = x ∗ (y ∗ z) whenever

any two of x, y, z ∈ S are in W. Ganley [55] and Cohen and Ganley [36] explored (com-

mutative) semifields that are two dimensional over a weak nucleus. In this special case

they show that the semifield multiplication (x, y) ∗ (u, v) can be written as

(x, y) ∗ (u, v) = (µ(x, u) + xv + uy, ν(x, u) + yv),

where µ, ν are bilinear. Simple cases lead to Dickson semifields D and the finite field.

Investigating more complicated choices for µ, ν, they discovered two new families of com-

mutative semifields: Family G and Family CG. This method also leads to non-commutative

semifields including the families found by Hughes and Kleinfeld [71] and Knuth [101] as

it is a generalization of these semifields.

4. Squared permutation polynomials

For a vectorial function F in odd characteristic such that F (0) = 0, we say that F is

two-to-one, if for every x ∈ F×pn , F (x) = F (y) for exactly two y ∈ F×pn and F (x) 6= 0 for

all x ∈ F×pn . For a DO polynomial F this is equivalent to saying | Im(F )| = (pn + 1)/2

since F (x) = F (−x) for all x ∈ F×pn .

Weng and Zeng proved [142] a strong sufficient condition on planar DO polynomials.

Namely, they proved: If a DO polynomial F is two-to-one, then F is planar. The converse

is also true as shown by Kyureghyan and Pott [105]. Thus, a possible way to produce

commutative semifields is to find a permutation polynomial P with P (0) = 0 such that

P (x2) is a DO polynomial. Indeed, some Dickson polynomials (cf. [121, Section 8.1.8])

satisfy this property:

D+
5 (x) = x5 + x3 − x and D−5 (x) = x5 − x3 − x,
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over F3n where n is odd (i.e., 10 = 32 + 1, 6 = 3 + 3 and 2 = 1 + 1, hence D±5 (x2) is a DO

polynomial). The corresponding semifields are CM and DY and found by Coulter and

Matthews [39] and Ding and Yuan [47] respectively.

5. Methods in characteristic two

To the best of our knowledge there are only two families of commutative semifields in

characteristic two. Both are based on trace maps and Kantor’s family generalizes the

Knuth family.

• Knuth observed [100] that the multiplication

X ∗ Y = XY + (trF/K(X)Y + trF/K(Y )X)2

describes a commmutative pre-semifield P = (F,+, ∗) where F = F2km , K = F2k

with odd m > 1.

• Kantor [85] showed (under the same conditions on m) that

X ∗ Y = XY +

(
X

n∑
i=1

trF/F(i)(ζiY ) + Y

n∑
i=1

trF/F(i)(ζiX)

)2

,

where

F ⊃ F(1) ⊃ · · · ⊃ F(n) ⊇ K,
is a commutative pre-semifield P = (F,+, ∗) where ζi ∈ F× are arbitrary and

n ≥ 1.

Kantor’s pre-semifields are commutative versions of the symplectic pre-semifields of the

Kantor-Williams construction [89]. Neither method seems generalizable to the odd char-

acteristic case. The converse observation is also worth noting: no odd characteristic family

of (proper) commutative pre-semifields seems to have analogues in the binary case.



CHAPTER 5

Enumeration results for finite semifields

In this chapter, we list the known results on the number of non-isotopic commutative and

non-commutative semifields of odd and even orders and show how our results sit in the

context of the state of the art.

1. Commutative semifields in the odd characteristic

Two decades ago, Kantor [85, Section 5] wrote a survey that listed the exact numbers of

non-isotopic commutative semifields of odd order pn for the known families at the time.

The listed families were A, CM,D, CG,G, along with the sporadic example of Penttila and

Williams [126]. These numbers as well as the references where the enumeration is done

are listed in Tables 1 and 2. The total number of pairwise non-isotopic semifields arise

from these families add up to less than n. Since then, several new families have been

found. These are ZKW,DY,BH/ZW,ZP,B3,B4, excluding our new family S. Apart

from ZP, the known number of non-isotopic commutative semifields in these families are

(sub)linear in n. The number of non-isotopic commutative semifields Family ZP provides

is quadratic in n. Therefore, before our family, (letting Npn be the number of pairwise

non-isotopic commutative semifields of odd order pn) the lower bound on the number was

as follows:

Npn ≥
n(σ(n)− 1)

8
+ cn,

when ν2(n) ≥ 1 and c a constant where ν2(n) denotes the 2-adic valuation of n (i.e., 2ν2(n)|n
and 2ν2(n)+1 - n) and σ(n) denotes the odd part of an integer n (i.e., σ(n) = n/2ν2(n)).

Improving this number to an exponential level was considered a major open problem. In

fact, Pott noted [128]:

Deciding whether the number of nonisotopic (commutative) semifield[s]

can be bounded by a polynomial in n [is] the main problem in connec-

tion with commutative semifields of [odd] order pn.

The main enumeration result we give in Chapter 3, after Family S, is exponential in n,

Npn ≥
(σ(n)− 1)(pn/4 − 1)

2n
,

when ν2(n) ≥ 2; and solves this problem.

2. Commutative semifields in the even characteristic

For a long time until 1965 when Knuth [100] provided the first family, there were no known

(proper) commutative semifield of even order whereas families of Dickson and Albert

providing proper commutative semifields of odd order had been in existence for decades.

37
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The situation took a dramatic turn in 2003 with Kantor’s family [85] that arose from the

symplectic semifield family of Kantor and Williams [89]. While there were only a linear

number (in n) of known non-isotopic commutative semifields in the odd characteristic, the

number of known non-isotopic commutative semifields in the even characteristic became

super-polynomial (i.e., not bounded by a polynomial) in q = pn.

The number of non-isotopic commutative semifields of even order arising from the family

of Kantor [85] is:

N2km ≥
2km(ρ(m)−1)

k2m4
,

when m > 1 is odd and m is not a power of 3, where we denote by ρ(m) the number of

prime factors of m counting multiplicities.

Kantor [85, p. 112] noted that the disparity between the numbers in the odd (polynomial

in n) and in the even (super-polynomial in q) characteristic cases is a major problem:

The main problem concerning commutative semifields is that there

are too few of them known. [. . . ] However, the results of the present

paper now indicate a major problem in the opposite direction, since

now there are many different semifield planes known in characteristic

2 but not so many in odd characteristic.

Also, Kantor and Williams [89] remarked:

Finally, we come to the most important problem: much larger numbers

of semifield planes are needed in all characteristics. The difficulty is

the nonisomorphism question for planes, which is harder than that for

the semifields themselves. Isotopies are notoriously difficult to deal

with. [. . . ] What is needed is a better and more general approach to

proving nonisotopy. A simple way is to compare the kernels of two

semifields, or to compare various nuclei [40, p. 237]. However, these

are very weak invariants, and by themselves appear to be unable to

produce as many as m nonisomorphic planes of order qm for prime q

and large m.

The isotopy method we establish for biprojective semifields in Chapter 2, which is key to

our enumeration results, addresses this important remark of Kantor and Williams.

3. The non-commutative case

In the odd characteristic case, there are several constructions that give similar amount of

pairwise non-isotopic semifields that are not necessarily commutative.

3.1. Generalized twisted fields. The number of generalized twisted fields of order

pn is at best Θ(pn/3) and in general Θ(ps), where s satisfies s|n and s < n/2 as given

in [130, Corollary 27], which uses results on the automorphishms of generalized twisted

fields by Biliotti, Jha and Johnson [17].
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3.2. Cyclic semifields and semifields from skew polynomial rings. Johnson,

Marino, Polverino and Trombetti showed [74] that the cyclic semifields found by Jha and

Johnson [73] (generalizing the work of Sandler [131]) contains at least

qd − T
hd(q − 1)

semifields of order q2d where T is the number of elements contained in a proper subfield

of Fqd and q = ph. Lavrauw and Sheekey [107] slightly improving the upper bound of

Kantor and Liebler [88], showed that the upper bound is

qd − T
d

.

Therefore, the number is at best Θ(pn/2).

3.3. HMO construction. Hiramine, Matsumoto and Oyama [70] gave a construc-

tion (HMO) of semifields of order q4 from semifields of order q2. Kantor [87] showed that

the number of pairwise non-isotopic HMO semifields of order q4 is at least q2/4pe2 where

q = pe.

Therefore the known number of pairwise non-isotopic semifields of order pn arising from

HMO construction is Ω(pn/2).

Remark 5.1. Kantor gives an elementary upper bound that is quite larger than the lower

bound [87, Theorem 1.6], while still polynomial in the order. But the aim of Kantor is

to show that the number is not super-polynomial in the order q = pn and therefore the

bound is not necessarily tight.

Remark 5.2 (The number of pairwise non-isomorphic translation planes). Recall that

semifields coordinatize projective planes that are called semifield planes. If we relax

exactly one of the distributivity axioms (S2) of the semifield, we get an algebraic object

called a quasifield. Quasifields coordinatize projective planes that are called translation

planes ([67], see also [72] for types of projective planes and algebraic objects coordina-

tizing them). Therefore, semifield planes are translation planes. It is natural to ask

enumeration questions about translation planes. We remark that the HMO construction

is actually for translation planes. In fact, Kantor shows [87, Theorem 1.5 (ii)], the num-

ber of pairwise non-isomorphic HMO (translation) planes of order q4 is exponential in the

order.

3.4. The even characteristic case. In the even characteristic case, the Kantor-

Williams family is the main source (enumeration-wise) of pairwise non-isotopic semifields.

Therefore the number of commutative and general semifields do not differ substantially.

3.5. Taniguchi semifields. We show in Chapter 5 and [K, Theorem 5] that the

number of pairwise non-isotopic Taniguchi semifields of order pn is at least

p
n
2
+s,

where s is the largest divisor of n/2 such that s < n/4. Therefore, for n = 6s the number is

Θ(p2n/3) which makes the Taniguchi family the largest known family of non-commutative

semifields of odd order.





CHAPTER 6

Biprojective method: Generalizing Albert’s twisted fields

Let us first recall our setting. Let n = 2m, p be odd and M = Fpm . We define

Vq,M = {(a, b, c, d)q : a, b, c, d ∈M},

for q = pk for an integer 0 ≤ k < m, recalling that by (a0, b0, c0, d0)q we mean the

q-biprojective function f : M×M→M,

f : (x, y) 7→ a0x
q+1 + b0x

qy + c0xy
q + d0y

q+1.

A (q, r)-biprojective function F : M×M→M×M, F : (x, y) 7→ (f(x, y), g(x, y)) belongs

to

F ∈ Vq,M × Vr,M,
where r = pl for an integer 0 ≤ l < m and

g : (x, y) 7→ a1x
r+1 + b1x

ry + c1xy
r + d1y

r+1.

As mentioned before, a (q, r)-biprojective function F = (f, g) is a quadratic (in the sense

of algebraic degree) vectorial function in bivariate notation, whose components f and g

are homogeneous with homogeneity degrees (in the sense of polynomial degree) q+ 1 and

r + 1 respectively. In this view, biprojective functions generalize quadratic monomials

(uniprojective functions) in univariate notation.

We will now try to give the intuition behind pursuing biprojective functions in search for

new semifields.

1. The number of required permutations is low

Let us first consider polarizations of quadratic monomials in univariate notation (i.e.,

Albert’s twisted fields) which we generalize. These are F (X) = Xq+1 (for q = pk) and

their polarizations are

∆F (X,U) = XqU +XU q = 0,

for which we try to show that there are no nontrivial zeroes. It is immediate to see

Xq−1 = (−1)U q−1

implies, whenever −1 6∈ (F×pn)q−1 we have pre-semifields. However, we will show a slightly

more difficult proof to make our point. For every U ∈ F×pn , apply X 7→ XU to get

U q+1(Xq +X) = 0.

This means that proving bijectivity of one linear mappping is enough. In this case, this

mapping is described by X 7→ ∆F (X, 1) = Xq +X. Note that, for an arbitrary vectorial

function, the number of required bijective linear mappings is |F×pn/F×p | = (pn − 1)/(p −
41
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1). Now, for a (q, r)-biprojective function over M ×M, it is easy to show that checking

polarizations for

P1(M) = {(0, 1)} ∪ {(1, v) : v ∈M}
is enough, by applying M-linear transformations on variables. To that end, define

D0
f (x, y) = b0x

q + c0x+ d0y
q + d0y,

D0
g(x, y) = b1x

r + c1x+ d1y
r + d1y,

D∞f (x, y) = a0x
q + a0x+ c0y

q + b0y,

D∞g (x, y) = a1x
r + a1x+ c1y

r + b1y,

and for u ∈ P1(M) \ {0,∞},

Du
f (x, y) = (a0u+ b0)x

q + (a0u
q + c0)x+ (c0u+ d0)y

q + (b0u
q + d0)y,

Du
g (x, y) = (a1u+ b1)x

r + (a1u
r + c1)x+ (c1u+ d1)y

r + (b1u
r + d1)y.

The following lemma was proved in [A, Lemma 3.1].

Lemma 6.1. Let (x, y) 7→ F (x, y) = (f(x, y), g(x, y)) be a (q, r)-biprojective mapping of

M×M. Then F is planar if and only if the pair of equations

Du
f (x, y) = 0 = Du

g (x, y)

has exactly one solution for each u ∈ P1(M).

Proof. We need to show that the polarization ∆F ((x, y), (u, v)) = (x, y) ∗ (u, v) = 0

has a unique zero for each (u, v) ∈ M ×M \ (0, 0) if and only if Dw
f (x, y) = 0 = Dw

g (x, y)

has a unique solution for each w ∈ P1(M). Inspecting the equations, one immediately

sees that the case v = 0 corresponds to D∞f (x, y) = 0 = D∞g (x, y) after applying x 7→ xu

and y 7→ yu. For v ∈ M×, apply x 7→ xv, y 7→ yv and u 7→ uv to get the remaining cases

Dw
f (x, y) = 0 = Dw

g (x, y) for w ∈M. �

Thus, the number of bijections we need to show becomes pn/2 + 1. Even though this

number is larger than 1, it is much smaller than (pn − 1)/(p − 1). Technically, these

numbers correspond to proving bijectivity of polarizations indexed by

• the projective point P0(Fpn) for quadratic monomials in univariate notation

(uniprojective functions),

• the projective line P1(Fpn/2) for biprojective functions, instead of

• the (n−1)-dimensional projective space Pn−1(Fp) for arbitrary vectorial func-

tions.

This idea can easily be generalized to non-commutative case and also to k-multiprojective

functions.

2. Covers many of the previous constructions

Letting f be the simplest biprojective function that involves both variables, for instance

f = xyq, one easily sees that many of the commutative semifield families that were in-

troduced in the previous chapter are covered by the (q, r)-biprojective idea with suitable

biprojective choices of g. This includes Families D,BH/ZW,ZP as well as the finite
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field as shown in the next chapter. Also the Family A falls into our setting with more

complicated choices of f and g while resorting to the simplified setting q = r for the

automorphisms. These observations hints the possibility of new families within the (q, r)-

biprojective setting since the arbitrary (and complicated) choices had not been fully ana-

lyzed.

Remark 6.2. The biprojective idea is easily generalized to non-commutative semifields.

We say that a pre-semifield multiplication is (q, r)-biprojective if

(x, y) ∗ (u, v) = (µ((x, y), (u, v)), ν((x, y), (u, v))),

where µ, ν are bilinear (in (x, y) and (u, v)) and homogeneous with homogeneity degrees q+

1 and r+1 respectively (i.e., µ contains monomials from {xqu, xuq, xqv, xvq, yqu, yuq, yqv, yvq}
and similarly for ν where q is replaced with r).

Many of the non-commutative families including Hughes-Kleinfeld, Knuth, Bierbrauer and

Taniguchi fall into the (q, r)-biprojective setting.

3. Autotopisms/Isotopisms within family are “nice”

Biliotti, Jha and Johnson determined the full autotopisms groups of generalized twisted

fields (GTF) in [17]. Previous work on autotopisms and isotopisms of GTFs was by Albert

who determined solvability of their autotopism groups [5] and gave the exact conditions

when two GTFs are isotopic [8] as well as when a GTF is isotopic to a commutative

semifield [7]. Purpura determined the exact numbers of pairwise non-isotopic GTFs using

these results [130]. Recall that rough numbers were already given in Kantor’s survey [85,

Section 5].

3.1. Isotopisms of twisted fields (uniprojective GTFs). Consider the special

case of GTFs described by homogeneous bilinear pre-semifield multiplications (i.e., the

twisted fields), B1(X,Y ) = XqY +DXY q and B2(X,Y ) = Xq′Y +EXY q′ over Fpn where

q and q′ are Fpn-automorphisms such that 1 6∈ {q2, q′2} and D,E ∈ F×pn . Let B1, B2 be the

multiplications of two isotopic twisted fields. By [17, Theorem 6.1], an isotopism triple

(L,M,N) ∈ (GL(n,Fp))3 mapping B1 to B2, i.e.,

N(B1(X,Y )) = B2(L(X),M(Y )),

satisfy (L,M,N) ∈ ΓL(1,Fpn)3 which immediately implies q and q′ should agree, i.e.,

q′ ∈ {q, q}. Moreover, (L,M,N) satisfies (setting q = q′),

L(X) = AXr,M(Y ) = BY r, and N(Z) = AqBZr,

where A,B ∈ F×pn and r is an Fpn-automorphism satisfying Dr/E = (B/A)q−1. When,

q = q′, one has a similar set of requirements.

• This observation immediately gives a method to count pairwise non-isotopic

twisted fields that have the specific homogeneous form B(X,Y ) = XqY +DXY q

for multiplication. For every fixed E ∈ F×pn one can easily count such D ∈ F×pn
with Dr/E ∈ (F×pn)q−1 which is at most

n(pn − 1)/ gcd(pk − 1, pn − 1) = n(pn − 1)/(pgcd(k,n) − 1).
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This gives the immediate lower bound

(pgcd(k,n) − 1)/n

on the number of pairwise non-isotopic twisted with homogeneous multiplication

B(X,Y ) = XqY + DXY q for a specific q = pk. Recall that q = pn/2 is not

allowed. Thus, for the largest number of isotopy classes, we choose gcd(k, n) =

n/3 when n = 3k.

• Recall that a GTF that is isotopic to a commutative semifield is isotopic to a

twisted field with multiplicationB(X,Y ) = XqY+XY q for some Fpn-automorphism

q = pk such that n/ gcd(k, n) is odd, as proved by Albert ([7], see also [17, The-

orem 1.11]). This immediately shows that the number of pairwise non-isotopic

commutative twisted fields is precisely b(σ(n) − 1)/2c where σ(n) denotes the

odd part of n.

3.2. Autotopism groups of uniprojective GTFs. Let, as above, B(X,Y ) =

XqY +DXY q be the multiplication of a twisted field P. One sees immediately that

F×pn ∼= {(NA, LA,MA) : A ∈ F×pn},

where

LA : X 7→ AX, MA : Y 7→ AY, NA : Z 7→ Aq+1Z,

is a subgroup of the autotopism group Aut(P).

Existence of such large autotopism groups simplifies many combinatorial problems. In

fact, group theoretic arguments involving large automorphism/autotopism groups have

been employed quite often: for instance, by Yoshiara [145] and by Dempwolff [42] in the

context of vectorial functions and also by Biliotti, Jha and Johnson in the very context

of GTFs [17, Sections 3 and 6]. Our method in Chapter 2 is inspired by the methods of

Dempwolff and Yoshiara.

3.3. Biprojective generalizations. Note that the above ideas will be extended to

the biprojective case. Let P be a pre-semifield of order pn with (q, r)-biprojective multi-

plication. Then

F×
pn/2
∼= {(Na, La,Ma) : a ∈ F×

pn/2
},

where

La : (x1, x2) 7→ (ax1, ax2), Ma : (y1, y2) 7→ (ay1, ay2), Na : (z1, z2) 7→ (aq+1z1, a
r+1z2),

is a subgroup of Aut(P).

It is natural to expect that the role of ΓL(1,Fpn)3 in the uniprojective setting is played by

ΓL(2,Fpn/2)3 in the biprojective setting. We will show that a version of this expectation

indeed holds under a certain condition. Instead of the result of Albert that shows that

every isotopism between uniprojective twisted fields must be of the form ΓL(1,Fpn)3, we

will prove that if there is an isotopism between two biprojective semifields P1,P2,

then there is an isotopism of the form ΓL(2,Fpn/2)3 under a certain condition (see

Chapter 2 for details) which is equivalent in strength when one wants to solve the enu-

meration problem. Then, the enumeration problem in the biprojective setting is handled

via a direct analogy (albeit with considerable complexity) to the uniprojective setting.
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Remark 6.3 (Equivalence of planar functions and isotopy). As explained in Chapter 2, one

can consider equivalence of planar functions instead of strong isotopy of commutative pre-

semifields. The group actions of GL(2,Fpn/2)×GL(2,Fpn/2) on (q, q)-biprojective functions

and (F×
pn/2
× F×

pn/2
)×GL(2,Fpn/2) on (q, r)-biprojective functions are instrumental in the

analysis of such functions partly thanks to the above observations. Note also that in most

cases GL and ΓL can be used interchangeably with small adjustments. We usually prefer

GL for its simplicity and handle the semi-linearity (Galois automorphisms) separately.

4. There are many free spots for field coefficients

Let us go back to the bilinear multiplications of GTFs of order pn, i.e., B(X,Y ) = XqY +

DXY r. Here we have two options for variation:

• different choices for the field automorphisms q, r, and

• different choices for the field coefficient D.

Naturally, since there are only a quadratic (n2) number of field automorphism choices

but an exponential (pn) number of field coefficient choices, the latter is better suited for

constructing large families. A simple inspection shows that we have no other choice than

D = 1 and q = r to get a commutative pre-semifield, thus the only variation comes from

(up to) n field automorphism choices. For the non-commutative case, there are many

possibilities for D (depending on a gcd condition), which indeed gives an exponential

count. The disparity between enumeration results for commutative and non-commutative

semifields is introduced by this observation.

Biprojective setting supplies many more spots for field coefficients even in the commutative

case:

F = ((a0, b0, c0, d0)q, (a1, b1, c1, d1)r), ai, bi, ci, di ∈M, q, r ∈ Gal(M/Fp).

Let us explain intuitively why the known biprojective constructions were not able to exploit

these spots.

• All of the families F,D,ZP,BH/ZW,A contain only one free coefficient (the

non-square a in Table 1). However, simple isotopisms show that the different

choices for the free coefficient cannot produce new semifields. Thus the num-

ber of pairwise non-isotopic semifields is only due to the use of distinct field

automorphisms and therefore polynomial in n.

• For F,D,ZP,BH/ZW families, the simplicity of (0, 0, 1, 0)q allows many iso-

topisms that stabilize this part, thus limiting the number of pairwise non-

isotopic family members. Considering the action of M × GL(2,M) on bipro-

jective functions which gives strong isotopy between the corresponding polar-

izations, we see that f(x, y) = xyq is stabilized by (1/abq)f(L(x, y)) = f(x, y)

where L : (x, y) 7→ (ax, by) with a, b ∈M×. Other more complicated components

usually admit smaller stabilizers. The stabilizer for the left part renders many

coefficient choices for the right part isotopic to each other.

• Similarly the field automorphisms satisfying q2 = 1 admit more isotopisms lim-

iting again the number of pairwise non-isotopic family members. This is in
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line with the uniprojective twisted field case. The pre-semifields defined by

XqY + DXY q are isotopic to the finite field if q2 = 1, thus there is, up to

isotopy, only one such semifield.

• If the field automorphisms q and r agree, i.e., r ∈ {q, q} as in Family A, the

left and right action of GL(2,M) on planar functions supplies many (strong)

isotopisms limiting the number of pairwise non-isotopic semifields. If q and r do

not agree, the left action is restricted to the scaling of both components (i.e.,

M×M ≤ GL(2,M)).

Example 6.4 (The Zhou-Pott case). Consider the Family ZP which produces a quadratic

number of pairwise non-isotopic commutative semifields:

F = ((0, 0, 1, 0)r, (1, 0, 0, a)q), a ∈M× \ (M×)2, for certain q, r ∈ Gal(M/Fp).

It is obvious that one of the non-zero field coefficients in each component can be as-

sumed to be 1. It is then easy to show that y 7→ yb and re-scaling left part gives

((0, 0, 1, 0)r, (1, 0, 0, b
q+1a)q). Since gcd(q + 1, pm − 1) = 2 by the parameter choice and

Lemma 1.3, different choices of a are strongly isotopic as shown by Zhou and Pott [148].

Therefore, in order to get a large family, a rather natural heuristic is to try to find

biprojective families with

• many nonzero coefficients running freely on large sets,

• field automorphisms that do not agree with each other,

• field automorphisms that are not simple (order larger than two),

• complicated components that do not admit large stabilizers.

5. Biprojective point-of-view puts known constructions in perspective

Inspecting Families D,BH/ZW,ZP and the finite field F, one notices the following re-

markable similarity. These families are all of the form which we call finite field type

coefficients,

((0, 0, 1, 0)q, (1, 0, 0, a)r),

for a non-square a ∈M \M× and

(q, r) =


(1, 1) for finite fields,

(q, 1) for Family D,
(1, r) for Family BH/ZWodd,

(q, r) for Family ZP,

for judicious choices of q and r. For Albert type coefficients, i.e.,

((0, 1, b, 0)q, (1, 0, 0, a)r),
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with select a, b ∈M×, we have

(q, r) =


(1, 1) for finite fields,

(q, q) for Family A,
(1, r) for Families ZP and BH/ZWodd,

(q, 1) for Family BH/ZWeven,

again for judicious choices of q and r and recalling that (t, u, v, w)1 = (t, 0, u + v, w)1.

Therefore, within these two coefficient sets, the only case that has not been studied is the

arbitrary (q, r) case in the more complicated coefficient set of Albert type.

• Family S (found in [A], explained in Chapter 8) is precisely this parameter

combination for judicious choices of a and b, and q and r.

• Family S explains all pre-semifields with those parameters we were able to ob-

serve after a rather extensive computer experiment.

• We note that the field coefficient sets different from the above two cases of

the finite field and Albert types, do not seem to give (new) commutative pre-

semifields, again relying upon our experiments.

6. Systematic analysis is possible via the PGL(2,M) action on projective

polynomials

Finding the parameter sets that give commutative semifields is rather difficult for bipro-

jective semifields. However, using the orbits of the action M× × PGL(2,M) (see Chapter

3), one can simplify the analysis. If one finds the orbits of this action on q-projective

polynomials φf , then for every r-biprojective polynomial g1 we have an r-biprojective g2
such that,

φf1 ∼M φf2 ⇐⇒ f1∼L f2 =⇒ (f1, g1)≈L (f2, g2).

This means that P1 is strongly isotopic to P2 where P1,P2 are commutative pre-semifields

whose multiplications are polarizations of the (q, r)-biprojective functions (f1, g1) and

(f2, g2) respectively. Therefore, concentrating only on orbit representatives in the compo-

nent f is enough for complete analysis.

This analysis is helpful in both practical (efficiency of computer experiments) and theo-

retical (classification and/or determining autotopism groups) aspects. We determine the

orbits of this action in [C, Lemma 7] for some special cases. In a forthcoming work we

do this in full generality. Moreover, using orbit representatives, we provide a classification

of (q, q)-biprojective APN functions in [E] (see Chapter 13). Classifications of (1, q)- and

(q, q)-biprojective commutative semifields are addressed in a forthcoming work.

7. New proof methods

When we fix one component to (0, 0, 1, 0)q, we have a simple and well-known method to

analyze the (q, r)-biprojective function dating back to Dickson (see Chapter 2). However,

for more complicated components that involve more than one non-zero coefficient, there

were no known methods available to us. In fact, an important part of the research that
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constitute this thesis was to find ways to solve this problem. These methods appear in

[A, B, C, D, E] and are explained throughout the thesis.



CHAPTER 7

A survey on biprojective representations of known

commutative semifields

In the following, we will show that many known commutative semifields of odd order

fall into the (q, r)-biprojective setting where M denotes the finite field of order pm, with

p an odd prime, q = pk, r = pl are automorphishms of M and q denotes the inverse

automorphism, i.e., xqq = x for x ∈M.

1. Dickson semifields D

Dickson introduced [43] the commutative semifields S = (M×M,+, ◦) with

(x, y) ◦ (u, v) = (xu+ ayqvq, xv + yu)

where q = pk with 0 < k < l and a ∈M× \ (M×)2. Note that the isotopic multiplication

(x, y) ∗ (u, v) = (xu+ ayv, xvq + yqu)

is (1, q)-biprojective and isotopic to the polarization of the (1, q)-biprojective planar map-

ping

FD = ((1, 0, 0, a)1, (0, 1, 0, 0)q).

Different choices of a ∈ M× \ (M×)2 produce isotopic semifields and there are a total of

bn4 c non-isotopic Dickson semifields [85, p. 107].

2. Albert’s twisted fields A

Albert introduced [7] a family of commutative and noncommutative semifields. The com-

mutative ones may be given as S = (F,+, ◦) with

X ◦ U = XqU + U qX,

where q = pk with 0 < k < n satisfying n/gcd(k, n) odd. When F = M(ξ) with [F :

M] = 2, one can write X = xξ + y with x, y ∈ M. One can choose ξ ∈ F \M satisfying

ξ2 = a ∈M× \ (M×)2, leading to the multiplication

(xξ + y) ◦ (uξ + v) = (xξ + y)q(uξ + v) + (uξ + v)q(xξ + y)

= ξq+1(xqu+ uqx) + ξq(xqv + uqy) + ξ(yqu+ vqx) + (yqv + vqy)

= a(q+1)/2(xqu+ uqx) + a(q−1)/2ξ(xqv + uqy) + ξ(yqu+ vqx) + (yqv + vqy).

Identifying ξM + M with M×M, we get

(x, y) ◦ (u, v) =
(
a(q−1)/2(xqv + uqy) + (yqu+ vqx), a(q+1)/2(xqu+ uqx) + (yqv + vqy)

)
,
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which is (q, q)-biprojective and isotopic to the polarization of the (q, q)-biprojective planar

mapping

FA = ((0, a(q−1)/2, 1, 0)q, (a
(q+1)/2, 0, 0, 1)q).

Different choices of a ∈ M× \ (M×)2 produce isotopic semifields and there are a total of

bσ(n)−12 c non-isotopic commutative twisted fields [85, 7].

3. Zhou-Pott semifields ZP

Zhou and Pott [148] gave a family of pre-semifields S = (M×M,+, ◦) given by

(x, y) ◦ (u, v) = (xqu+ uqx+ a(yqv + yvq)r, xv + yu),

where a ∈ M \ (M×)2, q = pk and r = pj with 0 ≤ j, k ≤ m where m/gcd(k,m) is odd.

The isotopic multiplication

(x, y) ∗ (u, v) = (xqu+ uqx+ a(yqv + yvq), xrv + yur),

is (q, r)-biprojective and isotopic to the polarization of the (q, r)-biprojective planar map-

ping

FZP = ((1, 0, 0, a)q, (0, 1, 0, 0)r).

Different choices of a ∈ M× \ (M×)2 produce isotopic semifields and there are a total of

bσ(n)2 c · d
n
4 e non-isotopic ZP semifields [148].

4. Budaghyan-Helleseth/Zha-Wang semifields (BH,ZW,LMPT B)

These semifields were found in [21] and independently in [147]. The commutative semi-

fields given later in [117] and [14] were shown to be isotopic to the previous ones [118].

We note that Bierbrauer’s construction in [14] gives also non-commutative semifields. We

will use the definition from [14]. Let S = (M×M,+, ◦) be the pre-semifield given by

(x, y) ◦ (u, v) =

 (xv + yu, xqu+ xuq + a(yqv + yvq)) if m/gcd(k,m) is odd,

(xu+ ayv, xqv + yuq + a(q−1)/2(xvq + yqu)) if m/gcd(k,m) is even,

where a ∈ M \ (M×)2 and q = pk with 0 < k < m. The pre-semifield multiplication is

(1, q)-biprojective. Similarly, the corresponding (1, q)-biprojective planar mapping whose

polarization is isotopic to S is given by

FBH/ZW =

 ((0, 0, 1, 0)1, (1, 0, 0, a)q) if m/gcd(k,m) is odd,

((1, 0, 0, a)1, (0, 1, a
(q−1)/2, 0)q) if m/gcd(k,m) is even.

The number of non-isotopic semifields in this family is bn4 c which is proved in [53].

Remark 7.1 (Explanations and tables). The known infinite families of biprojective semi-

fields and their planar representations are summarized in Tables 1. FamiliesA,D,BH/ZW
reduce to F when k ∈ {0,m}. Family ZP reduces to D when k = 0, to BH/ZW when

j = 0, and to F when j = k = 0. Family S reduces to ZP when a = 0, and to D when

k ∈ {0, l}. We excluded those cases in the Notes and also in the Counts columns of Table 1.

Table 2 lists known commutative semifields that are not biprojective. We should say here

that these commutative semifields are not obviously represented as biprojective semifields.
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Family Planar Mapping #S Notes (#Nl,#Nm) Count Proved in

F X2 pn (pn, pn) 1

[(0, 1, 0, 0)1, (1, 0, 0, a)1] a ∈ M \ (M×)2, n = 2m

A Xq+1 pn
q = pk, 0 < k < m,

gcd(k, n) = d, n/d odd.
(pd, pd)

⌊
σ(n)−1

2

⌋
[7]

[(0, as1 , 1, 0)q , (as2 , 0, 0, 1)q ]
a ∈ M \ (M×)2, n = 2m

s1 = q−1
2
, s2 = q+1

2

D [(1, 0, 0, a)1, (0, 1, 0, 0)q ] p2m
q = pk, 0 < k < m,

gcd(k,m) = d,

a ∈ M \ (M×)2.
(pd, pm)

⌊
n
4

⌋
[43]

ZP [(1, 0, 0, a)q , (0, 1, 0, 0)r] p2m

q = pk, r = pj ,

0 < j, k < m,

gcd(k,m) = d,

gcd(j, k,m) = d′,

m/d odd, a ∈ M \ (M×)2.

(pd
′
, pd)

⌊
σ(n)−1

2

⌋ ⌊
n
4

⌋
[148]

BH/ZW [(0, 1, 0, 0)1, (1, 0, 0, a)q ] p2m
q = pk, 0 < k < m,

gcd(k,m) = d, m/d odd,

a ∈ M \ (M×)2.
(pd, p2d)

⌊
n
4

⌋
[21, 147, 53]

[(1, 0, 0, a)1, (0, 1, as1 , 0)q ]

q = pk, 0 < k < m,

gcd(k,m) = d, m/d even,

a ∈ M \ (M×)2, s1 = q−1
2

.

S [(1, 0, 0, B)q , (0, 1,
a
B
, 0)r] p4l

q = pk, r = pk+l,

0 < k < l,m = 2l,

gcd(k,m) = e,m/e odd,

a ∈ L×, B ∈ M \ (M×)2.

(pe/2, pe) ≥
⌊
σ(n)−1

2

⌋ ⌈
pl−1
n

⌉
Theorem 8.2

Table 1. Known infinite families of biprojective commutative semifields
of odd order pn

Family Planar Mapping #S Notes (#Nl,#Nm) Count Proved in

ZKW Xq+1 − aQ−1XqQ+Q2
p3s

Q = ps, q = pt,

d = gcd(s, t), s′ = s/d, t′ = t/d,

s′ odd, s′ + t′ ≡ 0 (mod 3),

〈a〉 = F×
p3s

.

(pd, pd) [118] ≥ 1 [146]

B3 Xq+1 − aQ−1XqQ+Q2
p3s

Q = ps, q = pt,

d = gcd(s, t), s/d odd,

q ≡ Q ≡ 1 (mod 3),

〈a〉 = F×
p3s

.

(pd, pd) [118] ≤ 9σ(s) [13]

B4 Xq+1 − aQ−1XqQ+Q3
p4s

Q = ps, q = pt,

d = gcd(2s, t), 2s/d odd,

q ≡ Q ≡ 1 (mod 4),

〈a〉 = F×
p4s

.

(pd/2, pd) [118] ≤ 8σ(s) [13]

CG (x2 + ay2 + a3y18, xy − ay6) 32m m ≥ 3, a ∈ F×3m \ (F
×
3m )2 (3, 3m) 1 [36]

G (x2 + y10, xy − y6) 32m m ≥ 3 odd (3, 3) 1 [55]

CM/DY X10 ±X6 −X 3m m ≥ 5 odd (3, 3) 2 [39, 47]

Table 2. Known infinite families of (non-biprojective) commutative semi-
fields of odd order pn

When the order is square, there might be isotopic semifields that can be biprojective, but

we are not aware of such isotopisms.
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Remark 7.2 (Non-commutative biprojective semifields). Let us shortly explain non-

commutative biprojective constructions.

• Let q = pk be an automorphism of M and c, d ∈M such that

xq+1 + cx− d = 0

has no solutions x ∈M. The pre-semifields defined by

(x, y) ∗ (u, v) =


(xq

2
v + yuq

2
, yqv + dxqu+ cyuq),

(xqv + yuq, yqv + dxuq + cyuq),

(xqv + yuq, yvq + dxqu+ cyuq),

(xv + yu, yqv + dqxqu+ cyqu),

are called Knuth semifields of Type II.i–iv [101, Eq. (7.16), p. 215]. We note

that Knuth formulated these multiplications in a non-biprojective way which

is then repeated in surveys in the same way (see for instance [86, 37]). We

give here (q2, q), (q, q), (q, q) and (1, q)-biprojective representations of these non-

commutative semifields. Knuth also gives a non-biprojective and non-commutative

generalization of Dickson semifields that are called Knuth Type I which we do

not cover here [101, Eq. (7.15), p. 215].

• Bierbrauer extended Knuth Type II.iv semifields [14] in odd characteristic (and

in univariate notation). Later the (1, q)-biprojective representations were given

in [11, 15] in even and odd characteristics. The construction requires a q-

projective polynomial

xq+1 − bxq + cx− d ∈M[x],

which has no M-zeroes. Then the Bierbrauer pre-semifields are defined as

(x, y) ∗ (u, v) = (xv + yu, (xuq − αxqu) + b(yuq + αxqv)

c(xvq + αyqu) + d(yvq − αyqv)),

where α ∈M× \ (M×)q−1. This family includes commutative semifields that are

isotopic to the BH/ZW family.

• Taniguchi [136] extended Knuth Type II.i pre-semifields in the manner Bier-

brauer extended Knuth Type II.iv family. We again give the (q, q2)-biprojective

version that is used in [K]. As in Knuth’s construction, let q = pk be an auto-

morphism of M and c, d ∈M such that

xq+1 + cx− d = 0

has no solutions x ∈ M and α ∈ M× \ (M×)q−1. The Taniguchi pre-semifields

are defined by

(x, y) ∗ (u, v) = (xvq
2

+ yq
2
u, xqu− αq2xuq − c(xvq + αqyqu) + d(yqv − αyvq)).



CHAPTER 8

The number of non-isotopic commutative semifields is

exponential [A]

Recall that Albert’s commutative twisted fields over Fpm×Fpm admit the planar functions

FA = ((1, 0, 0, α)q, (0, 1, β, 0)q),

for α = a(q+1)/2, β = a(q−1)/2 with suitable a ∈ Fpm and q = pk. Since our aim is,

as explained in previous chapters, to generalize Albert’s twisted fields in the sense that

families D,ZP,BH/ZW/LMPT B generalize the finite field, we look for possible planar

functions of the form

F = ((1, 0, 0, γ)q, (0, 1, δ, 0)r),

for suitable γ, δ, q, r. The first main result of [A] is to give such a planar function fam-

ily. For the above parameters, the family we present covers all the planar functions we

encountered during an extensive search.

1. The family

The following diagram and its annotations describe our setting.

Fp

D = Fpd

E = Fpe

L = Fpm/2

M = Fpm

F = Fpn

d

2

m
e

2

2

Notation 8.1.

• p is an odd prime.

• n = 2m, m is even.

• Q = pm/2, Q2 = pm.

• q = pk, r = pk+m/2 = Qq with 1 ≤ k ≤ m−1.

• e = gcd(k,m) with m/e odd.

• d = gcd(k +m/2,m).

• e = 2d.

• (M×)2 — the subgroup of non-zero squares in

M×.

• L× = (M×)Q+1 ≤ (M×)2 ≤M×.

• (M×)Q−1 ≤ (M×)2 ≤ M× — the subgroup of

(Q+ 1)st roots of unity in M×.

• E = Fq ∩M = Fq2 ∩M = Fr2 ∩M.

• D = Fr ∩M.

Now we present the family of planar mappings [A, Theorem 4.4].
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Theorem 8.2. Let a ∈ L× and B ∈M× \ (M×)2 and let

F : M×M→M×M

be defined as

F : (x, y) 7→ F (x, y) = ((1, 0, 0, B)q, (0, 1, a/B, 0)r).

Then F is planar.

The proof of this theorem is rather involved. Note that both parts of the biprojective

function F are complicated as we explained in Chapter 4. The method of Dickson which

works when one part is (0, 0, 1, 0)q is not available here. The proof eventually works by

building up contradictions involving non-squares (see [A, Section 4] for details).

2. A method to determine isotopy of biprojective pre-semifields

We denote the set of all autotopisms of a pre-semifield P by Aut(P). It is easy to check

that Aut(P) is a group under component-wise composition, i.e.,

(N1, L1,M1)(N2, L2,M2) = (N1N2, L1L2,M1M2).

We view Aut(P) as a subgroup of GL(F)3 ∼= GL(M×M)3 ∼= GL(n,Fp)3. Our approach is

based on the following simple and well-known result.

Lemma 8.3. Let P1 = (Fnp ,+, ∗1) and P2 = (Fnp ,+, ∗2) be two isotopic pre-semifields via

the isotopism δ ∈ GL(F)3. Then δ−1 Aut(P2)δ = Aut(P1).

We start by identifying a subgroup of the autotopism group of any (q, r)-biprojective

pre-semifield. See [A, Theorems 5.2 and 5.3] for Sylow’s and Zsigmondy’s theorems.

• Define the cyclic group

Z(q,r) = {γa : a ∈M×},

of order pm − 1, where

γa = (diag(maq+1 ,mar+1),diag(ma,ma), diag(ma,ma)),

where ma denotes multiplication with the finite field element a ∈M×.

• Let p′ be a p-primitive divisor of pm − 1. Such a prime p′ always exists if m > 2

and (p,m) 6= (2, 6) by Zsigmondy’s theorem. In our case, we have p > 2. We

will also stipulate m > 2. Note that p′ 6= 2 since p′ - p − 1 by the definition of

p-primitivity.

• Let R be the unique Sylow p′-subgroup of M×. Define

Z
(q,r)
R = {γa : a ∈ R},

which is the unique Sylow p′-subgroup of Z(q,r) with |R| elements.

• Define

S = {diag(ma,ma) : a ∈M×},
and

SR = {diag(ma,ma) : a ∈ R}.
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Note that SR (resp. S) corresponds to the second and third components of Z
(q,r)
R

(resp. Z(q,r)) and is independent of q and r.

The following lemma is straightforward, but very important.

Lemma 8.4. Let P be any (q, r)-biprojective pre-semifield. Then

Z
(q,r)
R ≤ Z(q,r) ≤ Aut(P).

The central idea of the technique we develop is to identify large abelian Sylow subgroups

in the autotopism group of biprojective semifields. We then use tools from group theory

to obtain strong constraints on when the autotopism groups of two pre-semifields are

conjugate. This approach is inspired by a similar technique for inequivalences of power

functions on finite fields developed by Dempwolff [42] and Yoshiara [145].

Method 8.5. The following is a high-level explanation of our method explaining [A,

Theorem 5.10].

(i) Let P1 = (M × M,+, ∗1) and P2 = (M × M,+, ∗2) be (q1, r1)- and (q2, r2)-

biprojective pre-semifields, respectively, such that q1 6∈ {r1, r1}, 1 /∈ {q1, r1} and

Q 6∈ {q1, r1}, where qi = pki and ri = pli for i ∈ {1, 2}.

(ii) Let G1, G2 be defined as

G1 = Z
(q1,r1)
R ≤ Aut(P1), and

G2 = Z
(q2,r2)
R ≤ Aut(P2).

We first prove that G1 is a Sylow p′-subgroup of Aut(P1) under Condition (C).

(iii) Let δ = (Nδ, Lδ,Mδ) ∈ GL(F)3 be an isotopism between P1 and P2, i.e.,

Nδ(x ∗1 y) = Lδ(x) ∗2 Mδ(y).

Then δ−1 Aut(P2)δ = Aut(P1) and, in particular, δ−1G2δ ≤ Aut(P1).

(iv) Then, δ−1G2δ is a Sylow-p′ subgroup of Aut(P1) by Sylow Theorem (i) and for

some λ ∈ Aut(P1), we have

(δλ)−1G2(δλ) = G1

by Sylow Theorem (iii).

(v) Set γ = (N,L,M) ∈ GL(F)3 as γ = δλ. Since λ : P1 7→ P1 and δ : P1 7→ P2, we

have γ : P1 7→ P2 is an isotopism between P1 and P2.

(vi) The conjugacy γ−1G2γ = G1 implies L,M ∈ ΓL(2,M) using [A, Lemma 5.7]

which states that NGL(F)(SR) = ΓL(2,M) where NGL(F)(SR) is the normalizer

of SR in GL(F).

(vii) Now an analysis on the degrees appearing in the isotopy equation induced by γ

implies that

(a) the defining Galois automorphisms of P1 and P2 should agree. That is to

say,

(i) k1 ≡ ±k2 (mod m) and l1 ≡ ±l2 (mod m), or,

(ii) k1 ≡ ±l2 (mod m) and l1 ≡ ±k2 (mod m); and,
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(b) we have γ = (N,L,M) ∈ ΓL(2,M)3 with further restrictions on N,L,M

listed in the statement of [A, Theorem 5.10]. That is to say, for every

isotopism δ between P1 and P2, there is an isotopism γ ∈ ΓL(2,M)3 between

P1 and P2.

We explain the steps in a series of remarks.

Remark 8.6 (Condition (C)). For a (q, r)-biprojective pre-semifield P, denote by

CP = CAut(P)(Z
(q,r)
R ),

the centralizer of Z
(q,r)
R in Aut(P).

• By Condition (C) we mean that “CP contains Z(q,r) as an index I subgroup

such that p′ does not divide I”.

• We prove in [A, Lemma 5.8], under Condition (C), Z
(q,r)
R is a Sylow p′-subgroup

of Aut(P), handling Part (ii).

• In [A, Lemma 5.7], we prove

NGL(F)(Z
(q,r)
R ) = ΓL(2,M),

CGL(F)(Z
(q,r)
R ) = GL(2,M),

which is instrumental in proving that Condition (C) holds for specific biprojec-

tive semifields as well as in Method 8.5 (vii) (b). Observe that the conjugacy

condition γ−1G2γ = G1 on the second and third components of Z
(q,r)
R is the

same as the normalizer condition on SR by definition which is essential for Part

(vi).

Remark 8.7. The crux of the method is that the problem of determining conjugacy (in

GL(F)) of two groups (Aut(P1) and Aut(P2) that we do not know) is converted to the

problem of determining conjugacy (in Aut(P1)) of two nice subgroups (G1, G2 that we do

know) whose centralizers and normalizers (in GL(F)) are also known.

Remark 8.8. Part (vii) is the analogue of the theorem of Albert that states (under certain

conditions) that every isotopism δ between two twisted fields (i.e., uniprojective case) with

defining field automorphisms q and q′ respectively, has to satisfy:

• δ ∈ ΓL(1,F)3,

• q and q′ should agree, and

• L,M,N , the component linear maps of δ, satisfy further restrictions.

We promised a generalization for the biprojective case. The method above establishes that

under certain conditions. We prove that if there is an isotopism δ between two biprojective

semifields with defining field automorphisms (q, r) and (q′, r′) respectively, then there is

an isotopism γ between these semifields with

• γ ∈ ΓL(2,M)3,

• (q, r) and (q′, r′) should agree, and

• L,M,N , the component linear maps of γ, satisfy further restrictions.
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Remark 8.9. In Part (i), we assume certain conditions on (qi, ri), for instance, their order

should be larger than 2. This assumption is, again, similar to the uniprojective Albert

case. Recall that the twisted fields XqY +DXY q are isotopic to finite fields when q2 = 1

and allow isotopisms outside ΓL(1,F)3. This is very similar to our case (see [A, Remark

5.11 (i)]) where the excluded cases allow different types of isotopisms. If required, one

can prove a similar result for the excluded cases, however, for our purpose, this was not

necessary and left out for the sake of simplicity. We also show [A, Remark 8.3] that

these simpler cases for (q, r) leads to isotopisms between Family S and other biprojective

families.

Next, we specialize to Family S.

3. Isotopisms within the Family S

Recall that, to prove G1 is Sylow-p′ subgroup of Aut(P1), it is enough to prove Condition

(C) for P1.

Method 8.10. The following is a high-level explanation of our method showing that the

number of non-isotopic semifields within the Family S is exponential in n.

(i) First we prove [A, Lemma 6.1] that if P is a (q, r)-biprojective pre-semifield in

the Family S, then,

|CP| = (pm − 1)(pgcd(k,m) − 1), or

|CP| = 2(pm − 1)(pgcd(k,m) − 1).

In particular, Condition (C) is always satisfied.

(ii) Now, using Method 8.5 (vii) we show strong isotopy conditions within the Family

S ([A, Theorem 6.2]). The notation Pq,B,a denotes a pre-semifield in Family S
with the subscripted variables employed in the statement Theorem 8.2.

(a) Pq,B,a and Pq′,B′,a′ are isotopic if and only if they are strongly isotopic.

(b) Pq,B,a is isotopic to Pq,B,a′ for a′ = BQ+1/a and arbitrary q.

(c) Pq,B,a is isotopic to Pq,B′,a′ for arbitrary q,B,B′, a and a suitable choice for

a′.

(d) If Pq,B,a is isotopic to Pq,B,a′ , then it is also isotopic to Pq,B,−a′ .

(e) There are at most 2m = n different a′ such that Pq,B,a is isotopic to Pq,B,a′ .

(f) No other isotopisms exist.

(iii) Finally, this immediately gives the following bounds. Let NS(p, n) be the number

of pairwise non-isotopic pre-semifields in Family S on Fnp . Then

σ(n)− 1

2
· p

n/4 − 1

n
≤ NS(p, n) ≤ σ(n)− 1

2

(
pn/4 − 1

)
.

Several remarks on the details of the method follow.

Remark 8.11 (Part (i)). By [A, Lemma 5.7], the second and third component L,M of

an isotopism δ = (N,L,M) ∈ CP has to be in GL(2,M). Now, the isotopy equation
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imposes, after rather lengthy calculations, a certain form on N and in turn on δ. Then

the cardinality of the centralizer can easily be counted.

Remark 8.12 (Part (ii)). The proof of this part is similar to that of Part (i). The

conditions listed in [A, Theorem 5.10] imposes strict restrictions on the shape of the

isotopism γ = (N,L,M) between two pre-semifields in the Family S. These restrictions

lead, again after lengthy calculations, to the isotopy conditions listed above.

Remark 8.13 (Part(iii)). The proof is straightforward after Part (ii) and resembles the

simple method for Albert’s twisted fields we explained in Chapter 3. There are σ(n) − 1

admissible values for q, and only q, q yield isotopic pre-semifields. Then there are pn/4− 1

admissible values for a, with at most n of them yielding isotopic pre-semifields.

In particular, S is the first known family of commutative (pre-)semifields that yields

exponentially many non-isotopic (pre-)semifields. Since non-isotopic pre-semifields lead

to inequivalent planar mappings (see Theorem 2.2), this also shows that the number of

inequivalent planar mappings grows exponentially in n.

Corollary 8.14. The number of non-isotopic commutative semifields of order pn and the

number of inequivalent planar DO mappings of Fpn are exponential in n for a fixed odd

prime p and n divisible by 4.

4. Nuclei and comparison to other semifields

The nuclear parameters of the family can be computed using similar methods.

Theorem 8.15. The left, middle and right nuclei Nl(S),Nm(S),Nr(S) satisfy Nl(S) =

Nr(S) ∼= D and Nm(S) ∼= E.

Using the nuclei and the biprojective method we can show that Family S is new.

Theorem 8.16. Let Pq,B,a = (M × M,+, ∗) be a pre-semifield in the Family S. Pq,B,a
is not isotopic to any other known commutative semifield, except possibly semifields from

Family B4. Family S yields new examples of commutative semifields.

Although the parameters p,m, q for the pre-semifields from Family S are more general

than that of Family B4, for suitable choices of p,m, q the parameters may coincide. The

next proposition shows that even in that case Family S contains new semifields thanks to

its exponential count. More precisely, we show that the number of non-isotopic semifields

from Families B3 and B4 of order p3s and p4s, respectively, is linear in s.

Proposition 8.17. The number of non-isotopic pre-semifields in Family B3 (and B4 resp.)

of order p3s (and p4s resp.) is at most 9σ(s) (and 8σ(s) resp.).

Remark 8.18. For the Family ZKW we are not aware of any result on the exact value or

a bound on the number of non-isotopic pre-semifields.
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5. Counting the number of pairwise non-isotopic Taniguchi semifields

We apply the method explained in this chapter to Taniguchi family (see Remark 7.2).

Although it has some peculiarities which we address throughout the paper [K], the overall

scheme is almost identical. We prove (recalling that q = pk):

Theorem 8.19. Let NT (p, k,m, a) be the number of non-isotopic Taniguchi semifields

T (q, α, a, b) over Fpm × Fpm with k 6= m/2. Set d = gcd(k,m) and l = m/d. Then

(pd − 2) ·N0(p,m)/m ≤ NT (p, k,m, 1) ≤ (pd − 2) ·N0(p,m),

where N0(p,m) is determined in Theorem 1.9. Further,

(pd − 2) · pd/m ≤ NT (p, k,m, 0) ≤ (pd − 2) · pd

if l is even,

NT (p, k,m, 0) = pd − 2

if p, l are odd and NT (p, k,m, 0) = 0 if p is even and l is odd. The total number of

non-isotopic Taniguchi semifields with k 6= m/2 is

NT (p,m) =

bm
2
c∑

k=1

(NT (p, k,m, 0) +NT (p, k,m, 1)) .

For m = 3k we get the best number.

Corollary 8.20. The number of pairwise non-isotopic Taniguchi semifields of order p2m

is Θ(p4m/3).





CHAPTER 9

Even characteristic: Almost perfect nonlinear functions

In this chapter we address specifics of APN functions and mostly assume that the charac-

teristic is two (see Chapter 3).

Family Monomial Conditions Proved in

Gold X2i+1 gcd(i, n) = 1 [57]

Kasami X22i−2i+1 gcd(i, n) = 1 [90]

Welch X2t+3 n = 2t+ 1 [50]

Niho X2t+2
t
2−1, t even n = 2t+ 1 [49]

X2t+2
3t+1

2 −1, t odd

Inverse X22t+1−2 n = 2t+ 1 [122]

Dobbertin X24t+23t+22t+2t−1 n = 5t [48]

Table 1. Known infinite families (up to Galois automorphisms and inver-
sion) of APN monomials on F2n

Known monomial APN families are listed in Table 1 (in the univariate notation). The

reader is referred to [128, Section 5.3] for a list of known families of APN functions that

are not necessarily monomials. A few remarks follow.

• The only quadratic functions in Table 1 are the Gold functions. Note that these

functions are the binary analogues of the (odd characteristic) Albert planar

functions on Fpn mapping X 7→ Xpk+1 with n/ gcd(k, n) odd. The requirement

gcd(i, n) = 1 is necessary for the Gold functions to be APN. It can be shown

that the derivatives of Gold functions in general are 2gcd(i,n)-to-1 [57].

• In contrast, all known infinite APN families that are not monomials are qua-

dratic.

An important difference between odd and even characteristic concerns the notion of equiv-

alence. We let F = Fpn in the following section.

1. Equivalences of vectorial functions

Let F,G : F → F be vectorial functions. The widest known notion of equivalence that

keeps the PN/APN property invariant is called the CCZ-equivalence [31]. Define the

graph of the function F by

ΓF = {(x, F (x)) : x ∈ F}.
61
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Then F is said to be CCZ-equivalent to G if there exist Fp-linear endomorphisms A,B,C,D

of F such that
(
A B
C D

)
is full rank, u, v ∈ F and a permutation π : F→ F such that

(2)

A B

C D

 x

F (x)

+

u
v

 =

 π(x)

G(π(x))

 ,

for all x ∈ F. In that case we write F ≈CCZ G. A narrower notion of equivalence

that also keeps the algebraic degree of F invariant is called the extended affine (EA)

equivalence. We write F ≈EA G if for all x ∈ F, we have

A1 ◦ F ◦A2(x) +A3(x) = G(x),

for affine maps A1, A2, A3 : F → F with A1, A2 bijective. It can be shown that EA-

equivalence is a special case of CCZ-equivalence where one sets B = 0. If A1, A2, A3 are

linear then we talk about extended linear (EL) equivalence (denoted by F ≈EL G).

We can restrict the equivalence even more if, for instance, we want to keep the property of

being a permutation invariant. The functions F and G are said to be linearly equivalent

if

L1 ◦ F ◦ L2 = G,

for L1, L2 ∈ GL(F). Note that this is equivalent to setting B = C = 0 and u = v = 0

in (2) (if L1, L2 are affine, then they are called affinely equivalent). We denote this

equivalence by F ≈GL(F) G.

Remark 9.1. (i) An important theorem for quadratic APN functions is that for

two quadratic APN functions F,G, we have, by a result of Yoshiara [144],

F ≈EA G ⇐⇒ F ≈CCZ G.

For quadratic APN functions one can be more specific (see for instance [92,

Proposition 2.2]):

F ≈EL G ⇐⇒ F ≈CCZ G.

(ii) The CCZ-equivalence is interesting for APN functions but not for PN functions.

As shown in [105, 21], for two PN functions F,G, we have,

F ≈EA G ⇐⇒ F ≈CCZ G.

(iii) The CCZ-equivalence does not necessarily keep the degree invariant. For an

invertible map F we have F ≈CCZ F
−1 via an anti-diagonal matrix in (2).

(iv) The CCZ-equivalence is induced by the natural left action of AGL(F × F) on

the graph of F . All the others we describe here are equivalences induced by

subgroup actions of AGL(F× F).

(v) We use even narrower types of equivalences (see Chapter 3) when addressing

biprojective functions.

2. Biprojective APN functions

Note that the explanations we gave in previous chapters for biprojective planar functions

and commutative semifields analogously hold for biprojective APN functions after some
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suitable and minor modifications. We will, however, give a brief state of the art on bipro-

jective APN functions before the constructions of the current thesis appeared. For the

APN functions, the initial work on bivariate functions was by Carlet [27] who found the

first biprojective APN family, and then Zhou and Pott [148] introduced another family of

biprojective APN functions (an analogue of their commutative semifields family) that con-

tains a quadratic number of inequivalent members. Carlet then introduced [28] a method

to find bivariate (but not necessarily biprojective) APN functions from his previous bipro-

jective family (revisited in [23]). Further work on biprojective APN functions includes the

family of Taniguchi [136]. Further work that does not involve constructions of bivariate

functions but studies their important properties include [9, 93, 92, 102, 91].

We now give a survey on the known biprojective APN functions.

3. A survey on biprojective representations of known APN functions

We will now show that many known infinite families of APN functions

F : M×M→M×M

where M = F2m are (q, r)-biprojective. To the best of our knowledge these are the only

known APN families that can be represented as biprojective functions.

• It is clear that the Gold functionsX 7→ X2i+1 can be written as (q, q)-biprojective

functions, as

(x+ βy)2
i+1 = x2

i+1 + β(x2
i
y) + β2

i
(xy2

i
) + β2

i+1y2
i+1

shows. When m is odd, we can use β = ω ∈ F4 \ F2. In that case

(G) F (x, y) = ((1, 0, 1, 1)2i , (0, 1, 1, 0)2i).

• When i = 0 (or j = 0), i.e., q = 20 = 1 and r = 2j with j > 0, then the resulting

biprojective function can be written up to equivalence

(C) F (x, y) = (xy, (a, b, c, d)r),

which is the family C introduced by Carlet [27]. Indeed, Carlet showed that F

is APN if and only if a 6= 0 and g(x, 1) 6= 0 for any x ∈M.

• Zhou and Pott found the following APN family [148] which also falls into the

scheme of (q, r)-biprojective functions. The functions

(ZP) F (x, y) = ((1, 0, 0, d)2i , (0, 0, 1, 0)2j ), d ∈M×,

are APN if and only if gcd(i,m) = 1, m is even and d 6= a2
i+1(b2

i
+ b)1−2

j
for

any a, b ∈M.

• In [136], Taniguchi found the following APN family

(T ) F (x, y) = ((1, 0, c, d)2i , (0, 0, 1, 0)22i), c, d ∈M×,

where gcd(i,m) = 1, f(x, 1) 6= 0 for any x ∈ M. If c = 0 and m is even, then

the corresponding function belongs to the Zhou-Pott family [136].

Remark 9.2. Although not an infinite family, the κ1-function (which is CCZ-equivalent

to the κ-function whose representation is slightly more complicated) can be represented
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as a (2, 2)-biprojective function:

κ1(x, y) = ((b, 1, 0, b+ 1)2, (0, b, b, b+ 1)2),

where b is a root of x3 + x + 1. We will see in the next chapter why this function is

important.

Remark 9.3. Observe that (apart from the uniprojective Gold functions) all known bipro-

jective APN functions have one part equivalent to (0, 0, 1, 0)q (see Chapter 4 for the analogy

to the commutative semifields case). This is also true for the κ-function (see [E, Remark

V.3]). Recall that one aim of our thesis is to present techniques for functions with generic

components (which we will do in the forthcoming chapters).

Family Function Notes Count Proved in

G Xq+1 q = 2k, gcd(k,m) = 1

((0, 1, 1, 0)q , (1, 0, 1, 1)q) m odd.
ϕ(2m)

2
[57]

[(1, 0, b, a)q , (0, 1, 1, b+ 1)q) m even, trM/F2 (a) = 1, b =
∑k−1
i=0 a

2i .

C (xy, (1, b, c, d)q)

q = 2k, 0 < k < m,

gcd(k,m) = 1,

xq+1 + bxq + cx+ d 6= 0 for x ∈ M.

ϕ(m)
2

[C, Thm. 4, 5]
[27]

T ((1, 0, 1, d)q , (0, 0, 1, 0)q2 )

q = 2k, 0 < k < m,

gcd(k,m) = 1,

xq+1 + x+ d 6= 0 for x ∈ M.

≥ ϕ(m)
2
d 2

m+1
3m
e

[92]
[136]

ZP ((1, 0, 0, d)q , (0, 0, 1, 0)r)

q = 2k, r = 2j , 0 < j, k < m, m even

gcd(k,m) = 1,

d 6= aq+1(bq + b)1−r for a, b ∈ M.

ϕ(m)
2
bm

4
+ 1c

[93]
[148]

F1 ((1, 0, 1, 1)q , (1, 1, 0, 1)q2 )
q = 2k, 0 < k < m,

gcd(3k,m) = 1.

ϕ(m)
2

[C, Thm. 5]
[B]

F2 ((1, 0, 1, 1)q , (0, 1, 1, 0)q3 )
q = 2k, 0 < k < m,

gcd(3k,m) = 1, m odd.

ϕ(m)
2

[C, Thm. 5]
[B]

F4 ((1, 0, 0, B)q , (0, 1,
a
B
, 0)r)

q = 2k, r = 2k+m/2, 0 < k < m,

m ≡ 2 (mod 4), gcd(k,m) = 1,

a ∈ K×, B ∈ M× \ (M×)3, Bq+r 6= aq+1.

≥ ϕ(m)
2m

(2
m
2 − 2)

[C, Cor. 1]
[C, Thm. 1]

Table 2. Known infinite families of biprojective APN functions on M×M

Remark 9.4. Table 2 lists all known biprojective APN families. We denote the families

of Gold, Carlet, Taniguchi and Zhou-Pott functions by G, C, T and ZP. We want to note

that the first component of the Taniguchi functions is often also written (in our notation)

as (1, 0, c, d)q. However, it is easy to verify that all values c 6= 0 are equivalent to the c = 1

case and the c = 0 case is a Zhou-Pott function.



CHAPTER 10

APN permutations

Permutations P : Fnp → Fnp find natural applications in cryptography, for instance as S-

Boxes in the SPN construction of block ciphers which includes the cryptography standard

AES. Particularly interesting are permutations that are simple in natural (polynomial)

representations since simply represented functions usually satisfy some interesting prop-

erties in an extremal way. We have already seen some examples: Gold APN and Albert

planar functions, both of which have the simplest monomial form in the most natural

univariate notation, deliver the optimal differential behaviour.

Now, we explain how the classical constructions of PN/APN functions behave in terms of

bijectivity.

• Gold functions X 7→ X2k+1 (which are APN if and only if gcd(k, n) = 1) permute

F2n if and only if gcd(2k + 1, 2n− 1) = 1. This means that a Gold APN function

is bijective if and only if n is odd by Lemma 1.3. When n is even, Gold APN

functions are three-to-one on F×2n . Finding APN permutations seem to be a

difficult problem on even dimensions. An observation of Dobbertin [30] states

that a monomial APN function X 7→ Xd is necessarily three-to-one (on F×2n)

when n is even and bijective when n is odd. The cryptographically interesting

inverse function X 7→ X2n−2 is always a permutation but not APN when n is

even (however, it is quite close to being APN).

• Planar functions cannot be bijective since for all nonzero A ∈ Fnp one can always

find an X ∈ Fnp such that F (X+A)−F (X) = 0 since the maps X 7→ F (X+A)−
F (X) are necessarily bijective for a planar function F . Actually, Albert’s planar

maps X 7→ Xpk+1 are always two-to-one on F×pn noting again the requirement

that n/ gcd(k, n) is odd. Recall the result of Weng and Zeng that states that two-

to-one DO mappings (on F×pn) are planar and the converse result of Kyureghyan

and Pott: planar DO mappings are two-to-one (see Chapter 4).

These observations entail a natural question which is usually named “the big APN

problem”.

Problem 10.1. Do there exist APN permutations when n is even?

To continue further, we need to explain another important cryptanalytic attack and the

corresponding mathematical ideas behind it.

65



66 10. APN PERMUTATIONS

1. Fourier transform and linear attacks

Let F : Fn2 → Fm2 be a vectorial Boolean function and define for (u, v) ∈ Fm2 × Fn2 and

u 6= 0,

λF (u, v) = #{x ∈ Fn2 : 〈u, F (x)〉 = 〈v, x〉} − 2n−1.

Note that λF measures how much information linear combinations of input and output

bits leak. Similar to differential attacks, if for carefully chosen ui, vi the value |λF (ui, vi)|
are all high, one can devise a cryptanalysis of a cipher where the S-Box F is used in

several consecutive rounds, called linear cryptanalysis. The nonlinearity of a vectorial

Boolean function is then defined as

NLF = 2n−1 −max{|λF (u, v)| : (u, v) ∈ Fm2 × Fn2 , u 6= 0}.

Relevant to the concept is the Walsh transform of a Boolean function f : Fn2 → F2,

defined as

f̂(v) =
∑
x∈Fn2

(−1)f(x)(−1)〈v,x〉,

which is the Fourier transform of f̃ : Fn2 → {−1, 1}, where f̃ = (−1)f . We naturally

extend the definition to cover vectorial Boolean functions F : Fn2 → Fm2 as (for u ∈ Fm2 , v ∈
Fn2 ),

F̂ (u, v) =
∑
x∈Fn2

(−1)〈u,F (x)〉+〈v,x〉,

which can be seen as the collection of the Walsh transforms of the component Boolean

functions Fu = 〈u, F 〉. The linearity of F is defined by

LF = max{|F̂ (u, v)| : (u, v) ∈ Fm2 × Fn2 , u 6= 0}.

Observe that F̂ (u, v) = 2λF (u, v).

To deduce the optimal (minimal) absolute value of λF for a (vectorial) Boolean function

F : Fn2 → Fm2 one uses the following fundamental identity for Boolean function f : Fn2 → F2,∑
v∈Fn2

(f̂(u))2 = 22n,

known as Parseval’s identity, which immediately gives

LF ≥ 2n/2.

When n is even, the bound is sharp for every m ≤ n/2 (that is to say, there are functions

F satisfying the bound with equality). The functions satisfying the bound are called bent

functions which then necessarily satisfy

F̂ (u, v) = ±2n/2, for all u ∈ Fm2 , v ∈ Fn2 with u 6= 0.

The following extended definition of differential uniformity of Chapter 3 is only natural

(we only require the Boolean case — odd characteristic or even arbitrary abelian group

generalizations are straightforward). A vectorial Boolean function F : Fn2 → Fm2 is called

perfect nonlinear if

δF (a, b) = |{x ∈ Fn2 : F (x+ a) + F (x) = b}| = 2n−m,
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for all (a, b) ∈ Fn2 × Fm2 with a 6= 0. When n is even and m ≤ n/2, a (vectorial) Boolean

function F is bent if and only if F is perfect nonlinear.

We will restrict our attention to the vectorial Boolean case n = m. Recall that the optimal

differential uniformity in this case is two and is satisfied by APN functions. When n is

odd, the bound (which also holds for n even)

LF ≥ 2(n+1)/2

is sharp and attained by almost bent (AB) functions. In that case

F̂ (u, v) ∈ {0,±2(n+1)/2}, for all u ∈ Fn2 , v ∈ Fn2 with u 6= 0.

Remark 10.2. The Walsh spectra of affine and quadratic (recall that these always refer

to the algebraic degree) Boolean functions are well-known. For an affine function it is

{0,±2n} and for a quadratic function {0,±2kf } for some kf ≥ n/2 which is fixed by

the quadratic function f . The determination of kf for a given function can be done via

the theory of quadratic forms (i.e., a quadratic function with no affine part), which

shows that every possible kf is attained by some quadratic function. In the bent case

(i.e., kf = n/2), the value 0 does not appear in the spectrum and when kf > n/2 it

always does which can easily be seen by Parseval’s identity. A Boolean function that has

the spectrum of a quadratic or an affine function is called plateaued, and the vectorial

Boolean functions all of whose components are plateaued are called component-wise

plateaued. See [121, Section 7.2] for quadratic forms over finite fields and [121, Section

9.1], [30] for Boolean functions.

When n is odd, every AB function is APN and every plateaued APN function is AB (See

[121, Section 9.2], [104, 128] for more on AB/APN/PN functions). However, there are

APN functions that are not AB (e.g., the inverse and Dobbertin power functions).

When n is even, the optimal value for LF is unknown. The best known value is attained

for instance by the Gold and the Kasami power functions and is LF = 2(n+2)/2.

When n is even, define the set of non-bent components of F by

NBF = {u ∈ Fn2 : Fu is not bent }.

Berger et al. [12, Corollary 3] showed that for a component-wise plateaued APN function

F (the proof of the quadratic sub-case is due to Nyberg [123, Theorem 10]), we have

(3) |NBF | ≤ 1 +
2n − 1

3
.

The importance of these results for us is related to the following character theoretic char-

acterization [115, Theorem 7.7] of bijectivity of F : Fn2 → Fn2 .

Theorem 10.3. A vectorial Boolean function F is bijective if and only if

F̂u(0) =
∑
x∈Fn2

(−1)〈u,F (x)〉 = 0,

for all 0 6= u ∈ Fn2 .

Thus, a component-wise plateaued APN function F cannot be bijective by (3).
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Remark 10.4 (Hermite’s criterion). Another characterization of the bijectivity of F :

Fpn → Fpn is known as Hermite’s criterion [115, Lemma 7.3 and Theorem 7.4] and

states that F is bijective if and only if

∑
x∈Fpn

F (x)d =

 0 if 0 ≤ d ≤ pn − 2,

−1 if d = pn − 1.

2. Dillon’s idea

Let n = 2m be even. A non-bijective APN function F might be equivalent to a bijective

APN function G, if the notion of equivalence

• preserves being APN, and

• does not necessarily preserve being bijective.

The EA- and CCZ-equivalences both satisfy these two properties. A component-wise

plateaued APN function cannot be bijective, thus if we want to select F to be component-

wise plateaued, we have to avoid EA-equivalence since it preserves being component-wise

plateaued as well. However, CCZ-equivalence does not necessarily preserve this prop-

erty. Noting that many known APN families are quadratic (and that it covers the EA-

equivalence), the choice of CCZ-equivalence for this purpose is quite logical.

This is the crux of Dillon’s idea:

(i) find a sufficient condition to decide whether a function F is CCZ-equivalent to

a bijection G, and then,

(ii) on small dimensions m ≥ 3, try every known APN family/sporadic function.

Denote by

Z
F̂

= {(u, v) ∈ F2n × F2n : F̂ (u, v) = 0} ∪ {(0, 0)}
the set of zeroes of the Walsh transform. In fact, Browning et al. [20] found a

necessary and sufficient condition which then gives a method to check whether an APN

function f is CCZ-equivalent to a permutation.

Theorem 10.5. [20] A vectorial Boolean function F : F2n → F2n is CCZ-equivalent to a

permutation if and only if there exist two n-dimensional subspaces

U, V ⊆ Z
F̂
⊆ F2n × F2n

such that U ∩ V = {(0, 0)}.

Browning et al. [20] tried every known APN function at that time for 3 ≤ m ≤ 5 and

found an APN permutation when m = 3.

Theorem 10.6. The κ-function defined by

κ : X 7→ X3 +X10 + UX24,

is CCZ-equivalent to an APN permutation with U ∈ F26 satisfying U6 +U4 +U3 +U = 1.
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The function κ is the only known APN function (up to CCZ-equivalence) on an even

dimension over F2 that is equivalent to a permutation. Thus “the big APN problem” is

defined on even dimensions larger than six.

Remark 10.7. For a bijection F : F2n → F2n , the vector spaces U, V of Theorem 10.5 are

U = {0} × F2n and V = F2n × {0}.

For κ, these are

U = u1F23 × u2F23 and V = v1F23 × v2F23 ,

for some u1, u2, v1, v2 ∈ F×2m with u1 6= v1 and u2 6= v2. That is to say, instead of the

direct products of the F2n-vector space with the trivial vector space, direct products of

F2n/2-vector spaces are employed. This nice structure is partly a consequence of the fact

that κ is a (q, r)-biprojective function. Note that for a q-biprojective f : F2m×F2m → F2m ,

we have

f̂(u, (v, w)) = f̂(aq+1u, (av, aw))

for all a ∈ F2m .

3. Results on bijectivity of uni- and biprojective functions

In the following we will solve the following fundamental problems on bijectivity of unipro-

jective (Gold) and biprojective functions.

Problem 10.8. The following problems are natural problems we solve in this thesis on

uni- and biprojective functions.

(i) Decide whether Gold APN functions are CCZ-equivalent to permu-

tations.

Dillon’s idea leads to APN permutations when used with the (q, q)-biprojective

function κ. The question whether the most natural infinite family of APN func-

tions (i.e., the uniprojective Gold functions) are equivalent to permutations on

even dimensions is a very natural one, since they are equivalent to permutations

on odd dimensions and they are (q, q)-biprojective (recall that biprojectivity is

a natural generalization of uniprojectivity). We will give a negative answer to

this question in Chapter 11.

(ii) Classify (q, q)-biprojective permutations.

We showed that (q, r)-biprojective functions in bivariate representation are nat-

ural generalizations of uniprojective functions in univariate representation. In-

specting their bijective behaviour is also a natural direction. We will clas-

sify (q, q)-biprojective permutations and fractional q-projective permutations in

Chapter 12. This result covers and generalizes main results from numerous re-

cent papers solving many problems listed in them.

(iii) Classify (q, q)-biprojective APN functions.

This will decide whether Dillon’s APN permutation arising from κ-function on

F6
2 is generalizable. As we will see, it turns out that the κ-function is an anomaly

and every (q, q)-biprojective APN function (when n > 6) is CCZ-equivalent to
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a Gold APN function. Together with the solution of the relevant problem that

shows that Gold APN functions are not CCZ-equivalent to permutations, we

will deduce that if a (q, q)-biprojective APN function is CCZ-equivalent to a

permutation then it must be the κ-function. This will be done in Chapter 13.

(iv) Find more (q, r)-biprojective APN functions.

Finding new APN functions is already a difficult problem. Here, we further re-

strict ourselves to the more difficult problem of finding biprojective APN func-

tions. Given that the only known APN permutation is equivalent to a biprojec-

tive one, this problem is also interesting regarding the “big APN problem”. We

will find new (q, q2)- and (q, q3)-biprojective APN families in Chapter 14. How-

ever, we will also show that they are not equivalent to permutations on small

extensions.

(v) Determine equivalences between (q, r)-biprojective APN functions.

Checking inequivalences of APN functions are usually done by checking invari-

ants with the help of a computer. Finding a generic theoretical method for

checking inequivalences of APN functions is an important problem. We give a

method for the large superclass of (q, r)-biprojective functions in Chapter 15.

Remark 10.9. Similar classification problems on (q, r)-biprojective functions seem to be

very difficult. Nevertheless, we will give some positive and negative results in forthcoming

chapters.



CHAPTER 11

Gold APN maps are not CCZ-equivalent to permutations

on even extensions [H]

The main result of this chapter is the following theorem which solves Problem 10.8 (i).

See Table 1 for the definitions of Gold and Kasami APN functions.

Theorem 11.1. The following monomial APN functions are not CCZ-equivalent to per-

mutations.

(i) Gold functions on F2n when n even,

(ii) Kasami functions on F2n when n divisible by 4.

First, let us explain the method.

1. APN families/functions that are not CCZ-equivalent to bijections

We only need the sufficiency part of the condition in Theorem 10.5 to find APN permu-

tations using Dillon’s idea. On the contrary, in order to rule out families, it is enough to

have a necessary condition. A simpler condition would be helpful for both theoretical and

practical purposes. Now, the following is a simpler necessary (but not sufficient) condition

which follows from the proof of Theorem 10.5, implicit in [H, Section 3] and proved in full

in [61, Condition 2].

Theorem 11.2. If a vectorial Boolean function F : F2n → F2n is CCZ-equivalent to a

permutation then there exist F2-vector spaces S, T ⊆ NBF ⊆ F2n such that S + T = F2n.

We define the vector

NF =
[
ηd(NBF ) : 0 ≤ d ≤ n

]
,

where ηd(S) is the number of F2-vector spaces of dimension d in S. This vector is shown

to be an EA-invariant for vectorial functions in [61].

Theorem 11.2 has the following bound as corollary.

Corollary 11.3. If F : Fn2 → Fn2 is equivalent to a permutation then

ηn/2(NBF ) ≥ 2.

2. Summary

The analysis is naturally divided into two cases.

(i) If 4|n, we will show that the non-bent components of Gold and Kasami APN

functions cannot contain an F2-vector space of dimension n/2, which by Corol-

lary 11.3 implies that they cannot be equivalent to a permutations.

71
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Gold and Kasami APN functions are component-wise plateaued and thus have

large bent sets. These sets are highly structured. The following table lists bent

components of Gold and Kasami functions which state that if F is a Gold or

Kasami APN function then NBF = (F2n)3.

Family Monomial Conditions Proved in

Gold tr(αX2i+1) gcd(i, n) = 1, α ∈ F×2n \ (F×2n)3 folklore

Kasami tr(αX22i−2i+1) gcd(i, n) = 1, α ∈ F×2n \ (F×2n)3 [46, 144]

Table 1. Bent components of APN monomials on F2n

(ii) If 4 - n, the analysis is more difficult.

3. Doubly even dimension

(i) The following lemma, which gives a bound on the maximum dimension of an

F2-vector space in (F2n)3, is key to proving our main result in this chapter. Let

n = 2m and F = F2n . The odd m case of the following lemma is easy.

Lemma 11.4. Let [F : F2] = 2m and U ⊆ (F)3 be an F2-subspace of F. Then

dimU ≤

 m, if m is odd,

m− 1, if m is even.

The proof employs a double summation argument and the following classical

result of Carlitz. In [H], we denote by χ(e) = (−1)Tr(e).

Theorem 11.5 (Carlitz). [33, Theorem 1] Let [F : F2] = 2m. Define

Cz(a) :=
∑
x∈F

χ(ax3).

We have

Cz(a) =


22m, a = 0,

(−1)m+12m+1, a ∈ (F×)3,

(−1)m2m, a ∈ F× \ (F×)3.

The theorem of Carlitz can be seen as the Walsh transforms F̂β(0) of components

Fβ of Gold and Kasami APN functions.

(ii) When m is even, the non-bent components of Gold and Kasami functions cannot

contain F2-vector spaces of dimension m = n/2 by Lemma 11.4 and by Table 1.

By Corollary 11.3, we prove the following.

Corollary 11.6. Gold and Kasami APN functions on a doubly-even-degree

extension of F2 are not equivalent to permutations.

4. Oddly even dimension

Let [F : F2] = n = 2m with m odd (i.e., n is oddly even) and K = F2m .
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(i) Theorem 10.5 and Theorem 10.3 together implies the following necessary condi-

tion for an APN function to be CCZ-equivalent to a permutation.

Proposition 11.7. If F : F→ F is CCZ-equivalent to a permutation of F, then

there exist two F2-linear maps S, T of F such that for all α ∈ F×,∑
x∈F

χ(T (α)F (x) + S(α)x) = 0,

with rankT ≥ m.

(ii) It is easy to see that cK where c ∈ (F×)3 are maximal F2-vector spaces in cubes.

The following theorem (proved by Sziklai) shows that the F2-vector spaces in

cubes with maximal dimension m are precisely the vector spaces cK above.

Theorem 11.8. [135, Theorem 1.1] If d|(q+1), then in Fq2 (any characteristic)

the only q-subsets with the property that the difference of any two elements is

always a d-th power are αdFq for some α ∈ F×
q2

.

Recall that in our case m is odd, q = 2m and 3|(q + 1).

(iii) Now restricting the linear map T of Proposition 11.7 to have ImT = cK for some

c ∈ (F×)3, and an intricate analysis, we prove the main result of the paper.

Theorem 11.9. Gold APN functions on an oddly-even-degree extension of F2

are not equivalent to permutations.

We refer to the original paper [H, pp. 15–19] for the lengthy proof using triple

exponential sums.





CHAPTER 12

Classification of (q, q)-biprojective and fractional

q-projective permutations [D]

Classification of bijections of Fpn induced by the monomials Xd ∈ Fpn [X] is well-known.

The mapping X 7→ Xd permutes Fpn if and only if gcd(d, pn − 1) = 1.

Thus, the standard gcd arguments of Lemma 1.3 immediately provides the classification

of bijective uniprojective (Gold) mappings Gk : X 7→ Xpk+1.

The mapping Gk permutes Fpn if and only if p = 2 and n/ gcd(k, n) is odd.

In this chapter, we are going to produce full classification results on bijections induced by

• (q, q)-biprojective functions of the form:

F : L× L→ L× L

(x, y) 7→ (f(x, y), g(x, y)),

where f and g are q-biprojective polynomials, and

• fractional q-projective functions of the form

π : P1(L)→ P1(L)

x 7→
φf (x)

φg(x)
,

where φf and φg are q-projective polynomials.

For fractional q-projective functions, we require that

(i) φf and φg do not have a common zero in L, and

(ii) q + 1 ∈ {deg φf ,deg φg}.

These two conditions can succinctly be described as (see Lemma 1.6 in Chapter 1)

“φf and φg do not have a common zero in P1(L).”

In this chapter, we classify

• (q, q)-biprojective permutations under the natural action of GL(2,L)×GL(2,L)

where (L,M) ∈ GL(2,L)2 acts on F as L−1 ◦ F ◦M , and

• fractional q-projective permutations under the natural action of PGL(2,L) ×
PGL(2,L) where (µ, ν) ∈ PGL(2,L)2 acts on π as µ−1 ◦ π ◦ ν,

as described in Chapter 3 (see also [D, Sections 1 and 2] and [E, Section III]). The

corresponding notions of equivalence are denoted by ≈ and ∼ respectively (in the notation

of the thesis, these are ∼L and ∼M respectively).
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Remark 12.1. If we consider the division φf/φg to be formal (i.e., cancellations carried

out only for units in L), then the notions of equivalence coincide (as in Lemma 1.4), that is

to say Ff1,g1 ≈ Ff2,g2 if and only if πf1,g1 ∼ πf2,g2 . Since we do not assume gcd(φf , φg) = 1,

the actual division may collapse two ∼-equivalence classes to one. However, we show that

this does not happen for the cases that are important to our classification (see [D, Section

6.4]).

The next section derives the result that the two types of permutations are closely related.

1. The projective-affine correspondence between π and F

The two types F and π of permutations are related to each other, akin to the correspon-

dence between the affine plane and the projective line.

• Suppose that Ff,g = (f, g) is a (q, q)-biprojective permutation of L× L where

f = (aq+1, aq, a1, a0)q and g = (bq+1, bq, b1, b0)q.

Then fixing y = 0 (similar for x = 0) we immediately see that we must have

(aq+1, bq+1) 6= (0, 0),

and

gcd(q + 1, r − 1) = 1,

since the map x 7→ xq+1 permutes L if and only if gcd(q + 1, r − 1) = 1.

• Now (w.l.o.g.) assume (exactly) one of aq+1 = 0 and bq+1 = 0 holds, and consider

(4) G(x, y) = Ff,g(xy, y) = (yq+1f(x, 1), yq+1g(x, 1)),

for y 6= 0. If 0 6∈ {aq+1, bq+1}, one can then consider (f, bq+1f − aq+1g) ≈ (f, g).

• Assume (w.l.o.g.) that bq+1 = 0 (otherwise use (g, f) ≈ (f, g)). Then, we must

have

(i) g(x, 1) 6= 0 for all x ∈ L, and

(ii) πf,g(x) = f(x,1)
g(x,1) is a permutation of L, which implies f(x0, 1) = 0 for unique

x0 ∈ L,

by (4).

• These mean that πf,g(x) permutes P1(L). Note that since we also assume that

y 7→ yq+1 permutes L×, these conditions are sufficient for Ff,g to be a permuta-

tion.

Therefore, for q-biprojective polynomials f, g ∈ L[x, y], we have

Proposition 12.2. The function Ff,g : (x, y) 7→ (f(x, y), g(x, y)) is a permutation of L×L
if and only if the following hold

(i) gcd(q + 1, r − 1) = 1,

(ii) q + 1 ∈ {degx(f),degx(g)},

(iii) f(x, 1) = 0 = g(x, 1) is not satisfied for x ∈ L, and

(iv) πf,g(x) = f(x,1)
g(x,1) permutes P1(L).
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2. The classification theorem

We show that fractional q-projective (and therefore (q, q)-biprojective) permutations exist

if and only if the characteristic is two and in that case there are two classes of such permu-

tations. The following diagram and its annotations describe our setting in characteristic

two in order to carefully define the permutations.

Notation 12.3. Let

L = Fr, r = 2l, l ∈ N,

K = Fq, q = 2k, l > k ∈ N,

D = Fs = K ∩ L, s = 2d, d = gcd(l, k),

M = Ft = K · L, t = 2m, m = lcm(l, k).

F2

D

D′

K

L

L′

M

L′(ω)

d

2i

k′′

l′

2

• ω2 + ω = ε2 ∈ L′,

• ωq + ω = εq ∈ L,

• k′ = 2ik′′, with k′′ odd,

• k = dk′, l = dl′,

• gcd(k′, l′) = 1,

• δ ∈ K with δ + ε2 ∈ L,

• q = 2k, r = 2l, s = 2d.

Let εq ∈ L be an element satisfying trL/D(εq) = 1. Then there exists ω ∈ L′ satisfying

ω + ωq = εq and ω + ω2 = ε2 ∈ L′ (as shown in [D, Lemma 4.1]). Let δ ∈ K be defined as

δ =

 0 if [K : D] = k′ is odd,

ε2 + z if [K : D] = k′ is even,

where z ∈ L satisfies zq + z = ε2q + εq with trL/F2
(z) = 1. Such δ exists and is easy to

determine by [D, Theorem 5.11] and same for all εq.

Theorem 12.4. Let π(x) be a fractional q-projective permutation of P1(L) over a finite

field L of arbitrary characteristic. Then, char(L) = 2 and π(x) is projectively equivalent

to, either

(i)

π(x) ∼ xq+1 + (εq + 1)x+ ε2 + δ + ε1
xq + x+ εq

,

with trD/F2
(ε1) = 1, or

(ii)

π(x) ∼ xq+1 + (εq + 1)x+ ε2 + δ

xq + x+ εq
.

Remark 12.5. Another (and possibly simpler) way of phrasing this classification is as

follows.



7812. CLASSIFICATION OF (q, q)-BIPROJECTIVE AND FRACTIONAL q-PROJECTIVE PERMUTATIONS [D]

• Every fractional projective bijection of P1(L) is equivalent to

πα : x 7→ xq+1 + (εq + 1)x+ α

xq + x+ εq

for some α ∈ L such that αq + α = ε2q + εq, and all such α gives bijections.

• πα ∼ πβ if and only if trL/F2
(α) = trL/F2

(β). and there exist such α0, α1 ∈ L
satisfying trL/F2

(α0) = 0 and trL/F2
(α1) = 1.

Remark 12.6. When [L : D] = l′ is odd, the classification becomes simpler. In that case,

π(x) is projectively equivalent to, either

(i)

π(x) ∼ xq+1 ∼ xq+1

xq + x+ 1
, or,

(ii)

π(x) ∼ xq+1 + ε1
xq + x+ 1

,

with trD/F2
(ε1) = 1.

3. The method

We first note that the class of (q, q)-biprojective functions of L×L is in one-to-one corre-

spondence with the following subclass of Dembowski-Ostrom polynomials over L(ξ) where

[L(ξ) : L] = 2. Recall that |L| = r and let

Dq = {q + 1, r(q + 1), q + r, qr + 1}.

The subclass of Dembowski-Ostrom polynomials we mentioned above is defined by

(5) R(X) =
∑
d∈Dq

AdX
d, Ad ∈ L(ξ).

It is straightforward to see by L(ξ) = L+ξL (i.e., writing X ∈ L(ξ) as X = x+ξy for x, y ∈
L) that all R (when L(ξ) = L+ξL is viewed as L×L) describe (q, q)-biprojective functions

and simple counting shows that the two families are in one-to-one correspondence. Let

R(x+ ξy) = f(x, y) + ξg(x, y) where f, g are q-biprojective. One can define the fractional

q-projective function

πR : x 7→ f(x, 1)

g(x, 1)
,

whenever f, g do not have common P1(L)-zeroes. We call this process projectivization.

Note that different choices for the basis {1, ξ} lead to equivalent (q, q)-biprojective and

fractional q-projective functions under ≈ and ∼ respectively.

Method 12.7. Let char(L) = 2 and π1, π2 be the two fractional q-projective permutations

of Theorem 12.4. Let F1, F2 be the two corresponding (q, q)-biprojective functions.

(i) First we identify π1, π2 in a different way.

• (The case [L : D] is odd.) Then,

(a) π1 is the projectivization of Xj for some j ∈ {q+ 1, q+ r} depending

on whether [K : D] is odd or even; and
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(b) π2 ∼ xq+1.

• (The case [L : D] is even.) Then, π1, π2 are projectivizations of Xj where

j ∈ {q + 1, q + r}.

These are proved in [D, Sections 7.2 and 7.3].

(ii) In the odd [L : D] case: the corresponding (q, q)-biprojective function F1 is

bijective by a simple gcd consideration on Xj . One proves the bijectivity of π1
immediately by Proposition 12.2. Bijectivity of π2 is clear, again by a simple

use of gcd.

In the even [L : D] case: F1, F2 are not bijective, again by gcd conditions. The

bijectivity of π1, π2 is proved by representing π1 and π2 in a univariate way (see

[D, Proposition 7.4]).

(iii) The converse (i.e., every fractional q-projective bijection is equivalent to one of

π1, π2) is proved using the discrete Fourier transform (DFT). For a function

F : L→ L, define

fj =

 F (0) if j = 0,

−
∑

y∈L F (y)y−j if 1 ≤ j ≤ |L− 1|,

where −j = |L| − 1− j. The following fact is well-known.

Lemma 12.8. The function F satisfies F (x) =
∑|L|−1

j=0 fjx
j .

Now, using the (fractional) polynomial forms of π and an effective use of DFT,

we deduce several contradictions via the Hermite’s criterion (see Remark 10.4).

We prove that every fractional q-projective bijection π is equivalent to π1 or π2.

The details are in [D, Sections 6.1, 6.2, and 6.3].

(iv) The final step concerns the full classification. We show that π1 and π2 are

inequivalent using the definition of equivalence ∼ directly (see [D, Section 6.5]).

That is to say, there are no µ1, µ2 ∈ PGL(2,L) such that π1 = µ1 ◦ π2 ◦ µ2.

4. Results on the roots of q-projective polynomials

A large portion of [D, Sections 4 and 5] is devoted to the roots of q-projective polynomials

with one zero in P1(L).

Let

I1(q,L) = {b ∈ L : xq+1 + x+ b has one L-zero}.
These sets are quite important (see Chapter 13).

• We provide ([D, Theorem 5.13]) (2d + 1)-to-one mappings fδ+ε : L → I1(q,L)

generalizing [45, Theorem 6.1] (which is also the main result of [68, Theorem

1]) which requires d = gcd(k, l) = 1 to the arbitrary d case.

• We provide a method (see [D, Remark 5.14]) to explicitly (i.e., depending only

on y and a parameter c ∈ K) determine all q+1 roots of xq+1+x+fδ+ε(y). These

methods are extendable to Ij(q,L) for any number of L-roots j a q-projective
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polynomial allows. These results are essential in our study of q-projective poly-

nomials and used quite often in the thesis. A less explicit description was given

by Bluher [18, Theorem 2.5] which we heavily use.

• We give an alternative proof to Theorem 12.4. The proof is more direct but

quite complicated. Our aim is, again, to provide a method which is essential for

the study of combinatorial objects that arise from q-projective polynomials as

exemplified for instance by the results in the next chapter.

5. Related results

Motivated by the cryptographic applications, quite a few papers have been published

recently [139, 138, 111, 110, 114, 137] on permutations of type (5) for special cases of

parameters (p, k, l). Recall that pk = q and pl = r. By Lemma 1.3 and Proposition 12.2,

gcd(q + 1, r − 1) = 1 is required for the permutations of the form (5), the condition p = 2

is necessary for these polynomials to be permutations.

• In [139], some permutations of type (5) were given when (p, k, l) = (2, 1, odd).

• In [138], more permutations of type (5) were given when (p, k, l) = (2, 1, odd),

and it was conjectured that these are all such permutations.

• In [111], it was proved that the permutations given in [139, 138] covers all such

permutations when (p, k, l) = (2, 1, odd).

• In [110, 114], some permutations of type (5) were given when (p, k, l) = (2, k, odd),

with the additional restriction gcd(k, l) = 1, and it was conjectured that these

are all such permutations. The authors raised equivalence questions on the found

classes.

In [D], we solve all these problems not just for the specific parameters but for all (p, k, l)

using the setting L × L, instead of the univariate setting L(ξ) of the form (5). Namely,

we give all q-biprojective permutations of L× L for all (p, k, l) without any restriction on

the parity of l or gcd(k, l). This is equivalent to determining all permutations of the form

(5) as we have shown above. Further, we give a complete classification under L-linear

equivalence solving the equivalence problems raised by the authors, again in our setting

and for all (p, k, l).

Moreover, recall that our classification of q-biprojective permutations of L×L arose from

the classification of the fractional q-projective permutations of P1(L). Proposition 12.2

states that the classification of the fractional q-projective permutations is stronger, since

one does not need the requirement gcd(q + 1, r − 1) = 1 or p = 2. Note that the fractional

q-projective permutations has not been studied before to the best of our knowledge.

In the papers [110, 114, 137], the authors analyzed the cryptographic boomerang unifor-

mity property of the permutations given in [111, 110, 114]. In [D, Section 7], we proved

that all of the permutations in the cited papers are equivalent to Gold permutations (and

the degenerate doubly-Gold permutation in one case), hence they are not new.

Remark 12.9. Since the publication of [D], three more papers [97, 143, 113] have ap-

peared that are mostly covered by [D].



CHAPTER 13

Classification of (q, q)-biprojective APN functions [E]

Our aim in this this chapter is to classify (q, q)-biprojective functions Vq,L × Vq,L, under

the equivalence relation ≈L induced by the action of GL(2,L) × GL(2,L) (the left and

right application). As observed in Chapter 6, it is enough to consider representatives from

the orbits of q-projective polynomials Vq,L under the equivalence relation ∼M induced by

the action of L× × PGL(2,L) (scaling and right application).

We say that Sq,L ⊆ Vq,L is a representative set of Vq,L if (denoting by [f ]∼ the equivalence

class of f under ∼)

[Sq,L]∼M
=

⋃
f∈Sq,L

[f ]∼M
= Vq,L.

Define the sets (recalling that Zf is the number of P1(L)-zeroes of f)

D0 = {(0, 0, 0, 0)q} ,
D1 = [(0, 0, 0, 1)q]∼M

,

D = D0 ∪D1,

Πj = {f ∈ Vq,L \D : |Zf | = j} ,

for j ∈ {0, 1, 2, pδ + 1} where δ = gcd(k, l).

In [E, Section 3], we determine the orbits of q-projective polynomials when p = 2 and

δ = gcd(k, l) = 1. The fact that Π0 has one orbit was established in [C, Lemma 7].

We then deduce [E, Lemma 3.6] a representative set of Vq,L.

Lemma 13.1. Let p = 2, q = 2k, δ = gcd(k, l) = 1, and

S = {(0, 0, 0, 0)q, (0, 0, 0, 1)q, (0, 0, 1, 0)q} ∪ {(1, 0, 0, a)q : a ∈ L×}.

(i) If l is odd then

Sq,L = S ∪ {(0, 1, 1, 0)q} ∪Π0.

(ii) If l is even then

Sq,L = S ∪Π1.

Then Sq,L is a representative set for Vq,L.

1. The method

In this chapter we prove the following theorem.

Theorem 13.2. Let q = 2k, r = 2l, L = F2l with 0 < k < l and F : L× L → L× L be a

(q, q)-biprojective function. Then F is APN if and only if gcd(k, l) = 1, and

(i) l is even and F ≈LGq+1 or F ≈LGq+r, or
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(ii) l is odd, k is odd, and F ≈LGq+1, or

(iii) l is odd, k is even, and F ≈LGq+r, or

(iv) l = 3 and F ≈L κ.

The biprojective maps Gs : L× L→ L× L with s ∈ {q + 1, q + r} are the so-called Gold

maps X 7→ Xs in the univariate notation with a suitable identification of the vector spaces

(see Chapter 3).

Method 13.3. (i) Deduce [E, Proposition 5.1] that gcd(k, l) = 1 is necessary.

(ii) Use Sq,L of Lemma 13.1 and analyse case by case:

(a) The case f ∈ {(0, 0, 0, 0)q, (0, 0, 0, 1)q} is trivial.

(b) The case f ∈ {(0, 0, 1, 0)q} is handled by [E, Lemmas 4.2 and 4.3].

The only allowed case is when L = F23 and the corresponding function

is κ. In this part, we use a method using properties of Dillon-Dobbertin

difference sets.

(c) The case f ∈ {(1, 0, 0, a)q} reduces to (b).

(iii) Now we analyze the last case: (f, g) ∈ Π1 ×Π1 when l is even.

We must have rf(x, 1)+sg(x, 1) ∈ Π1 for every (r, s) ∈ L×L\{(0, 0)} otherwise

it falls into one of the above cases (some details require care [E, Proposition 5.5]).

That is to say

π(x) =
f(x, 1)

g(x, 1)
=
s

r

has a unique solution x ∈ P1(L) for every s/r ∈ P1(L), i.e., x 7→ π(x) is bijective.

That is to say

F ≈LGq+1 or F ≈LGq+r,

by Method 12.7. Thus the problem of classifying biprojective APN function has

reduced to the classification of fractional projective permutations.

The case when l is odd is much more involved but similarly natural. We use

the PGL(2,L) action and exploit transitivity of the action on Π1. The proof [E,

Proposition 5.6] again boils down to the classification of fractional q-projective

permutations of the last chapter.

Remark 13.4. (i) Combining with the previous results we deduce that a (q, q)-

biprojective APN function F over L × L is CCZ-equivalent to a permutation if

and only if l = 3 and F ≈L κ.

(ii) The problem we solved is one of the open problems listed by Carlet in [29, Section

3.7] where important problems on cryptographic functions was surveyed.

(iii) The special case k = 1 was solved in [34] using results from [109, 103, 60].

Thus, our theorem generalizes the main results of [34, 109, 103, 60].

(iv) Another idea to attack the problem is to identify a class of functions that includes

κ when l = 3 and also are CCZ-equivalent to permutations for larger l. This is

the case of the so-called butterfly construction [127] which requires l to be odd.

We show in [E, Remark V.4] that a subcase of [E, Proposition V.2] (which is
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a subcase of the main theorem) strictly generalizes the butterfly construction.

Thus, our theorem also generalizes the main results of [26, 25].

(v) The proof is based on three concepts:

• zeroes of projective polynomials [18],

• properties of Dillon-Dobbertin difference sets [46], and

• recent classification of fractional projective permutations over finite fields

[D].

(vi) The proof avoids the use of Weil bound (which usually allows only small degree

cases) and is purely combinatorial.





CHAPTER 14

Hybrid Gold functions [B]

The main aim of [B] was

• to introduce (q, r)-biprojectivity,

• to introduce a method to find (q, r)-biprojective APN functions, and

• to introduce two infinite families of such functions.

As we have seen in Chapter 10, the κ-function, which is (2, 2)-biprojective, is CCZ-

equivalent to an APN permutation of F23 × F23 . This was our motivation to investi-

gate (q, q)-biprojective functions. However, we have seen in the last chapter that (q, q)-

biprojective APN functions are not CCZ-equivalent to permutations on larger dimensions.

One of the main motivation of studying (q, r)-biprojective functions was finding new APN

functions that might be equivalent to permutations. The main theorem is [B, Theorem

III.1].

Theorem 14.1. The following (q, r)-biprojective functions

F : (x, y) 7→ (f(x, y), g(x, y))

are APN on F2m × F2m.

F =


((1, 0, 1, 1)2i , (1, 1, 0, 1)22i) gcd(i,m) = 1, gcd(3,m) = 1 (F1),

((1, 0, 1, 1)2i , (0, 1, 1, 0)23i) gcd(i,m) = 1, gcd(6,m) = 1 (F2),

((0, 1, 1, 0)2, (1, u, u
3, u13)23) m = 5 and u5 + u2 = 1 (F3).

Remark 14.2. Note that left and right parts of functions from Families F1 and F2 are

left or right parts of some Gold functions. This idea of construction used later in the

pre-semifield Family S of [A] by using left and right parts of Albert’s twisted fields.

We were not able to find a function CCZ-equivalent to a permutation. However, we found

the only example (apart from the Gold and κ functions) of a quadratic APN function

that has at least two m-dimensional F2-vector spaces in their non-bent components (i.e.,

that satisfies Corollary 11.3) which is a necessary condition for being equivalent to a

permutation. Also there are only three quadratic APN families that have at least one m-

dimensional F2-vector space in their non-bent components one of which is a family found

in this section. The following proposition lists known APN functions and families that

have at least one m dimensional F2-vector spaces in its non-bent components.

Proposition 14.3. We have the following bounds for the following APN functions F :

F22m → F22m, when m is odd.

(i) If F (X) = X2k+1 with gcd(k, n) = 1, then ηm(NBF ) = (2m + 1)/3.
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(ii) if F = κ, then ηm(NBF ) = 2.

(iii) if F ∈ F3, then ηm(NBF ) = 2.

(iv) If F (X) = X3 + tr(X9), then ηm(NBF ) ≥ 1.

(v) If F ∈ F2, then ηm(NBF ) ≥ 1.

1. The method

Method 14.4. (i) First we prove

Lemma 14.5. Let (x, y) 7→ F (x, y) = (f(x, y), g(x, y)) be a (q, r)-biprojective

mapping of F2m × F2m. Then F is APN if and only if the pair of equations

Du
f (x, y) = 0 = Du

g (x, y)

has exactly two solutions for each u ∈ P1(F2m).

This is the analogue of the PN function case of Lemma 6.1. A slight variation

of D with the notation E is used for the method (see [B, Lemma 4.1]). In fact,

this version is chronologically the first instance of the approach of this thesis.

(ii) We write the (E variant of) polarizations for all u ∈ P1(Fpm) (other than a few

exceptions which should be handled separately)

x+ xq = Mu
f (y),(6)

x+ xq
k

= Mu
g (y),(7)

where Mu
· are F2-linear maps determined by E. Note that (Fq ∩ F2m)× {0} are

common solutions and Fq ∩ F2m = F2 should be satisfied, for F to be APN, i.e.,

gcd(k,m) = 1. Consider the F2-linear operator

L(α, β) =
k−1∑
l=0

αq
l
+ β.

It is easy to see

L(x+ xq, x+ xq
k
) = 0.

Define

LuF (y) = L(Mu
f (y),Mu

g (y)).

We deduce that kerLuF contains all y ∈ Fpm such that (x, y) is a common solution

of (6) and (7) for some x ∈ Fpm . Now (6) and (7) have no common solutions

other than F2 × {0} if and only if

(a) kerLuF = {0}; or,

(b) kerLuF ) {0} and for all nonzero yu ∈ kerLuF \{0}, we have tr(Mu
f (yu)) = 1

by Hilbert’s Theorem 90,

for all u ∈ P1(Fpm) (other than some simple exceptions mentioned above). See

[B, Section IV] for details.

(iii) When k = 2, the linear maps satisfy LuF (y) = a(u)yq
2

+ b(u)yq + c(u)y for

some maps a, b, c. These maps, via LuF (y) = yφu(yq−1), are related to a q-

projective polynomial φu. Since we require Fq ∩ F2m = F2, or equivalently,
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gcd(q−1, pm−1) = 1, we have kerLuF = {0} if and only if φu has no Fpm-zeroes.

We proceed to show that all φu are equivalent under the PGL(2,Fpm) action to

the canonical projective polynomial φ(y) = yq+1+y+1 which has no Fpm-zeroes

if 3 - m. This proves that F1 is APN.

When k = 3, the proof is substantially more difficult. We show that L
′u
F =

LuF + α(u)(LuF )q where LuF is as in F1. Then determine kerL
′u
F = {0, yu} and

show that tr(M
′u
f (yu)) = 1. This proves that F2 is APN.

(iv) The proof for F3 is computerized.

2. Related results

Two papers have appeared recently that extend Family F1.

• Li et al. [112] had the interesting idea to add bilinear terms to both components

f and g of Family F1 to get new APN functions.

• Calderini et al. [24] noticed that in the Family F1, the condition 3 - m can be

removed by modifying Method 14.4 to allow the use of φa(y) = yq+1 + y + a

instead of φ1 = yq+1 + y + 1 for Family F1.

3. Equivalence results

The rest of the paper is devoted to showing that the families F1,F2 contain new APN

functions that are not contained in previously known families. This is done in [B, Section

VI]. For every dimension m, two (but not all) of the APN functions of Family F1 belong

to an APN family given by Budaghyan et al. in [22]. We give [B, Proposition VI.2] a

detailed study on the equivalences of the family of Budaghyan et al. and show that they

are equivalent to either Gold G, Carlet C or F1. The inequivalence results use the invariant

ηd(NBF ) we introduced before [B, Tables I,II and III] and are computerized which is a

common practice in the field. In the next chapter (explaining the results of [C]), we give

a method to determine inequivalences of biprojective APN functions theoretically.





CHAPTER 15

Equivalences of (q, r)-biprojective APN functions [C]

First, let us explain the main contributions of [C].

1. Contributions

Let M = F2m and L = F2m/2 .

• We introduce a method to determine equivalences between biprojective functions

[C, Section 4] and provide a full classification for the known (q, r)-biprojective

APN functions [C, Theorem 6].

Theorem 15.1. Let m > 2, m 6= 6 and the (q1, r1)- and (q2, r2)-biprojective

functions

F,G : M×M→M×M
be in distinct families from the following list (see Table 2):

(i) The Gold functions G,

(ii) The Zhou-Pott functions ZP,

(iii) The Taniguchi functions T ,with (q,m) 6= (2, 4),

(iv) F1 with (q,m) 6= (2, 4),

(v) F2,

(vi) F4,

(vii) The Carlet functions C for m odd.

Then F,G are CCZ-inequivalent.

This is a comprehensive list settling the equivalence question for the large super-

class of (q, r)-biprojective APN functions. We establish a method to check

whether a putative new (q, r)-birojective APN family is equivalent to a func-

tion belonging to the large corpus of known biprojective APN families.

• The Family F4 is introduced in [C, Theorem 1]. In the statement of the following

theorem, we have Q = |L| = 2m/2.

Theorem 15.2. Let B ∈M× \ (M×)3 and a ∈ L× be such that Bq+r 6= aq+1. let

F : M×M→M×M

be defined as

F : (x, y) 7→ F (x, y) = ((1, 0, 0, B)q, (0, 1, a/B, 0)r),

where q = 2k with m ≡ 2 (mod 4), gcd(k,m) = 1 and r = qQ. Then F is APN.
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Note that this family is analogous to our semifield family S of [A].

• Equivalences between functions F,G that belong to the same biprojective family

are determined (see [C, Theorem 5]). In particular, we determine the equiv-

alences of Carlet’s family C for all dimensions, settling the open problem of

Kaspers and Zhou [93, Section 6]. Arguably, the Family C provides the most

natural biprojective functions due to the simplicity of its definition. However,

the techniques for analyzing this family is harder than the other biprojective

families.

• We show that the family F4 produces an exponential number of pairwise in-

equivalent APN functions. This is only the second such family in the literature.

Quite recently, the Taniguchi family T was shown to produce an exponential

number of pairwise inequivalent APN functions in [92] by Kaspers and Zhou.

Moreover, our work simplifies this and similar proofs of such results by intro-

ducing a natural group theoretic method which works not just for the family T ,

but for all (q, r)-biprojective families.

2. The method

The method is based on Method 8.5. However there are key differences. As explained

in Chapter 9, equivalences of vectorial functions in even and odd characteristic differs

considerably. While in the commutative semifield case (see [A, Remark 6.3]) addressing

linear equivalence of planar functions is enough, in the quadratic APN function case one

requires extended linear equivalence. In [C, Section 4] we address this issue and give a

method for the EL-equivalence case.

As explained in [C, Theorem 3], the family C requires special treatment (since it is

(1, q)-projective). We address these problems in [C, Section 5]. An example of such

considerations is interesting on its own. In [C, Lemma 7], where we determine the or-

bits of q-projective polynomials under the action of M× × PGL(2,M) when q = 2k and

gcd(k,m) = 1.

The remaining parts [C, Sections 6 and 7] are intricate analyses required to prove our

main theorem.



CHAPTER 16

The discrete logarithm problem (DLP) and projective

polynomials [F, G]

Modern cryptography is based on two paradigms: public key (asymmetric) cryptog-

raphy and secret key (symmetric) cryptography. The goal in public key cryptogra-

phy is to establish a secret key required by symmetric cryptographic algorithms which is

then employed to establish a fast and secure transmission. Perfect (or highly) nonlinear

functions are usually employed as building blocks of symmetric key algorithms. We have

studied these functions in previous chapters with the help of projective polynomials.

A major (and the first) key establishment algorithm is the Diffie-Hellman (DH) key

agreement protocol [44] which is closely related to the Discrete Logarithm Problem

(DLP). In this chapter, we will show that projective polynomials are useful in attacking

the discrete logarithm problem on finite fields. In the case of perfect and almost perfect

nonlinear functions over L, we have seen that projective polynomials with no (or few)

solutions in L are critical. In this chapter, we explore the other extreme: we use q-

projective polynomials from L[X] that splits in L (i.e., that have as many solutions in L
as their polynomial degree q + 1).

1. DLP and Diffie-Hellman key agreement algorithm

Let G = 〈g〉 be a cyclic group. Suppose that A and B want to establish a secret key. Both

parties generate random integers a, b and compute ga, gb respectively and transmit these

to each other. Both can now compute gab which is then established as the secret key.

Given h ∈ G, the discrete logarithm problem is to find an integer 0 ≤ i < |G|
such that gi = h (denoted by logg(h) = i). It is clear that an attacker intercepting the

communication of A and B, and that can solve the DLP on G efficiently, can compute

gab as well. Therefore the security of the DH key agreement protocol depends on the

tractability of the DLP.

2. Algorithms for the DLP

The Pohlig-Hellman algorithm reduces the DLP on an arbitrary group G with |G| =∏
peii to DLPs in cyclic groups of prime order pi. The two other important generic al-

gorithms for the DLP are the baby step-giant step algorithm and Pollard’s rho

algorithm, which require time polynomial in
√
|G|.

In this thesis, we are interested in the multiplicative group F×pn of a finite field, especially

when p is small compared to the order pn. The index calculus method leads to a faster

algorithm in this case (see [82, Section 4.1] for a history and extensive references).
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Method 16.1 (Index calculus). Let F = {xi : i ∈ I} be a subset of G = 〈g〉 (containing

g) called the factor base.

(i) Relation generation: Collect enough multiplicative relations of the form∏
i∈I

xdii =
∏
j∈I

x
ej
j ,

so that the linear relations∑
i∈I

di logg xi ≡
∑
j∈I

ej logg xj (mod |G|)

in indeterminates xi generate a (uniquely) solvable system.

(ii) Linear algebra: Solve the system to find the non-zero solution which gives the

logarithms of the factor base elements.

(iii) Individual logarithm: Let h ∈ G be the element whose logarithm is required.

Write h in terms of factor base elements

h =
∏
i∈I

xdii ,

which then allows one to compute the discrete logarithm of h.

Other than Part (ii) which can be simply done by well-known algorithms such as Structured

Gaussian Elimination, Lanczos, and Wiedemann algorithms [106], how to solve Parts (i)

and (iii) is not immediate. Actually, the specific way one solves these tasks determines the

complexity of the whole algorithm. When one specializes in the DLP on the multiplicative

group of a finite field Fpn , which is viewed as the quotient ring Fp[X]/(F ) where F is a

degree n irreducible polynomial, the notion of the Euclidean norm function degree on

Fp[X] becomes important in the index calculus method. (In this chapter, by the degree

we will mean the polynomial degree.) First of all, the factor base is usually selected in

such a way that it contains all polynomials that have degrees smaller than or equal to

a bound m. Secondly, in Part (iii) of the index calculus method, an element h (with

arbitrary degree) is usually written progressively as a product of lower degree elements

in an iterative manner until the expression contains only the elements of degrees smaller

than or equal to m, that is to say, the elements that are in the factor base.

Definition 16.2. A polynomial f ∈ Fp[X] is said to be m-smooth if it factors into

irreducible polynomials of degree less than or equal to m.

The following result gives an estimate for the probability that a degree n polynomial

to be m-smooth which is essential for the complexity analysis of classical index calculus

methods.

Theorem 16.3. [54, 124] The probability that an arbitrary degree n polynomial f ∈ Fp[X]

is m-smooth is u−u+o(1) where u = n/m.

In this thesis, we are going to concentrate on the original contributions of [F, J, G] that

improve Part (i) and Part (iii) of the index calculus method. These contributions arise from

the properties of the central objects of this thesis — projective polynomials. Our approach

in this chapter reflects the general theme and is based on projective polynomials. We refer
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to the comprehensive surveys [124, 125, 82, 64, 84] and the textbook [75, Chapters 2,

3, 4, 6, 15] for the details that are omitted here.

3. Function field sieve

The following is a brief explanation of the variant introduced by Joux and Lercier [81],

where the function field sieve is explained in an elementary way. Let Fqn be the finite

field in which discrete logarithms are to be solved where q is a prime power. In order

to represent Fqn , choose two univariate polynomials g1, g2 ∈ Fq[X] of degrees d1 and

d2 respectively. Then whenever X − g1(g2(X)) possesses a degree n irreducible factor

F ∈ Fq[X], one can represent Fqn in two related ways. In particular, let x ∈ Fqn be a

solution of F (X) = 0, and let y = g2(x), so that by construction x = g1(y) as well. These

relations give an explicit isomorphism between Fq(x) and Fq(y), both of which represent

Fqn .

In the most basic version of the algorithm (which also leads to the best complexity) one

chooses d1 ≈ d2 ≈
√
n, and considers elements of Fqn represented by:

xy + ay + bx+ c , with a, b, c ∈ Fq .

Substituting x by g1(y), and y by g2(x), we obtain the following equality in Fqn :

(8) xg2(x) + ag2(x) + bx+ c = yg1(y) + ay + bg1(y) + c .

The factor base consists simply of the degree one elements of Fq(x) and Fq(y) (i.e., evalu-

ations of all degree one polynomials in Fq[X] at x and y, that is to say, x + u and y + u

for all u ∈ Fq). Then for every triple (a, b, c) for which both sides of (8) split over Fq (i.e.,

when all of its roots are in Fq) in the factor base, one obtains a relation. Once more than

2q such relations have been collected, one performs a linear algebra elimination to recover

the individual logarithms of the factor base elements.

4. Impact of projective polynomials on the DLP ([F] and [J])

Let q = pl. In [F] and [J] we showcase algorithms when p = 2 since it is the fastest case.

Here, we also set p = 2, but remark that the odd characteristic case can be handled after

some minor changes.

Note that the probability of an arbitrary degree d2 polynomial g2 over Fq[X] splits over

Fq is 1/(d2 + 1)!. If we choose g2(X) = Xpk , the left hand side of Eq (8) becomes

Xpk+1 + aXpk + bX + c,

(that is to say, a pk-projective polynomial) evaluated at x. Recall that X 7→ X+a converts

the above polynomial to

Xpk+1 + b′X + c′,

which can be then converted to the form Xpk+1 + εX +B where ε ∈ {0, 1}. Theorem 1.9

shows that the probability that

PB(X) = Xpk+1
+X +B ∈ Fq[X]

splits over Fq is approximately 1/p3k when k|l. When l ≥ 3k such B exists and this

probability is much higher than 1/(pk + 1)!.
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Remark 16.4. Recall that when k|l, a pk-projective polynomial f ∈ Fpl [X] has 0, 1, 2 or

pk + 1 Fpl-roots by Lemma 1.6 of Chapter 1. The projective polynomial f has pk + 1

Fpl-roots if and only if f ∼MXpk −X (cf. [E, Lemma III.4]).

Assume for now n = pk ± 1. If we choose g1(X) = γX∓1 then as g2(X) = Xpk , we obtain

the polynomials F (X) = Xpk±1 + γ. Furthermore, if k | l then Xpk±1 + γ is irreducible

whenever γ has no roots of prime order dividing (pk ± 1). In both cases, the right hand

side of Eq. (8) has degree two and splits with probability 1/2.

Remark 16.5. The assumption n = pk ± 1 is quite restrictive. In the original papers,

we employ a heuristic method which empirically works for arbitrary extension degrees

n ≤ pk. We choose k as large as possible such that k|l and l ≥ 3k (by possibly embedding

the original finite field Fpln where we seek discrete logarithms in a slightly larger extension

field); and set d1 as small as possible with g1 satisfying the condition that X − g1(Xpk)

contains a degree n irreducible factor. Experimentally, when p = 2, setting d1 = 3 (or

d1 = 4) seems to be sufficient to produce an irreducible polynomial of any chosen degree

n ≤ 2k which potentially can be as high as n ≈ 2k ·d1. Although one prefers a heuristic-free

algorithm, having such an assumption is standard in index calculus methods throughout

its history [84, 82]. We explain here the most natural choice n = pk ± 1 which are called

Kummer extensions and produce optimal (and rigorous, i.e., heuristic-free) results. The

generic results in our original papers will be remarked and cited whenever necessary.

4.1. Relation generation via projective polynomials. Now we explain the poly-

nomial time relation generation algorithm for the even characteristic case p = 2, q = 2l,

n = 2k − 1, l ≥ 3k and k|l. This is the setting of [J]. We have g2(X) = X2k and

g1(X) = γX as above.

Let B ∈ F×q be an element such that PB(X) splits (such B can easily be generated, see [F,

Section 3.1]) and denote its roots by µi for 1 ≤ i ≤ 2k + 1. For arbitrary a, b ∈ Fq (with

a2
k 6= b) there exists c ∈ Fq with (a2

k
+ b)

2k+1
= B (ab+ c)2

k

and we then find that

f(X) = PB

( ab+ c

a2k + b
X + a

)
= X2k+1 + aX2k + bX + c

and that f(X) also splits over Fq, with roots νi = ab+c

a2
k
+b
µi + a.

Now by the definition of Fqn we have xn = γ and thus x2
k

= γx, with γ ∈ Fq. Hence in

Fqn we have

f(x) = γx2 + aγx+ bx+ c = γ(x2 + (a+ b
γ )x+ c

γ ) = γg(x) ,

where g(X) = X2 + (a + b
γ )X + c

γ . Hence, if the polynomial g(X) splits, i.e., if g(X) =

(X + ξ1)(X + ξ2), which heuristically occurs with probability 1/2, then we find a relation

of factor base elements, namely

2k+1∏
i=1

(x+ νi) = γ(x+ ξ1)(x+ ξ2) .
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Such a relation corresponds to a linear relation between the logarithms of the factor base

elements. Once we have found more relations than the cardinality of the factor base we

can solve the discrete logarithms of the factor base elements by means of linear algebra.

Remark 16.6. We show in [F, Section 3.3] that this approach using a generic g1 (as

explained in Remark 16.5) gives a heuristic polynomial time relation generation algorithm

for the index calculus method (see [F, Heuristic Result 1] for details).

4.2. Degree two elimination via projective polynomials. Recall that Part (iii)

of Method 16.1 progressively writes a high degree element of Fqn as products of lower

degree elements iteratively until it is written completely as degree one (i.e., factor base)

elements. In [F, J], given an element h ∈ Fqn considered as a degree n′ polynomial in

Fq[X] evaluated at x, we use classical descent techniques to write h as a product of lower

degree elements down to degree two elements (see [F, Section 4] and [J, Section 2.4]).

Our original contribution of [F] regarding descent is the degree two elimination technique

based on projective polynomials explained below.

Given a polynomial Q(X) = X2+q1X+q0 ∈ Fqk [X] we aim at expressing the correspond-

ing finite field element Q(x) ∈ Fqn as a product of factor base elements. In essence, what

we do is just the reverse of the degree one relation generation, with the polynomial g(X)

set to be Q(X).

In particular, we compute (when possible) a, b, c ∈ Fq such that, up to a multiplicative

constant in F×q , Q(x) = x2 + q1x+ q0 equals x2
k+1 + ax2

k
+ bx+ c where the polynomial

X2k+1 + aX2k + bX + c splits into linear factors.

As xn = γ holds, we have x2
k+1+ax2

k
+bx+c = γ(x2+(a+ b

γ )x+ c
γ ) and comparing coef-

ficients we find γq0 = c and γq1 = γa+b. Now letting B ∈ F×q be an element satisfying the

splitting property and combining the previous equations with (a2
k

+ b)
2k+1

= B (ab+ c)2
k

we arrive at the condition

(a2
k

+ γa+ γq1)
2k+1 +B(γa2 + γq1a+ γq0)

2k = 0 .

Considering Fq as a degree l/k extension over F2k this equation gives a quadratic system

(in the sense of algebraic degree) in the l/k F2k -components of a, which can be solved

efficiently by a Gröbner basis method (cf. [75, Chapter 11]).

Heuristically, for each of the above B’s the probability of success of this method, i.e.,

when an a ∈ Fqk as above exists, is 1/2. Choosing different B’s until a successful descent

is possible heuristically with an overwhelming probability whenever l/k > 3.

Remark 16.7. In [J, Section 2.2] we explain how the choice of g1, g2 as above leads to a

dramatic reduction on the size of the factor base via Galois automorphisms. Note that the

complexity of the “Linear algebra” step of the index calculus method depends primarily on

the size of the factor base. Moreover, our selection of g1, g2 also leads to computationally

efficient data structures and algorithms. These are explained in [J, Section 3.3] and [F,

Section 3].

Remark 16.8. In [F, Heuristic Result 2 (i) and (ii)] we prove that these arguments lead

to an Lqn(1/3, (2/3)2/3) algorithm where qn satisfies [F, Eq. (5), p. 117] which means q

is “small” compared to qn. Similarly, in [J, Section 5] we prove that the algorithm can be
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modified to give an Lqn(1/4) algorithm where

LQ(a, c) = exp
(
(c+ o(1)) (logQ)a(log logQ)1−a

)
is used to measure running times of sub-exponential algorithms for 0 < α < 1. Note that

α = 0 is polynomial and α = 1 is exponential. Note also that the parameter α is more

significant than the parameter c which is sometimes even omitted.

The “smallness” of the prime p is also described by the L-notation. Let p = Lpn(α).

Then p is said to be (i) small if α ≤ 1/3, (ii) medium if 1/3 ≤ α ≤ 2/3, and (iii) large

(high-characteristic) if α ≥ 2/3 (see [82, Section 4.1] for details such as the explanation

for the overlap in the boundary cases).

Remark 16.9 (Record breaking DLP computations). We broke two records for discrete

logarithm computations on characteristic two fields of order 21971 and 26120 [58, 59]. The

first article [F] that broke the first record received the prestigious “Best Paper Award” at

the conference CRYPTO (August 2013).

Similar algorithms were given by Joux [76, 77] independently, also breaking DLP records

[78, 79, 80] during the same four-month period February—May 2013.

In [10], the first heuristic quasi-polynomial algorithm (nO(logn)) was given by Barbulescu

et al., substantially improving upon the L(1/4) algorithms. In [66], the degree two elim-

ination method of [F] is generalized by Granger et al. to the so-called “ZigZag descent,”

to give another quasi-polynomial algorithm with fewer heuristic assumptions.

5. A rigorous degree two elimination analysis for quasi-polynomial DLP ([G])

In [G] we give a quasi-polynomial algorithm using a new degree two elimination step and

a slightly modified ZigZag strategy of [66]. This algorithm accounts for a simpler and

tighter analysis of quasi-polynomial DLP computations in small characteristic fields Fqk0k
where k is close to q and k0 is a small integer.

5.1. The setting. Let q be a prime power, Q0 = qk0 a (small) power of q; h0 and h1
two polynomials of degree at most 2 with coefficients in FQ0 . Assume that the polynomial

h1(X)Xq − h0(X) has an irreducible factor Ik of degree k. (Computational evidence

suggests that degree 2 should be enough to construct all finite fields with k up to q + 2,

however this remains heuristic.) Then, this irreducible polynomial can be used to represent

FQk0 as FQ0 [X]/(Ik). Moreover, if θ denotes a root of Ik in the algebraic closure of Fq we

see that:

θq =
h0(θ)

h1(θ)
.

Since, θq is the image of θ by the Frobenius map, this representation is named Frobenius

representation [83]. Let θ be a fixed root of Ik.

We want to find the discrete logarithm logg h where h ∈ F×
Qk0

= 〈g〉. The following

method is the main algorithmic contribution of [G, Theorem 3] which has quasi-polynomial

complexity.

Method 16.10. Let l be such that 2l ≥ k > 2l−1.
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(i) Let hrgs = R(θ) for an irreducible R ∈ FQ0 [X] where pdegR = 2l, and for r, s

chosen uniformly at random. Such R can be found using linear algebra [G, p.

2487].

(ii) We have for some α ∈ F
Q2l

0
,

R(X) =
2l−1∏
i=0

(X − αQi0)

=
2l−1−1∏
i=0

(X − αQi0)(X − αQQi0)

=
2l−1−1∏
i=0

(X2 − Tr(αQ
i
0)X + Nm(αQ

i
0))

where Q = Q2l−1

0 and Tr and Nm denote the trace and norm from F
Q2l

0
to F

Q2l−1
0

.

(iii) Now we have 2l quadratic polynomials Si ∈ F
Q2l−1

0
[X] where

Si(X) = X2 − Tr(αQ
i
0)X + Nm(αQ

i
0)

for 0 ≤ i ≤ 2l − 1. We eliminate S0 using the descent method explained in [G,

Section 4] (see Remark 16.11 below) which writes S0 as a product of q+ 3 linear

polynomials X − βj ∈ F
Q2l−1

0
[X] and some additional polynomials denoted by E

(see [G, p. 2487]). For 1 ≤ i ≤ 2l − 1, elimination of Si is now implicitly done

since all Si are related via Galois automorphisms as shown in [G, Section 3, p.

2488]. In particular, for all X−βj that appears in the product, we have X−β
√
Q

j

appearing in the product as well. Thus R(X) is now written as a product of

q + 3 quadratic polynomials from F
Q2l−2

0
[X] and their Galois conjugates.

(iv) Now eliminate those q + 3 quadratic polynomials over F
Q2l−2

0
[X] to get (q +

3)2 quadratic polynomials over F
Q2l−3

0
[X] and their Galois conjugates whose

elimination data is just copied from the original similarly as in Part (iii), and

some additional polynomials from E .

(v) Continue this process until we reduce all to the factor base elements which

correspond to X − γ where γ ∈ FQ0 and some additional polynomials denoted

by E . In total we would have eliminated (q + 3)dlog2 ke quadratic polynomials.

(vi) We show in [G, Lemma 6], that the above degree two elimination can be done

for one quadratic polynomial in O(q4) arithmetic operations in the relevant field.

(vii) Repeating the process of writing hrgs as a product of factor base elements for

randomly selected r, s more than Q0 + q2 + q + 7 (the cardinality of the factor

base) times, we can find the logarithm of h using the linear algebra technique

from [4] which requires Q3
0 arithmetic operations (see [G, p. 2489].

(viii) Thus the total complexity of the algorithm is

O((q + 3)dlog2 keq4+k0 + q3k0)

finite field operations (see [G, Theorem 3]).
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Remark 16.11 (Descent as the solution of a finite field equation). The main mathematical

contribution of [G] is as follows.

(i) We prove that degree two descent for a quadratic polynomial f ∈ FQ[X] can be

done if f divides

F = (a0 + a1X) (bq0 h1(X) + bq1 h0(X))− (b0 + b1X) (aq0 h1(X) + aq1 h0(X)) ,

for some (nontrivial choices of) a0, a1, b0, b1 ∈ FQ.

(ii) We convert this condition to a finite field equality [G, Theorem 5 and Lemma

6], and show that it is possible for every choice of f that this equality holds. We

prove the following assertion: For any a ∈ F×Q, the equation(
Xq −XQ

Xq −X

)Q+1

= a

has a solution X ∈ FQ2 \ FQ (see [G, Lemma 6] for details on Q and q).

(iii) We explain in [G, Sections 4 and 5] how the existence of such X for a given a

is in correspondence with the degree two descent of some f (other than some

exceptions).

(iv) In [G, p. 2495] we show that the degree two elimination can be done in O(q4)

arithmetic operations.

(v) The proof of [G, Theorem 5 and Lemma 6, pp. 2491–2496] is rather involved.

See the original paper for details.

Remark 16.12. Quite recently, in [98, 116] rigorous (heuristic-free) quasi-polynomial

time algorithms for solving discrete logarithms on fixed prime finite fields were given using

the so-called elliptic representation of finite fields. The current record DLP computation

is in the binary finite field of order 230750 by Granger et al. [65] at the time of writing.



CHAPTER 17

Conclusion

We list here the three most important open problems that cover every subject matter of

the thesis.

(i) Finite semifields:

Problem 17.1 (Kantor’s conjecture). Show that the number of pairwise non-

isotopic semifields of odd order Q is super-polynomial (i.e., not bounded by a

polynomial) in Q.

A stronger version of the conjecture states that the number is exponential in Q.

This should be solved for the even characteristic case as well since the current

number there is super-polynomial (but not exponential) in Q.

(ii) Highly nonlinear functions/cryptographic permutations:

Problem 17.2 (The big APN problem). Find (a family of) APN permutations

on even degree extensions Fn2 where n > 6.

(iii) Discrete logarithm problem:

Problem 17.3. Give a polynomial time DLP-algorithm for small characteristic

finite fields and quasi-polynomial time algorithms for medium and high charac-

teristic finite fields.
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F. Göloğlu, R. Granger, G. McGuire, and J. Zumbrägel, Solving a 6120-bit DLP on a
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